
Word Count: 4,096

TITLE PAGE

Epigenome-wide contributions to individual differences in childhood phenotypes: A GREML

approach

AUTHORS’ NAMES

Alexander Neumann, PhD1,2,3,4; Jean-Baptiste Pingault, PhD5,6; Janine F. Felix, MD, PhD7,8;

Vincent W. V. Jaddoe, MD, PhD7,9; Henning Tiemeier, MD, PhD1,10; Charlotte Cecil, 

PhD1,7,9,11*;  Esther Walton, PhD12*

* These authors contributed equally as senior author

AUTHORS’ AFFILIATIONS

1 Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical

Center Rotterdam, the Netherlands

2 Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, 

Canada

3 VIB Center for Molecular Neurology, Antwerp, Belgium

4 Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

5 Department of Clinical, Educational and Health Psychology, Division of Psychology and 

Language Sciences, University College London, London, UK

6 Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, 

Psychology and Neuroscience, King’s College London, London, UK

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.24.21259449doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.06.24.21259449
http://creativecommons.org/licenses/by/4.0/


7 The Generation R Study Group, Erasmus University Medical Center Rotterdam, the 

Netherlands

8 Department of Pediatrics, Erasmus University Medical Center Rotterdam, the 

Netherlands

9 Department of Epidemiology, Erasmus University Medical Center Rotterdam, the 

Netherlands

10 Department of Social and Behavioral Science, Harvard TH Chan School of Public 

Health, Boston, MA, USA

11 Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University 

Medical Center, Leiden, The Netherlands

12 Department of Psychology, University of Bath, UK

CORRESPONDING AUTHOR

Alexander Neumann

VIB Center for Molecular Neurology

Building V of the University of Antwerp (UA) - CDE, Parking 4,

Universiteitsplein 1

B-2610 Antwerpen

Email: alexander.neumann@uantwerpen.vib.be

Tel: +32 3 265 9830

2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.24.21259449doi: medRxiv preprint 

mailto:alexander.neumann@uantwerpen.vib.be
https://doi.org/10.1101/2021.06.24.21259449
http://creativecommons.org/licenses/by/4.0/


ABSTRACT

Background: DNA methylation is an epigenetic mechanism involved in human 

development. Numerous epigenome-wide association studies (EWAS) have investigated 

the associations of DNA methylation at single CpG sites with childhood outcomes. 

However, the overall contribution of DNA methylation across the genome (R2
Methylation) 

towards childhood phenotypes is unknown. An estimate of R2
Methylation would provide context

regarding the importance of DNA methylation explaining variance in health outcomes.

Methods: We estimated the variance explained by epigenome-wide cord blood 

methylation (R2
Methylation) for five childhood phenotypes: gestational age, birth weight, and 

body mass index (BMI), IQ and ADHD symptoms at school age. We adapted a genome-

based restricted maximum likelihood (GREML) approach with cross-validation (CV) to 

DNA methylation data and applied it in two population-based birth cohorts: ALSPAC 

(n=775) and Generation R (n=1382).

Results: Using information from >470,000 autosomal probes we estimated that DNA 

methylation at birth explains 45% (SDCV = 0.07) of gestational age variance and 16% (SDCV

= 0.05) of birth weight variance. The R2
Methylation estimates for BMI, IQ and ADHD symptoms 

at school age estimates were near 0% across almost all cross-validation iterations.

Conclusions: The results suggest that cord blood methylation explains a moderate to 

large degree of variance in gestational age and birth weight, in line with the success of 

previous EWAS in identifying numerous CpG sites associated with these phenotypes. In 

contrast, we could not obtain a reliable estimate for school-age BMI, IQ and ADHD 

symptoms. This may reflect a null bias due to insufficient sample size to detect variance 

explained in more weakly associated phenotypes, although the true R2
Methylation for these 

phenotypes is likely below that of gestational age and birth weight when using DNA 

methylation at birth.
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Background

DNA methylation (DNAm) is an epigenetic process, which involves the attachment of a 

methyl group to cytosine bases, typically in the context of a cytosine-phosphate-guanine 

dinucleotide (CpG) site. The methylation status of a CpG site can have an impact on gene 

expression and downstream phenotypes (1). In turn, methylation levels are determined by 

genetics, environment and stochastic processes (2,3). DNAm could therefore function as 

mediator of many genetic and environmental determinants of human development, 

functioning and pathology. A common research design to query the role of DNAm in these 

processes is an epigenome-wide association study (EWAS). As a large number of CpG 

sites are tested, to reliably identify relevant CpG sites, either large samples or big effect 

sizes are required, which for most traits or CpG sites are not available or unlikely (4).

However, analogous to lessons learned from genome-wide association studies, no 

matter the number of genome-wide significant CpGs identified in an EWAS, whether it be 0

or thousands, there is always a possibility that more CpGs are associated with a predictor 

or outcome, but did not reach significance due to lack of power. Since an EWAS estimates 

the associations of single CpG probes, no conclusions can be drawn about the overall 

contribution of genome-wide DNAm towards a phenotype. Such an overall estimate of 

variance explained by genome-wide DNAm (R2
Methylation) would be highly informative for 

several reasons: 1.  R2
Methylation would provide a picture of how relevant DNAm levels are to 

an outcome, either as causal determinant or predictor. 2.  R2
Methylation would provide an upper

limit of how much the combined effects of CpG sites identified by an EWAS (e.g. poly-

epigenetic score) can explain. While estimates of R2
Methylation would be clearly useful, the 

best approach to derive them is less clear. One option is to adapt the genomic restricted 

maximum likelihood (GREML) (5) approach used in genetics.
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In genetics, the analogous measure of R2
Methylation is the single nucleotide 

polymorphism heritability (SNP h2), i.e. the variance explained by all measured SNPs. A 

popular method to estimate SNP h2 is through a GREML analysis which consists of two 

steps: 1. The estimation of genetic relatedness values between participant pairs inferred 

from their similarity in measured SNP genotypes. 2. Estimating how well genetic 

relatedness predicts phenotypic similarity between participant pairs. While the GREML 

approach has been developed for genetic data, the analysis can be applied to any high 

dimensional data, such as genome-wide methylation data. First papers are now being 

published using GREML and alternative methods to estimate the variance explained by 

genome-wide DNAm. An early example is a study by Vazquez et al. (6), who used a 

Bayesian variant of a GREML model to predict breast cancer survival. The authors found 

that genome-wide DNAm is more predictive than the structural genome or traditional 

covariates alone, explaining 16.2% of variance. More recently, Zhang et al. (7) tested the 

validity of the GREML approach in methylation data using simulations and real data in a 

sample of adults. The authors estimated that concurrent blood DNAm levels explained 

6.5% of the variance in BMI but were not associated with height, when controlling for 

genetic effects. In contrast, using a Bayesian approach not relying on similarity matrices, 

Banos et al. (8) estimated the proportion of BMI variance explained by concurrent DNAm 

to be 75.7% in adulthood. The CpG-level effects estimated by this model explained up to 

30.8% in adult replications cohorts, but only 3.3%, 2.05% and 9.65% at birth, age 7 and 

age 15 respectively, with BMI and DNAm measured at the same time-points. The results 

suggest highly age specific effects depending on when both BMI and DNAm were 

measured.

As previous studies focused on DNAm and outcomes in adults, the variance of 

childhood outcomes explained by cord blood DNAm is unknown. In this study we aimed to 
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use cord blood DNAm to estimate the R2
Methylation of five child outcomes, previously 

addressed in EWAS studies: gestational age and birth weight, as well as BMI, IQ and 

ADHD symptoms at school age. These outcomes were chosen because they represent 

childhood outcomes in different areas (general health, cognition and psychopathology). In 

addition, all of these have been studied in multi-center population-based EWAS before, 

allowing for a comparison between R2
Methylation measures and EWAS findings. Two of the 

phenotypes most robustly associated with DNAm in EWAS studies are gestational age and

birth weight. For gestational age, 8899 CpGs have been found to be significantly 

associated in a previous EWAS at genome-wide significance (9). Prediction models based 

on these CpGs were able to explain 50-80% of the gestational age variance in an 

independent sample (10,11). In the case of birth weight, 914 sites were associated based 

on an EWAS meta-analysis in 8,825 children (12). Cord blood has also the potential to 

predict later development, e.g. nine CpG sites were associated with ADHD symptoms in 

school-age according to a recent EWAS in 2,477 children (13) and one CpG site predicted 

BMI in late childhood (n=4133) (14). In contrast, no genome-wide significant sites in cord 

blood were identified for BMI in early childhood (14) nor IQ in school-age (n=3798) (15). 

While the variance explained by specific sets of CpGs is known for some childhood 

outcomes, the genome-wide contribution has not been studied before. The aim of this 

study is to estimate the genome-wide contribution of cord blood DNA to various childhood 

outcomes.
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Methods

Participants

Participants for this study were drawn from two European population-based birth 

cohorts: The ALSPAC Study and the Generation R study. ALSPAC had recruited 15,454 

women with an expected delivery date between April 1991 and December 1992, who were

living in the former English county Avon, resulting in 15,589 foetuses. Of these 14,901 

were alive at 1 year of age. The development of their children was subsequently studied at

multiple assessment waves. Cord blood DNAm was assessed for 1,018 children. To avoid 

potential biases arising from shared family environment or population stratification, only 

one sibling per family was included in the analyses sample, as well as only children whose

parents reported white ethnicity (analysis n=775). Full cohort descriptions have been 

published previously (16,17). Please note that the study website contains details of all the 

data that is available through a fully searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. Consent for biological samples has been collected in accordance with the 

Human Tissue Act (2004). Informed consent for the use of data collected via 

questionnaires and clinics was obtained from participants following the recommendations 

of the ALSPAC Ethics and Law Committee at the time. 

Generation R invited all pregnant women living in the city of Rotterdam, the 

Netherlands, with an expected delivery date between April 2002 and January 2006 to 

participate in the study, of which 9,778 were enrolled. Cord blood DNA methylation was 

assessed in a subgroup of 1396 children with parents of reported European national origin.
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After exclusion of siblings (one of each pair excluded), 1382 participants remained in the 

analysis. Full study descriptions have been published previously (18), see also 

https://generationr.nl/researchers/ for more information. All parents gave informed consent 

for their children's participation. The Generation R Study is conducted in accordance with 

the Declaration of Helsinki. Study protocols were approved by the Ethics Committee of 

Erasmus MC.

Measures

DNA Methylation

DNAm was measured in cord blood at birth. Bisulfite conversion was performed with the 

EZ-96 DNAm kit (shallow) (Zymo Research Corporation, Irvine, USA). DNAm levels were 

then measured with the Illumina Infinium HumanMethylation450 BeadChip array (Illumina 

Inc., San Diego, USA). Preprocessing in ALSPAC was performed with the meffil package 

(19). Quality control check included mismatched genotypes, mismatched sex, incorrect 

relatedness, low concordance with other time points, extreme dye bias, and poor probe 

detection. In Generation R, pre-processing was performed with the CPACOR workflow 

(20). Quality control exclusion criteria included failed bisulfite conversion, hybridization or 

extension, sex mismatches and call rate <= 95%. Both cohorts were normalized using a 

combined dataset, using meffil functional normalization with ten control probe principal 

components and slide included as a random effect, see Mulder et al. (21) for further 

details. To lessen the influence of methylation outliers while retaining a consistent sample 

size, extreme values were winsorized. Per CpG site, DNAm levels exceeding three times 

the interquartile range above the third or below the first quartile (3*IQR criterion) were 

replaced by the maximum or minimum value, respectively, of the sample below the 

exclusion criterion. Only autosomal probes were considered in this study for consistent 
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interpretation of effects between sexes. This resulted in 470,870 and 473,864 CpG probes 

in ALSPAC and Generation R, respectively, which were used for the computation of the 

methylation similarity matrix.

Outcomes and covariates

Birth outcomes

In ALSPAC, birthweight was recorded by healthcare professionals at the time of 

birth and extracted from birth records (12). Gestational age at delivery was also extracted 

from birth records. Obstetric practice and antenatal care at the time means that for most 

participants gestational age will have been estimated based on the last menstrual period, 

supplemented by ultrasound scans and paediatric/obstetric assessment of the newborn at 

birth.

In GenR, midwife and hospital registries were used to obtain information on birth 

weight. Gestational age was based on ultrasound examinations for mothers who enrolled 

in early or mid pregnancy, but based on last menstrual period for late pregnancy (22).

Childhood outcomes

In ALSPAC, measurements of height and weight, with the participant in light clothing

and without shoes, were obtained at clinic visits when the children were seven years of 

age to calculate BMI. Non-verbal IQ at age 8 years was measured by the Wechsler 

Intelligence Scale for Children WISC-III UK (23). ADHD symptomatology was assessed via

maternal ratings at age 7, with the Development and Well-Being Assessment interview 

(DAWBA) (24).

In Generation R, when children were 6.0 (SD=0.15) years old, children’s height and 

weight were measured at the research center without shoes or heavy clothing and used for
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the calculation of BMI (kg/m2). Non-verbal IQ was assessed at the same age using the 

Snijder-Oomen nonverbal intelligence test (25). ADHD symptoms were rated by a primary 

caregiver (90% mothers) using the Conners’ Parent Rating Scale-Revised (CPRS-R) 

questionnaire at age 8.1 (SD=0.15) (26).

Covariates

In ALSPAC, mothers were asked about their smoking during pregnancy, and these 

data were used to generate a binary variable of any smoking during pregnancy. Maternal 

education was collapsed into whether they had achieved a university degree or not. Across

cohorts, white cell proportions were estimated with the Houseman method using the cord 

blood specific Bakulski reference (27). In Generation R, maternal age was obtained at 

enrollment. Maternal smoking was defined as either “Never smoked”, “Quit smoking in 

early pregnancy”, “Continued smoking during pregnancy”. Maternal education during 

pregnancy was categorized as “no education”, “primary education”, “secondary education 

first phase”, “secondary education second phase”, higher education first phase”, higher 

education second phase”. See Table 1 for descriptive statistics of all variables. 
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Table 1: Participant Characteristics

ALSPAC Generation R

Characteristic nobserved Mean (SD)/
Proportion

nobserved Mean (SD)/
Proportion

Girls 775 51.2% 1382 49.3%

Maternal Age in years 775 29.76 (4.4) 1382 31.7 (4.2)

Maternal Education

 Primary Education
79.1%

1362 1.9%

 Secondary Education 1362 33.0%

 Higher Education 775 20.9% 1362 65.1%

Smoking

 Continued smoking during pregnancy 767 12.5% 1378 13.4%

 Quit smoking during pregnancy 1378 9.1%

Cell type composition

 CD8 T cells 775 8.9% (4.5%) 1382 13.1% (5.2%)

 Natural killer cells 775 0.8% (1.8%) 1382 3.2% (2.9%)

 CD4 T cells 775 17.8% (6.2%) 1382 16.1% (5.3%)

 B cells 775 17.0% (4.4%) 1382 10.3% (2.8%)

 Granulocytes 775 35.1% (9.7%) 1382 40.8% (10.7%)

 Monocytes 775 1.3% (1.6%) 1382 9.2% (2.0%)

Nucleated red blood cells 775 19.9% (9.2%) 1382 11.8% (7.1%)

Outcomes

 Gestational Age in weeks 775 39.6 (1.5) 1382 40.1 (1.5)

 Birth Weight in g 766 3490 (476) 1381 3545 (510)

 BMI in kg/m2 772 16.19 (2.0) 1183 15.9 (1.4)

 ADHD 773 0.52 (0.90) 1060 7.5 (6.6)

 IQ 747 102.6 (17.0) 1094 106.2 (14.3)

12
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Statistical Analysis

We adapted the GREML approach to estimate R2
Methylation. The GREML procedure 

consists of two steps: 1. Compute a genetic relatedness matrix (i.e. how genetically similar

two individuals are based on SNP data), 2. Regress the outcome similarity between 

participants on the genetic relatedness (i.e. to establish whether greater genetic similarity 

between individuals relates to greater phenotypic similarity).

We refer to a methylation similarity matrix (M) as opposed to a genetic relatedness 

matrix (G). However, both M and G can be calculated with the same algorithm. First the 

methylation in beta values were z-score standardized. The resulting matrix (X) of 

methylation z-scores (columns: CpG sites, rows: participants) was then multiplied with the 

transpose resulting in XX’. XX’ was then standardized by dividing the matrix with the mean 

of the diagonal, resulting in an average value of 1 for the diagonal of M. We used the R 

package BGData 2.1.0 (28) to compute the similarity matrix.

The next step is to regress the outcomes on M and covariates using a mixed effects

model fitted with REML. Fixed effects covariates included several variables known to be 

associated with DNAm levels: sex, maternal age, maternal smoking, maternal education, 

cell type proportions, gestational age, birth weight (unless a variable was the outcome). M 

and batch were defined as random effects. 

The average of multiple imputations was used to avoid potential bias due to missing

data and to make analyses more comparable between outcomes by including the same 

set of participants. We used the covariate and outcome variables to predict missing 

variables in 100 imputations with 30 iterations using MICE (29) in R. Further analyses 

were then performed using the average value across the imputations, or the most often 

occurring category.
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According to power analyses with genetic data, to accurately estimate the variance 

explained using GREML methods, large sample sizes are necessary. Especially with less 

heritable traits sample sizes above 5,000 participants are recommended (30). Currently, 

studies that have measured DNAm and child outcomes in more than 1000 participants are 

rare. While the power requirements for DNAm data are unclear, there is nevertheless a 

high risk of sampling variance, with results randomly changing heavily depending on a 

particular sample composition. We attempted to reduce these risks by estimating R2
Methylation 

in two independent cohorts, as well as by performing cross-validation within cohorts.

 Cross-validation (CV) was applied in the following way: 1. M was estimated across 

all participants. 2. Eighty percent of the sample was randomly chosen as training sample 

and the GREML model was fitted in this training sample. 3. Based on the results of the 

training sample the best linear unbiased predictions (BLUP) were extracted for the test 

sample. The BLUP estimates reflect the extent to which participants are predicted to have 

above or below average outcome values, based on their similarity in genome-wide 

methylation to other participants. 4. The outcome is predicted based on M and the 

covariates 5. The predictions are correlated with the actual observed outcome and 

squared to obtain the variance explained by the model. 6. The variance explained by a 

covariate only model is subtracted to obtain the variance explained by DNAm beyond the 

other tested variables (ΔR2
Methylation) 7. Step 1-6 are repeated to have results for 1000 

random training-testing splits (Monte-Carlo cross-validation) 8. The mean estimate of 

ΔR2
Methylation, with standard deviation across the cross-validation splits are extracted. 9. 

Results of both cohorts are averaged, weighted by the inverse of the cross-validation 

variance.

These analyses were run with the qgg package in R, which has implemented 

GREML models with cross-validation (31). We wrote additional functions, which can be 
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found in the omicsR2 package: https://github.com/aneumann-science/omicsR2. The 

provided functions simplify the process of comparing the predictive performance of DNA 

methylation compared to a covariates-only baseline model.
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Results

DNAm explained 0 to 50% of the tested outcomes’ variances. See Table 2 for full results 

and Figure 1-4 for a graphical representation of the estimate distribution across cross-

validations. 

Gestational age had the highest R2 with 50.2% of the variance in gestational 

variance explained by DNAm in cord blood independent of sex and batch. In a fully 

adjusted model, 44.3% (SDCV = 0.065) of variance was explained by DNAm. Notably, the 

ΔR2
Methylation was twice as large in GenR (ΔR2

Methylation  = 59.2%, SDCV = 0.094) compared to 

ALSPAC (ΔR2
Methylation  = 30.9%, SDCV = 0.089). Across both cohorts 95% of cross-validation 

results ranged from 16.3% to 70.4%, with 62.4% of values overlapping between the 

Generation R minimum and ALSPAC maximum. 

For birth weight, the variance explained was estimated at 15.9% (SDCV = 0.051) with

basic adjustment and 12.2% (SDCV = 0.038) with full covariate adjustment. Again, the 

estimate was much larger in Generation R (ΔR2
Methylation  = 20.7%, SDCV = 0.065) compared 

to ALSPAC (ΔR2
Methylation  = 7.9%, SDCV = 0.047). In the fully adjusted model, 95% of 

estimates were between 0.8% and 31.4% and most cross-validation estimates overlapped 

between these two cohorts (80.5%).

DNAm in cord blood did not explain variance in any of the childhood outcomes at 

school age (BMI, ADHD and IQ). This result was consistent in both cohorts, in which all 

cross-validation estimates were very close to 0, with the vast majority (97.5%) of estimates

being below 2% in both basic and fully adjusted model. Correspondingly, the cross-

validation standard deviations were below 0.1%, suggesting that no matter which 
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participants were randomly assigned to training or validation, the estimated effect was 

always near 0.

Table 2: Variance explained by genome-wide DNA methylation

ALSPAC Generation R Pooled

Outcome Covariates  ΔR2
Methylation SDCV  ΔR2

Methylation SDCV  ΔR2
Methylation SDCV

Gestational Age Basic
0.369

[0.169;0.556]
0.103 0.649

[0.367;0.795]
0.109 0.502

[0.184;0.783]
0.075

Full
0.309

[0.137;0.475]
0.089 0.592

[0.352;0.719]
0.094 0.443

[0.163;0.704]
0.065

Birth Weight Basic
0.109 

[-0.016;0.241]
0.065 0.241

[0.073;0.398]
0.082 0.159

[0.004;0.375]
0.051

Full
0.079

[0.000;0.179]
0.047 0.207

[0.077;0.334]
0.065 0.122

[0.008;0.314]
0.038

BMI Basic
-0.005

[-0.052;0.022]
0.019 0.002

[-0.026;0.022]
0.011 0.000

[-0.040;0.022]
0.009

Full
-0.005

[-0.037;0.008]
0.012 -0.001

[-0.010;0.002]
0.004 -0.001

[-0.026;0.004]
0.004

ADHD Basic
0.000

[-0.025;0.026]
0.012 0.001

[-0.033;0.030]
0.014 0.000

[-0.030;0.029]
0.009

Full
-0.001

[-0.024;0.012]
0.008 -0.001

[-0.020;0.010]
0.008 -0.001

[-0.022;0.010]
0.006

IQ Basic
-0.001

[-0.037;0.020]
0.013 0.000

[-0.004;0.008]
0.005 0.000

[-0.024;0.018]
0.004

Full
-0.001

[-0.014;0.002]
0.004 -0.001

[-0.006;0.002]
0.002 -0.001

[-0.010;0.002]
0.002

Basic sex and batch
Full sex, maternal age, maternal smoking, maternal education, cell type proportions, batch, gestational age*,
birth weight* (* not when outcome is gestational age or birth weight)
ΔR2

Methylation Variance explained by genome-wide DNA methylation minus variance explained by covariates
[95% of values between lower;upper bound]

SDCV  Standard-deviation of cross-validation estimates
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Discussion

This study is the first to report the extent to which childhood outcomes are 

explained by cord blood genome-wide DNAm. We observed that methylation patterns 

explained substantial variance for gestational age, moderate variance for birth weight and 

no variance explained for prospective associations with BMI, IQ or ADHD symptoms at 

school-age. 

A strength of the study was the use of two cohorts, which are among the largest 

samples of cord blood methylation currently available. Both cohorts are comparable in 

many ways, for instance they represent populations of European ancestries living in 

western European countries and similar outcome assessment ages. In addition, cord blood

DNAm assessment was very similar, as both cohorts used the same methylation array and

were normalized jointly.

The general trend of results regarding ranking from highest to lowest explained 

outcomes agreed between the cohorts. The highest estimates across both cohorts were 

found for gestational age, which is consistent with previous studies. Bohlin et al. tested a 

prediction model based on 58-132 CpG sites in cord blood using similar covariates (sex, 

maternal age, maternal smoking, cell composition) as in our study (10). The authors were 

able to explain 50-65% of variance in a test sample of 685 participants from the MoBa 

cohort. Since we modeled a much higher number of probes, we would expect at least 

equal prediction performance in our study. The previous findings are consistent with the 

Generation R estimate of 59% variance explained and suggests that adding more probes 

from the Illumina 450k array would not increase performance of the prediction model. 

However, the previous results are less consistent with the 31% estimate in 

ALSPAC, indicating either a higher variability in lower powered samples or a potential bias 
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towards null effects in lower sample sizes, as we will discuss later. Another contributor to 

study heterogeneity may be the different methods used to estimate gestational age. Most 

gestational age estimates in ALSPAC were based on the last reported menstrual period, 

whereas in Generation R most estimates were based on ultrasound scans. The latter 

method is expected to have less measurement error and thus higher variance explained 

assuming constant methylation effects.

Genome-wide DNAm explained also explained variance in birth weight, albeit less 

so than for gestational age. Interestingly, the estimate was again higher in GenR than 

ALSPAC. In contrast to gestational age, there was no apparent noteworthy difference in 

birth weight assessment, yet the estimates differed even more between cohorts than for 

gestational age, so other potential causes for the observed study differences must be 

discussed. One cause could be higher sampling variance in lower sample sizes. The 

different estimates may hint that the ΔR2
Methylation values at sample sizes of around 1000 

samples or lower may be highly variable, with lower sample sizes more likely to over or 

underestimate the true variance explained.

School-age outcomes showed a ΔR2
Methylation near zero for BMI, IQ and ADHD 

symptoms at age 6 in both cohorts. In contrast to gestational-age and birth weight, these 

analyses present prospective associations over at least 6 years and have resulted in fewer

genome-wide significant findings in previous EWAS (13–15). This temporal component 

together with perhaps lower contribution of DNAm may weaken associations and result in 

lower variance explained estimates. While these factors lead to the expectation of a lower 

variance explained estimate in prospective estimates as opposed to cross-sectional 

analyses, estimates of 0% appear nevertheless unlikely. For instance, for ADHD, 9 CpG 

sites have been identified in a meta-analysis, in which most participants were drawn from 

ASLPAC and GenR (13). Both cohorts showed a high lambda in the EWAS, not accounted
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for by confounding, suggestive of a highly poly-epigenetic signal. Therefore, 0% variance 

explained estimates in a subset of the data is implausible. Besides a true lower variance 

explained for the school-age outcomes, a potential bias towards 0 values in underpowered

samples may be at play as well.

Assuming a high uncertainty of ΔR2
Methylation, we would expect a large standard 

deviation in the cross-validation distribution, as some iterations will randomly show a 

variance explained that is much too high or too low. However, in our study all analyses with

outcomes showing a 0% ΔR2
Methylation, had an estimate near 0% in almost all cross-

validation iterations. This resulted in very small cross-validation standard deviations, much 

smaller compared to the gestational age or birth weight analysis. This is incompatible with 

a high estimate uncertainty due to low sample size. Hence, we suspect that a bias towards

0 estimates is at play if outcomes, which are not very strongly associated with DNAm, are 

analyzed in small samples. Such a behavior has been previously noted by GCTA author 

Jian Yang in the context of GREML when applied to genetic data 

(http://gcta.freeforums.net/thread/204/run-greml-analysis-small-sample). We therefore 

speculate that the true ΔR2
Methylation values for the school-age outcomes are likely to be 

higher than 0% and below estimates found for gestational age and birth weight, which 

themselves did not display a bias towards 0% estimates. Interestingly, early GCTA studies 

indicated no SNP heritability for child psychiatric phenotypes (32), but later larger multi-

center GCTA (33), and LD-score regression studies (34) have since then repeatedly 

demonstrated a SNP heritable component. Contrary to genetic studies, an additional 

source of variability in DNA methylation is the assessment time point. Estimates for the 

school-age outcomes are likely different for concurrent DNA methylation measures than 

cord blood, but sample size was not sufficient for these analyses in the current study.
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A limitation of the current analyses is the coverage of the 450k methylation array. 

The CpG sites measured by the array represent less than 2% of all CpG sites in the 

genome. While neighboring CpG sites tend to be correlated, CpG sites may also represent

unmeasured CpG sites to a degree, but the correlations are not as stable or predictable as

correlations between single nucleotide polymorphisms in linkage disequilibrium. Thus, the 

variance explained by array DNAm is unlikely the maximum which can be explained by all 

DNAm variation in humans. That said, the estimates do in theory represent the maximum 

that can be explained by the effects found in an EWAS using the same array, as it 

represents the joint effect of all measured CpG sites.

This study adjusted for a number of potential confounders, such as maternal 

smoking and education, as well as cell type proportions. Nevertheless, the observational 

nature of the study design makes it unclear whether the strong association between 

DNAm and gestational age represent direct effects of DNAm on gestational age, the 

effects of gestational age on DNAm, or the effect of unmeasured confounding. 

Furthermore, we only measured DNAm in a single tissue (cord blood). As DNAm can be 

tissue-specific, other tissue may show higher associations with studied outcomes, e.g. 

adipose tissue and body weight. 

Despite the current limitations due to sample size, the results of the gestational age 

analysis demonstrate that GREML methods are applicable to studies of  DNA methylation. 

We expect that increases in sample size will make this analytical approach more reliable 

for outcomes less strongly associated with DNAm. An increase in sample size would also 

allow for more complex questions to be answered. For example, as the method we utilized

enables one to fit multiple similarity matrices, it is in principle possible to estimate 

ΔR2
Methylation adjusted for genetic effects or to estimate the genome-wide interaction between

genetic and epigenetic effects. Answers to these questions would not only be helpful in 
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further understanding of how DNAm relates to development and health, but would also 

inform the design of future EWAS. For instance, EWAS might need to model interactions 

between genetics and methylation levels, if interactions on a genome-wide level are 

substantial (35).

In summary, we showed that genome-wide DNAm in cord blood explains almost 

half of the variance in gestational age. DNAm was also associated to a lesser degree with 

birth weight. DNAm at birth, however, did not explain variance in child BMI, IQ and ADHD 

symptoms at school-age. The GREML approach holds promise for elucidating the 

relationship between genome-wide DNAm, child development and health outcomes, but 

increases in sample sizes are required to accurately estimate outcomes that are less 

strongly associated with DNAm and to explore more complex models, which can integrate 

different highly dimensional data.
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Figures
Figure 1: Variance explained in birth outcomes by cord blood DNA methylation 
(basic adjustment). Cross-validation distribution of ΔR2

Methylation,  the variance explained by 
genome-wide DNA methylation minus variance explained by covariates (sex and batch) in 
ALSPAC (red) and Generation R (blue). Vertical lines indicate mean ΔR2

Methylation in ALSPAC
(red), Generation R (blue) and a pooled estimate (black).
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Figure 2: Variance explained in birth outcomes by cord blood DNA methylation (full 
adjustment). Cross-validation distribution of ΔR2

Methylation,  the variance explained by 
genome-wide DNA methylation minus variance explained by covariates (sex, maternal 
age, maternal smoking, maternal education, cell type proportions, batch, gestational age*, 
birth weight* (* not when outcome is gestational age or birth weight)) in ALSPAC (red) and 
Generation R (blue). Vertical lines indicate mean ΔR2

Methylation in ALSPAC (red), Generation 
R (blue) and a pooled estimate (black).
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Figure 3: Variance explained in childhood outcomes by cord blood DNA methylation
(basic adjustment). Cross-validation distribution of ΔR2

Methylation,  the variance explained by 
genome-wide DNA methylation minus variance explained by covariates (sex and batch) in 
ALSPAC (red) and Generation R (blue). Vertical lines indicate mean ΔR2

Methylation in ALSPAC
(red), Generation R (blue) and a pooled estimate (black).
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Figure 4: Variance explained in childhood outcomes by cord blood DNA methylation
(full adjustment). Cross-validation distribution of ΔR2

Methylation,  the variance explained by 
genome-wide DNA methylation minus variance explained by covariates (sex, maternal 
age, maternal smoking, maternal education, cell type proportions, batch, gestational age, 
birth weight) in ALSPAC (red) and Generation R (blue). Vertical lines indicate mean 
ΔR2

Methylation in ALSPAC (red), Generation R (blue) and a pooled estimate (black).
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List of abbreviations
Epigenome-wide association studies (EWAS)

Body mass index (BMI)

Cross-validation (CV)

DNA methylation (DNAm)

Methylation similarity matrix (M)

Genetic relatedness matrix (G)
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