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ABSTRACT

We present a method that accurately propagates residual uncertainties in photometric redshift distributions into the cosmological
inference from weak lensing measurements. The redshift distributions of tomographic redshift bins are parameterised using a flexible
modified Gaussian mixture model. We fit this model to pre-calibrated redshift distributions and implement an analytic marginalisation
over the potentially several hundred redshift nuisance parameters in the weak lensing likelihood, which is demonstrated to accurately
recover the cosmological posterior. By iteratively fitting cosmological and nuisance parameters arising from the redshift distribution
model, we perform a self-calibration of the redshift distributions via the tomographic cosmic shear measurements. Our method is
applied to KV450 data, which comprises a combination of the third data release of the Kilo-Degree Survey and the VISTA Kilo-
Degree Infrared Galaxy Survey. We find constraints on cosmological parameters that are in very good agreement with the fiducial
KV450 cosmic shear analysis and investigate the effects of the more flexible model on the self-calibrated redshift distributions. We
observe posterior shifts in the medians of the five tomographic redshift distributions of up to ∆z ≈ 0.02, which are, however, degenerate
with an observed decrease in the amplitude of intrinsic galaxy alignments of about 10%.
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1. Introduction

Weak gravitational lensing by the large-scale structure of the
Universe, known as cosmic shear, is a powerful probe of cos-
mology. Rapid progress is being made in this field thanks
to current and upcoming dedicated surveys such as the Dark
Energy Survey (DES; Drlica-Wagner et al. 2018; Zuntz et al.
2018; Sevilla-Noarbe et al. 2021; Gatti et al. 2021), the Sub-
aru Hyper Suprime-Cam (HSC; Aihara et al. 2018; Hikage et al.
2019), and the European Southern Observatory (ESO) Kilo-
Degree Survey (KiDS; Kuijken et al. 2019; Asgari et al. 2021).
These surveys allow us to test the predictions of the standard
Lambda cold dark matter (ΛCDM) cosmological model by con-
straining the matter density and the amplitude of matter density
fluctuations to unprecedented precision.

The main observables of weak lensing experiments are dis-
tortions of the ellipticities of background galaxies. Due to the
weak signal and the impact of noise on the ellipticity measure-
ment, this effect is measured statistically from large samples
of galaxies. In order to model the theoretical prediction of the
observed signal, an accurate calibration of the source redshift
distribution is required. Given the large number of sources in
a typical weak lensing survey, a complete spectroscopic redshift
measurement is infeasible, and therefore the redshift is estimated
from photometry (see Salvato et al. 2019 for a review).

Several methods of photometric redshift calibration have
been developed, such as direct calibration with spectroscopic
sub-samples that are, potentially after re-weighting, representa-
tive of the full sample (Lima et al. 2008; Bonnett et al. 2016;
Hildebrandt et al. 2017) and angular cross-correlation cluster-

ing measurements with spectroscopic reference samples that
overlap in redshift (e.g. Newman 2008; Matthews & Newman
2010; Ménard et al. 2013; McLeod et al. 2017). These methods
can be merged using hierarchical Bayesian models that com-
bine photometry measurements of individual galaxies and clus-
tering measurements with tracer populations in a robust way
(Sánchez & Bernstein 2019; Alarcon et al. 2020). Furthermore,
the redshift distribution in weak lensing surveys can be self-
calibrated to some extent from the data themselves (Zhang et al.
2010; Benjamin et al. 2013; Schaan et al. 2020). However, it is
not only crucial to adopt a calibration method that estimates
the true redshift distribution as precisely as possible, but also
to choose a model that is flexible enough to describe the redshift
distribution accurately. Such a model then allows us to propa-
gate uncertainties in the redshift distribution, which arise from
the calibration, into the actual cosmic shear analysis.

Examples of such flexible redshift distribution models are
Gaussian mixture models (Hoyle & Rau 2019; Leistedt et al.
2019) and hierarchical logistic Gaussian processes (Rau et al.
2020), which are applied to calibrate redshift distributions of
galaxy samples via cross-correlation clustering measurements
with overlapping spectroscopic samples. Gaussian processes are
non-parametric, that is, they are not limited by a functional form,
and therefore they fulfil the condition of being able to accurately
fit the redshift distribution. However, since the fit parameters of
the Gaussian process are non-linear, implementing the Gaussian
process in the weak lensing likelihood (with fit parameters acting
as nuisance parameters) and subsequent marginalisation requires
a carefully chosen kernel that needs to be adapted to the red-
shift distribution. As an alternative to Gaussian processes, the
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redshift distribution can be parameterised using linear basis
function models with a fixed number of parameters, so that
we can readily apply an analytic marginalisation over nuisance
parameters.

It is common to parameterise the uncertainty on the red-
shift distribution using a shift in the mean of the distribution
(Hildebrandt et al. 2020, 2021; Hikage et al. 2019; Abbott et al.
2018; Hoyle et al. 2018), which captures the effect of uncertain-
ties in the redshift distribution on the weak lensing analysis to the
first order (Amara & Réfrégier 2007). However, with larger sur-
veys and decreasing statistical uncertainties, the contribution of
higher orders will become important (Wright et al. 2020a). Fur-
thermore, this parameterisation has the disadvantage of introduc-
ing probability weights at negative redshift values. Therefore, it
is particularly interesting to adopt redshift distribution models
that capture arbitrary variations in the distribution.

In this paper we present such a flexible redshift distribution
model with linear fit parameters, as well as a technique that pro-
vides an analytic marginalisation over nuisance parameters that
originate from the redshift distribution calibration. We parame-
terise the redshift distribution of samples of galaxies as a ‘comb’,
that is, a modified Gaussian mixture model with fixed, equidis-
tant separation between components, identical variance, and a
fixed number of components. The amplitudes of each Gaussian
component serve as fit parameters in the redshift distribution
calibration.

We implement this redshift distribution model in the weak
lensing likelihood. Since the model is linear in the fit parame-
ters, we can analytically marginalise over the fitted amplitudes.
The advantage of this procedure is that we can use a large num-
ber of components to fit the redshift distribution, which gives
the model enough flexibility to fit a potentially complex red-
shift distribution. At the same time, we do not increase the total
number of free sampling parameters of the likelihood, so that
it is still feasible to sample the likelihood without a significant
increase in runtime. Additionally, the marginalisation method
allows us to propagate correlations between all fit parameters
of the redshift distribution into the likelihood. Thus, we incorpo-
rate the correlation between the redshift distributions of tomo-
graphic bins, which are induced by the calibration method, into
the cosmic shear analysis. We then demonstrate our approach on
the KiDS+VIKING (KV450) dataset comprising the ESO KiDS
(Kuijken et al. 2015, 2019; de Jong et al. 2015, 2017) and the
fully overlapping VISTA Kilo-Degree Infrared Galaxy Survey
(VIKING; Edge et al. 2013) on a survey area of 450 deg2.

In order to allow the cosmic shear measurement to self-
calibrate the redshift distribution, we adopt a two-step cali-
bration method. First, we fit the comb model to the redshift
histograms of Hildebrandt et al. (2020), which were calibrated
with deep spectroscopic sub-samples. Second, we apply an iter-
ative fitting method of both the cosmological and nuisance
parameters originating from the redshift calibration. The best-fit
nuisance parameters then represent a model of the redshift distri-
bution that is calibrated with both deep spectroscopic catalogues
and cosmic shear data. In contrast to the fiducial analysis of
Hildebrandt et al. (2020), this method takes the full variability in
the redshift distributions into account. When sampling the weak
lensing likelihood, we then marginalise analytically over the set
of best-fit nuisance parameters.

The paper is structured as follows: In Sect. 2 the redshift
distribution model is described. The theoretical modelling of
the cosmic shear signal with analytic marginalisation over nui-
sance parameters is presented in Sect. 3, and the cosmic shear
self-calibration method of the redshift distributions is described

in Sect. 4. Results are presented in Sect. 5 and discussed in
Sect. 6.

2. Redshift distribution model

We modelled the redshift distribution, n(α)(z), of each tomo-
graphic bin, α, as a comb, that is, a slightly modified Gaussian
mixture with Nz components per bin, with fixed, equidistant sep-
aration in redshift between the components, and with identical
variance σ2

comb:

n(α)(z) :=
Nz∑
i=1

Aα
i K

(
z; zi, σ

2
comb

)
, (1)

where the only free parameters to be fitted are the amplitudes Aα
i .

The model is linear in the amplitudes, which allows us to apply
an analytic marginalisation over nuisance parameters when sam-
pling the weak lensing likelihood. We chose to model the nor-
malised ‘teeth’ of the comb as

K
(
z; zi, σ

2
comb

)
=

z
N(zi, σcomb)

exp

− (z − zi)2

2σ2
comb

 , (2)

with normalisation over the interval [0,∞]:

N(zi, σ) =

√
π

2
zi σ erfc

(
−

zi
√

2σ

)
+ σ2 exp

− z2
i

2σ2

 · (3)

While this method does not depend on a particular choice of K ,
this form has the advantage of ensuring n(α)(0) = 0. The redshift
distribution is normalised so that

Nz∑
i=1

Aα
i = 1. (4)

Using Eq. (4), we write the amplitude of the Nzth component in
terms of the remaining Nz − 1 amplitudes:

Aα
N = 1 −

Nz−1∑
i=1

Aα
i . (5)

Inserting Eq. (5) back into Eq. (1), we find

n(α)(z) = K
(
z; zNz , σ

2
comb

)
(6)

+

Nz−1∑
i=1

Aα
i

[
K

(
z; zi, σ

2
comb

)
− K

(
z; zNz , σ

2
comb

)]
:=

Nz∑
i=1

Aα
i ni(z), (7)

where we redefined the amplitude Aα
Nz
≡ 1 and

ni(z) = K
(
z; zi, σ

2
comb

)
− K

(
z; zNz , σ

2
comb

)
·
(
1 − δiNz

)
. (8)

Since the amplitudes should be positive, it is convenient to define

aαi := ln Aα
i (9)

as the actual fit parameters. The final result of the redshift cali-
bration procedure with data dcal is then

Pr
({

aαi
}
|dcal

)
≈ N

(
aαi ; a∗αi ,Σcal

)
, (10)
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where the posterior is approximated by a multivariate Gaussian
distribution with best-fit a∗αi and covariance Σcal.

The model developed in this section is a particular example
of a linear basis function model, which is a class of models that
involve linear combinations of fixed non-linear functions of the
input variables (see for example Bishop 2016). While the lin-
ear dependence on the model parameters simplifies the analysis
of this class of models, it requires the choice of an appropriate
number of basis function components. In this work we deter-
mine the number of components by repeatedly performing a fit
to the observed data with a varying number of components and
selecting the model that provides the best fit to the observed
data. Alternatively, a common approach in regression prob-
lems is to turn to Bayesian frameworks, which provide methods
of determining the model complexity. A Bayesian framework
requires the specification of a prior on the model parameters,
which can work similarly to penalty terms in regularised least-
squares regression. In particular, so-called shrinkage priors (see
van Erp et al. 2019 for a review) are used to reduce the size of
coefficient estimates by shrinking them towards zero. Variables
that correspond to coefficients that are shrunk exactly to zero
drop out of the model. Therefore, assuming a shrinkage prior
provides a method to reduce the dimensionality of a given model.
Furthermore, the linear model can be related to Gaussian pro-
cess models when imposing Gaussian priors on the basis func-
tion amplitudes (see for example Bishop 2016).

3. Theoretical modelling of the cosmic shear signal

3.1. Weak lensing model and likelihood

It is standard practice to use two-point statistics of the grav-
itational shear as summary statistics in weak lensing studies.
In this paper we employ the two-point shear correlation func-
tion between two tomographic bins. However, it is straight-
forward to apply the formalism to other two-point statistics,
such as Complete Orthogonal Sets of E/B-Integrals (COSEBIs;
Schneider et al. 2010) and band power estimates derived from
the correlation functions (Schneider et al. 2002; Becker & Rozo
2016; van Uitert et al. 2018), since they are all linear functionals
of the cosmic shear angular power spectrum.

The two-point correlation function between two tomo-
graphic bins, α and β, is defined via

ξ
(αβ)
± (θ) =

1
2π

∫ ∞

0
d` `C(αβ)

GG (`)J0,4(`θ), (11)

where J0,4(`θ) are Bessel functions of the first kind and C(αβ)
GG (`)

is the angular weak lensing convergence power spectrum. Using
the Limber approximation, the angular power spectrum reads
(Kaiser 1992)

C(αβ)
GG (`) =

∫ χH

0
dχ

q(α)(χ)q(β)(χ)
f 2
K(χ)

Pδ

(
` + 1/2

fK(χ)
, χ

)
, (12)

where Pδ is the matter power spectrum and fK , χ, and χH are
the co-moving angular diameter distance, the co-moving radial
distance, and the co-moving horizon distance, respectively. The
lensing efficiency is given by

q(α)(χ) =
3H2

0Ωm

2c2

fK(χ)
a(χ)

∫ χH

χ

dχ′n(α)
χ (χ′)

fK(χ′ − χ)
fK(χ′)

, (13)

with a(χ) being the scale factor and nα(z)dz = n(α)
χ (χ)dχ being

the distribution of galaxies in redshift bin α. Since q(α) is a lin-
ear functional of the corresponding redshift distribution, it is

straightforward to extract the amplitudes of the redshift distri-
bution model. We find

C(αβ)
GG (`) =

Nz∑
i, j=1

Aα
i Aβ

j

∫ χH

0
dχ

qi(χ)q j(χ)

f 2
K(χ)

Pδ

(
` + 1/2

fK(χ)
, χ

)
(14)

:=
Nz∑

i, j=1

Aα
i Aβ

j c′i j(`), (15)

where we defined qi(χ) as the lensing efficiency of the ith com-
ponent of the redshift distribution model, as defined in Eq. (6).
In the final equality we defined c′i j(`), which is the angular weak
lensing power spectrum for two Gaussian mixture components
at zi and z j, as redshift distributions. Using Eq. (11), we can
compute the two-point shear correlation function between two
tomographic redshift bins via

ξ
(αβ)
GG (θ) =

Nz∑
i, j=1

Aα
i Aβ

j

∫ ∞

0

d` `
2π

J0/4(`θ) c′i j(`) (16)

:=
Nz∑

i, j=1

Aα
i Aβ

j x
(i j)
± (θ), (17)

where we defined the two-point correlation function of two
Gaussian comb components, x(i j)

± (θ).
The observed weak lensing signal does not correspond to

ξ
(αβ)
± directly, but is contaminated by correlations between intrin-

sic ellipticities of neighbouring galaxies, II, and correlations
between intrinsic ellipticities of foreground galaxies and back-
ground galaxies, GI (Hirata & Seljak 2004):

ξ± = ξGG + ξII + ξGI. (18)

We followed the method presented in Hildebrandt et al. (2017)
to model the effects of intrinsic galaxy alignments using a ‘non-
linear linear’ model (Hirata & Seljak 2004; Bridle & King 2007;
Joachimi et al. 2011). The contributions of GI and II alignments
to the two-point shear correlation function were calculated using
Eq. (11) with the II and GI angular power spectra:

C(αβ)
II =

∫
dχ

n(α)(χ)n(β)(χ)
f 2
K(χ)

PII

(
` + 1/2

fK(χ)
, χ

)
, (19)

C(αβ)
GI =

∫
dχ

q(α)(χ)n(β)(χ) + n(α)(χ)q(β)(χ)
f 2
K(χ)

PGI

(
` + 1/2

fK(χ)
, χ

)
·

(20)

Again, we used the linear dependence on the redshift distribu-
tion to extract the amplitudes of the redshift distribution model in
analogy to Eq. (17). The power spectra of intrinsic galaxy align-
ments, PII and PGI, are related to the matter power spectrum Pδ

via

PII(k, z) = F2(z)Pδ(k, z) (21)
PGI(k, z) = F(z)Pδ(k, z), (22)

with

F(z) = −AIAC1ρcrit
Ωm

D+(z)
· (23)

Here, D+(z) denotes the linear growth factor, ρcrit is the critical
density at redshift z = 0, and C1 is a fixed normalisation constant
that is set such that C1ρcrit = 0.0134 (Joachimi et al. 2011). The
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redshift-independent amplitude of intrinsic alignments, AIA, is
left as the only free parameter, which is implemented as a sam-
pled nuisance parameter in the weak lensing likelihood.

In general, the Gaussian log-likelihood is defined as

L = −
1
2
χ2 + const. =

∑
i j

(di − mi) C−1
i j

(
d j − m j

)
+ const., (24)

where di and mi denote the observed data and the model pre-
diction, respectively, with the inverse covariance C−1

i j . Thus, the
weak lensing log-likelihood reads

L = −
1
2

∑
l,α,β,l′,α′,β′

∆
(αβ)
l Z(l,α,β) (l′,α′,β′) ∆

(α′β′)
l′ + const., (25)

where the indices α and β run over all unique combinations of
tomographic redshift bins. The two-point correlation function is
analysed in θ-bins that are denoted by l. The inverse covariance,
which is assumed to be cosmology independent, is given by Z
with elements Z(l,α,β) (l′,α′,β′). We have defined

∆
(αβ)
l ≡ d(αβ)

l −

Nz∑
i, j=1

Aα
i Aβ

j x(i j)
± (θl), (26)

where dl denotes the element of the observed data vector in θ-bin
l at angular scale θl and the indices i and j count over all possible
combinations of components of the redshift distribution model.
We note that all cosmology dependence is in the x(i j)

± (θ).

3.2. Marginal likelihood

The goal is to analytically derive the likelihood of a weak lens-
ing experiment, marginalised over the potentially large number
of nuisance parameters originating from the redshift calibration.
We denote the parameters over which we sample the poste-
rior distribution by psam and parameters that we analytically
marginalise over by pana. In particular, psam includes cosmolog-
ical parameter as well as nuisance parameters that account for
intrinsic alignments, baryon feedback, and additive shear bias.
The parameters pana are the collection of amplitude parameters{
aαi

}
. We obtain

Pr
(
d|psam

)
=

∫
dNana pana Pr

(
d|psam, pana

)
Pr

(
pana

)
, (27)

where the prior on analytically marginalised parameters is given,
in this case, by the posterior of the fit to the redshift distribution
defined in Eq. (10).

In the following we assume that the overall weak lensing
likelihood is Gaussian. Moreover, we apply a Laplace approx-
imation to the posterior in the sub-space spanned by the redshift
nuisance parameters, that is, we effectively assume the posterior
to be well represented by a Gaussian in this regime. As shown
by Taylor & Kitching (2010), we can always maximise the like-
lihood for non-Gaussian distributions so that the assumption of
Gaussianity locally around the peak of the likelihood is justified.
The marginalised log-likelihood,

Lmarg ≡ −2 ln Pr
(
d|psam

)
, (28)

is then given by Bridle et al. (2002) and Taylor & Kitching
(2010):

Lmarg = Lfid −
1
2
L
′τ

[
L′′ + 2Σ−1

cal

]−1
L
′

+ ln det
(
I +

1
2
L′′Σcal

)
, (29)

where I denotes the identity matrix and Lfid is the log-likelihood
evaluated at the best fit of the nuisance parameters,

Lfid ≡ −2 ln Pr
(
d|psam, p∗ana

)
. (30)

The vector of derivatives of the log-likelihood with respect to
the nuisance parameters aαi is denoted by L′, and the Hessian
matrix of second derivatives with respect to the nuisance param-
eters is denoted by L′′. Analytic expressions of these quanti-
ties are given in Appendix A. All of these derivatives are to
be evaluated at the best fit of the nuisance parameters p∗ana. The
covariance matrix of nuisance parameters, originating from the
calibration of the photometric redshift distribution, is given by
Σcal. For the Nbin tomographic bins used in the analysis, Nbin×Nz
nuisance parameters are marginalised over (modulo those ampli-
tudes fixed by the normalisation of the redshift distribution given
in Eq. (4)).

To test the validity of the approximate marginalised like-
lihood, we could perform a short initial Markov chain Monte
Carlo (MCMC) analysis of the full likelihood, as proposed by
Taylor & Kitching (2010). This method would allow us to iden-
tify potential non-Gaussianities. Any non-Gaussian parameters
could then be removed from the analytic marginalisation and
instead numerically marginalised over via MCMC. The down-
side of this method is that the initial MCMC run is compu-
tationally expensive, especially when the number of nuisance
parameters is large. As an alternative to a full MCMC, we could
instead sample the likelihood with a reduced set of nuisance
parameters in order to validate the approximations made in the
marginalised likelihood. By selecting different sets of nuisance
parameters, for example those describing the tails of the redshift
distribution, we could probe the likelihood in different regions
of the parameter space. This would allow us to gradually test
the assumption that the posterior distribution in the sub-space
spanned by the nuisance parameters can be approximated by a
Gaussian.

4. Redshift distribution self-calibration

It is standard practice to include nuisance parameters δzi in the
weak lensing likelihood (Abbott et al. 2018; Hikage et al. 2019;
Asgari et al. 2021), which linearly shift the whole redshift dis-
tribution of each tomographic bin with a prior that is derived
from the calibration with external datasets. When sampling the
likelihood, this then allows for a self-calibration of the redshift
distribution with cosmic shear measurements through a shift in
the mean of the redshift distributions within the allowed prior
range.

In this work we replaced the shifts in the mean with the
amplitudes of the comb components. Thus, the model can accom-
modate more complex variations in the redshift distributions.
This, however, comes at the cost of an increase in the number
of nuisance parameters from 5 to 5 × Nz, where the number of
Gaussian components per bin, Nz, is typically of order 30. Given
the dimensionality of the new nuisance parameter space, a sam-
pling of nuisance parameters via MCMC methods becomes com-
putationally prohibitive. Thus, we marginalised analytically over
the uncertainties on the fitted amplitudes, as outlined in Sect. 3.2.
By doing so, we lose the ability, however, to self-calibrate the red-
shift distributions with cosmic shear data since the amplitudes
no longer appear as free parameters in the likelihood. In order
to retain the calibration of the redshift distribution with cosmic
shear data, we performed an additional calibration step.

Our goal is to find the best fit in the combined parameter
space of cosmological and nuisance parameters. Given the high
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Fig. 1. Sketch of the iterative fitting method used to determine the
best fit in the combined parameter space of cosmological and nuisance
parameters. We alternate between optimising cosmological parame-
ters (numerically; blue arrows), keeping nuisance parameters fixed, and
optimising nuisance parameters (using Newton’s method; red arrows),
keeping cosmological parameters fixed. After several iterations we
achieve convergence to the best fit in the combined parameter space.
After optimising the likelihood, we set the amplitudes of the Gaussian
comb to the best-fit parameters and proceed with sampling the likeli-
hood in cosmological parameter space (dotted orange line) while ana-
lytically marginalising over nuisance parameters (green arrows).

dimensionality of the nuisance parameter space, we adopted an
iterative method, which is illustrated in Fig. 1:

First, we fitted the Gaussian comb model, defined in Sect. 2,
to pre-calibrated redshift distribution histograms. This was done
by minimising

χ2 =
∑

i j

(
ndata

i − nmodel
i

)
C−1

i j

(
ndata

j − nmodel
j

)
, (31)

where ndata
i and nmodel

i are the observed and modelled histogram
amplitudes in bin i, respectively, and C−1

i j denotes the inverse
covariance matrix between the histogram bins in all five tomo-
graphic redshift bins. We estimated the uncertainties on the fit
parameters by resampling the data vector using a multivariate
Gaussian distribution, from which we calculated the covariance
matrix Σcal of the fit parameters.

Second, we fixed the amplitudes of the Gaussian comb to the
best-fit parameters found in the previous step. We then ran a non-
linear optimiser to find the best-fit parameters psam of the stan-
dard weak lensing likelihood conditioned on the best-fit param-
eters pana. This step is illustrated by the blue arrows in Fig. 1.

Third, for fixed parameters psam, the displacement from the
peak of the likelihood in the sub-space of parameters pana is
given by (Taylor & Kitching 2010):

δpana = −L′
[
L′′ + 2Σ−1

cal

]−1
, (32)

assuming a Gaussian prior on the parameters pana. Fixing the
parameters psam to the ones found in step 2, we used Newton’s
method to minimise Eq. (32) so that the parameters pana con-
verge towards the peak of the likelihood. Since the constraints

on these parameters, which describe the redshift distribution, are
dominated by the external priors through the original calibration,
we anticipated the correction by the Newton step to be small1.
The red arrows in Fig. 1 represent this calibration step.

By iterating over steps 2 and 3, we expected small correc-
tions of both sets of parameters towards their best-fit values in
the combined parameter space. The best-fit parameters p∗ana then
represent the redshift distributions of each tomographic bin, cali-
brated using both spectroscopic catalogues and the actual cosmic
shear measurements. After calibrating the redshift distributions,
we set the amplitudes of the Gaussian comb in the weak lens-
ing likelihood to the best-fit parameters and proceeded with the
sampling of the likelihood in cosmological parameter space with
pre-marginalised redshift distribution parameters. The sampling
of the weak lensing likelihood is illustrated by the green arrows
in Fig. 1.

While it is advantageous to infer the initial values for pana
from a prior redshift calibration, the optimisation scheme itself is
expected to be valid for any initial values. We tested for the exis-
tence of local minima in the posterior distribution by performing
the optimisation for various choices of the initial values. We find
that each optimisation converges towards consistent parameter
values, which shows that the optimisation method succeeds in
finding the global minimum of the posterior distribution.

5. KV450 likelihood analysis

We used data from the ESO KiDS (Kuijken et al. 2015, 2019;
de Jong et al. 2015, 2017) and the fully overlapping VIKING
survey (Edge et al. 2013). This dataset, dubbed KV450, com-
bines optical and near-infrared data on a survey area of 450 deg2.
The photometric redshift calibration is greatly improved com-
pared to the earlier KiDS dataset (Hildebrandt et al. 2017) thanks
to the addition of five near-infrared bands from VIKING that
complement the four optical bands from KiDS. These additional
bands improve the accuracy of photometric redshifts, which are
used to define the tomographic bins. The fiducial technique of
redshift calibration in KV450 utilised a weighted direct calibra-
tion, dubbed DIR, of five tomographic bins with deep spectro-
scopic catalogues. Uncertainties on the redshift distribution are
estimated by a spatial bootstrapping method (Hildebrandt et al.
2020). The robustness of the photometric redshift calibration has
been tested by excluding certain catalogues from the calibration
sample as well as using alternative calibration samples. Addi-
tionally, the angular cross-correlation between KV450 galaxies
and spectroscopic calibration samples has been studied as an
alternative to the fiducial direct weighted calibration.

Our analysis is based on the fiducial KV450 cosmic shear
analysis presented in Hildebrandt et al. (2020), in which the
combined KiDS+VIKING dataset (Wright et al. 2019) is binned
into five tomographic redshift bins based on their most prob-
able Bayesian redshift, zB, inferred with the photo-z code bpz
(Benítez 2000). Four bins of width ∆z = 0.2 in the range
0.1 < zB ≤ 0.9 and a fifth bin with 0.9 < zB ≤ 1.2 are defined and
calibrated using the aforementioned direct calibration method.
The estimated redshift distribution is then used to model
the two-point shear correlation function, and constraints on

1 For a likelihood that is close to Gaussian, we can find the maximum
in one step. However, even if the initial redshift distribution is substan-
tially different from the true underlying distribution, so that the likeli-
hood at the initial values of the fit parameters is non-Gaussian, we can
use Newton’s method to iterate towards the peak (Taylor & Kitching
2010).
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cosmological parameters are derived via sampling of the weak
lensing likelihood.

Self-organising maps (SOMs) have recently been proposed
as a method to mitigate systematic biases arising from the
redshift calibration, by assigning galaxies to groups based
on their photometry (Buchs et al. 2019; Wright et al. 2020a;
Masters et al. 2015). This method allows samples of galax-
ies to be constrained such that they are fully represented by
spectroscopic reference samples. It was recently applied to the
KV450 (Wright et al. 2020b) and KiDS-1000 (Hildebrandt et al.
2021; Asgari et al. 2021) datasets. However, in those works
the uncertainties on the redshift distributions are parameterised
in terms of shifts in the mean of the redshift distributions
with a prior that parameterises correlations between the red-
shift distributions of tomographic bins. This prior is inferred
from simulations (Wright et al. 2020a; Hildebrandt et al. 2021;
van den Busch et al. 2020). A spatial bootstrapping was not per-
formed, and as such an estimate of the full covariance of the
redshift distribution is not available. In this work we therefore
reverted to the fiducial KV450 dataset, for which such an esti-
mation of the full covariance of the redshift distribution is avail-
able, and we leave the application to more recent KiDS datasets
to future work.

In this work we calibrated the redshift distribution by
fitting the Gaussian comb model defined in Sect. 2 to the
redshift distribution histograms of Hildebrandt et al. (2020).
Additionally, we extended the KV450 likelihood code orig-
inally used in the fiducial analysis of Hildebrandt et al.
(2020) by implementing the analytic marginalisation over nui-
sance parameters. The original likelihood is publicly avail-
able in the MontePython2 package (Audren et al. 2013;
Brinckmann & Lesgourgues 2019). We sampled the likelihood
in the MultiNest3 mode (Feroz et al. 2009, 2019) using the
python wrapper PyMultiNest4 (Buchner et al. 2014). The mat-
ter power spectrum is estimated with the public code Class5
(Blas et al. 2011) with non-linear corrections from HMCode
(Mead et al. 2015).

We adopted the cosmological model from Hildebrandt et al.
(2020), that is, a flat ΛCDM cosmology with five parameters:
ωCDM, ωb, As, ns, and h. Additionally, the model includes four
nuisance parameters that account for intrinsic alignments (AIA),
baryon feedback (Abary), and additive shear bias (δc and Ac). We
note that, in contrast to the fiducial KV450 analysis, we did not
include linear shifts δzi in the mean redshift in each tomographic
bin as nuisance parameters since variations in the redshift distri-
butions are taken into account by the amplitudes of the Gaussian
comb model with analytic marginalisation over the correspond-
ing uncertainties. Our choices of priors for the nine cosmolog-
ical and nuisance parameters are identical to the ones used in
Hildebrandt et al. (2020) and are reported in Table 1. Finally, we
adopted the cosmic shear data from Hildebrandt et al. (2020),
which consists of measurements of the two-point shear correla-
tion functions between the five tomographic redshift bins and the
corresponding analytic covariance matrix.

5.1. Redshift distribution self-calibration

The first step in the calibration of the KV450 redshift distribu-
tion was to fit the modified Gaussian mixture model, defined in

2 https://github.com/brinckmann/montepython_public
3 https://github.com/farhanferoz/MultiNest
4 https://github.com/JohannesBuchner/PyMultiNest
5 https://github.com/lesgourg/class_public

Table 1. Model parameters and their priors for the KV450 cosmic shear
analysis, adopted from Hildebrandt et al. (2020).

Parameter Symbol Prior

CDM density ωCDM [0.01, 0.99]
Scalar spectrum amplitude ln(1010As) [1.7, 5.0]
Baryon density ωb [0.019, 0.026]
Scalar spectral index ns [0.7, 1.3]
Hubble parameter h [0.64, 0.82]
Intrinsic alignment amplitude AIA [−6, 6]
Baryon feedback amplitude Abary [2.00, 3.13]
Constant c-term offset δc 0.0000 ± 0.0002
2D c-term amplitude Ac 1.01 ± 0.13

Notes. The first five rows are cosmological parameters, and the remain-
ing rows represent nuisance parameters. Brackets indicate top-hat pri-
ors, and values with errors indicate Gaussian priors. We note that, in
contrast to Hildebrandt et al. (2020), linear shifts in the mean of the
redshift distributions are excluded.

Sect. 2, to the redshift histograms of Hildebrandt et al. (2020),
which are pre-calibrated with deep spectroscopic samples. The
fit was done simultaneously for all five tomographic redshift
bins in order to account for the correlations between bins. We
performed the fit using two different input data histograms: the
fiducial histograms with a bin width of ∆z = 0.05 and his-
tograms with a smaller bin width of ∆z = 0.025. Although
both histograms trace the same underlying redshift distribution
of galaxies in each tomographic bin, their biases and variances
will generally be different. By fitting the comb model to the two
types of histograms, we tested how the redshift distribution cali-
bration is affected by noise.

Moreover, we were free to choose the number of Gaussian
components of the redshift distribution model and the variance of
each component. In Appendix B we perform several tests, com-
paring different choices for the aforementioned free parameters,
and address their impact on the cosmological analysis. In partic-
ular, as a rule of thumb for the width of the Gaussian component,
σcomb, we limited ourselves to values that ensure an overlap of
two to three components at each point in redshift space. We find
that the analysis is robust with respect to these choices. In this
section we report our fiducial result using a model with Nz = 30
equidistant components between 0 ≤ z ≤ 2 and a variance of
σcomb = 0.067, which is equal to the separation between the
mean redshift of each component. This model was fitted to the
redshift histograms with a bin width of ∆z = 0.05.

The best-fit model is illustrated as blue curves in Fig. 2; the
shaded regions indicate the uncertainties on the redshift distri-
butions, which are derived from the diagonal elements of the
covariance matrix of fit parameters. The correlation matrix of fit
parameters is shown in Fig. 3.

We proceeded with a further calibration of the redshift dis-
tribution using the iterative fitting method of cosmological and
nuisance parameters described in Sect. 4. The fit result after each
step for the two parameters that are mostly constrained by the
data, the intrinsic alignment amplitude AIA, and the amplitude of
matter density fluctuations, S 8 = σ8(Ωm/0.3)0.5, are reported in
Table 2. We note that in this analysis, S 8 is a derived parameter
that is inferred from Class.

The iterative optimisation method shows a fast convergence
to the best fit in the full parameter space of cosmological and nui-
sance parameters after only two cosmology optimisation steps
and one redshift nuisance parameter optimisation. This was
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Fig. 2. Fit results of a Gaussian mixture with 30 components to the redshift distribution in five tomographic redshift bins. Blue curves indicate
redshift distributions fitted to the pre-calibrated DIR redshift histograms, shown in black. Shaded regions indicate the uncertainties on the redshift
distributions derived from the diagonal elements of the correlation matrix of fit parameters, shown in Fig. 3. Orange curves represent the redshift
distributions after iterative optimisation of cosmological and nuisance parameters.
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Fig. 3. Correlation matrix of best-fit comb amplitudes with 30 compo-
nents per redshift bin.

unsurprising since we started from an already well-calibrated
redshift distribution and as such expected only small corrections
from the Newton optimisation step.

Using the best-fit χ2 values as a measure of goodness of fit,
we find that with χ2 = 178.62 our model provides an improve-
ment in χ2 of roughly 1% with respect to the fiducial KV450

Table 2. Results of the iterative fitting of cosmological and nuisance
parameters to the KV450 cosmic shear data and comparison to the fidu-
cial KV450 likelihood.

AIA S 8 χ2

Fiducial KV450 likelihood 0.8656 0.7708 179.88
1. Cosmology optimisation 0.7353 0.7768 180.67
2. Nuisance optimisation – – 179.11
3. Cosmology optimisation 0.7903 0.7882 178.62

Notes. When optimising cosmological parameters, we fit ωcdm, ωb, As,
ns, and h as well as the nuisance parameters AIA, Abary, δc, and Ac. When
optimising nuisance parameters, we vary the amplitudes of the Gaussian
comb. Results are shown for the two most interesting parameters, AIA
and S 8, for which the cosmic shear likelihood has the largest constrain-
ing power. We find convergence after three iterations of the calibration,
which results in a better fit to the cosmic shear data compared to the
fiducial analysis.

model with a value of χ2 = 179.88. While in the present analysis
allowing for a full variation in redshift distribution only gives
a slight improvement compared to a linear shift in the mean,
this method could become more relevant for future analyses with
increased precision.

It is common practice to assess the goodness of fit by mak-
ing the assumption that the χ2 statistic follows a χ2 distribution
with Nd.o.f. = Nd−NΘ, where Nd is the size of the data vector
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Fig. 4. Posterior distribution of the median redshift of each tomographic redshift bin, inferred by drawing realisations of the Gaussian comb
amplitudes from a multivariate Gaussian distribution. Black curves indicate the median redshift of the KV450 redshift histograms calibrated using
the fiducial DIR method. The blue curves show the median redshift of the Gaussian comb that is fitted to the DIR histograms. The orange curves
represent the median redshift of the Gaussian comb after iterative self-calibration with cosmic shear measurements.

and NΘ is the number of sampling parameters. However, this
assumption is only valid under the condition that the data are
normally distributed, the model is linearly dependent on the
sampling parameters, and there is no informative prior on the
parameter ranges (see for instance Joachimi et al. 2021). In gen-
eral, these conditions are not met in cosmological analyses,
and this is particularly true for this work since we assumed a
Gaussian prior on the amplitudes of the Gaussian comb, which
is inferred from the redshift distribution calibration. Therefore,
the naive estimation of the number of degrees of freedom is
a poor estimation of the true effective number of degrees of
freedom since we added a large number of strongly corre-
lated nuisance parameters with informative priors. For a con-
servative estimate of the number of degrees of freedom in our
model, we can assume the nuisance parameters to be essen-
tially fixed by the prior and therefore do not count them as
sampling parameters, which leads to Nd.o.f. = 186. While a
more robust estimate of the effective number of degrees of
freedom can be inferred from mocks or posterior predictive data
realisations (Spiegelhalter et al. 2002; Handley & Lemos 2019;
Raveri & Hu 2019; Joachimi et al. 2021), we refrain from a fur-
ther interpretation of the goodness of fit.

We find a shift in the two most interesting parameters
for which the cosmic shear likelihood has the largest con-
straining power, AIA and S 8, compared to the fiducial KV450
analysis. These shifts are further investigated in the following
section, where we sample the weak lensing likelihood and derive
marginalised posteriors of cosmological parameters. The result-
ing redshift distributions after iterative self-calibration are illus-
trated as orange curves in Fig. 2.

Figure 4 shows comparisons of the median of the redshift
distribution of each tomographic bin inferred from the original
DIR histograms and the Gaussian comb before and after itera-
tive calibration. We chose the median as our summary statistic
since the mean of the DIR histograms is less stable with respect
to variations in the cutoff redshift at the high-redshift tail of the
distribution, which is most likely caused by the underestimation
of the error bars in the DIR method. The median, on the other
hand, is less sensitive to the choice of the cutoff redshift. We
find that the fit of the Gaussian comb yields constraints on the
median redshift that are about 50% tighter relative to the DIR
histograms. Additionally, we observe that the shift in the median
after iterative self-calibration is largest in the first two redshift
bins and less significant in the three higher redshift bins. This
is most likely caused by degeneracies between the amplitude of

0.
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KV450 SOM-Gold fiducial

Fig. 5. Marginalised posteriors for AIA and S 8. The orange con-
tours present the results from the KV450 likelihood with a self-
calibrated Gaussian comb and analytical marginalisation over nuisance
parameters, while the blue contours refer to the fiducial KV450 con-
straints. The star indicates the best-fit values from Table 2 for the
KV450 likelihood with a Gaussian comb, and the cross indicates the
best-fit values for the fiducial KV450 likelihood. The dashed con-
tour shows the posterior distribution from the KV450 ‘gold’ sample
(Wright et al. 2020b), which is constructed by removing photomet-
ric sources that are not directly represented by the overlapping spec-
troscopic reference samples using SOMs. Therefore, this contour is
inferred from a different sample of galaxies with a different redshift
distribution.

intrinsic alignments and the redshift distributions, which is dis-
cussed in the following sections.

5.2. Marginalisation over nuisance parameters

Using the redshift distribution calibrated in the previous section,
we sampled the weak lensing likelihood in cosmological param-
eter space with analytical marginalisation over the uncertainty
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iterative calibration of cosmological and nuisance parameters: ξ+ (upper right) and ξ− (lower left). Black data points illustrate the relative difference
between the observed two-point shear correlation functions and the best fit of the fiducial likelihood.

on the amplitudes of the fitted redshift distribution. Prior to the
sampling of the marginalised likelihood, we tested whether we
could reproduce the result of the fiducial KV450 analysis by
sampling the likelihood with the comb model, but without apply-
ing the marginalisation over nuisance parameters. The results of
this consistency test, discussed in Appendix C, show that the two
models are in good agreement.

Figure 5 illustrates the results, comparing (i) the KV450
likelihood with a Gaussian comb and analytical marginalisa-
tion over nuisance parameters with (ii) the fiducial KV450
likelihood. We show marginalised posteriors and best-fit values
for the two parameters that are fully constrained with KV450
data, AIA and S 8. The posterior distribution of all remaining
parameters is shown in Appendix D. We find a slight shift in

the posterior towards smaller values of the intrinsic alignment
amplitude and larger values of S 8. Additionally, Fig. 5 shows
the posterior distribution for the KV450 ‘gold’ sample, which is
derived using SOMs (Wright et al. 2020b). We emphasise that
Wright et al. (2020b) use a different selection of the photomet-
ric sample by removing photometric sources that are not directly
represented by the overlapping spectroscopic reference samples.
Thus, the redshift distributions of the fiducial KV450 sample and
the KV450 gold sample are not comparable.

The constraint from the KV450 gold sample on the intrin-
sic alignment amplitude, AIA, is compatible with AIA = 0,
whereas Hildebrandt et al. (2020) found AIA ≈ 1. However,
these results are still consistent within their errors, as discussed
by Wright et al. (2020b). The iterative self-calibration of the
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redshift distribution performed in this work leads to a decrease
in the intrinsic alignment amplitude of about 10% (see Table 2).
Thus, we find a trend similar to that found by Wright et al.
(2020b), although the change in the intrinsic alignment ampli-
tude is not as strong. Recent studies of intrinsic alignments
have also found results that are in disagreement with the fidu-
cial KV450 analysis, such as Fortuna et al. (2021), who predict
AIA = 0.1+0.1

−0.1. Since the constraints on the intrinsic alignment
amplitude differ between analyses and the role of intrinsic align-
ments is a subject of active research, it is worth investigating
how this parameter can influence the theoretical prediction of
the cosmic shear signal.

The intrinsic alignment amplitude, AIA, is not a cosmologi-
cal parameter, but instead originates from the modelling of cor-
relations between intrinsic ellipticities of neighbouring galaxies,
II, and correlations between intrinsic ellipticities of foreground
galaxies and background galaxies, GI. As can be inferred from
Eqs. (21) and (22), the GI term gives a negative contribution to
ξ± that is proportional to AIA, whereas the II term contributes
positively, proportionally to A2

IA. Thus, a shift in the redshift dis-
tribution can (at least to some extent) be counteracted by a shift
in the intrinsic alignment amplitude, so that overall we find a
good fit to the observed cosmic shear two-point correlation func-
tion. This effect is a possible explanation for the observed shift
in the contours in Fig. 5, which nevertheless are still in good
agreement.

Furthermore, since the signal-to-noise ratio (S/N) is lower in
the low redshift bins compared to the high redshift bins, the rela-
tive contribution of intrinsic alignments is stronger in the low
redshift bins. This can explain the larger shift in the median
of the redshift distribution in the first two redshift bins that is
observed in Fig. 4. This is illustrated in Fig. 6, which shows the
relative difference between the best-fit KV450 two-point shear
correlation functions of the fiducial likelihood and the best fit
after iterative calibration of cosmological and nuisance parame-
ters. We find a relative difference of the best-fit curves of up to
20%, which is largest in the first redshift bin. This is compatible
with the observed shift in the median of the redshift distribution
of the first redshift bin shown in Fig. 4.

The black data points in Fig. 6 show the relative difference
between the observed two-point correlation function and the
fiducial best fit. These indicate that the S/N in this bin is very
low, so that the shift in the posterior redshift distribution does
not have a significant impact on the overall best-fit likelihood
value of the combined fit. In the second bin we find the small-
est shift in the best-fit curve, although Fig. 4 shows a significant
shift in the median of the redshift distribution in this bin. This
is an indication that the shift in the intrinsic alignment ampli-
tude towards a lower value possibly mitigates the effect of the
shifted redshift distribution, so that the effect on the likelihood
value is minimal. From these observations, we conclude that the
intrinsic alignment parameter AIA does not solely measure the
amplitude of intrinsic alignments, but instead picks up contri-
butions from systematic shifts in the redshift distribution due
to the degeneracy between the parameters. Variations between
the constraints on the intrinsic alignment parameter were also
reported by Wright et al. (2020b), who found differences of up
to |∆AIA| ∼ 1.0σ between analyses. However, since Wright et al.
(2020b) used a different galaxy sample, the intrinsic alignment
amplitude could be intrinsically different. Furthermore, the effect
of the intrinsic alignment parameter mitigating systematic effects
has been studied recently in other works, such as van Uitert et al.
(2018) and Efstathiou & Lemos (2018).

We conclude that our method provides constraints on cosmo-
logical parameters that are compatible with the fiducial KV450
analysis while taking all photometric redshift uncertainties into
account. Our model provides a slightly better fit of the redshift
distribution to the cosmic shear data since the large number of
model parameters allows the model to reflect small variations in
the redshift distribution. However, we suspect that variations in
the redshift distribution can be correlated with variations in the
intrinsic alignment amplitude, and therefore a tighter prior on
the intrinsic alignment parameter through external constraints is
required. Our approach can help reduce the degeneracy between
intrinsic alignments and redshift distributions by providing a
more accurate redshift distribution calibration.

6. Summary and conclusions

In this paper we developed a method to model photometric red-
shift distributions of galaxy samples with strong correlations
between tomographic bins using a modified Gaussian mixture
model. We have shown that photometric redshift uncertainties
arising from the calibration of the redshift distribution can be
accurately propagated to the weak lensing likelihood via an ana-
lytic marginalisation over the model parameters. This allowed us
to use a fairly complex model of the redshift distribution with-
out an increase in the number of sampling parameters in the
weak lensing likelihood. Additionally, we developed an iterative
method to fit cosmological and nuisance parameters in order to
perform a self-calibration of the redshift distribution with cosmic
shear data.

We applied these methods to the public KiDS+VIKING-450
(KV450) cosmic shear data. We fitted the modified Gaussian
mixture model to the fiducial KV450 redshift distributions in five
tomographic bins that were calibrated with deep spectroscopic
surveys and implemented the marginalisation method in the pub-
lic KV450 likelihood code. We performed the iterative fitting
and found fast convergence to the best fit in the combined space
of cosmological and nuisance parameters. Next, we sampled the
weak lensing likelihood using the redshift distribution that was
calibrated in the previous step and derived constraints on cosmo-
logical parameters.

We found that our model can fit complex redshift distribu-
tions thanks to the tunable number of model parameters. Since
we marginalise analytically over nuisance parameters, the large
number of redshift nuisance parameters does not increase the
runtime of the posterior sampling. Our model provides a slightly
better fit to the data compared to the fiducial KV450 likelihood
since the fiducial likelihood only allows a shift in the mean of
the redshift distribution of each bin and thus requires a pre-
calibrated redshift distribution that closely resembles the true
underlying distribution. Given the large uncertainties of photo-
metric redshift calibration methods in general, a complex model
that can reflect the uncertainties is advantageous. Therefore,
with decreasing statistical uncertainties and increasing survey
data, the method presented in this paper is particularly useful
for upcoming surveys, where we expect higher order moments
of the redshift distribution uncertainty to become increasingly
important.

The marginalised posterior distributions of the remaining
model parameters are in agreement with the fiducial KV450
analysis. However, we found slight shifts in the posterior con-
straints on the model parameters, which are strongest for the
amplitude of intrinsic alignments, AIA. We suspect that these
shifts are caused by degeneracies between the redshift distribu-
tion amplitudes and the intrinsic alignment amplitude, so that
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a shift in the redshift distribution can be compensated by a shift
in the intrinsic alignment amplitude. This mitigation of system-
atic effects by the intrinsic alignment parameter is likely to be
the reason for the relatively large shift in the median of the
redshift distribution in the second redshift bin that we found
after the iterative calibration of model parameters. Thus, to get
unbiased constraints on the redshift distribution, we require a
tighter prior on the intrinsic alignment parameter through exter-
nal constraints. This will ensure that systematic effects are not
absorbed by the intrinsic alignment parameter. This result is
consistent with earlier works, such as Wright et al. (2020b),
Hildebrandt et al. (2020), Fortuna et al. (2021), van Uitert et al.
(2018), and Efstathiou & Lemos (2018), which also found dis-
crepant values of the intrinsic alignment amplitude and studied
systematic effects on intrinsic alignments. Thus, this work fur-
ther emphasises the necessity of an accurate modelling of intrin-
sic alignments.

While finalising this work, Hadzhiyska et al. (2020) put for-
ward a paper on the analytic marginalisation of redshift distri-
bution uncertainties applied to galaxy clustering measurements
from the HSC first data release. Their marginalisation method
results in a modified data covariance matrix that downweights
modes of the data vector that are sensitive to variations in the
redshift distribution. This approach also allowed them to take
the full shape of the redshift distribution into account. However,
since this method directly modifies the data covariance matrix, it
is unclear if it allows for a self-calibration of the redshift distri-
bution with cosmic shear measurements.

The method presented in this paper is not only applicable to
cosmic shear analyses, but can also be adapted to other probes,
such as galaxy-galaxy lensing and galaxy clustering. Therefore,
it can especially be used in future joint ‘6× 2 pt’ analyses, which
combine all two-point correlation functions between overlapping
imaging and spectroscopic surveys.
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Appendix A: Marginalisation over nuisance
parameters

In this appendix we provide the analytic expressions for the vec-
tor of derivatives of the log-likelihood with respect to the nui-
sance parameters aαi of the redshift distribution and the Hessian
matrix of second derivatives with respect to the nuisance param-
eters. These quantities enter the calculation of the log-likelihood
marginalised over the nuisance parameters described in Sect. 3.2.
For the specific case of marginalising over the redshift distribu-
tion nuisance parameters, the vector L′ has elements

∂L

∂aµ
m

=
∑

l,l′,α,β,α′,β′

∂∆
(αβ)
l

∂aµ
m

Z(l,α,β) (l′,α′,β′) ∆
(α′β′)
l′

+ ∆
(αβ)
l Z(l,α,β) (l′,α′,δ)

∂∆
(α′β′)
l′

∂aµ
m

 , (A.1)

with

∂∆
(αβ)
l

∂aµ
m

= −Aµ
m

∑
i

x(im)
± (θl)

(
δαµ Aβ

i + δβµ Aα
i

)
, (A.2)

where δαβ denotes the Kronecker delta symbol. The indices α
and β run over all unique combinations of tomographic redshift
bins. The two-point shear correlation function of two Gaussian
comb components, i and j, in θ-bin l is denoted by x(i j)

± (θl), and
the inverse data covariance is given by Z. The difference between
the observed and predicted signals, as defined in Eq. (26), is
denoted by ∆

αβ
l . The elements of the Hessian matrix, L′′, read
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Appendix B: Tests of the redshift distribution
calibration

In this appendix we test to what extent the number of Gaussian
components of the comb model affects the fit to the pre-
calibrated redshift histograms. Additionally, we test the stability
of the fit results when changing the number of bins of input data
histograms and test the calibration method on simulations.

B.1. Width of input data histograms

The redshift distributions of Hildebrandt et al. (2020), calibrated
with the fiducial DIR method, consist of histograms with bin

width ∆z = 0.05 for each tomographic bin and a covariance
matrix that links all five tomographic bins. To test the sensitivity
of the fit with respect to the input data, we performed fits using a
second set of histograms with a smaller bin width of ∆z = 0.025
that were calibrated with the same method.

Figure B.1 shows a comparison of two fits with 30
Gaussian components; the blue lines represent a fit to the his-
tograms with bin width ∆z = 0.05, and the orange lines represent
a fit to the histograms with bin width ∆z = 0.025. We note that
the error bars correspond to the diagonal elements of the covari-
ance matrix of the data histograms. The fit of redshift distribu-
tions, however, is performed using the full covariance matrix.

By visually inspecting the fitted redshift distributions, we
observe some deviations between the two curves, which are,
however, already present in the input data. Although the two his-
tograms are supposed to represent the same source redshift dis-
tribution, they show some fluctuations (especially in the peaks
of the distributions), which have an impact on the fitted curves.
More importantly, however, we find goodness of fit values of
χ2 = 4500 and χ2 = 22 750 for 50 and 250 degrees of freedom,
respectively. This indicates a bad fit of the model to the data
regardless of which data histogram is used. To find the cause
of the bad fit, we repeated the fit using only the diagonal ele-
ments of the covariance matrix, which reduces the goodness of
fit values to χ2 = 470 and χ2 = 1400 for 50 and 250 degrees
of freedom, respectively. This test shows that the bad fit is to a
great extent caused by the off-diagonal elements of the covari-
ance matrix. However, excluding the off-diagonal elements does
not lead to an acceptable goodness of fit value. We suspect that
the uncertainties on the pre-calibrated redshift distributions are
underestimated, which would explain the discrepancies between
the blue and orange data points shown in Fig. B.1.

Empirically, we find that rescaling the square root of the
covariance Ci j between histogram bins by an additive and multi-
plicative factor via

C′i j =
(
2
√

Ci j + 0.01δi j

)2
(B.1)

leads to χ2 = 80 for 50 degrees of freedom. With this rescaling,
the widths of the posterior distributions of the median redshift
for both the redshift histograms and the Gaussian comb, shown
in Fig. 2, inflate by approximately the same factor. Therefore, we
assume that a potential underestimation of the error bars impacts
the fiducial analysis and the analysis presented in this paper in
the same way. We stress that the quality of the fit does not have
a significant impact on the main analysis of this paper, as shown
in Appendix B.2, and leave further investigation of an improved
uncertainty quantification for the pre-calibrated redshift distribu-
tions for future work.

B.2. Redshift distribution calibration with simulations

Since in Appendix B.1 we found that the Gaussian comb model
provides a bad fit to the actual data, which is likely caused by
an underestimation of the error bars, we tested our calibration
method with simulations. We used redshift distributions that are
calibrated with the fiducial DIR method on simulated mock cat-
alogues (van den Busch et al. 2020) based on the MICE simula-
tion (Fosalba et al. 2015a,b; Crocce et al. 2015; Carretero et al.
2015; Hoffmann et al. 2015). Analogous to Appendix B.1, we
compared two types of data histograms with bin widths of ∆z =
0.05 and ∆z = 0.025. Figure B.2 shows a comparison of the two
fits with 30 Gaussian components, where blue lines represent
a fit to the histograms with bin width ∆z = 0.05 and orange lines
represent a fit to the histograms with bin width ∆z = 0.025.
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Fig. B.1. Comparison of the Gaussian comb with 30 components fitted to two different pre-calibrated histograms. The blue and orange points
show histograms with bin widths of ∆z = 0.05 and ∆z = 0.025, respectively. The error bars correspond to the diagonal elements of the covariance
matrix. The lines represent the Gaussian comb with 30 components fitted to the data histograms. We note that when fitting the redshift distribution,
the full covariance matrix of the data histogram is taken into account.

We find that with goodness of fit values of χ2 = 75 and
χ2 = 320 for 50 and 250 degrees of freedom, respectively, our
Gaussian comb model fits the data reasonably well. Moreover,
both the data histograms and the corresponding fitted redshift
distributions are in excellent agreement. We conclude that the
Gaussian comb model is capable of accurately describing the
redshift distribution. The worse goodness of fit when fitting real
data is likely due to the presence of noise and an underestimation
of the uncertainties.

B.3. Number of Gaussian components

In Fig. B.3 we show a comparison of fits of a Gaussian comb
with 20, 30, and 40 components to the pre-calibrated redshift
histograms with bin width ∆z = 0.05. The width σcomb of the
Gaussians is equal to the separation between each component.
We find that variations in the number of comb components have
a marginal impact on the redshift distribution, with changes of
the median of order ∆zmed = 0.001.
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Fig. B.2. Comparison of the Gaussian comb with 30 components fitted to pre-calibrated histograms from the MICE simulation. The blue and
orange points show histograms with bin widths of ∆z = 0.05 and ∆z = 0.025, respectively. The error bars correspond to the diagonal elements
of the covariance matrix. The lines represent the Gaussian comb with 30 components fitted to the data histograms. We note that when fitting the
redshift distribution, the full covariance matrix of the data histogram is taken into account.
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Fig. B.3. Comparison of a Gaussian comb with 20, 30, and 40 components fitted to a pre-calibrated histogram with bin width ∆z = 0.05. The
width σcomb of the Gaussians is equal to the separation between each component. Data points are shown in black, with error bars corresponding
to the diagonal elements of the covariance matrix. Blue, orange, and green lines represent the Gaussian combs with 20, 30, and 40 components,
respectively. We note that when fitting the redshift distribution, the full covariance matrix of the data histogram is taken into account.

Appendix C: Comparison between the fiducial
KV450 likelihood and the modified likelihood
with Gaussian comb

In order to test if the fitted redshift distribution is capable of
reproducing the results of the fiducial KV450 analysis, we sam-
pled the likelihood using the Gaussian comb model as the param-
eterisation of the redshift distribution, but without marginalisa-
tion over the uncertainties on the nuisance parameters. To be able
to compare the two likelihoods, we fixed the nuisance parameters
δzi of the fiducial KV450 likelihood. The results of these fits are
presented Table C.1, which shows the mean posterior values of
cosmological and nuisance parameters. We find that constraints
from both setups are fully consistent, and therefore we conclude
that our Gaussian comb model can be used as an alternative to
the fiducial redshift distributions.

Table C.1. Comparison between the fiducial KV450 likelihood and
the modified likelihood with redshift distribution parameterised by the
Gaussian comb model.

Parameter Fiducial KV450 KV450 with
Gaussian comb

ωcdm 0.112+0.029
−0.060 0.112+0.046

−0.060
ln 1010As 3.30 ± 0.92 3.34 ± 0.92
ωb 0.0223 ± 0.0021 0.0222+0.0018

−0.0025
ns 1.03+0.15

−0.13 1.01 ± 0.13
h 0.749+0.067

−0.028 0.746+0.062
−0.033

AIA 0.89+0.64
−0.58 0.87+0.64

−0.58
cmin 2.50+0.22

−0.45 2.49+0.23
−0.40

δc 0.00000 ± 0.00019 0.00000 ± 0.00019
Ac 1.03 ± 0.12 1.02 ± 0.12
Ωm 0.242+0.052

−0.11 0.242+0.055
−0.11

σ8 0.86+0.18
−0.20 0.87 ± 0.17

S 8 0.746+0.029
−0.028 0.748+0.029

−0.03

Notes. Reported are the mean posterior values and the 68% confi-
dence intervals. The first five lines are cosmological parameters, and
the remaining lines represent nuisance parameters.
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Appendix D: Posteriors of cosmological parameter
constraints

In Fig. D.1 we show marginalised posteriors of cosmological
and nuisance parameters. The KV450 likelihood with a Gaussian

comb and analytical marginalisation over nuisance parameters is
compared to the fiducial KV450 likelihood.
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Fig. D.1. Marginalised posteriors for all parameters of the KV450 likelihood. Blue contours present the results from the KV450 likelihood with a
Gaussian comb and analytical marginalisation over nuisance parameters, while the orange contours refer to the fiducial KV450 constraints.
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