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Abstract

Ranaviruses are agents of disease, mortality and population declines in ectothermic verte-

brates and emergences have been repeatedly linked to human activities. Ranaviruses in the

common midwife toad ranavirus lineage are emerging in Europe. They are known to be

severe multi-host pathogens of amphibians and can also cause disease in reptiles. Recur-

rent outbreaks of ranavirus disease and mortality affecting three species have occurred at a

small reservoir in north-west Spain but no data were available on occurrence of the patho-

gen in the other amphibian and reptile species present or at adjacent sites. We sampled

nine species of amphibians and reptiles at the reservoir and nearby sites and screened for

ranavirus presence using molecular methods. Our results show infection with ranavirus in

all nine species, including first reports for Hyla molleri, Pelophylax perezi, Rana iberica, and

Podarcis bocagei. We detected ranavirus in all four local sites and confirmed mass mortality

incidents involving Lissotriton boscai and Triturus marmoratus were ongoing. The reservoir

regularly hosts water sports tournaments and the risks of ranavirus dispersal through the

translocation of contaminated equipment are discussed.

1. Introduction

Globally, emerging infectious diseases (EIDs) are receiving considerable attention as a driver

of amphibian declines [1–3]. The World Organisation for Animal Health (OIE) has listed

ranavirosis as an internationally notifiable disease of amphibians [4,5]. Members of the genus

Ranavirus (family Iridoviridae) are important amphibian pathogens, that also cause disease in

reptiles, and fish [6–9].

The known distribution of ranaviruses in Europe remains patchy but several lineages have

been isolated [10–12]. It is not clear how long ranaviruses have been associated with
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ectothermic vertebrates in Europe but they are thought to have been introduced into the UK

during the 1980s and then spread rapidly through human activities [13,14]. Observations in

Spain’s Picos de Europa National Park suggest a recent introduction also and, in both cases,

the impacts have been severe [2,15]. Human activities have also been implicated in ranavirus

translocations in other parts of the world, for example through amphibian trade, water sports

and other behaviors [16–18].

Ranavirus infections have been associated with large numbers of dead and diseased Bosca’s

newts (Lissotriton boscai) and marbled newts (Triturus marmoratus) at a reservoir in Galicia,

north-west Spain, since at least 2010 [2]. Ranavirus was also associated with disease and death

in a viperine snake (Natrix maura), that had been feeding on diseased newts [2]. The reservoir

and surrounding area is home to at least 17 species of ectothermic vertebrates [UTM 29T

531504.12m E 4705264.25 m B/ 42˚29’44.03"N 8˚36’59.99"W, see 19], but very little is known

about the overall occurrence, prevalence and impacts of ranavirus in this amphibian and rep-

tile assemblage.

Significantly, in addition to serving as a freshwater source for the surrounding municipali-

ties, the reservoir also serves an important function for agricultural grazing, recreation and

sports, as well as national and international canoeing tournaments which may be risk factors

for dispersal of viruses known to be persistent in the environment [18,20,21]. This study

sought to address the lack of understanding about the local distribution, prevalence and host

range of ranavirus at the reservoir and adjacent sites by sampling a broad range of amphibian

and reptile species.

2. Materials and methods

Fieldwork at Pontillón do Castro reservoir and the surrounding area was conducted in May

2016. All applicable institutional and/or national guidelines for the care and use of animals

were followed. Sampling was carried out under the permission of the Galician authorities

Xunta Galicia–Consellerı́a de medio ambiente e ordenación do territorio–Dirección Xeral de

Conservación da Natureza, permits 420/2015 and 079/2016 for L7R9J1PJZ and 4252/2016 for

RX495703. The reservoir is fed by two streams and has one outlet (Fig 1). The eastern banks

are shallow and directly accessible, while the northwestern banks are steeper and lack direct

access. To assess local prevalence of ranavirus, we employed an area and time-constrained

search approach and sampled animals from three types of site: 1) the reservoir itself, along the

eastern shoreline, 2) the riverbanks of the tributaries: ‘upstream 1’ and ‘upstream 2’ feeding the

reservoir, and 3) the outlet beyond the dam wall: ‘downstream’ (Fig 1).

Surveys of the study sites were performed by using a standardised sampling approach based

on the visual encounter surveys (VES) technique (Fig 1). To maximize species diversity of the

sample, a range of habitat types were sampled and fieldwork was conducted in all weather con-

ditions and at different times (day and night), following the recommendations Strain et al.,

2009 [22]. We sampled more frequently during the day than night, thus increasing the likeli-

hood of encountering diurnal species. The downstream area features difficult terrain and was

only visited once when weather conditions were suitable for safe access. Every single individual

was recorded only once during our surveys because we were able to keep track of all our move-

ments, and no observer-related effects were expected because the same two observers per-

formed all surveys.

Because there is no single Gold Standard sample collection protocol for ranavirus, we used

different techniques for amphibian and reptiles animals as well for dead and alive individuals

(see Miller et al. 2015 [25] for a complete review of sampling techniques). Live amphibians—

frogs and toads (order Anura) and salamanders (order Caudata)—were sampled via toe clips
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or, for small Caudata, via tail clips. Live reptiles were sampled via cloacal swabbing (adults)

and buccal swabbing (juveniles) [23–25], using Tubed Sterile DryswabTM Tip. Tissue biopsies

and swab tips were stored in 70% ethanol immediately after collection. After live amphibians

were toe- or tail-clipped with fine, dissection scissors, the wound was treated with the antisep-

tic Bactine1 (2.49% Lidocaine Hydrochloride) [26,27] and animals were released at the loca-

tion they were captured. Dead individuals were collected when available and either stored

immediately in 70% ethanol for molecular and pathological examination or frozen at -20˚C at

the end of each sampling day. Carcasses were swabbed for use in Batrachochytrium dendroba-
tidis diagnostics and dissected to extract liver samples for ranavirus diagnostics. All samples

underwent further processing and laboratory diagnostics at the Institute of Zoology (London).

To limit the risk of transmitting infections between individuals or translocating disease

agents between sampling locations, nets and scissors were decontaminated between animals

using a 1% Virkon1 solution (5mg tablets dissolved in 500ml water) for thirty seconds whilst

boots were treated with the same solution between sampling locations [28,29].

Fig 1. Map of Pontillón do Castro with its tributaries, outlet, sampling sites, and sampled species (42˚29’44.03"N 8˚36’59.99"W, 213m elevation). The colored

squares show the sampling locations for each species.

https://doi.org/10.1371/journal.pone.0236803.g001
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2.1 Laboratory analyses

All DNA extractions were performed using DNeasy1 Blood & Tissue kits (Qiagen) following

the manufacturers’ instructions. To control for contamination, two negative controls were

included in each batch of extractions (extraction reagents minus any sample). Samples were

then screened for ranavirus by running duplicate reactions against a standard curve with a

hydrolysis probe-based qPCR assay targeting the ranavirus major capsid protein (MCP) gene

[30]. Viral quantities were calculated by taking the mean of the viral quantities from the dupli-

cate reactions and analysed using analysis of variance to compare the effects of host species

and whether the sample was taken from a live or dead animal.

Ambiguous results (one positive and one negative from duplicate reactions) were rerun, but

the non-lethal field sampling methods adopted in this study resulted in a high number of late

amplifying samples which were confirmed by a nested PCR targeting a 320 base region of the

MCP gene (using Meng et al. 2013 [31]). Final primer concentrations were 0.05μM for the first

PCR step and 0.4μM for the second PCR step. All reaction mixtures consisted of 4μL of GoTaq1

colorless mastermix (Promega), 0.4μL of each primer (forward and reverse), 1.2μL of nuclease-

free water, and 2μL of DNA template. Each batch of samples was run with a PCR positive control

(extracted DNA from a common midwife toad virus [CMTV] isolate [2]) and a no-template neg-

ative control consisting of nuclease-free water. Both PCR steps were run using touchdown PCR

settings: an initial 10 minute 95˚C step was followed by 23 cycles of 95˚C for 30 seconds, 30s at

an annealing temperature [initially 62˚C and decreasing by 0.5˚C with each cycle], and 30s elon-

gation step at 72˚C, and a further 25 cycles of 95˚C for 30 seconds, 50˚C for 30s, and 30s at 72˚C.

The reaction product from the first PCR was diluted one in ten before use as template in the sec-

ond PCR step. Products were visualized on a 2% agarose gel alongside a 50bp ladder (Bioline1).

A subset of 14 swab samples from fresh carcasses was screened for the presence of B. den-
drobatidis using the method of Boyle et al., 2004 [32]. The single N. maura carcass was subject

to a gross post-mortem examination as it displayed no apparent cause of death.

3. Results

We observed seven amphibian and two reptile species over 19 days of field surveys during

May 2016 and collected 124 samples across the sampling sites (Table 1). The most frequently

Table 1. Sample numbers and results of Ranavirus (Rv) screening by species and site. The count of carcasses in samples is shown in parentheses. The prevalence by

species results combine sampling at all sites for each species.

Pontillón do Castro Upstream Site 1 + 2 Downstream Total

Species Sample size Rv positive Sample size Rv positive Sample size Rv positive Sample size Rv positive Prevalence 95% Confidence interval

Lissotriton boscai 30 (25) 27 (22) 5 (1) 2 (1) 35 (26) 29 (23) 82.9 (88.5) 70.4–95.3 (76.2–101)

Triturus marmoratus 8 (6) 6 (5) 3 2 11 (6) 8 (5) 72.7 (83.3) 46.4–99 (53.5–113)

Alytes obstetricans 2 (2) 2 (2) 2 (2) 2 (2) 100 (100) 100–100 (100–100)

Bufo spinosus 1 (1) 1 (1) 1 (1) 1 (1) 100 (100) 100–100 (100–100)

Hyla molleria 18 (0) 11 (0) 18 (0) 11 (0) 61.1 (na) 38.6–83.6 (na)

Rana ibericaa 2 (0) 1 (0) 2 (0) 1 (0) 1 (1) 1 (1) 5 (1) 3 (1) 60.0 (100) 17.1–103 (100–100)

Pelophylax perezia 5 (2) 4 (2) 36b (1) 15 (1) 41 (3) 19(3) 46.3 (100) 31.1–61.6 (100–100)

Podarcis bocageia 1 (0) 1 (0) 1 (0) 1 (0) 100 (na) 100–100(na)

Natrix maura 7 (2) 5 (1) 3 (0) 2 (0) 10 (2) 7 (1) 70.0 (50.0) 41.6–98.4 (-19.3–119)

Total 73 (37) 57 (32) 49 (2) 22 (2) 2 (2) 2 (2) 124 (41) 81 (36) 65.3 (87.80) 56.9–73.7 (77.8–97.8)

a First case of ranavirus detection for this species.
b Ten individuals were captured at Upstream 1, twenty-six at Upstream 2.

https://doi.org/10.1371/journal.pone.0236803.t001
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sighted species were L. boscai, T. marmoratus and the Iberian green frog (Pelophylax perezi),
occurring in high numbers at the reservoir’s shorelines and the upstream sites.

On each day, we observed numerous dead and dying amphibians presenting with signs

indicating ranavirosis. Signs of disease presented broadly as erythema of the skin, hemorrhag-

ing around the mouth, toes, spine, and cloaca, and craniofacial swelling (Fig 2). Animals pre-

senting with external signs of ranavirosis and behavioral changes such as lethargy and

uncoordinated movements were found at Pontillón do Castro and upstream site 2. During sur-

veys of the 1.3 kilometer stretch of the eastern shore of the reservoir (Fig 1), we found approxi-

mately 10–25 carcasses of L. boscai and T. marmoratus per day. We frequently heard the calls

of the common midwife toad (Alytes obstetricans) at dusk and night time but encountered live

animals only during a single night and found two carcasses.

We collected two A. obstetricans carcasses which had hemorrhages around the cloaca and

legs, as well as open lesions (Fig 2A). We did not observe any gross signs of ranavirosis in live

or dead specimens of Moller’s tree frog (H. molleri), Iberian frog (Rana iberica), or P. perezi.
Carcasses of R. iberica and the spiny toad (B. spinosus) showed signs of predation by Eurasian

otters (Lutra lutra).

Natrix maura was the only snake species observed during this study and Bocage’s wall lizard

(Podarcis bocagei) the only species of lizard sampled. Neither species displayed physical or

behavioral signs of ranavirosis. A single N. maura carcass was collected exhibiting no visible

external signs of ranavirosis. The gross post-mortem found the specimen to be in good physi-

cal condition and it was not possible to determine a cause of death.

Fig 2. Signs of ranavirosis in three amphibian species. (A) Dead Alytes obstetricans with erythema (redness of the

skin) around the cloaca and an open lesion on the foot. (B) Live Triturus marmoratus with open lesion on the neck and

hemorrhaging along digits and the spine, and apparently loose skin. (C) Dead Lissotriton boscai without clear outer

signs of ranavirosis such as lesions or hemorrhaging. (D) Live L. boscai with facial hemorrhaging, skin around the

mouth appeared swollen and animal seemed to have problems opening its jaws. The species we found dead in most

abundance was L. boscai. Diseased L. boscai exhibited lethargic, and disoriented behavior. We found apparently

diseased L. boscai within four meters of the edge of the reservoir and seemingly heavily diseased L. boscai left the water

and displayed heavy gasping for breath, behaviors which likely increased detectability of diseased specimens of this

species. We did not observe open lesions on L. boscai which instead presented with subcutaneous hemorrhages and

craniofacial swelling (Fig 2D). Triturus marmoratus frequently suffered from open skin lesions and lethargic,

disorientated movements (Fig 2B). We found T. marmoratus eggs under terrestrial refuges close to heavily diseased

animals (S1 Fig) and several individuals–both live and dead–that were emaciated (loose skin, increased prominence of

the spine, Fig 2B).

https://doi.org/10.1371/journal.pone.0236803.g002
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Quantitative PCR confirmed the presence of ranavirus-infected individuals at all sampling

sites. Carcasses accounted for one-third of all samples, thereby introducing a bias towards the

presence of ranavirus in the sample set. In total, two-thirds of screened animals tested positive

for ranavirus by qPCR (66.9%; n = 124; Table 1). Out of the total 41 carcasses collected, rana-

virus DNA was detected in 36 (87.8%). Broken down by sample type, 36/71 toe clips, 2/2 tail

clips, 0/1 buccal swabs, 6/7 cloacal swabs, 1/1 skin swabs, 23/25 liver samples, and 13/17 sam-

ples from visceral organs were positive for ranavirus. Ranavirus infection was detected in all

seven amphibian species sampled, including five species of anuran, A. obstetricans, B. spinosus,
H. molleri, P. perezi, and R. iberica, as well as two newt species L. boscai and T. marmoratus.
Both reptile species–N. maura and P. bocagei–sampled were also positive.

Of species for which five or more samples were screened for ranavirus, L. boscai had the

highest prevalence (89%; n = 35) and T. marmoratus had the second highest prevalence (73%;

n = 11). Ranavirus was also associated with H. molleri at high prevalence (61%; n = 18) but we

found no carcasses of this species nor did we observe any signs of disease. Viral prevalence was

high in N. maura (70%; n = 10) and R. iberica (60%; n = 5), and lowest for P. perezi (46%;

n = 41). From the subset of 14 samples for B. dendrobatidis-screening, 12 L. boscai samples

tested negative, and just one A. obstetricans out of two tested positive with a load of 0.3 geno-

mic equivalents while both individuals tested positive for ranavirus.

Viral quantities were significantly higher in samples from dead animals than those found

alive (ANOVA, F1,114 = 10.7, p = 0.001) and also varied between species (ANOVA, F8,114 = 8.2,

p<0.001; Fig 3; S1 Table), with the high quantities found in dead L. boscai, A. obstetricans and

T. marmoratus individuals.

4. Discussion

Mass-mortality incidents associated with ranavirus infection and disease have affected two

caudate species (Bosca’s and marbled newts) at Pontillón do Castro reservoir in north-west

Spain since 2010 [2]. Here, ranavirus was detected from samples of an additional seven species

and the pathogen was frequently associated with the amphibian and reptile assemblage at the

reservoir as well as other sites nearby. This is the first report of ranavirus associated with three

frog species (Moller’s tree frog [H. molleri], Iberian green frog [P. perezi], and Iberian frog [R.

iberica]) and Bocage’s wall lizard (P. bocagei). Ranavirus was detected in carcasses of seven spe-

cies where dead animals were found. However, signs of disease (hemorrhaging/ulceration)

were only observed in L. boscai, T. marmoratus and A. obstetricans. The two newt species were

the most severely affected species based on the number of carcasses found.

Individuals from several species with subclinical ranavirus infections were found. Ranavirus

was frequently detected in P. perezi and H. molleri but no signs of ranavirosis were observed in

any individuals of these species. It is possible that mortality went undetected in these species

given the difficulties in sampling a large waterbody of this type, particularly if larval or meta-

morphic stages are more susceptible as commonly found in other species and systems, or

because of the timing of our sampling only covered only part of the season. Controlled labora-

tory exposure experiments would be necessary to assess the relative susceptibility of species in

this community. The high diversity of amphibians and reptiles at Pontillón do Castro and the

variation in outcomes following exposure increases the likelihood of ranavirus persistence

[33,34].

In light of the dramatic effects of CMTV in the nearby Picos de Europa National Park [2],

the presence of a ranavirus in Pontillón do Castro may threaten the stability of susceptible

ectothermic vertebrate communities. A previous study reported recurring mortality in newts

[2] and the Spanish Herpetological Society (AHE) conducted carcass counts at Pontillón do
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Castro (31 days between 2010 and 2015) and found 1,796 carcasses of L. boscai and T. marmor-
atus (AHE, unpublished data). During fieldwork for this study, between ten and 25 carcasses

were observed daily, confirming this trend for 2016. Our sampling effort was limited to May

2016 and the setting of Pontillón do Castro makes monitoring population counts very

Fig 3. Log viral quantities of infected and uninfected individuals by host and sample type (dead or live specimen). A small increment of 1e-4 was

applied to in order to log-transform. Boxplots represent lower quartile, median, upper quartile and interquartile range (upper quartile—lower quartile;

central 50% of the data); whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box; outliers

shown as individual points.

https://doi.org/10.1371/journal.pone.0236803.g003
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challenging, but such a high level of persistent mortality is a concern, particularly in the con-

text of the drastic impacts of ranavirus on herpetofauna observed elsewhere [2,15,35].

Our observations at Pontillón do Castro are in line with previous reports of high infection

prevalence and sudden mortality in multiple species [25]. Prevalence levels in all sampled

amphibian species are above suggested background prevalence levels for amphibians [36] and

laboratory experiments have shown strong correlation between infection prevalence and mor-

tality [34]. We frequently observed mortality in L. boscai and T. marmoratus for which we

reported prevalence levels of 82.9% and 72.7% respectively. For H. molleri and P. perezi we

observed high prevalence (60% and 46.3% respectively) but no or little mortality or signs of

disease. While this might be due to behavioral patterns of the species or limitations in sampling

that preventing us from finding more carcasses, high ranavirus-prevalence with no signs of

ranaviral disease have been reported in other species [37,38]. Further, it has been reported that

anthropogenic disturbance and presence of cattle correlate with high ranavirus prevalence

[39–41], both of which occur at Pontillón do Castro. Note, however, that these values of preva-

lence should be treated with caution because tail/toe-clip sampling can underestimate the true

prevalence of ranavirus in wild amphibian populations [42] and, on the other hand, and due to

the large number of dead animals at our study sites, surface contamination could has

happened.

Our study provides valuable new insights on the effect of ranavirus on snakes in the wild.

The Iberian grass snake, Natrix astreptophora [formerly N. natrix, see 43] has been reported to

hunt and scavenge along the shores of Pontillón do Castro [44] but no individuals were

detected during this study. However, we did record high ranavirus prevalence in the related N.

maura (70%), extending previous observations of disease and mortality in this species [2].

These findings highlight the possible negative impacts of ranavirus on Natrix populations and

need for further investigation as a priority.

Pontillón do Castro is part of a network of streams and waterbodies. We found ranavirus to

be present in both upstream sites suggesting that it is not restricted to still waters but can per-

sist where hosts occupy smaller, flowing waters. This represents a potential means of pathogen

dispersal in addition to terrestrial amphibian dispersal into neighboring waterbodies

[20,23,45,46]. Another potential route of transmission is through incidental transportation of

contaminated sediment by humans or animals both frequently present at Pontillón do Castro

[45,47]. The reservoir is used for mountain-biking, angling, dog-walking, and watersports.

Since 2007, the Galician Canoeing Federation hosts tournaments at Pontillón do Castro with

national and international participants, thus increasing the risk for ranavirus dispersal through

boats and equipment [18,48]. There is no biosecurity protocol in place, further increasing dis-

persal risk through water or soil trapped in equipment, clothing, or vessels.

The wide host range of ranaviruses, the possibility of anthropogenic and natural dispersal,

and the interconnectedness of Pontillón do Castro pose a risk of infection for susceptible spe-

cies in the region and potentially across the Iberian Peninsula. The uncertainties around the

modes of ranavirus transmission and dispersal, its persistence in the environment as well as

the impact of outbreaks for specific host communities highlight the importance of biosecurity

measures and educational programs to prevent further dispersal and to raise awareness among

the general public and the stakeholders of Pontillón do Castro.
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