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Abstract 

Occupants’ comfort perception affects building energy consumptions. To improve the 

understanding of human comfort, which is crucial to reduce energy demand, laboratory experiments 

with humans in controlled environments (test rooms) are fundamental, but their potential depends on 

the characteristic of each research facility. Nowadays, there is no common understanding for 

definitions, concepts, and procedures related to human comfort studies in test rooms. Identifying 

common features would allow standardising test procedures, reproducing the same experiments in 

different contexts, and sharing knowledge and test possibilities. This review identifies 187 existing 

test rooms worldwide: 396 papers were systematically selected, thoroughly reviewed, and analysed 

in terms of performed experiments and related test room details. The review highlights a rising 

interest in the topic during the last years since 46% of related papers has been published between 

2016 and 2020.  A growing interest in non-thermal sensory domains (such as visual and air quality) 

and multi-domain studies about occupant whole comfort emerged from the results. These research 

trends have entailed a change in the way test rooms are designed, equipped and controlled, 

progressively becoming more realistic inhabitable environments. Nevertheless, some lacks in comfort 

investigation are highlighted: some continents (like Africa and South America) are found to be 

underrepresented, while involved subjects are mainly students performing office tasks.  This review 

aspires to guide scientists and professionals toward the improved design or the audit of test room 

experimental facilities, especially in countries and climate zones where human comfort indoors is 

under-studied. 
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1. Introduction  

People in developed countries spend 85-90 % of their time indoors [1]. Notwithstanding 

undeniable improvements in the quality of building interiors in the past decades, a range of health 

risks and discomfort issues associated with exposure to the indoor environment persists. Researchers 

have demonstrated the strong connection between the indoor environmental quality (IEQ) of a 

building and occupants’ comfort, health, and productivity [2,3]. Moreover, buildings’ energy 

consumption is largely affected by occupants’ behaviour [4], triggered by their perception of the 

surrounding environment [5]. Therefore, decoding human comfort is a crucial issue in building 

science for enhancing building design and operation from a sustainable perspective and through a 

human-centric approach [6].  

The scientific community approaches human indoor comfort by coupling measurements of the 

physical environment (e.g., air temperature, sound pressure level, air pollutant concentrations, 

illuminance) and occupants’ feedback collected via surveys, behavioural and/or physiological 

monitoring. Applied experimental protocols can be broadly categorized into (i) in-field monitoring 

and (ii) laboratory experiments.  

In-field experiments allow researchers to observe subjects in a real environment such as 

workplaces [7,8], residential [9] or educational [10] buildings, or even semi-open transitional urban 

spaces [11]. This approach provides essential outcomes, especially for assessing the impact of real-

space configurations on occupants’ perception [12], the effects of building characteristics on 

occupants’ wellbeing [13], or the impact of occupants’ behaviour on buildings’ energy consumption 

[14,15]. However, it does not allow to directly control the environmental parameters of the 

investigated spaces. Indeed, it is not feasible to isolate the contribution of a single environmental 

factor or a specific combination of multiple environmental stimuli on subjective responses, for 

example, overall comfort perception or productivity [16] in in-field research, while this is 

fundamental to establish a cause-effect relationship related to the comprehension of human comfort 

and the related occupancy behaviour [17]. These issues can be solved through experiments in 

controlled environments where desired physical boundaries can be determined and replicated, so 

different subjects can be exposed to the same stimuli and the influence of subjective factors elucidated 

[18]. Moreover, laboratory experiments generally allow researchers to perform a more detailed 

investigation of human subjects and collect physiological signals less commonly monitored in-field. 

Many research institutions have built their own environmentally controlled experimental 

facilities to perform human comfort-related experiments worldwide and throughout the years. Each 

facility is designed to achieve specific research goals, thus presenting different dimensions, internal 

layouts, envelope characteristics, energy systems, and monitoring setup. Different equipment types 

are also included depending on the final aim of an experimental campaign targeting a specific comfort 

domain. Examples include thermal manikins, commonly simulating human thermal comfort [19] or 

inhalation exposure [20], or different apparatus for studying the human reaction to specific 

environmental input such as glare discomfort [21,22]. The test room design influences the 

experimental design and the accuracy of related modelling. The construction and technological details 

of the test room decide on the extent and scope of the different stimuli that can be provided as well 

as the different spatial layouts that can be generated. Being an essential determinant of experimental 

methodology, a careful design process of these facilities is of primary importance. 

Due to the rising interest in better understanding human comfort, many reviews shed light on 

different perspectives of the topic. Several reviews summarise visual-related studies, reporting both 



   

 

   

 

lab and field investigations, as well as simulation studies [24–27]. Others focus on thermal comfort 

and different modelling approaches [28], main experimental procedures [29,30], or its energy-related 

implications [31]. Nevertheless, none addresses the diversity of laboratory facilities, which is a key 

component in the design of human-centred comfort experiments. 

The identification of standard tools for advancing knowledge in the field would be helpful for 

the scientific community. An accepted glossary for identifying such facilities is still missing. Many 

papers refer to these facilities as test rooms or chambers or test-cells or simply laboratories. Here, 

“test room” was chosen as the most representative definition, highlighting the differences between 

facilities designed for human comfort studies and laboratory equipment devoted to material testing. 

Moreover, we define a “test room” as an enclosed space, environmentally controlled and properly 

instrumented, in which human-centric comfort studies can be performed through actual occupants’ 

presence and monitoring.  

This review aims at describing existing test rooms worldwide and at summarizing experimental 

studies on human comfort performed in such facilities to outline trends in the field, common 

components, and define new research perspectives. Precise selection criteria of the papers have been 

identified and used for the critical review (Section 2), and common technical features and trends in 

construction have been taken into account (Section 3), while Section 4 focuses on the specific 

experiments conducted in these facilities to deepen human comfort theory. Each experiment was 

categorized based on the type of domain(s) of human perception involved (thermal, visual, olfactory, 

and aural). In this context, a distinction was made between single-domain studies, which describe 

experiments focusing on thermal, visual, indoor air quality or acoustical stimuli only, and multi-

domain studies [18,32], which simultaneously address two or more domains; for instance, the analysis 

of thermal and acoustic stimuli on overall comfort perception, or the analysis of thermal perception 

as influenced by lighting or air quality conditions. The key findings and conclusions, including 

suggestions for future research agenda, are summarised and critically discussed in Sections 5 and 6, 

respectively. 

 

2. Materials and methods 

A systematic bibliographic search was planned and conducted to establish a database as 

comprehensive as possible, looking at existing test rooms for human comfort experiments according 

to available scientific literature and not to miss any test rooms that the authors are aware of. The final 

database is thus the result of two main steps: an automatic search and a supplementary hand search 

(Figure 1).  

The automatic search was systematically conducted through Scopus and Web of Science 

scientific databases to identify papers concerning human comfort investigation in test rooms, as 

available up to June 2020. The search was limited to journal papers written in English after 1985 to 

keep the search consistent between the two scientific databases due to the temporal limitation of Web 

of Science. To cover the scientific literature on the theme published before 1985, a further search was 

conducted in Google Scholar. Different typologies of documents such as books, book chapters, 

reviews, or conference proceedings were thus excluded from the search to improve consistency and 

avoid repetitions of the same study that may have been presented in different document types. Five 

queries were designed within these boundaries, corresponding to each aspect of indoor human 

comfort. The queries were structured in three parts, progressively focusing on the purpose of the 

review:  

(i) on the laboratory facility where human comfort experiments took place,  



   

 

   

 

(ii) on the main aim of the studies, i.e., human comfort, and  

(iii) on the specific comfort domain of interest (e.g., thermal, visual, acoustic, air-quality related).  

Each part of the query was detailed after a discussion among the authors that are experts in 

human comfort studies and come from different countries and cultural backgrounds. These cultural 

differences provide a comprehensive definition of the facilities object of the review. The first two 

parts of the query were used for all the five queries and consisted of the following keywords: 

(testroom OR test-room OR chamber OR laborator* OR “test cell”) AND comfort. The term “human” 

was not included for not missing any contributions that may fit the scope but did not explicitly 

mention humans’ involvement. The publications not dealing with human comfort were excluded 

through the double-screening procedure, as specified in the following. In addition to these keywords, 

the five queries were distinguished by including the following specific keywords: 

1. Thermal 

2. Visual OR Lighting 

3. Acoustic 

4. Air quality OR Pollution 

5. Energy 

Each specific query focused on a single comfort aspect addressed from the perspective of the 

provided physical stimulus, as associated with thermal, visual, aural and olfactory human perception. 

In contrast, the fifth query focused on the theme of energy that is commonly associated with human 

comfort studies aimed at improving indoor environmental quality while reducing building energy 

consumption. 

The automatic bibliographic search resulted in 1776 papers. A cleaning procedure of the 

database was performed by focusing only on experiments both carried out in a controlled environment 

and addressing human perception and exposure. This procedure accounts for two main steps. The 

first screening was conducted through a specifically developed script in Python language for 

automatic abstract screening by excluding papers presenting specific words referred to out-of-scope 

disciplines such as medicine or veterinary medicine. After this first screening, 598 papers were still 

included in the review process. and went through the second screening phase: the papers were 

carefully read and selected according to the primary purpose of the review. Only papers describing 

experiments performed in the controlled environments (test rooms) whose internal dimensions and 

conditions were suitable for human experiments were considered for this review.  

The hand search was carried out for reducing the automatic search biases and limiting the 

number of existing test rooms not covered by this review. Additional papers were included according 

to the previous knowledge of the authors and the selection criteria that is the usage of a controlled 

environment for conducting experimental research on human perception and exposure. More than 

half of the additional papers (49 out of the 92) concern the visual comfort domain, meaning that 

common keywords coming from the other domains were not suitable to catch all the visual comfort 

studies. The final number of analysed papers was 396. 



   

 

   

 

 

Figure 1. Papers selection workflow. 

 

Table 1. Number of journals papers published throughout years (up to June 2020) and concerning each analysed topic. 

  Time periods  

Domain(s) ≤ 2000 2001-10 2011-15 2016-20b Total 

1
 d

o
m

a
in

 Thermal 26 39 50 89 204 

Air quality 3 3 4 8 18 

Acoustic 0 2 2 7 11 

Visual 5 10 23 32 70 

2
 d

o
m

a
in

s 

Thermal + Air quality 0 10 22 19 51 

Thermal + Acoustic 0 3 0 3 6 

Thermal + Visual 1 0 1 17 19 

Air quality + Acoustic 0 1 0 1 2 

Air quality + Visual 0 0 0 0 0 

Acoustic + Visual 0 0 1 1 2 

3
 d

o
m

a
in

s Thermal + Air quality + Acoustic 1 0 1 1 3 

Thermal + Air quality + Visual 0 1 1 0 2 

Thermal + Acoustic + Visual 1 0 0 1 2 

Air quality + Acoustic + Visual 0 0 0 0 0 

4
 d

o
m

a
in

s 

Thermal + Air quality + 

Acoustic + Visual 
0 0 1 5 6 

Total 37 69 106 181 396 

 energy relateda 5 15 29 36 85 
aThe energy-related topic is transversal to the others 
bThe count for 2020 considers only those documents indexed until June 2020 



   

 

   

 

Table 1 summarizes the number of analysed papers per topic and year of publication, 

considering four time periods: (i) up to 2000, (ii) 2001-2010, (iii) 2011-2015, and (iv) 2016-2020. 

Defined time periods highlight the considerable increase in published papers on controlled test room 

experiments on human comfort. Indeed, the increase ratio observed during the first decade of the 21st 

century (1.9) is comparable to the one observed for the first (1.5) and second (1.7) part of the 

following decade. 

The table depicts a predominant interest of the scientific community in thermal comfort 

investigations (conducted either in isolation or in combination with other factors) followed by energy-

related studies (total of 85 papers) and visual comfort assessments. Air quality studies are less 

common, especially as a single stimulus for the participants involved in test room experiments. 

Indeed, the total amount of reviewed papers related to air quality assessment is 84. Only 18 of them 

were found to focus on air quality only as a single stimulus, disabling the olfactory from the thermal 

perception and all the other spheres of comfort. More detailed presentation of the aims and procedures 

of the air-quality-only studies is provided in Subsection 4.4.   

 

Figure 2. Publication increase ratio with respect to the number of published papers before 2000 for each query. 

Figure 2 shows trends of publication for each specific domain of comfort, without 

distinguishing between single and multi-domains experiments, with respect to studies published 

before 2000. Thermal comfort-related experiments present the slowest increasing ratio from the 

reference scenario. Air quality-related experiments show the greatest increase in the number of 

published papers, with a slight decrease in the last five years. A similar trend can be observed for 

energy-related studies. Visual comfort-related studies are gaining more attention with currently seven 

times more papers compared to available publications before 2000. Aural comfort is the least 

investigated domain in controlled environments. Reviewed papers including a focus on acoustic 

comfort are 32 in total, half of which published in the last five years. 

 

 

 

 



   

 

   

 

3. The test rooms around the world 

From the 396 papers selected according to the systematic review process, 187 different test 

rooms located in 126 research institutes around the world have been identified based on the 

descriptions provided in the papers.  

 

 

Figure 3. (a) Number of test room facilities located in the seven continents; (b) amount of test rooms located in each 

continent for each defined time period; (c) frequency distribution of test rooms with respect to Köppen-Geiger climate classes [33]. 

Figure 3 summarises the test rooms distribution across continents (a,b) and different climate 

conditions (c), referring to the Köppen-Geiger climate classification [33]. Nowadays, the great 

majority of test rooms are located in Europe and Asia (82 %), and in a temperate climate, without dry 

seasons, characterized by hot (Cfa) and warm (Cfb) summer. 29 out of the 44 test rooms located in 

the Cfa climate zone are in Asia (South and coastal area of Japan and South-Eastern China mainly), 

while 54 out of the 57 test rooms located in Cfb zones are in Europe (North-Western countries 

mostly). Figure 3b presents how the worldwide distribution of these facilities varied across time (all 

the test rooms were dated per the oldest related paper available in the review dataset). European 

countries have the oldest tradition in human-related experiments conducted in controlled test room 

settings: 50 % of the facilities already existing before 2000 were located in Europe. The number of 

facilities in Asia has grown over the last 20 years from 18 to 41 % of the total number worldwide in 

2020, overcoming the number of facilities located in North America (13 %). 

The following subsections are intended to provide helpful information for researchers 

evaluating whether to create or buy a test room for human comfort studies. These illustrate the range 

of test room characteristics that enable the researcher to perform different experiments and investigate 

specific aspects of human comfort. An overview of construction and technical details is provided in 

section 3.1 and 3.2, in accordance with the available information from the reviewed papers. Then, 

sections 3.3 and 3.4 provide insights into the economic investment required to set up these kinds of 

facilities, either if these are customized or commercially available. Since none of the reviewed papers 

provides information on test room costs and related economic investment, data provided in sections 



   

 

   

 

3.3 and 3.4 come from an additional search: an online survey was submitted to authors of the 

identified significant and recent literature, seeking details on key aspects of the needed economic 

investment (including design, construction, operation and maintenance costs). Finally, commercial 

test room producers (eight institutions from the U.S. and five institutions from Europe) were directly 

contacted to provide dedicated insights for the readers, reported in section 3.4. 

3.1 Construction details 

The construction details were specifically examined to determine how passive elements of the 

test room, including windows, shades, layout, size, and position within or external to an existing 

building, may allow or hinder different types of investigations. Unfortunately, comprehensive 

descriptions of the test rooms construction details are not always available. It was not possible to 

assess whether the test rooms are located inside a building or are entirely independent buildings for 

10 % of the 187 test rooms identified. According to the available information, only 7 % of the facilities 

are independent buildings, external to any other building [34,35,44–47,36–43]. Five of these 

independent test rooms are located on a platform that allows the whole structure to rotate [34–37,41]. 

The great majority are situated inside the related research institute. Among these, it is possible to 

distinguish between facilities completely detached from the surrounding structure (43 %) and test 

rooms that are specifically equipped rooms within the hosting building (32 %).  

Some test rooms include more than one room. These rooms could be adjacent, but with 

independent entrances, or connected through an intermediate door. The latter configuration allows 

researchers to continuously monitor participants’ reactions when exposed to different controlled 

environmental conditions [48]. Eight of the external facilities have just one room, but the possibility 

to work with movable internal partitions is mentioned for four of them [38,41,43,44]. The other six 

outdoor test rooms present two rooms, and four out of the six have movable partitions for changing 

the interior space layout [34,35,40,45]. For the inside test rooms, single room configurations are most 

common (79 %), some of which can be modified through movable interior partitions (19 %). More 

information about the number of rooms embedded in the test rooms and their dimensions are 

summarised in Table 2. 

Table 2. Test rooms composition and dimensions with respect to their position (inside or outside another building). 

Test rooms position 
Number of rooms Dimensions [m3] 

Total 
1 2 > 2 N/A < 9 9-20 > 20 N/A 

Inside 

Detacheda
 53 8 1 4 5 16 36 9 66 

Integrateda 37 8 2 2 0 4 43 2 49 

N/A 32 2 0 6 1 5 20 14 40 

Outside 8 6 0 0 0 4 10 0 14 

N/A 7 1 0 10 0 1 4 13 18 

Total 137 25 3 22 6 30 113 38 187 
awith respect to the building structure of the related research centre 

It was not possible to define whether the described test rooms present any type of openings for 

41 % of the recognized facilities, 25 % of the test rooms located inside have no openings, 18 % have 

windows facing the outside, 16 % have windows to interior spaces, and just 2 % have both windows 

to the outdoors and the indoors (Figure 4). Among the 14 experimental facilities built outside, only 

one does not have windows [46]. At the same time, five include an adjustable envelope to vary the 

window-to-wall ratio (WWR) [35,37,41,43,45], five have a WWR lower than 0.5 [38,39,42,44,47], 

and three have a WWR in between 0.6 and 0.8 [34,36,40]. Concerning the shading system, it is clearly 

stated that there are external blinds in three test rooms [34,36,47], four present internal shading 

systems [38,40,42,44], while just one has both [39].  



   

 

   

 

 

Figure 4. Overview of the most common combination of characteristics for inside test rooms, in terms of its position with 

respect to the main structure and the windows availability. 

Half of the test rooms have no specific internal layout, meaning that there is no intention to 

simulate a real space but only to expose subjects to controlled environmental stimuli. Equipment for 

performing physical exercises are included in 10 % of these test rooms [49,50,59–64,51–58]. All the 

others have no specific furniture, even if 49 % are larger than 20 m3. Finally, 12 % of the analysed 

test rooms are presented in different papers with different internal layouts, 32 % are equipped as 

offices, 3% as classrooms [65–69], and less than 1 % present other configurations[70–73]. 

The above presented physical characteristics of the reviewed test rooms can be associated with 

their capability of performing different types of experiments, focusing on different domains of human 

comfort. The external test rooms are more commonly devoted to visual-related experiments. Indeed, 

six out of the 14 exterior test rooms are associated with visual-only experiments, while only one was 

used for testing human comfort conditions due only to thermal boundaries. When more than one 

domain is explored, four test rooms hosted experiments providing combinations of thermal and visual 

stimuli; the air quality influence was additionally explored in one test room while all the four domains 

of comfort were explored in only two of the 14 external test rooms. 

With respect to performed experiments, it is more complicated to deduce the most common 

combination of construction details for the test rooms located inside other facilities due to a lack of 

information on all the analysed features. Only 82 out of 155 reviewed test rooms are described in 

terms of both (i) their position in the hosting facility (detached or integrated) and (ii) windows 

availability facing the inside or the outside. Accounting for these two aspects, detached test rooms 

generally have no window (56 %) and are more commonly adopted for investigating human comfort 

under thermal stimuli only (46 %). Those test rooms that are integrated into the main structure, as 

specially equipped rooms, commonly have windows facing the outside (68 %) and are mainly used 

for experiments on visual domain only (54 %). 

3.2 Technical details 

Similar to the presentation of construction details, the technical capabilities of the test rooms 

directly inform what types of experiments can be conducted. Specifically, this subsection outlines 

which parameters are controllable and to what degree. As a first step, an analysis of the most common 

parameters that could be controlled by the test room systems was conducted. For this purpose, the 

relevant information was extracted from the corresponding papers for each test room and categorized 

as presented in Table 3. 

Table 3. Categorization of technological systems and related controlled parameters. 

Technological control system for comfort Controlled parameters 

Ventilation and space conditioning 

 

Air temperature  

Air velocity  

Air humidity  



   

 

   

 

Air quality (gas concentration, air changes per hour)  

Heating/cooling surfaces 

 

Envelope superficial temperature 

Radiator or other element temperature (e.g., clothes, furniture)  

Light sources 

 

Illuminance 

Solar radiation (artificial, e.g., solar simulator) 

Solar radiation (natural, e.g., actively controlled blinds and shades, 

electrochromic glass) 

Acoustic systems 

 

Background noise level (sound intensity, sound pressure level) 

Sound typology (soundscape) 

This categorization is more granular than the multi-physics domains introduced in Section 2 

(thermal, visual, air quality and acoustic comfort) to better characterize the specific system types used 

to influence each domain parameter. Indeed, in some cases, multiple controlled parameters will 

impact a single domain such as air temperature, mean radiant temperature and incoming solar 

radiation, all impacting thermal comfort. Additionally, the controlled parameters were subdivided 

into centralized and personalized systems (generally located at a desktop or at a participant/manikin). 

In the process of this categorization, 91 test rooms were selected for further analysis because related 

publications provided relevant and sufficient information. Figure 5 summarises the number of test 

rooms which can control each of the listed parameters. In some cases, one test room is counted 

multiple times in this plot, once for each parameter its system controls.  

 

Figure 5. Frequency distribution of reviewed test rooms which can control the listed parameters. 

The most common centrally controlled parameter is air temperature, followed by humidity and 

air quality control. All these three parameters can potentially be controlled by HVAC (Heating, 

Ventilation and Air Conditioning) systems with a humidifier and/or dehumidifier equipment, heating 

and/or cooling coils, and air filtering. The common practice of controlling thermal conditions in actual 

buildings, together with the predominant focus on thermal comfort studies (highlighted in Section 2), 



   

 

   

 

is likely why these controlled parameters are found to be so common. Figure 6 summarises the ranges 

for each of these three controlled parameters for all of the test rooms where ranges were reported.  As 

shown, nearly all the test rooms can control air temperature between 15-30 °C, and relative humidity 

between 30-70 %, but air-speed control was more variable. Almost all test rooms were able to control 

these parameters at least in the ranges covered by indoor comfort standards such as ISO 7730 [74] 

and, in many cases, well beyond this range, particularly with respect to the seven low-temperature 

chambers.  

 

Figure 6. Ranges of controlled air temperature, relative humidity and air velocity in the reviewed test rooms. 

Only a few papers included details of the other parameter ranges. Control of air change rates in 

the test rooms, which is accomplished through multi- or variable speed fans, ranged from 0-36 air 

changes per hour (ACH) but generally allowed for control within the minimums required by the EN 

12931 (0.5-3.6 ACH for residential buildings) [75] and by EN 16798 part 3 for offices (1-8 ACH) 

[76]. Only five test rooms reported the temperature range at which their radiant wall systems (either 

electric or hydronic panels) could be controlled (generally between 10-40 °C). For rooms with 

reported artificial lighting, the range 100-800 lx covered and exceeded the requirements (e.g., EN 

12464) [77]. A few publications also reported the ability to vary the correlated colour temperature of 

the artificial light (2,000 K to 10,000 K). There was insufficient information about artificial solar 

radiation and acoustic systems to report ranges here. 

Only 11 of the reviewed test rooms included parameters that could be controlled at a personal 

level. Furthermore, most of these personalized systems were only temporary for specific experiments 

and not a fixed part of the test room. Typical setups would be ventilation tubes aimed at a desktop, 

heated/cooled clothing and chairs, electrical heated mats or computer equipment (mouse, keyboard), 

and electrical radiators. 

The parameters controlled by the test rooms were also examined based on the estimated date of 

construction of the test room to identify trends or most prevalent innovative technologies, as shown 

in Figure 7.  It is also unknown if or when test rooms have been upgraded, nor do we have insight 



   

 

   

 

about the upgrades made. Thus, the results in Figure 7 represent the latest built stage of the test rooms 

according to the publications and may differ from their technologies at the given date of construction. 

The graph suggests a trend towards incorporating the control of acoustic sources, artificial and natural 

solar radiation, illumination, and radiant heat sources, including radiators and radiant wall panels.  

 

Figure 7. Time distribution of implemented technologies for controlling specific parameters (see the legend) identifying 

trends in test room construction. 

Furthermore, the analysis revealed that personalized control systems are becoming popular in 

newer test rooms constructed after 2000.  Finally, in the latest test rooms built between 2011-2020, 

there also seems to be a trend for controlled multi-domain installations with six test rooms since 2013, 

controlling at least three domains. 

3.3 Economic investment 

The economics of test rooms is rarely reported. Therefore, a survey to assess key elements 

related to this topic was designed. All co-authors of this manuscript and authors of identified literature 

were invited to complete it. In total, 18 responses related to separate test rooms were obtained, of 

which 14 have been completed, and four are still under construction. Except for one completed in 

1990, all others have been built within the last ten years. The majority of the test rooms is either a test 

room constructed within an existing building (N =8) or a building itself (6). Three test rooms are 

newly built test rooms within a new building, and one test room is an existing room refurbished and 

upgraded to serve as a test room. The vast majority is located in Europe (13), followed by Asia (3) 

and North America (2).  

Local currencies have been converted to EURO based on currency rates from September 4th 

2020. The total budget ranges from EUR 45,500 to EUR 943,000 (mean = EUR 347,000±299,000, 

median = EUR 240,000). For eight test rooms, information was provided in more detail. On average, 

shell construction costs (especially for those test rooms built as stand-alone test rooms within new 

buildings) are highest (mean = EUR 175,000), followed by costs for design, contracting, and 



   

 

   

 

commission (EUR 91,000), heating and cooling system (EUR 31,000 and 34,000), and in-built 

sensors and the Building Management System (EUR 33,000 and 19,000). This large variety can be 

explained partly by the variety in the type of construction, controlled and monitored variables and the 

ranges within which these variables can be controlled. In addition, it can be expected that prices vary 

locally and between countries. Seven out of 18 test rooms were fully funded by governmental sources, 

either from basic funding (N=3) or project funding (4). In addition to public and project funding, five 

test rooms were partially funded by the industry (min 5 %, mean 24 %, max 70 %). 

In addition to initial construction and installation costs, running costs (e.g., electricity, gas, 

water) and/or maintenance costs were assessed. Running costs were reported solely for three test 

rooms, but differed largely (EUR 2,500 to 17,500 per year). Interestingly, the source of funding for 

running costs was provided for 14 test rooms, of which nine responded that the university pays for 

running costs, three state project funding, and the other shared funding either between the university 

and the lab (10/90 %) or the university and project funding (20/80 %). The large discrepancy in 

response numbers between actual costs and funding source may signify that researchers are not aware 

of the running costs. Maintenance costs were provided for eight test rooms and range between EUR 

930 to EUR 10,000 per year (EUR 5,100±3,500). Funding sources for maintenance costs vary more 

than running costs for 12 out of 14 facilities, for which such information was provided. In three cases 

each, maintenance is paid fully from the laboratories’ basic funding or project funding. In two cases, 

the university covers all maintenance costs. In the other cases, maintenance costs were shared 

between the university, basic funding of laboratory and project funding with varying degrees. Only 

in one case, 25 % of maintenance costs are provided by industrial partners. 

3.4 Commercial test rooms 

Commercial test rooms are available on the market to provide researchers who want to use an 

already existing and tested product with an off-the-shelf option. These test rooms tend to use a similar 

structure and envelope materials as prefabricated foam-insulation panels with stainless steel, 

galvanized or coated aluminium (usually white) interior surfaces for fast and easy installation. This 

is for protecting the test room surface from being damaged or corroded by moisture and chemicals. 

The stainless-steel chamber can also help minimize the adsorption of VOCs by the surfaces, which is 

critical to some indoor air quality studies. However, for human-centred thermal studies, the reflective 

properties of the interior surfaces also determine the radiative heat exchange in the space, thus 

additional materials or painting are needed to simulate a ‘real-life’ condition. The test room usually 

has at least one hinged door made of the same material and optional windows of different sizes. 

Important differences between offerings tend to be in the type of airflow achieved in the test room. 

Cheaper and smaller systems tend to have the heat exchangers inside the room and achieve spatial 

stability by producing turbulent flows. More laminar flows are achieved with wall-to-wall or floor-

to-ceiling air flows across the whole wall/floor, which requires a plenum space inside the test room, 

thereby increasing the external size. Most of the rooms come with predesigned and pre-packaged 

conditioning systems that can provide space heating and cooling, ventilation, humidification, and 

dehumidification to the room. Air temperature, relative humidity, and ventilation rate are under 

control and monitored. Some test rooms are even equipped with pressure, CO2, and O2 sensors.  

The operating condition of commercial test rooms depends on their application that can be 

testing equipment, storing experimental materials, and also human-centric tests. Here, since we only 

focus on the test rooms for the human-centric test, the surveyed test rooms only include those 

capable of providing conditions indicated by the green box in Figure 8.  



   

 

   

 

 

Figure 8. Required operating conditions of the surveyed commercial test rooms. 

These commercial test rooms can be as small as 1.5 m2 and as large as up to 10 m² with a height 

in between 2.4 and 2.6 m. The price of the test rooms (N = 13 units personally contacted by the 

authors) ranges from EUR 54,600 to 210,000. The average quote from U.S. companies is around EUR 

128,100 with a standard deviation of EUR 44,000, while the average quotation from Europe is around 

EUR 99,800 with a standard deviation of EUR 27,400. On average, the test rooms from the U.S. (8) 

are a little more expensive than in Europe (5). The explanation may include regional reasons such as 

shipping and labour, material and sensors cost, and size difference. One should note that the size and 

quotes obtained in this study are based on the smallest test room with the basic features of 

temperature, relative humidity, and ventilation control with at least one occupant. The quotes were 

obtained in August 2020, and for the commercial test rooms made in the U.S., the quote was converted 

to EUR based on the exchange rate on September 4th, 2020 [1 USD = 0.84 EUR]. 

 

4. Test room experiments on human-environmental comfort 

This section focuses on the experiments conducted in the test room above presented in terms of 

their structure and main functionalities. Each subsection presents an overview of the main aims and 

procedures of test room experiments answering the question, what is the scientific community looking 

for through test room experiments? Scopes of the experiments are broadly clustered in the presented 

subsections with respect to (i) the comfort domain of interest (sections 4.1-4.5), (ii) the subjects’ 

involvement (possibility to interact with the test room during an experiment, section 4.6), and (iii) the 

investigation of the energy related aspects (section 4.7), which are all relevant aspects for human 

comfort studies. Concerning the applied procedures, the main distinction is adopted between 

stationary and dynamic conditions.  



   

 

   

 

4.1 Thermal-only experiments  

This subsection reviews 204 papers on test room studies that explored the effects of thermal 

conditions on participants. The scope of the reviewed thermal experiments can be broadly classified 

into three categories: (i) fundamental research aiming at providing a better understanding of human 

thermal comfort; (ii) technology-oriented experiments, whose purpose is to test the thermal comfort 

performances of specific types of heating and/or cooling systems or newly developed clothing; (iii) 

predictive studies with the purpose of data collection to test and train novel predictive models. 

Fundamental studies are more common than technology-oriented and predictive studies, respectively 

57 %, 36 % and 7 %, and their distribution over the last four decades is shown in Figure 9a. 

Fundamental studies include research focusing on a variety of different aspects influencing human 

thermal comfort such as thermal adaptation [78–82], thermal acclimatization [83–86], increased air 

velocity [87–90], relative humidity [60,91–94], gender [95–98], age [52,99–102], transient thermal 

conditions [93,103–107], perceived control [108], and the influence of emotional states [109,110]. 

About 30 % of the thermal experiments are dedicated to the study of non-uniform thermal conditions. 

Non-uniformities and thermal asymmetries are not seen only as a cause of discomfort; indeed, many 

recent studies aim to understand how comfort can be enhanced with local thermal stimuli [111–120]. 

 

Figure 9. (a) Thermal studies aim distribution over time periods; (b) thermal technology-oriented studies, studied system over 

climate classification. 

The technology-oriented experiments mainly look at the thermal comfort performances of 

specific types of equipment, such as innovative heating and/or cooling systems (thermo-electric air 

cooling systems [38,121], stratum, mixing and displacement ventilation [122–124], underfloor air 

distribution systems [122,125], radiant cooling/heating panels, floors and ceilings [126–129], ceiling 

fans [130], etc.). In particular, the last 20 years have seen a progressive increase in the number of 

experiments dedicated to local heating and/or cooling systems (personal cooling with phase change 

materials [112,113], heated/cooled chairs [114–116], seats heated with encapsulated carbonized 



   

 

   

 

fabric [120], feet heaters [117,118], etc.). About 40 % of the technology-oriented experiments aim to 

test new clothing (uniforms for heat strain or cold thermal stress attenuation in the construction 

industry [50,51,131,132], sports clothing [53,133–135], protective clothing systems [136,137], 

cooled/heated garments [138,139], etc.). The distribution of the technology-oriented experiments 

based on the type of system studied (heating or cooling, local heating and/or cooling, clothing) over 

the four different climate groups is shown in Figure 8b. As expected, in tropical climates there is a 

prevalence of experiments studying cooling systems, while in continental climates, the focus is on 

new clothing systems. 

The predictive studies provide experimental data to either develop, test and train novel data-

driven predictive models. Many of them aim to predict either thermal comfort or thermal stress (e.g., 

heat strain indexes [140,141]). Instead, others are attempting to build models for predicting metabolic 

rate and clothing insulation levels [64,142]. 

A majority (46 %) of the reviewed thermal experiments deal with both warm and cold thermal 

conditions, 39 % of them only focus on warm conditions and the remaining 15 % on cold conditions. 

They mainly consider sedentary activity levels (77 %), only a few of them focus on high metabolic 

rate activities (21 %) and a minority on sleeping (2 %). Furthermore, most of them consider stationary 

thermal environments, while the experiments dealing with dynamic conditions mainly study step-

change transients [93,103–107]. In the last 20 years, female and male participants have been equally 

represented in the thermal experiments; nevertheless, elderly and children continue to be 

underrepresented groups (in only 3 % of the experiments). Concerning the sample size, a majority of 

the experiments (57 %) employ between 10 and 50 participants, 31 % of them recruit less than 10 

participants, and only 12 % more than 50 participants. In most of the experiments (about 70 %), 

participants are passive recipients of thermal stimuli without any possibility of adaptation/control. 

The ASHRAE 7-point thermal sensation scale is the most used metric of thermal perception, 

followed by thermal comfort, thermal acceptability, thermal preferences, and cognitive performances. 

Air temperature is the most frequently monitored environmental variable (in 90 % of the 

experiments), followed by relative humidity (75 %), air velocity (63 %), globe temperature (36 %), 

and wall surface temperatures (9 %). Air turbulence intensity, luminance, and solar irradiation 

(artificially provided) are more rarely monitored. Oxygen and carbon dioxide measurements are 

mainly used to estimate the metabolic rate, less often as a proxy of air quality. Skin temperature is 

the most common personal measurement (60 % of the experiments), followed by heart rate/heart rate 

variability (27 %), rectal/body core temperature (18 %), body weight for sweat rate determination (7 

%), skin wetness (6 %), ear/oral temperature (5 %), skin surface blood flow (4 %), blood pressure (3 

%), and skin heat flux (2 %). Some very recently emerging topics are the use of immersive virtual 

reality [143–145] and the monitoring of brain electrical activity patterns [109,146]. 

4.2 Acoustic-only experiments 

This subsection looks at 11 test room studies exploring the effects of acoustic conditions on 

participants by investigating different human responses and developing or evaluating new metrics for 

soundscapes description (Figure 10). The test room experiments’ aims include investigating 

maximum heavy-weight impact sound levels for perceived comfort [147], effects of sound pressure 

levels (SPL) and sound types on children’s task performance [148], factors that contribute to sound 

complexity [149], effects of speech noise and speech transmission index (STI) in offices on cognitive 

performance [150,151], suitable masking sound frequency distribution for offices [152], effects of 

low-frequency noise in offices [153], effects of various noise sources on occupants in multi-family 

buildings [154], useful acoustic parameters that effectively describe to perceived sensations of urban 

sounds [155,156], and effects of introducing natural sounds to urban noise [157]. 



   

 

   

 

 

Figure 10. Distribution of acoustic studies’ aim over time. 

Many of the studies followed the general procedure of exposing participants to stimuli 

(recordings of sounds at various SPLs, frequencies, or decay rates) while performing cognitive tests 

and/or completed subjective assessments of the acoustic environments.  

Test room setups and specific data collection procedures varied considerably among the studies. 

For instance, the provided stimuli length ranged from 10 seconds to 45 minutes, and the time that 

participants were given to respond to objective and subjective assessments ranged from 5 seconds to 

as long as the participants wanted to take. Most of the studies used loudspeakers to play the studied 

sounds, except Hermida and Pavón [156] and Hong et al. [157], who used headphones, and Jeon et 

al. [147], who used both loudspeakers and headphones. Only three studies [150–152] had test room 

setups that mimicked the type of real-world environment that they were investigating. Concerning 

the overall environmental control, three studies [150,152,153] mentioned that other indoor 

environmental conditions (such as temperature and lighting level) were kept constant in the test 

rooms. In contrast, others did not give any description of non-acoustic environmental conditions in 

the test rooms that could potentially affect the study outcomes. 

For acoustic experiments involving human participants, it is common practice to screen 

participants’ hearing abilities before conducting listening tests to avoid bias in the perception analysis. 

However, only four studies [147,149,153,157] screened their participants’ hearing abilities using 

audiometers and other devices, and three studies [148,152,155] used subjective assessments to 

determine hearing abilities. Other studies either did not do similar screening or did not specify how 

they determined participants’ hearing abilities. In addition, only three studies included evaluation of 

the effects of demographics, for example, age [147,148,150] and gender, and personal factors, such 

as personality traits [150], on participants’ responses. Finally, just one study [153] monitored the 

physiological responses of participants (including the electrical activity of the brain, eye activity, 

heart rate, and heart rate variability) to low-frequency sound exposure using electroencephalography 

(EEG), electrocardiogram (ECG), electromyography (EMG), and electrooculography (EOG) signals. 



   

 

   

 

Regarding sample size, six out of the 11 reviewed studies involved between 10 and 50 

participants, with a minimum of 23 [152], while all the others involved more than 50 participants up 

to a maximum of 290 [148].  

4.3 Visual – lighting-only experiments 

The following overview focuses on visual-related experiments aiming at studying subjective 

evaluations of the visual environment performed in controlled environments. Studies conducted with 

the use of a scale model (e.g., [158–160]), with a small apparatus (e.g., [161–163]), in a booth (e.g., 

[164]) or in virtual reality (e.g., [165,166]) were excluded from the analysis as they were not 

performed in real-scale controlled environments. Investigations on electric lighting evaluations 

primarily aiming at testing lamp brightness and colour rendition based on lamp characteristics (e.g., 

[167–170]) were also not included. The resulting sample analysed consisted of 70 papers.  

 

Figure 11. (a) Distribution of visual studies’ aim over time; (b) investigated light source distribution over time periods. 

As introduced in Section 2, visual-related studies in controlled experiments have increased over 

the last decade, with more than 77 % of the considered studies conducted between 2010 and 2020 

(Figure 11Figure 11). The type of light source investigated has been relatively constant throughout 

the years, with an equal number of studies focusing on electric light and daylight (Figure 11b). The 

majority of studies focused on glare (more than 50 %), either to evaluate subjective perceptions due 

to variations of lighting conditions or other factors’ influences (such as time of the day or openings 

and blinds features) [21,22,175–182,37,39,42,66,171–174], develop, evaluate or validate metrics, 

thresholds or indexes [35,68,191–193,183–190], investigate glare influence on performance and 

physiology [187], [194–196] or study a combination of such objectives (Figure 11a). Other studies 

investigated visual perceptions of the visual environment, surface finishing preference, physiological 

responses, performance, sleepiness, vitality, arousal, tension, mood, self-control and cognitive-

biological processes (light-reactive hormones of melatonin and cortisol) mainly related to the light 



   

 

   

 

quantity and correlated color temperature (CCT), but also in relation to light uniformity, wall 

luminance, light source type, flicker rate, view and chromatic glazing [164,197,206–

215,198,216,199–205]. The majority of the studies did not allow for personal control of the 

environment, testing pre-defined conditions, and were conducted with 10-50 participants. Only in a 

few studies participants were requested or simply allowed to vary their visual environment through 

the operation of blinds and electric lights, either to evaluate glare conditions or to assess how 

occupants perceived their visual environments associated with diverse luminous ambiences created 

by daylight in apartment buildings [73,189,191]. 

Most of the investigations were conducted in re-configured office spaces located in existing 

buildings, transformed into experimental test rooms in which it was possible to control or at least 

measure visual parameters. The traditional configuration was a side-lit single office, generally bigger 

than 20 m3. Still, some investigations used a corner office [193], a mock-up of an open-plan office 

with multiple workplaces [209], a re-configured classroom [66], a full-scale mock-up conference 

room [208], or divided an existing office room with internal vertical partitions, resulting in smaller 

experimental spaces [217,218]. Some glare experiments used full-size apparatuses consisting of a 

semi hexagonal lighting chamber equipped with a chin rest [22,172,173,176] or of a semi-spherical 

screen with two halogen lamps mounted on a 1-m radius round boom [21,185]. Only fewer studies 

were conducted in a stand-alone test room, either located indoor [197,198,213,219,200–204,210–

212] or outdoor [35,42,179,188,192,194,220,221]. Some of the outdoor facilities were rotating 

structures [35,179,192,195,220], allowing daylight conditions to be tested with a reduced impact of 

the daylight variations due to the season and time of the day. Very few test spaces were designed to 

have a side-by-side configuration with two identical spaces, one for participants and the other for 

measurements [35,171,183,187,189,190,194,220]. This particular setting, aiming at decreasing 

interventions in lab experiments, is particularly suitable for visual-related investigations as 

photometric data are relatively affected by the presence of people, contrary to the other indoor factors 

that have to be measured close to participants. The presence of a window to the outdoors was linked 

to the type of experiment investigated. Almost all experimental spaces provided with a window 

investigated daylight, except for those studies that performed the experiments at night [222] or in 

which windows were shaded with a black-out fabric or blocked [164,180,199,207,217]. The studies 

investigating a mix of daylight and electric light were provided with shading devices 

[189,190,205,220,223]. On the other hand, not all the studies on daylight were provided with a real 

window to the outdoor (intended as an opening with a view), but used artificial windows 

[37,177,181,192,204] or anidolic systems on the southern façade [224]. Non-visual factors were 

measured, controlled, or balanced across experimental conditions in almost all stand-alone test room 

experiments, and only in fewer re-configured offices [199,205,217,218,223,225]. The factors 

considered were primarily air temperature and humidity, but also noise [217,218] and air quality 

[37,197,198]. 

4.4 Air quality-only experiments 

This subsection describes the controlled air quality-only experiments in test rooms summarised 

in 18 papers according to the reviewed database. Additional four papers that fall under two-domain 

experiments are included in the analysis since thermal and air quality aspects are hard to disentangle 

as the thermal analysis is ancillary to the air quality assessment [72,226–228]. Among the 

representative selections of 22 air quality studies in test rooms, researchers have focused on the three 

main topics: (i) understanding perceived air quality, productivity and health under a range of 

environmental parameters [71,72,229–235]; (ii) human inhalation exposure and spatio-temporal 

variation of air pollution in a space [20,228,236–241]; and (iii) airflow distribution in occupied spaces 



   

 

   

 

and ventilation effectiveness [226,227,242–244] (Figure 12). These topics were pursued through a 

combination of questionnaire surveys, environmental measurements (near a study participant, in bulk 

air or ventilation ducts), and physiological measures. Discrepancies in facilities among the selected 

studies include test room layouts (office space, classroom, aircraft cabin, hospital room), test room 

volumes (small below 10 m3, medium 10-50 m3, or larger than 50 m3), surface materials (stainless 

steel, polytetrafluoroethylene, aluminium, glass or their combination), type of air pollutant generation 

(continuous or episodic), ventilation type (mechanical or mix-mode ventilation), ventilation strategy 

(mixing, displacement, underfloor or personalized ventilation), degree of air mixing (ventilation only 

or additional use of mechanical fans), operating procedure (dynamic or stationary conditions), and 

participant type (real occupancy or use of breathing thermal manikins). 

 

Figure 12. Distribution of air quality studies’ main topic over time. 

In the reviewed air quality papers, all test rooms were located inside of the building and had 

control over the ventilation rate, air temperature and relative humidity. While nearly all studies 

reported air temperature and relative humidity values and associated uncertainties, only 12 out of 22 

studies reported air change rate values (mean = 3.89 h-1), out of which only three described the method 

of estimation [237–239]. These studies used the tracer gas decay method by means of low adsorption 

tracer gases such as CO2. The majority of the selected studies were performed in test rooms larger 

than 20 m3 (mean floor area = 30 ± 27 m2), which is important for mimicking various indoor layouts 

occupied with people and for studying air contaminant distribution in the space. Twelve studies 

focused on mimicking office environments, whereas other studies focused on aircraft (2), classroom 

(1), hospital (1) and other unspecified environments (6). Studies involving perceived air quality, Sick 

Building Syndrome (SBS) symptoms and productivity under variable levels of gas-phase pollutants 

[71,72,229–235] had a significantly higher number of study participants (76 ± 9.3) compared to 

studies focusing on human inhalation exposure and spatio-temporal variation of indoor air pollutants 

(8.2 ± 13.6) [20,228,236–241] and airflow distribution in occupied spaces and ventilation 

effectiveness (2.3 ± 2.1) [226,227,242–244]. The majority of studies focused on measurements of 

CO2 (9), followed by VOCs (7), particulate matter (4), and other inorganic gasses such as NO2, N2O, 

O3, and CO. Measurements of these air pollutants were performed with scientific instruments, which 

were not an integral part of the test rooms. None of those studies reported the adoption of the optimal 

inner coating of the test room surfaces, which is essential to determine how these coatings influence 

heterogeneous reactions with volatile organic compounds and other gaseous pollutants. Among the 



   

 

   

 

selected papers, only a fraction (2) reported issues that could arise due to pollutant uptake or emissions 

in the test rooms. Furthermore, in all studies, there was a lack of integration between advanced online 

and offline instrumentation and analytical techniques within the test rooms. 

4.5 Multi-domain and whole comfort experiments 

The goals of a multi-domain experiment can be categorized into (i) evaluate the effect of 

specific building technologies or control strategies on occupant multi-domain comfort [119,245–

250]; (ii) understand cross-modal and interaction between different domains [46,72,259–268,251–

258]; (iii) model the physiological [97,100,228,269,270] or behavioural [271–273] response of 

occupant to combined multi-domain stimuli and to understand the effect of IEQ on stress [274,275]; 

(iv) identifying new multi-domain metrics such as air enthalpy [251], air distribution index [276] and 

bio-signals  such as skin temperature [277] for the whole comfort. In some cases, the energy 

consequences of such multi-domain interactions are also captured, as for the studies investigating 

novel personalized thermostats [272,278,279] or novel visual comfort systems [39,45] to improve 

energy efficiency and comfort. Among the studies focusing on the effect of specific building 

technologies or control strategies on occupant multi-domain comfort, the development of novel 

personal comfort systems in buildings [113,116,285,286,245,246,248,280–284] and vehicles [118] 

has received particular attention. 

The interest in studying occupant response to multi-domain stimuli has increasingly grown 

since 2000, especially after 2010. Multi-domain experiments constitute 23 % of the overall 396 

occupant comfort experiments in test rooms, as given by the review database. Most of these studies 

investigated the relationship between two physical domains, while studies focusing on three or more 

physical domains were just 4 % of the whole database. In terms of investigated combinations of 

domains, thermal and air quality represent the most studied one, followed by thermal with visual and 

thermal with acoustic (Figure 13).  

 

Figure 13. Multi-domain experiments by combination of each domain 



   

 

   

 

The majority of the studies were conducted under stationary conditions, while only a third of 

the studies exposed occupants to changing environmental or dynamic conditions. Dynamic conditions 

were achieved either by step changes in indoor conditions [246,248,251,257,274,287–289] or, 

especially concerning thermal-related studies,  by fast and long changes [79,265,275,290], meaning 

that a rate of change greater than 2 K per hour is provided for more than 1 hour of exposure. Only a 

few studies investigated multi-domain effects under high-speed conditions [91,250,291] or slow and 

long dynamical changes [263,271,292]. 

In addition to highly accurate monitoring of environmental parameters, most studies capture 

occupants’ responses as a combination of subjective and physiological parameters. Nearly half of the 

studies (53 %) relied only on subjective occupants’ responses. Table 4 shows the subjective metrics 

and physiological parameters monitored in the experiments. In terms of subjective measurements, 

based on survey or behavioural observations, environmental sensations are the most employed, 

followed by environmental preference and acceptability. In terms of physiological parameters, skin 

temperature and heart rate are the most monitored ones, also due to the thermal domain being 

investigated at least in 94 % of the overall multi-domain experiments. Lastly, the use of EEG, ECG, 

and EDA has just recently started to be adopted, mostly after 2015, to understand multi-physical 

occupants’ responses in test rooms, especially when investigating interactions between different 

comfort domains. 

Table 4  Different approaches for capturing occupants’ responses in multi-domain experiments in test rooms 

Occupant response  References 

Subjective 

(survey based 

or from 

behavioural 

observations) 

Environmental sensation  [44,46,90,91,99–

101,118,120,122,124,125,47,126,245,250,253,256,257,26

4,267–269,60,273,275–277,290–

295,67,296,297,78,79,85,86,89] 

Environmental comfort [44,47,120,122,125,245,252,253,267–

269,291,60,294,296–299,72,85,89,91,99,100,118] 

Environmental preference [44,47,257,267,268,291,295,297,79,86,99,102,122,248,25

2,253] 

Acceptability [47,85,294,295,297,86,91,122,124,248,249,253,275] 

Environmental satisfaction [46,78,252] 

Emotion response [46,264,289] 

Alertness [50] 

Stress level [274] 

Work performance [90,268,273,275,289,294,295] 

Clothing level [125,249,261,269,277] 

Physiological 

parameters 

(sensing 

device based) 

Skin temperature [44,46,125,253,258,259,292,300,79,86,99–102,117,120] 

Skin moisture [301] 

Core temperature [86,102,258,259] 

Electrodermal activity (EDA) [44,46] 

Electrocardiogram (ECG) [47,100,294] 

Electrooculography (EOG) [297] 

Electroencephalogram (EEG) [47,274,289,294,297] 

Acceleration [46,302] 

Heart rate [44,46,266,289,292,303] 

Nasal dimension by acoustic 

rhinometry 

[301] 

Photoplethysmography [302] 

Metabolic rate [277] 

Frequency of blinking [303] 

Mucociliary transport [303] 

Saliva and tear mucus film samples [295] 



   

 

   

 

4.6 Participants interacting with the environment 

This section focuses on those experiments whose protocol allowed participants to freely interact 

with the test room components and systems. The interactions taken into account for this further 

classification include adjusting settings of the test room conditioning system, dimming/switching 

lights, opening/closing windows and shading systems, adjusting personal comfort devices. According 

to the reviewed scientific publications, this section is based on 21 papers (see Table 5). Nine of those 

21 have been published in 2018-2020, and ten originate from European universities or institutes.  

Two papers describe a test room facility developed and constructed to test all environmental 

factors (lighting, acoustics, air, and thermal quality) [43,304], including interactions with the 

environment through design and systems, making it possible to provide both input data to and output 

data from the occupants. Most of the publications were concerned with thermal quality in relation to 

thermal comfort, sensations and/or preferences [102,124,305–307], in combination with (personal) 

control [36,111,281–283,308,309], together with air quality [232] or visual quality [45,310]. The 

latter was studied in three reported studies [73,189,191], of which one was concerned with daylight, 

glare, shading and control [73]. Only one study included all the IEQ aspects [311]. 

The participants involved in the different studies mostly comprise of students and healthy young 

adults. Only one study was concerned with children (primary school children with an average age of 

10 years) [311]. One study included a comparison between young (average23 years) and older males 

(average 67 years) [102], and one study looked at the impact of ethnicity [309]. In most publications, 

the responses or interactions of a participant with an object or variable/parameter in the environment 

are reported. The studied controlling devices varied from (local) heating or ventilation devices [283], 

light dimmers [310] or blind/solar shading control device [73], wearable conditioning devices [111], 

and furniture [281]. Table 5 summarises the 21 papers concerning those experiments where the 

building occupant is able to interact with the test room in the form of personal judgments or specific 

actuator-to-reaction. 

Table 5. List of reviewed studies concerning human comfort experiments in test rooms where the participants could directly 

interact with the facility. 

Year 

pub. 

Investigated domain Studied parameters/object Interaction between the 

participant and the test room 

Reference 

1991 Thermal Adjust ambient temperature Adjustment of test room 

temperature 

[307] 

1995 Thermal Two age groups Adjustment of test room 

temperature 

[102] 

2000 Thermal Adjusting air movement 

(supplied via ceiling) 

Adjustment of the Personal 

Comfort System (PCS) 

[308] 

2007 Thermal 3 task air-conditioning 

systems 

Adjustment of the Personal 

Comfort System (PCS) 

[306] 

2009 Thermal Control of 2 fans at chair 

(under seat, behind backrest) 

Adjustment of the Personal 

Comfort System (PCS) 

[282] 

2009 Visual Dimming of light; airflow 

from ceiling-based nozzle 

Adjustment of the Personal 

Comfort System (PCS) 

[310] 

2012 Thermal 4 fans at corners chair to 

enhance displacement vent 

Adjustment of the Personal 

Comfort System (PCS) 

[124] 

2012 Thermal & Air quality Air movement (air terminal 

device), air pollution, 

temperature and RH 

Adjustment of the Personal 

Comfort System (PCS) 

[232] 

2012 Visual Artificial lighting and blinds 

control, daylight 

Adjustments of shading system [73] 

2014 Thermal Ceiling fan Adjustment of shading system, 

ceiling fan, operable windows 

[36] 



   

 

   

 

2014 Visual Daylight Adjustment of shading system [189] 

2015 Thermal Heated/cooled chair Adjustment of the Personal 

Comfort System (PCS) 

[281] 

2018 Thermal Control of personalized 

heating system 

Adjustment of the Personal 

Comfort System (PCS) 

[283] 

2018 Visual & Thermal & 

Air quality & Acoustics 

Facades, controls, interior, etc. Adjustment of shading system, 

façade properties, thermal settings 

[43] 

2018 Visual & Thermal & 

Air quality & Acoustics 

Walls, lighting, sound, 

thermal, air, interior, etc. 

Control of HVAC and lighting 

system 

[304] 

2019 Thermal & Visual Windows, blinds and ceiling 

lights 

Adjustment of desk light, ceiling 

light, solar shading, operable 

windows 

[45] 

2019 Visual & Thermal & 

Air quality & Acoustics 

IEQ in their own classroom IEQ problems in classrooms and 

solutions for those problems 

[311] 

2020 Visual Daylight, glare, shading Adjustment of shading system [191] 

2020 Thermal Thermal sensation, thermal 

preference 

Adjustment of the Personal 

Comfort System (PCS) 

[305] 

2020 Thermal Wearable wrist devices for 

warming or cooling 

Adjustment of the Personal 

Comfort System (PCS) 

[111] 

2020 Thermal Self-selected air temperature, 

thermal sensation, comfort and 

preferences; skin temperature 

Adjustment of the personal 

comfort system 

[309] 

4.7 Energy-related human comfort experiments 

Out of 396 reviewed papers, 85 considered energy-related issues while carrying out thermal-, 

visual-, indoor air quality-, and acoustic-related experiments. Of these, 28 papers had a multi-domain 

focus with 22 papers considering both thermal and air quality-related experiments, five papers 

presenting thermal- and visual-related experiments [97,232,281,312–314], and only one paper 

discussing the effect of personal control on thermal, visual, and air quality perceived by building 

occupants [310]. Among the single comfort domain studies, thermal investigations are by far the most 

widely carried out (50), followed by visual investigation (5). Olfactory and aural comfort were studied 

together with energy considerations in just one article each [156,232]. 

The first document of the database was published in 1978. For the following 30 years, much 

slower growth was observed in the number of publications on energy-related human comfort 

experiments. After 2008, the scientific interest in this topic has progressively increased because of 

the increasing research interest in human-centric building design [315], personalized control 

strategies [316], and perceptual and behavioural environmental studies [32] (Figure 14). 



   

 

   

 

 

Figure 14. Cumulative number of publications describing energy-related issues in human comfort experiments in test rooms. 

The majority of experiments have been conducted in test rooms located inside buildings with 

controlled environmental conditions, and only three experiments were run considering the actual 

outdoor weather [46,97,312]. Furthermore, 45 experimental procedures employed dynamic 

conditions and 32 studies used steady-state conditions. Dynamic studies are generally more recent 

(the average publication year is 2013), while steady-state conditions are more common in older 

studies (the average publication year is 2011); this can be explained by the recent availability of easier 

and user-friendly control interfaces and power modulation for electric motors and pumps. 

Regarding the technical systems used during the experiments, only considering the documents 

where this information was expressed, most of the investigations used air-conditioning systems and 

only a few tested hypotheses under radiant systems (9 papers), controlled mechanical ventilation (8), 

artificial lighting (10), and sound equipment (1) [156]. Additionally, 38 papers reported experiments, 

which adopted personal environmental control systems, which are effective means of testing energy-

saving control strategies and are well received by the occupants. 

 

5. Summary of key findings 

This review analysed a wide range of test rooms for the experimental investigation of human 

comfort indoors and provided an overview of scientific experiments that are conducted in such 

facilities and that were published in scientific papers. All reported information was deducted from 

reviewed papers. According to such an approach, it has to be mentioned that experimental facilities 

may exist which have not (yet) published any results in peer-reviewed journal articles. The reason 

may be because (i) it is too new to present results, or (ii) the facility is dedicated to industrial or other 

research not meant for public sharing of results. This limitation may affect some of our conclusions. 

Nevertheless, while accepting this limitation, we believe that the number of facilities not included in 

our review is small due to the two search strategies applied and that the knowledge generated in those 

facilities not publishing their work, for one reason or the other, is in any case not directly available 

for the scientific community and less suitable to enhance human comfort theories. 

A general observation pertains to the growing number of such facilities. The total number of 

187, specifically referred to in the present contribution, is about eight times higher than the number 



   

 

   

 

of comparable facilities before 2000. However, the geographic distribution of these facilities does not 

reflect the variance of climatic regions around the world: 82 % are located in moderate climatic 

regions. Notwithstanding, the increasing number of test rooms may reflect the growing realization of 

the influence of indoor environments on human health, comfort, and productivity. This trend is 

reflected in the increasing number of publications reporting research conducted in these facilities. In 

this review, a total number of 396 publications were considered. 

Looking at the publications from a topical standpoint reveals the scientific community’s 

primary interest in human thermal comfort (204 papers), followed by energy-related studies (85), 

visual comfort (70), air quality (18), and acoustic comfort (11). Roughly a quarter of the reviewed 

publications explored indoor-environmental exposure situations involving more than one domain. 

Only a small number of publications (21) investigated circumstances in which participants could 

assume an active role and had the opportunity to interact with relevant features of the indoor 

environment. 

Our findings suggest that about 92% of the test rooms were built inside of a building. This is 

interesting: while the performance characterization of building components has mainly been tested in 

outdoor testing facilities [317], the investigation of indoor comfort has been conducted either in actual 

occupied buildings or in dedicated test rooms located indoors with better controlled experimental 

procedures. However, based on the reviewed publications alone, it is not possible to draw up a more 

detailed picture of the test rooms' design and construction. For instance, in 47% of the reviewed 

publications, it was not possible to ascertain whether the test room envelope entailed any type of 

openings. Lack of such details makes it difficult to independently replicate and subsequently validate 

the results coming from experiments in test rooms. Our review also addresses another critical point: 

there is a lack of information regarding investment, operation, and maintenance costs associated with 

the facilities. A dedicated survey designed and distributed on our side received responses only from 

18 facility owners or operators, pointing to the need for further efforts in the transferability of know-

how with the test rooms. 

Certain observations apply to studies that focused exclusively on thermal comfort: studies on 

fundamental issues dominate in this area (57 %) versus technology-oriented (36 %) and predictive 

studies (7 %). An increasing number of experiments in the last 20 years focus on local heating/cooling 

systems. A large share of technology-oriented studies (40 %) focuses on developing new, insulating, 

and thermally active clothing. This may indicate a shift in the industry from the traditional room-air-

conditioning design perspective to a more personalized thermal comfort approach. The majority of 

the reviewed studies were conducted in office-like environments with small samples (10-50 people) 

engaging in sedentary activities. Few papers focused on the elderly or children (3 %), and in 70 % of 

the studies, participants were passive recipients only. Some studies introduced new, recently 

emerging methods such as immersive virtual reality and monitoring of brain activity patterns. 

Studies related to acoustic comfort mostly followed a general procedure where participants 

were exposed, on a short-term basis, to stimuli while performing cognitive tasks or completed 

subjective tests. Interestingly, only four studies (less than 40 %) screened the hearing abilities of the 

participants. This may have introduced bias in their results.  

Studies on lighting and visual comfort significantly increased in the last decade, addressing 

both daylight and electric light: their bulk is concerned with glare problems in the workplace, 

primarily deal with glare perception and entail the development and evaluation of related metrics, 

thresholds or indexes. The investigations also pertain to various human responses related to light 

quantity and CCT. Most of these latter investigations focused on the non-image-forming effects of 



   

 

   

 

light. Only a few studies allowed participants to change the visual conditions by interacting with 

blinds and electric lights.  

IAQ-related studies mostly addressed three topics, namely the perceived air quality’s impact 

on productivity and health, the spatio-temporal variation of air pollution and inhalation exposure, and 

the airflow distribution and ventilation effectiveness. Some reviewed publications did not report the 

experimental conditions (e.g., ventilation rates) in detail. In contrast, none of the studies reported 

surface materials, which is essential concerning how they influence heterogeneous reactions with 

volatile organic compounds and other gaseous pollutants. The majority of the studies were conducted 

in sufficiently large test rooms, hence allowing for the consideration of realistic room layouts and air 

contaminant distribution patterns. 

About investigations of multi-domain exposure situations, thermal and indoor air quality 

represent the most frequently studied combination, followed by thermal-visual and thermal-acoustic 

combinations. Only one-third of the studies exposed participants to dynamic environmental 

conditions. 53% of the studies relied solely on subjective responses. In the last few years, a new trend 

can be seen in the related scientific literature, whereby diagnostic methods from neurophysiology 

(such as EEG, ECG and EDA) have been applied to explore multi-domain exposure situations. 

 

6. Research gaps and future trends in test room experiments for human comfort  

Despite a growing interest in multi-domain studies, we still do not have an agreed-upon 

conceptual framework and a systematic methodology for a mature and holistic science of human-

centric indoor environments. Common design guidelines and a shared terminology for innovative test 

rooms and experimental procedures would allow establishing a shared understanding of the driving 

phenomena and the inclusion of the non-physical (psychological and contextual factors) dimensions. 

This can be further supported by the deployment of low-invasive physiological sensing techniques. 

A better understanding of the visual, IAQ and acoustic factors and their mutual influence on human 

comfort and occupants’ perception requires further investigation. Future trends in test room 

experiments (and thus facility design) must account for a multi-domain and multi-disciplinary 

approach.  

On a geographical and demographic basis, despite the increased interest in human comfort and 

the large availability of test room setups, these facilities are limited to specific climatic regions, while 

concerning tested subjects’ composition, these are mainly students and faculty members. These 

sociological and geographical weak points may cause a non-negligible bias in the interpretations of 

experimental results and knowledge generation. We see the need for dedicated studies in those 

climatic and demographic contexts where experimental data are still not available to increase diversity 

and cross-validation. 

In terms of test room design: test rooms mostly emulate office spaces with a limited number of 

occupants. Therefore, another research gap to close is the analysis of other settings and contexts, such 

as realistic open-plan offices and different building typologies (educational, residential, hospitals, 

etc.). This factor may affect the quality of the collected data and limit the research findings to office-

only investigations (difficult to replicate and extend).  

Concerning experiments, increased attention is being paid to occupants, also driven by the 

recent trends toward human-centric building design and operation. This is also reflected in the fast 

growth of multi-domain studies in the last decade, where the focus is the whole comfort perception 

analysis. Additionally, even technology-oriented studies are focused on human applications. About 



   

 

   

 

40 % of the technology-oriented studies aimed at developing and testing wearable systems for 

improved personal comfort, such as smart clothing and sensing techniques. This observation shows 

the necessity for a more systematic collaborative research framework whereby the environmental 

comfort is not handled exclusively by building physicists or engineers and architects. The topic 

requires a significant and proactive interaction with researchers in human factors, human-machine 

interaction, big data analytics, and social science, as we see more studies are focusing on psycho-

physiological factors alongside IEQ and human-centric approaches.  

From the operation perspective, the economic analysis showed the necessity for a better 

common understanding of the economic model behind test room design and construction. This may 

be helpful to foster local and global collaboration and connection to industry, taking advantage of the 

unique resources that each location provides. For this purpose, a higher transparency of existing 

business/economic models is recommended. Private-public partnerships may also be established with 

shared economic models allowing both researchers and industry partners to use these facilities to 

conduct controlled experimental studies, e.g., for technology development. Such models can also help 

sustain and expand the test rooms’ role in underlining the importance of whole comfort experiments. 

Toward this end, funding agencies/industry partners should be informed and engaged in providing 

funding support to maintain/sustain and expand existing testbeds dedicated to a better understanding 

of human comfort in buildings.  

In this context, standardization in the design and experimental validation procedures is still 

missing, with the consequent limitations in error and uncertainty analysis, quality control and 

replicability potential. Therefore, the creation of a unified framework for keeping track of the 

functionality of the test room facilities is expected to establish a common ground for collaboration 

and cross-validation and would help to identify cultural and geographical differences and biases.  

This cannot be done without a joint effort in terms of open-source research in and for society, 

where the resources of test room facilities and collected data are freely available for fostering the 

impact of these multi-domain and multi-disciplinary investigations. In this scenario, future efforts by 

the authors and their institutions would support research via a systematic data sharing process and a 

publicly available and continuously updated test room portfolio. Finally, a first Round-Robin test in 

test room facilities worldwide is expected to emerge as a follow up to this review. 
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