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Abstract

The volume of published academic research is growing rapidly and this new era of

“big literature” poses new challenges to evidence synthesis, pushing traditional,

manual methods of evidence synthesis to their limits. New technology develop-

ments, including machine learning, are likely to provide solutions to the problem of

information overload and allow scaling of systematic maps to large and even vast

literatures. In this paper, we outline how systematic maps lend themselves well

to automation and computer‐assistance. We believe that it is a major priority to

consolidate efforts to develop and validate efficient, rigorous and robust applica-

tions of these novel technologies, ensuring the challenges of big literature do not

prevent the future production of systematic maps.
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1 | INTRODUCTION: THE NEED FOR
TECHNOLOGY IN EVIDENCE SYNTHESIS

The volume of published academic research is growing rapidly, and in

some topics exponentially (Bornmann & Mutz, 2015; Khabsa &

Giles, 2014). This new era of “big literature” (Callaghan et al., 2020;

Minx et al., 2017; Nunez‐Mir et al., 2016) poses new challenges to

evidence synthesis, pushing traditional, manual methods of evidence

synthesis (systematic reviews and systematic maps; Gough

et al., 2017) to their limits. At the same time, evidence mapping

approaches (systematic maps (James et al., 2016), evidence and gap

maps (Snilstveit et al., 2013), evidence maps (Saran & White, 2018);

see Box 1) are becoming more popular than full syntheses in some

disciplines, such as in environmental science (Figure 1). These ap-

proaches that aim to catalogue broad evidence bases typically deal

with greater volumes of evidence than traditional systematic reviews

and are thus even more sensitive to increasing publication rates. This

increase in breadth and procedural reduction means that mapping is

inherently more scalable, however. To illustrate, the average number

of search results in recent environmental systematic maps is more

than 34,000 (Haddaway &Westgate, 2019). A typical systematic map

also requires in excess of 200 person‐days to complete—a significant

time and resource investment (Haddaway & Westgate, 2019).

We focus here on systematic mapping for two reasons (see Box 1

for a definition). First, mapping approaches are ubiquitous across

evidence synthesis methodology, despite not formally being re-

cognised: many systematic reviews also involve an initial mapping

stage that identifies, collates and describes the nature of the

evidence base. Second, systematic mapping methods focus on the

location and description of corpora of literature: methods that lend

themselves well to computer assistance and automation. The latter

stages of systematic reviews (including data extraction, critical
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Box 1 What is systematic mapping?

Overview: Systematic mapping is an evidence synthesis method similar to systematic reviewing that aims to summarise an evidence

base using robust and rigorous processes. However, systematic mapping differs from systematic reviewing in that it does not aim to

summarise the findings of the studies in the evidence base, but rather summarise the evidence base as a whole. While systematic

reviews typically focus on answering questions like “what works, when and for whom”, systematic maps aim to answer “what do we

know about a topic”, or “what research exists on a particular area”. Systematic maps are often conducted as a first step in the evidence

synthesis pathway, and would be followed by a number of focused systematic reviews that could be conducted relatively swiftly

following the mapping work already undertaken (searching for, screening and describing studies).

Methods: Systematic maps follow the same procedures as systematic reviews, but differ at the stage of extraction of information until

the synthesis of studies. Systematic maps typically extract only meta‐data (descriptive information about the studies and their

systems) and apply predefined codes: they do not extract findings from the included studies. Systematic maps may include critical

appraisal of included study validity, but this step is optional and would be conducted in full in subsequent systematic reviews.

Synthesis in systematic maps involves a description of the evidence base and development of an interactive database of studies, and

therefore does not include the quantitative or qualitative synthesis of study findings.

Outputs: The key outputs of a systematic map are: (a) an interactive, searchable database of relevant studies and their descriptive

information; (b) a list of knowledge gaps (topics where primary research is limited or absent) and knowledge clusters (topics where

sufficient research exists to warrant full synthesis via systematic reviews); (c) visualisations of the evidence base to facilitate un-

derstanding (e.g., evidence atlases, heat maps, descriptive plots); (d) a summary report describing the background, methods and results.

Terminology: The term “systematic map” is widely used in environmental science and social science. Some fields refer to this method as

“evidence maps”, although this is perhaps a broader definition, procedurally. In the field of social welfare, the Campbell Collaboration

has developed the term “evidence and gap map” to describe a form of evidence map that focuses on identifying systematic reviews

(and often impact evaluations) on a topic, and developing a matrix of interventions and outcomes to visually represent the evidence

base. In the field of health, an analogous approach would be described as a “scoping review”, but this term includes a broader set of

methods that include reviews conducted to a lower standard than systematic maps (Colquhoun et al., 2014). Furthermore, the term

“scoping review” is used to describe a preliminary, exploratory step prior to the conduct of a full evidence synthesis in many fields

(CEE, 2013).

Example: In their systematic map of the effects of nature conservation on human wellbeing, McKinnon et al. (2016) retrieved 35,782

search results, resulting in 1,043 relevant records being retained in their final systematic map. The authors produced a series of

visualisations including heat maps and an evidence atlas (an interactive geographical map of the evidence base) that described the

spread of evidence across regions, conservation actions and measured outcomes (among other variables). They also included a

searchable systematic map database describing all included studies as a supplementary file. An interactive, online version of their

systematic map can be explored here: https://www.natureandpeopleevidence.org/#/explore/wellbeing/charts.

Further guidance and analysis of the uses and benefits of systematic mapping can be found here:

James, K. L., Randall, N. P. & Haddaway, N. R. A methodology for systematic mapping in environmental sciences. Environmental Evidence

5, 7 (2016). https://doi.org/10.1186/s13750-016-0059-6
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appraisal and synthesis) require in‐depth analysis of individual

manuscripts that is so far proving highly challenging for automation.

The approaches described herein could thus be relevant to a range of

different evidence synthesis and mapping methods.

Despite this growing problem, there are signs that new technology

developments, including machine learning, are likely to provide solu-

tions to the problem of information overload (Zarocostas, 2020) and

allow scaling of evidence syntheses to large and even vast literatures

(Callaghan et al., 2020; Lamb et al., 2019; Westgate et al., 2018). First,

such technologies may enable reviewers to deal with vast evidence

bases far more efficiently and swiftly than humans alone, by bearing

the burden of repetitive and routine tasks and allowing manual efforts

to be diverted towards more complex tasks. Second, they can identify

patterns and content across large sets of documents that would

otherwise be inaccessible or incomprehensible to humans, breaking

new ground in evidence synthesis and knowledge aggregation. Thirdly,

they offer new opportunities for identifying additional relevant

literature within given resource constraints, while also potentially

enhancing the consistency and accuracy of screening, study selection

and coding. Finally, they may help to accelerate the process of con-

ducting systematic maps. Computer‐assisted reviews thus offer the

promise of increased efficiency, scientific insight, comprehensiveness,

rigour and speed.

In this paper, we outline how systematic mapping methods lend

themselves well to automation and computer‐assistance, and highlight

evidence synthesis technology as a vital means of dealing with the

rapid expansion of evidence across disciplines (so‐called infodemics

(Zarocostas, 2020). We argue that a major priority is to consolidate ef-

forts to develop and validate efficient, rigorous and robust applications of

these novel technologies. In doing so, we will ensure the challenges of big

literature do not prevent the future production of systematic maps.

2 | THE BENEFITS OF SYSTEMATIC MAPPING

Systematic mapping aims to catalogue and describe the evidence

base, unlike systematic reviews, which aim to extract and synthesise

study findings. Systematic maps are typically used to provide an

Haddaway, N. R., Bernes, C., Jonsson, B. et al. The benefits of systematic mapping to evidence‐based environmental management.

Ambio 45, 613–620 (2016). https://doi.org/10.1007/s13280-016-0773-x

Wolffe, T. A. M., Vidler, J., Halsall, C., Hunt, N., Whaley, P., A survey of systematic evidence mapping practice and the case for

knowledge graphs in environmental health and toxicology, Toxicological Sciences 175, 35–49 (2020). https://doi.org/10.1093/toxsci/

kfaa025

McKinnon, M. C., Cheng, S. H., Garside, R., Masuda, Y. J., Miller, D. C., Sustainability: Map the evidence. Nature News, 528, 185 (2015).

https://doi.org/10.1038/528185a

Saran, A., White, H., Evidence and gap maps: a comparison of different approaches. Campbell Systematic Reviews, 14, 1–38 (2018).

https://doi.org/10.4073/cmdp.2018.2

F IGURE 1 Comparative growth in systematic maps versus systematic reviews over time in the journal Environmental Evidence (as of
10.06.2020)
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overview of a broader landscape of research, and as such are useful

as a first step on the “evidence synthesis pathway”: the process of

moving from broad stakeholder concerns (“what do we know

about…”) to a series of focused answers to targeted questions about

impacts and “what works” (Gough et al., 2017). Often, the scope of

systematic maps more closely aligns to the broad concerns fielded by

commissioners and other stakeholders: certain aspects of the key

elements of systematic maps (populations, interventions/exposures,

comparators, outcomes, methods/study types) are typically included

iteratively and are not restricted by prespecified inclusion criteria.

Because of this and by design, systematic mapping can be used to

catalogue multiple types of evidence in the same map: modelling

studies, laboratory studies, field studies, quantitative research,

qualitative research, commentaries, theories and methodologies.

Although they do not synthesise study findings, systematic maps

are an important means of highlighting knowledge gaps (subtopics

where primary research is lacking), knowledge clusters (subtopics

where sufficient studies exist to allow full synthesis via systematic

review) and best‐practices and/or deficiencies in research methods.

They can thus help to direct impactful and needs‐driven research and

funding towards primary and secondary gaps in the evidence.

Systematic maps can be upgraded into full systematic reviews

relatively quickly for given knowledge clusters and, in these cases,

can be particularly resource efficient. They can thus be used to de-

termine for which subtopics systematic reviews are most appropriate

and feasible, reducing the risks of undesirable empty reviews.

Representativeness is arguably more important than compre-

hensiveness in systematic maps, since the aim is to identify patterns

in gaps and clusters rather than generate precise estimates: as an

analogy, a photograph of the Mona Lisa is recognisable at low re-

solution, but it could not be considered an accurate representation of

the underlying information in the painting (Figure 2). This reduces the

risks of non‐exhaustive searching in systematic maps: in systematic

reviews, there can be severe consequences if even one relevant

study is missed, but this is not the case for maps, which summarise

broad patterns. Furthermore, there are minimal risks of including a

small number of irrelevant studies in a map, since it is broad patterns

that are of interest, and further screening and critical appraisal is

necessary before proceeding to full synthesis in any subsequent

systematic review. This relaxation of the exacting standards tradi-

tionally required of systematic reviews makes computer‐assisted
(and perhaps even automated) maps more viable.

3 | HOW EVIDENCE SYNTHESIS TECHNOLOGY CAN
SUPPORT SYSTEMATIC MAPPING

There are many key points in the traditional view of systematic

mapping processes where evidence synthesis technology and com-

putational methods could be applied, broadly speaking, project

management, retrieval, screening, data extraction and narrative

synthesis. We discuss these processes in the following sections.

3.1 | The benefits of computer‐assisted mapping to
research, policy and practice

The computer‐assisted (or automated) systematic mapping that we

describe herein has a suite of benefits to researchers, policy-

makers and practitioners. More rapid mapping of the evidence will

result in faster synthesis in general (including the transition from

systematic maps to systematic reviews), by facilitating the iden-

tification and analysis of the nature of an evidence base. In turn,

this will allow evidence synthesis to be more responsive to the

knowledge needs of decision‐makers. Where decision‐makers re-

quire urgent evidence on a subject, computer‐assisted mapping

can make the provision of a timely and systematic map, where

previously evidence synthesis would have had to be either timely

or systematic. In addition, because computer‐assisted systematic

maps can be continually updated to include relevant research as

and when it is made available, maps can be kept up to date with the

latest evidence.

3.2 | Current technologies

We highlight below some key examples of evidence synthesis tech-

nologies (defined here as novel tools and frameworks used to support

evidence syntheses) that currently exist and can already be used to

increase the efficiency, rigour and accessibility of evidence synthesis.

We explain these across the main processes of systematic mapping.

1. Project management—In its broadest form, review management

tools are evidence synthesis technologies that suit themselves

well to systematic maps, since they support an entire flow of

information through the review process, can deal with big data

review projects, and facilitate good record keeping, which is vital

with such large evidence bases.

F IGURE 2 The Mona Lisa and a pixelated version, still easily

recognisable. Image Source: https://www.newmediacampaigns.com/
page/how-to-optimize-an-image-for-your-website
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2. Retrieval—Text analysis processes can suggest search terms to

support search string development based on computer‐assisted
scoping of the literature (Grames et al., 2019; Stansfield

et al., 2017). Text analysis processes can be used to retro-

spectively improve on Boolean search strings to improve search

strategies for updates to bibliographic searching. Similarly, text

analysis and citation network processes (e.g., Weller et al., 2018)

can be used to suggest additional relevant articles that have been

published since searches were conducted to update systematic

review searches, ensuring the longevity of the map, which would

otherwise become out‐of‐date as soon as searches are concluded.

3. Screening—Machine learning tools can help to increase efficiency

in screening by prioritising relevant research so that eligible

studies can be found early on in the screening process and other

stages (meta‐data extraction) can begin sooner (O'Mara‐Eves
et al., 2015), although traditionally, all records should be screened

by at least one human (CEE, 2018). Recent methodological de-

velopments have suggested processes of transparently cutting off

screening processes at given levels of confidence about the

completeness of the process (Callaghan & Müller‐Hansen, 2019).

In addition, named entity recognition can be used to identify

terms from a predefined dictionary or taxonomy to support

screening: for example, Lamb et al. (2019) used a dictionary of city

names to identify case studies from the climate literature.

4. Data extraction—Topic modelling and machine learning classifiers

can be used to interrogate the body of evidence in order to gain a

relatively crude understanding of the content and focus of

relevant research (Jaspers et al., 2018; Stansfield et al., 2013;

Westgate, 2019). Unsupervised machine learning can generate

document labels without human input, which can be interpreted

by humans and mapped to other document metadata (Lamb

et al., 2019). Supervised learning can be used to rapidly label large

collections of documents based on labels given by humans to a

subset of documents (Mcauliffe & Blei, 2008).

5. (Narrative) synthesis—Visualisation of systematic map databases

using cartographic/conceptual mapping tools can be used to

understand the content and spread of studies of geographical/

conceptual space (e.g., Lamb et al., 2019; van Soest et al., 2019).

3.3 | How technology could redefine evidence
synthesis methods

Evidence synthesis methods at present separate the processes of

searching and screening to maximise first sensitivity and then

specificity, somewhat independently: they gather a large body of

potentially relevant evidence by searching for specific terms that

must be mentioned, and then narrow this corpus down by manually

assessing and extracting explicit and implicit meanings (Figure 3a).

This approach is necessary, but time consuming and inefficient. It

is necessary because, at present, sensitive searches are the only way

to ensure all available records are retrieved. It is inefficient because a

large volume of information must be read and screened for possible

relevant, with the vast majority being discarded (only 8% [n = 11] of

relevant, deduplicated search results were included after title and

abstract screening, and only 3% [n = 17] after full‐text screening in a

recent assessment of systematic reviews and maps (Haddaway &

Westgate, 2019).

Evidence synthesis technology could allow us to blend the pro-

cesses of searching, screening and coding into a single, organic

research discovery step by developing algorithms to predict docu-

ment relevance based on trialled and validated human assessments

of relevance, blended with other methods like citation/collaboration

network analyses (Figure 3b).

Developing a blended research discovery process in this way,

could help to develop curated bodies of evidence where the

information generated through the act of reviewing is shared across

researchers and project, instead of wasting effort across reviews and

having to repeat the work of screening vast numbers of potentially

relevant records. The use of automation in cataloguing this evidence

makes this more feasible by drastically reducing the efforts needed

to screen and classify studies. This iterative process of blended

searching and screening, could drastically increase comprehensive-

ness and efficiency, and reduce research waste.

In healthcare, technology is being harnessed to automate several

steps in the evidence synthesis process, collating, summarising and

appraising all randomised control trials (TrialStreamer; https://

trialstreamer.robotreviewer.net/).

3.4 | Facilitators to automated systematic mapping

We describe here what we believe to be some of the key areas that

require development to support further computer‐assistance and full

automation of systematic mapping.

1. Open Discovery—Large, open (i.e., free‐to‐access) bibliographic

datasets could be developed and curated with supplementary in-

formation related to their contents and relation to the rest of the

evidence base, for example, across broad conceptual topics such as

climate change. Such open datasets would facilitate digestibility by

automated processes and sharing of information across reviews that

would otherwise be unnecessarily replicated. Bulk downloading

should be a priority to reduce reviewer workloads and potential

errors. For example, Lens.org is a free‐to‐use bibliographic database

that aggregates across Microsoft Academic, CORE, CrossRef and

PubMed, cataloguing >220m academic records. It allows bulk

exporting of up to 50,000 records in one go.

2. Machine readable, accessible full texts—Text analysis techni-

ques (including machine learning) are mostly based on ab-

stracts, but developing comprehensive corpora of full texts or

key portions of full texts (the most likely areas of relevance

are objectives, methods, results) would, in some cases,

greatly facilitate more comprehensive and robust technology‐
assisted discovery of relevant evidence and analysis of article

content.
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3. Standardised classification frameworks and ontologies—Text

analysis methods are more powerful and have broader applic-

ability when combined with established ontologies or classifica-

tion frameworks for concepts and their synonyms (e.g., how

different interventions for treatment of lung pathologies are

interrelated and described).

4. Data extraction/coding—Automated extraction of meta‐data
from full texts is a key challenge but would speed up a time‐
consuming process and should focus on all aspects of the map's

key elements, including study location, population type, inter-

vention type and strength, comparator type, measured outcome,

context, study design and methods. Some of this information is

easily identified through text analysis (e.g., using dictionary

methods; Welbers et al., 2017), but some may be more challen-

ging to identify and extract, for example, the context, study design

and methods.

5. Scientometric mapping—The integration of scholarly networks

(who works with whom, who cites whom) and systematic mapping

to facilitate computer‐assisted “research weaving” (analysis of the

who as well as the what; Nakagawa et al., 2018) will allow for

more efficient and comprehensive discovery of relevant research.

6. Off‐the‐shelf classifiers—The establishment of public machine

learning libraries (classifiers) of broad concepts (e.g., “developing

nations”) for use in screening and coding that can be validated will

F IGURE 3 Current and future approaches to document discovery, eligibility screening and cataloguing. (a) The status quo of systematic

mapping. (b) A potential future of computer‐assisted systematic mapping
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facilitate rapid and comprehensive discovery and analysis of

relevant evidence (e.g., Marshall et al., 2018).

7. Integration and validation—The development of linkages

with crowd‐sourcing initiatives (e.g., Cochrane Crowd;

https://crowd.cochrane.org) would facilitate large‐scale validation

of automation technologies, by allowing methodologists to

compare the results of computer‐driven procedures with human‐
driven results.

8. More collaborative development—To harness the increasing

global attention focused on the use of machine learning and

other technologies in text analysis, evidence synthesis technol-

ogists (those developing tools and frameworks for automation

and computer‐assistance) should work collaboratively to

share data and methodological protocols and avoid wasted

effort. Organisations like the Evidence Synthesis Hackathon

(www.eshackathon.org) and the International Collaboration

for the Automation of Systematic Reviews (icasr.github.io) are

paving the way.

9. Development of different types of maps—If routine tasks can be

highly automated and large literatures are at least crudely

machine‐synthesisable, systematic maps may no longer be limited

to narrow research questions. This opens the door to very am-

bitious mapping efforts, at the scale of disciplines or major topic

areas (Callaghan et al., 2020).

4 | BARRIERS AND FACILITATORS TO
COMPUTER‐ASSISTED SYSTEMATIC
MAPPING

Such transformations to the way that we conduct evidence syntheses

are not without their challenges. We highlight some of the major

barriers below and suggest factors that may facilitate the transition

to more computer‐assisted systematic mapping.

4.1 | Technical issues

1. Lack of interoperability—At present, tools are rarely interoper-

able, although there is some standardisation of citation formats.

Automated systematic mapping requires that existing and future

technologies are interoperable (i.e., use compatible file formats

and data standards) to facilitate multiteam tool development and

collaboration (and avoid redundancy and development waste).

2. Paywalls—Many effective tools with long‐term support must

charge subscription or access fees to ensure their longevity.

These paywalls may be restrictive for reviewers working in

resource‐constrained contexts. Waivers for low‐ and middle‐
income country users and institutional subscriptions can help to

support wider use, however.

3. Lack of open discovery—Automation of systematic mapping re-

quires comprehensive access to large bodies of abstracts and full

texts. However, this big data is typically held by publishers and in

bibliographic databases that are hidden behind paywalls, or have

built‐in use restrictions that limit the volume and type of data that

can be accessed. Some novel platforms and databases, such as

Microsoft Academic (https://academic.microsoft.com/home),

Crossref (https://www.crossref.org/), and Lens.org (https://www.

lens.org/), do allow large‐scale access to bibliographic information

(so‐called Open Discovery). Open Access (freely accessible full

texts) is increasing but is not yet sufficient for use in automated

mapping. Even when researchers do have access to papers,

obtaining full texts at scale and in a machine‐readable format is

rarely possible.

4. Lack of standardised validation—Many tools require robust and

independent validation before they are regarded as being safe to

use. However, validation has not yet been standardised and is

typically self‐assessed by those producing evidence synthesis

technologies. In order to validate tools, there is a need for “gold

standard” datasets from example reviews, which have been scarce

to date (O'Connor et al., 2019).

5. Challenge in extracting implied meaning—Coding and extraction

of meta‐data from full texts require a detailed understanding of

nuance (i.e., interpretation of implied meaning rather than explicit

terminology) that is not yet fully feasible with automation tech-

nologies because of the wealth of information in research articles

and the nuance and implicit meanings hidden within narrative

style documents. For example, the presence of a phrase in an

article's methods text does not necessarily mean that method

was used; “We chose to use a blocked design because of the

challenges associated with randomised control trials”.

4.2 | Cultural barriers

1. Coding skill barrier—Currently, tool use sometimes requires

knowledge of coding or programming ability, for example, many of

the packages in the R environment (e.g., litsearchr, Grames

et al., 2019). Graphical user interfaces (GUIs) allow users to in-

teract with tools without requiring programming skills, but typi-

cally require substantial resources to create. Tools like Shiny

(https://www.shinyapps.io/) allow standardised GUIs to be

produced for R packages with relative ease, reducing necessary

resource investment while increasing usability.

2. Perception/trust barrier—In general, people do not yet trust

machines to replace humans in research tasks (O'Connor

et al., 2019): this may be potential reviewers, editors, peer re-

views or readers. However, it should be clear that computer‐
assisted systematic mapping can provide a range of tools to select

from and support human reviewers, including tools to conduct

laborious, routine tasks. This then provides more time for the

interpretative and human‐driven elements of synthesis.

3. “Handing over to computers” barrier—If humans are used for an

initial mapping and technology keeps processes up‐to‐date, what

standards should be in place to ensure consistency and accuracy

over time? At what point do we hand over to technology, and
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what procedures should be in place for verifying that they are still

functioning appropriately? These questions must be answered

before broad‐scale automated systematic mapping can be

rolled out.

5 | CONCLUSIONS

A wide variety of tools already exist to support computer‐driven sys-

tematic mapping. These tools sit on a spectrum from those intended to

facilitate human‐driven mapping, to those intended to replace humans

entirely. However, current technology is not yet sufficient to automate

all of the processes involved in rigorous evidence synthesis. Further-

more, rigorous validation is necessary before many of these tools can

be trusted for wide‐scale use by the broad research community.

We have highlighted some of the main opportunities that already

exist, where the key intervention points are in systematic mapping,

and what developments in technologies and frameworks are needed

to facilitate the increased use of evidence synthesis technology in

systematic mapping. We believe that systematic mapping lends itself

well to at least partial automation and call for the methodology and

tool development community to collaborate to reduce redundancy

and increase the efficiency of evidence synthesis technology devel-

opment and integration.
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