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Abstract: We are facing a global loss of biodiversity due to climate change. This will lead to 21 
unpredictable changes in ecosystems, affecting the goods and services they provide and 22 
facilitating the introduction of non-indigenous marine species. This represents one of the major 23 
threats to marine biodiversity and therefore, there is a strong need to assess, map and monitor 24 
these alien species. The appearance of non-indigenous species is especially dangerous in fragile 25 
ecosystems, and it is of great importance to better understand the invasion mechanisms of these 26 
invasive species. This is the case for invasive alga Asparagopsis armata, present in the Azores 27 
Archipelago. In this study, we propose a methodology to define the realized ecological niche of 28 
this invasive alga, alongside the native Asparagopsis taxiformis, to understand better its 29 
distribution and potential impact on native communities and ecosystem services. These 30 
objectives comply with the EU Biodiversity strategy for 2020 goals and the need to map and 31 
assess ecosystems and their services. The lack of reliable high-resolution data makes this a 32 
challenging task. Within this scope, we propose a combination of Remote Sensing, Unmanned 33 
Aerial Vehicle based imagery together with in-situ field data to build ecological niche modelling 34 
approaches as a cost-effective methodology to identify and characterize vulnerable marine 35 
ecosystems. Our results show that this combination can help achieve monitoring, leading to a 36 
better understanding of ecological niches and the consequences of non-indigenous species 37 
invasion in fragile ecosystems, like small islands, when faced with limited data. 38 
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Sensing; Unmanned Aerial Vehicle 40 
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1. INTRODUCTION 45 

The global decline in marine biodiversity coupled with the rapidly changing climate leads 46 
to shifts in marine organisms’ distributions (Poloczanska et al., 2013; Sunday et al., 2012). This 47 
may lead to unpredictable changes in the provision of associated ecosystem services, with 48 
potentially severe impacts on society and the economy, such as reducing fisheries or loss of 49 
recreational opportunities (Beaumont et al. 2008) and the apparition of non-indigenous-marine-50 
species (NIMS). Macroalgae are amongst the most invasive NIMS (Schaffelke et al. 2006). They 51 
are considered one of the greatest threats to native marine biodiversity and the ocean’s resource 52 
value (Marine and Diuersity, 1994; M. Vitousek et al., 1997).  53 

The NE Atlantic is a hot spot of ocean warming, with temperature increases measured 54 
between 0.3º and 0.8º C per decade (MCCIP, 2010). The Azores Archipelago, located in this region, 55 
composes nine volcanic islands along with many islets, positioned in three main groups on the 56 
mid-Atlantic ridge (França et al. 2003). The geologically recent formation of the islands, coupled 57 
with its isolated location make the marine and coastal environment of the Azorean Archipelago 58 
of high interest, particularly given its biodiversity-rich coastal ecosystems (Santos et al., 1995). 59 
However, small islands are known to be vulnerable to climate change (Veron et al. 2019), and the 60 
threat of alien species invasion for small islands is well documented (Tompkins and Webb, 2017; 61 
IPCC, 1995).  62 

This is the case of the invasive Asparagopsis armata. A. armata was introduced to the Azores 63 
in the early 20th century in the Atlantic and Mediterranean. It is widely distributed in the eastern 64 
North Atlantic Ocean, including Canaries and Macaronesia (Dijoux et al. 2014), where it is also 65 
considered invasive (Martins et al. 2019). It shows a tropical-to warm-temperate distribution, 66 
presenting biomass peaks in spring and summer (Andreakis et al. 2004). 67 

NIMS have been linked to the reduction of ES provision, which is often termed Ecosystem 68 
Disservices (EDS), functions or properties of ecosystems that cause effects that are perceived as 69 
harmful, unpleasant or unwanted (Von Döhren and Haase 2015). The relation between the NIM 70 
A. armata and its related ES and EDS has only been recently studied, but it is known to affect 71 
natural ecosystem functioning and to provide EDS (Katsanevakis et al.2014). One disservice could 72 
be the potential impact on other native seaweeds, such Asparagopsis taxiformis. A. taxiformis is 73 
considered a cosmopolitan species in warm-temperate to tropical waters (Ní Chualáin et al. 2004). 74 
However, distinct geographical lineages indicate regional differentiation within this species (Ní 75 
Chualáin et al., 2004; Andreakis et al., 2004). 76 

There is a strong need to monitor native and invasive seaweed distribution, but this can be 77 
time-consuming, resource intensive, and often limited to small areas (Werdell and Roesler 2003). 78 
Moreover, in NE Atlantic, we can find a lack of regional-scale distribution data resulting in a 79 
more challenging detection of ecological impacts over local communities (Smale et al., 2013; 80 
Rodrigues, 2015). Knowledge of the socio-economic effects of invasive seaweed is poor, and 81 
economic impacts derived from seaweed invasion are mainly based on mitigation costs, rather 82 
than long term socio-economic impacts (Schaffelke and Hewitt 2007). 83 

Methods such as remote sensing (RS) could be the answer to achieve cost-effective 84 
methodologies to map and monitor seaweed distribution at regional and global scales (Green et 85 
al., 1996; Topouzelis et al., 2018; Wabnitz et al., 2008; Traganos and Reinartz, 2017). RS has been 86 
used to map seaweeds (Dogan et al., 2013; Casal et al., 2013; Hoang et al., 2016), although studying 87 
heterogeneous coasts constitutes a much more difficult task because of the lack of suitable satellite 88 
imagery with adequate spectral and spatial resolutions (Brodie et al. 2018). Previous studies have 89 
attempted to map the coastline of São Miguel with low-cost Unmanned Aerial Vehicle (UAV) 90 
imagery, to obtain red-green-blue (RGB or “real colour”) images with very high resolution 91 
(Kellaris et al. 2019).  92 

An alternative approach to direct monitoring is the characterization of species’ (realized) 93 
niches, which can help assess invasion capabilities of NIMS. Given a set of environmental 94 
variables known to directly influence a certain species physiology, the environmental 95 
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fundamental niche can be understood as the physiological responses of that species to those 96 
environmental variables, where its growth rate is identified as positive. 97 

Assuming all environmental drivers are identified, we can predict geographic areas where 98 
the species of interest could establish and thrive, (assuming no significant competitive 99 
interactions (Clark et al. 2007), and no dispersal limitations (Barve et al. 2011)). Assessing a 100 
species’ fundamental niche based on field observations is virtually impossible, but the realized 101 
niche can be retrieved with in-situ data. Realized niche can be described as the fundamental niche 102 
after a series of constraints are applied. These constraints can be identified as (i) the accessibility 103 
to geographic locations and (ii) the interactions between species (biotic interactions) in that area. 104 
Furthermore, the geographic scope of the study area can influence our interpretations if the full 105 
environmental range of the species is not seen in the area of study. However, the realized niche 106 
of a species, assessed for a certain geographic area with different accessibility characteristics and 107 
biotic interactions, can be used to determine the invasiveness capabilities for any NIMS in a given 108 
geographic area. 109 

Our goal is to infer the realized ecological niche of the invasive red alga Asparagopsis armata, 110 
and its native co-generic species Asparagopsis taxiformis around São Miguel Island using presence 111 
records from all over Azores Archipelago. This will allow a better understanding of this species’ 112 
potential geographic spread and its socio-economic consequences. 113 

For this purpose, we use a combination of RS, UAV imagery and in-situ field data together 114 
with ecological niche modelling approaches to monitor and forecast the potential distribution of 115 
these important seaweeds. This will help to take the first step towards a deeper comprehension 116 
of the ES loss and ecosystem disservices related to NIMS establishment within local communities.  117 

2. METHODS 118 

2.1. STUDY AREA 119 

The study area (Fig. 1) comprise Pico, Flores, Terceira and São Miguel islands within the 120 
Azores Archipelago. They are located in west (Flores) and the central Azores (Terceira and Pico), 121 
which are affected by the Gulf stream. São Miguel island belongs to the eastern region, where the 122 
Azores current has the most substantial influence over the whole archipelago. The Azores 123 
Archipelago is a confluence zone with notable influence over the oceanographic and biological 124 
characterization of the North Atlantic region (Caldeira and Reis 2017). It is considered a highly 125 
productive marine region with highly seasonal variations of nutrient cycles (Amorim et al. 2017). 126 
In concordance with global climate change patterns (Karl et al. 2000), temperature and 127 
precipitation levels in the Azores have been measurably on the rise (Santos et al. 2004).  128 

 129 
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 130 

Fig. 1 Azores Archipelago. 131 

2.2. ENVIRONMENTAL VARIABLES 132 

Two sets of environmental variables were produced for this study, along with two different 133 
modelling approaches. An initial set of 6 environmental variables characterizing the abiotic 134 
conditions of São Miguel island were considered. These variables were derived from a DEM, 135 
taken from the EMODnet Bathymetry portal. We generated: Aspect, Depth, Fetch, Roughness, 136 
Slope and Topographic Position Index (TPI), restricted to a 3 km buffer from the shoreline. 137 
Aspect, roughness, slope and TPI were processed using Aspect, Roughness, Slope and Topographic 138 
Position Index Raster tools in QGIS 3.4.1 Madeira, at an output spatial resolution of 100m x 100m. 139 
Depth values were obtained directly from the DEM at a resolution of 100m x 100m. The Fetch (a 140 
measure of coastal exposure derived from spatial proximity to shorelines) was calculated using 141 
R studio 1.1.463B (Yesson et al. 2015). 142 

The second set of environmental variables used in a presence/absence approach contained 143 
photoperiod, depth and temperature values. Depth and temperature values were obtained via in 144 
situ measures recorded with a MARES Mission Puck 3 dive computer by scuba divers in 2016, 145 
2017 and 2018 in Pico, Terceira, Flores and São Miguel islands. Photoperiod values corresponding 146 
to these survey’s day were calculated using the daylength function in the geosphere R package 147 
(Forsythe et al. 1995). Table 2 shows both sets of variables. 148 

We undertook a Variance Inflation Factor (VIF) analysis to test for spatial correlation of the 149 
environmental variables, to set aside those predictors spatially correlated. We ran the analysis 150 
using the VIF function implemented in the R sdm package (Naimi et al. 2014). This analysis 151 
showed that roughness and TPI were highly correlated (with VIF values greater than 10), so TPI 152 
was removed from subsequent analysis. 153 

 154 
 155 
 156 
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Table 2 Environmental variables 

Variables Source 
Spatial 

resolution 
Model 

Aspect (º) 

Processed from EMODnet Digital 

Elevation Model with Aspect Raster 

Tool in QGIS 3.4.1 Madeira 

100m x 100m Presence/Background 

Depth_1 (m) 

Extracted directly from Digital 

Elevation Model available in 

EMODnet Bathymetry portal 

Digital Elevation Model 

(http://emodnet-bathymetry.edu) 

100m x 100m Presence/Background 

Fetch (m) 
Calculated using R studio 1.1.463 as 

implemented in (Yesson et al. 2015) 
100m x 100m Presence/Background 

Roughness 

(m) 

Processed from EMODnet Digital 

Elevation Model with Roughness 

Raster Tool in QGIS 3.4.1 Madeira 

100m x 100m Presence/Background 

Slope (º) 

Processed from EMODnet Digital 

Elevation Model with Slope Raster 

Tool in QGIS 3.4.1 Madeira 

100m x 100m Presence/Background 

TPI (m) 

Processed from EMODnet Digital 

Elevation Model with Topographic 

Position Index Raster Tool in QGIS 

3.4.1 Madeira 

100m x 100m Presence/Background 

Depth_2 (m) In situ measures N/A Presence/Absence 

Temperature 

(ºC) 

 

In situ measures N/A Presence/Absence 

Photoperiod 

(hours) 

Calculated using daylength function 

in geosphere R package (Forsythe et 

al. 1995) 
N/A Presence/Absence 

2.3. SPECIES OCCURRENCE DATA 157 

Distribution models are based on statistical approaches that study the linkage of occurrence 158 
data and environmental variables (Marcelino and Verbruggen 2015). 159 

Occurrence data can be considered as georeferenced locations where the species have been 160 
found, while absence data are georeferenced points where the species has been surveyed and not 161 
found. Absence data are rarely available (Loiselle et al. 2003) but pseudo-absence or background 162 
data can be used as an alternative (Marcelino and Verbruggen 2015). Due to the characteristics of 163 
the data acquisition, while undertaking Ecological Niche Modelling (ENM) for invasive species, 164 
it is a common procedure to use only presence data (Marcelino and Verbruggen 2015). For our 165 
modeling approaches, we constructed two different occurrence datasets. (i) Presence-only data 166 
derived from remote sensing imagery classification to run Presence/background models with our 167 
first set of environmental variables to be used with MAXENT and (ii) Presence/absence dataset 168 
obtained from a sampling survey in 2016, 2017 and 2018 in 4 islands of Azores Archipelago. A 169 
series of spots were revisited during those years to assess the presence of the species and the 170 
abiotic conditions (Table 2). This dataset was used to run the generalized linear models (GLM) 171 
detailed below. 172 

 173 
 174 
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2.3.1. Remote sensing derived presence data 175 

Occurrence data was supplemented by data inferred from a UAV survey (Kellaris et al. 176 
2019). Images were taken with an unmanned aerial vehicle (UAV) in three São Miguel island 177 
regions, using a DJI Phantom 3 Professional quadcopter drone that carries a visible light camera. 178 
The survey was carried out at low tide, considering optimal conditions (low cloud coverage and 179 
low wave speed) at 114m altitude, achieving a spatial resolution of 4.93 cm*pixel-1. Surveys were 180 
carried out in May and June 2018, in Caloura, Mosteiros and Lagoa coasts (Fig. 2), along with 181 
ground-truth surveys by kayak and scuba divers to test the image classification. Support Vector 182 
Machine (SVM) image classification was used as our source of occurrence data. The DroneDeploy 183 
software (DroneDeploy, San Francisco, CA, USA) was used to design the flight plan with image 184 
overlaps set to 85% frontlap, 80% sidelap and Pix4Dmapper (Pix4D SA, Lausanne, Switzerland) 185 
was used to construct photomosaics.  186 

This classification presented an accuracy of 0.998 with a standard deviation of 6.42e‐4 in 187 
Kappa statistics (Kellaris et al. 2019). We used the Point Sampling Tool plugin in QGIS 3.4.1 to 188 
extract presence sites from these classified UAV images. First, we constructed a 100m x 100m 189 
square rectangle grid and the UAV survey areas with Create Grid tool and then used Centroids to 190 
obtain a point grid consisting of those squares’ centroids. With these centroids, we extracted the 191 
UAV classification output to obtain presence and absence of the target algae. We selected 100m x 192 
100m resolution for our sample point grid to match the spatial resolution of our environmental 193 
variables and our presence records. 194 

A random subset selection of presence points for A. armata and A. taxiformis using the Subset 195 
Features geostatistical Analysis tool in ArcGIS 10.4, to avoid spatial correlation between presence 196 
records. This resulted in 29 and 30 presence records for A. armata and A. taxiformis, respectively 197 
(Fig. 2). 198 

 199 

Fig. 2 Presence data derived from UAV classification images in Caloura, Lagoa and Mosteiros 200 
bays (São Miguel island). 201 

 202 

 203 
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2.3.2. Survey sampling data 204 

Four islands (from 65 to 513 km apart) were selected among the three island groups (eastern, 205 
central, and western) of the archipelago, chosen to be representative of the three groups and span 206 
the entire length of the archipelago. Sampling surveys were carried out in 2016, 2017 and 2018 207 
(Fig. 3). Within each island, 3 sites were randomly selected, with no prior identification of the 208 
algae’s presence, with surveys conducted depths of 5-, 10- and 15-meters depth. Within each site, 209 
three 50 × 50 cm quadrats were placed on the seabed and visually sampled by scuba divers using 210 
the method of Dethier et al. (1993), recording depth and temperature values with a MARES 211 
Mission Puck 3 dive computer. 212 

 213 

Fig. 3 Sampling sites (red triangles) in different islands of the Azores Archipelago during 2016, 214 
2017 and 2018. 215 

Each location was surveyed repeatedly for a total of 73 different sampling days over three 216 
years. Quadrant position was randomly chosen in each survey and by the end of the process, 1265 217 
observations were recorded. The species presence/absence data set consisted of 70 records in 218 
2016, 955 records in 2017 and 240 records in 2018 (Table 3). This set of presence data was 219 
constructed considering photoperiod and sampling sites’ values along with sampled temperature 220 
and depth (categorized as deeper or shallower than 10 m) and used to run three different kinds 221 
of presence/absence models. 222 

 223 
 224 
 225 
 226 
 227 
 228 
 229 
 230 
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Table 3 Presence records per surveyed year 

 2016 2017 2018 

January 0 60 0 

February 0 60 0 

March 0 60 0 

April 0 60 0 

May 0 160 60 

June 0 315 60 

July 0 60 60 

August 0 60 60 

September 0 60 0 

October 0 50 0 

November 60 10 0 

December 10 0 0 

 231 

2.4. ECOLOGICAL NICHE MODELLING APPROACHES 232 

Species distribution models (SDMs) are widely used in ecology and conservation with a vast 233 
variety of methodologies and approaches (Elith et al. 2006). An SDM algorithm is a mathematical 234 
expression that can be used to estimate species distribution using environmental predictor 235 
variables. Among the most commonly used methods, we can find regression algorithms that 236 
make use of absence and presence data, such as: Generalized linear models (GLM), Generalized 237 
additive models (GAM), multivariate adaptative regression splines and boosted regression trees; 238 
or algorithms that only use presence data together with background data such as SVMs (Drake 239 
et al. 2006) and MAXENT (Kearney et al. 2008). 240 

In this context, we propose a two-step approach to characterize the species ecological niche. 241 
A “geographic approach” focuses on how species distribution is affected by topographical 242 
variables and an “environmental approach” to understand the species’ temporal dynamics. 243 

On the one hand, in-situ observations provide a robust dataset of the species’ presence and 244 
absence over time, with extensive temporal coverage but limited geographic extent. This 245 
continuous monitoring of the species allowed us to study how changes in dynamic variables, 246 
such as SST or photoperiod, affect species distribution, although providing little information 247 
regarding the species’ response to different abiotic environmental characteristics. On the other 248 
hand, a remote sensing-based dataset lacks temporal coverage, but its geographic extent, with 249 
surveys in three different bays of the island, allows us to characterize how species distribution is 250 
affected by terrain variables changes. 251 

 252 

Presence/background approach 253 

First, to characterize the algae distribution response, we worked with MAXENT, using the 254 
first set of 6 topographic variables with presence data derived solely from remote sensing. These 255 
variables were used to assess the response of A. armata and A. Asparagopsis to different 256 
topographic characteristics. Environmental variables were not used for this model as their spatial 257 
resolution was too coarse in comparison to the topographic data. As presence records were 258 
retrieved from three different coasts limited to São Miguel island, the extent for model validation 259 
was limited to this island as well. This analysis will provide estimates of the species’ topographic 260 
preferences, to be then used along with results of presence/absence models. 261 

MAXENT has been broadly used to model species distribution. It is based on a maximum 262 
entropy approach, predicting the species occurrence by minimizing the estimated relative 263 
entropy from presence data only (Phillips et al. 2006) which has been shown to perform well with 264 
limited datasets. Samples With Data (SWD) tables were constructed using the Point Sampling Tool 265 
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plugin in QGIS 3.4.1 Madeira, extracting environmental variables corresponding to each presence 266 
record. Localities where the algae were not present in the UAV classification maps were selected 267 
as background (or pseudo absence) data. The KUENM package (Cobos et al. 2019) with R studio 268 
1.1.463 was used to undertake an automated calibration process using MAXENT software 269 
creating a certain number of candidate models, taking into consideration all possible 270 
combinations of setting parameters. A single set of variables was used, comprising all six 271 
topographic variables, Beta multiplier range values were selected from 0.1 to 9.7 (with increasing 272 
steps of 0.4) and all possible combinations of setting parameters were used in the automated 273 
process. Then, partial ROC, omission rates and Akaike’s Information Criterion (AIC) were 274 
assessed to find statistically significant models (Cobos et al. 2019). 275 

 276 

Presence/absence approach  277 

Secondly, we undertook a species habitat suitability characterization using the 278 
presence/absence dataset to study how these species’ distributions responds to dynamic 279 
environmental variables. Before final model selection, GAM, RF and GLM algorithms were 280 
constructed, and performances compared, based on this initial assessment the GLM algorithm 281 
was selected to undertake the presence/absence approach. 282 

The extent considered for model validation should be set according to geographic areas 283 
where the species had accessibility. In this particular case, a more limited extent was taken into 284 
consideration (Barve et al. 2011) 285 

The relatively recent arrival of A. armata, would point to a more limited extent being 286 
considered, in keeping with its short term expansion capabilities (Barve et al. 2011). However, 287 
resource availability limited the study area to 4 islands of the archipelago (Fig. 3) 288 

To study the different responses to changes in temperature, photoperiod and depth, the sites 289 
were revisited over three years to characterize the physiological response to annual variability of 290 
those abiotic factors, along with potential preferences over any particular location. 291 

Four variables were used to calibrate the models: (i) Temperature, (ii) Photoperiod, (iii) 292 
Depth and (iv) Sampling site. Recorded temperatures reached minimum levels of 15 and 23º C 293 
for the 3-year period, with photoperiod values ranging between 9.53 and 14.76 hours and 294 
registered depths of 5, 10 and 15 meters, then classified in two classes (<10 m and >10 m). 295 

 296 

2.5. MODEL EVALUATION 297 

Both models’ performance was evaluated using Area Under the Curve (AUC) values and by 298 
assessing how predictors contribute to explain and determine the species distribution.  299 
For the MAXENT model (Presence/background), variable contributions were calculated using a 300 
Jackknife approach implemented in MAXENT 3.4.1 and 40 models were run using a 20% 301 
bootstrap random subsample selection test. 302 

After assessing and evaluating our models, two suitability maps were constructed 303 
graphically explaining how A. armata and A. taxiformis geographic distribution is affected and 304 
explained by topographic environmental variables, and spatial explicit species geographic 305 
distribution maps were constructed. Then, species response to environmental variables was 306 
characterized and species realized ecological niche was inferred with the combination of both 307 
outputs. 308 

 309 
 310 

3. RESULTS 311 

Direct observations of Asparagopsis armata span 426 sites totalling 1265 observations. The 312 
native Asparagopsis taxiformis was seen in 793 sites within the same 1265 observations (Fig. 3). 313 
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Presence/background data was also generated from classified drone imagery 29/30 presence 314 
records for A. armata/A. taxiformis respectively and 2355/2356 background records. 315 

3.1. Presence/background approach 316 

A total of 493 MAXENT models were generated for A. armata and A. taxiformis for parameter 317 
optimization. Model selection criteria were based on: (i) Partial Receiver Operating Characteristic 318 
(ROC), with values lower than 1 showing statistical significance, (ii) Omission rates, with values 319 
lower than 5% related to the best performance and (iii) Lowest delta AIC pointing to the single 320 
best model finding the best trade-off between data fitting and model complexity, avoiding both 321 
overfitting and underfitting (Peterson et al. 2008; Snipes and Taylor 2014; Cobos et al. 2019). 322 
Model parameters are presented in table 4.  323 

 324 

Table 4 MAXENT parameter settings 

  A. armata A. taxiformis 

Beta Multiplier  1.1 1.2 

Hinge features threshold  0.45 0.5 

Beta threshold  1.63 1.86 

L/Q/P* features  1.4 1.5 

 *Linear, quadratic and product features  

 325 
Depth was the most crucial variable for the A. taxiformis model, followed by Roughness, and 326 

all other variables were excluded after Jacknife analysis. The species was associated with 5 and 327 
20 m of depth and low values of roughness, suggesting a preference for smoother bottoms. In 328 
contrast, for A. armata, Depth, and Fetch were the variables with a higher relative contribution to 329 
habitat prediction, with Depth the most important again (Table 5). For A. armata, we found 330 
response to depth similar to A. taxiformis, with preferences for shelter and shoreward areas (lower 331 
Fetch). The maximum preference appears to values closer to 100 m, dramatically decreasing when 332 
fetch reaches values greater than 10000 m. All other variables were discarded for modeling 333 
processes as they were negatively impacting model performance. 334 

 335 
 336 

Table 5 MAXENT variable contributions 

  
Variable contribution (%) 

Variable Permutation 

Importance (%) 

A. armata 
Depth 72.1 55.3 

Fetch 27.9 44.7 

A. taxiformis 
Depth 62.5 63.75 

Roughness 37.5 36.25 

 337 
When optimal parameter settings were characterized, we run the MAXENT model 40 times. 338 

Both A. taxiformis and A. armata models had an excellent performance, with a mean AUC value 339 
of 0.806 and 0.823.  340 

The model prediction estimates show a more homogeneous geographic distribution for A. 341 
armata without a clear preference in any region with lower habitat suitability values in São Miguel 342 
island. For A. taxiformis, we can observe higher suitability values over the north-northeast part of 343 
the Island (Fig. 4). 344 
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 345 

Fig. 4 MAXENT predicted potential geographic distribution in São Miguel island. 346 

3.2. Presence/absence approach  347 

Model performance for the presence/absence approach was relatively similar across all 348 
methods (Table 8). Simpler models should be preferred over complex ones (Guisan et al. 2002) 349 
therefore, based on models’ similar performance and taking into consideration GLM more 350 
straightforward explanation and results in interpretation, we focus on the GLMs to present 351 
variable species response. Model evaluation was carried out with a cross-validation method 352 
implemented in the Biomod R package, with ten different runs. 353 

 354 
 355 

Table 8 AUC results for A. Armata and A. taxiformis presence/absence models 

Species Model Mean Value Standard Deviation 

A. armata GAM 0.89 0.01 
A. armata GLM 0.88 0.02 
A. armata RF 0.91 0.02 

A. taxiformis GAM 0.74 0.02 
A. taxiformis GLM 0.74 0.02 
A. taxiformis RF 0.76 0.01 

 356 
Photoperiod and temperature have the greatest influence on the A. armata model. At the 357 

same time, Depth barely affects the species response and sampling site, slightly affecting A. 358 
taxiformis distribution, has negligible influence over A. armata (Fig. 5 and Fig. 6). Maximum 359 
suitability is expected when medium-high values of photoperiod (starting at 13 hours per day) 360 
meet low to medium temperature values (around 15.5-18.5ºC). High values of temperature are 361 
unsuitable for A. armata. The results are less clear for A. taxiformis (Fig. 5 and Fig. 6), which shows 362 
a relative weak response to photoperiod.  363 
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 364 

Fig. 5 Species response to depth, photoperiod and temperature environmental predictors for 10 365 
different runs for GLM model. 366 
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367 
Fig. 6 A. taxiformis and A. armata response to photoperiod and temperature environmental predictors. 368 

 369 

4. DISCUSSION 370 

In NE Atlantic, Asparagopsis armata’s known northern and southern distribution boundaries 371 
can be found in UK and Senegal, respectively. Along with this known geographic distribution, 372 
we can find optimal growth temperatures between 10 and 21ºC, with lethal limits at 5 and 27ºC 373 
(Mata et al. 2006). In the Azores Archipelago, these limits are very unlikely to be reached. 374 
Photoperiod values range from 9.5 to 14.76 hours, with the temperature reaching its minimum at 375 
15 ºC with an annual maximum at 24ºC. All possible fundamental abiotic environmental 376 
requirements for the species to be present are not met in the Azorean archipelago. As expected 377 
from mechanistic modeling approaches, the species’ fundamental niche is extremely unlikely to 378 
be captured by a modeling effort based only on Azores distribution data. 379 

On the contrary, our approach aimed to understand better and characterize the realized 380 
niche of the species within the archipelago. Aside from the abiotic environmental requirements 381 
present in any given geographic area, other particularities such as biotic interactions and species 382 
accessibility play an essential role when shaping the realized niche of a species. Such 383 
particularities are not explicitly captured by the model itself (Barve et al. 2011). However, the 384 
species’ inferred realized niche identifies its suitability to the abiotic environmental variables 385 
available in a given geographic area. 386 

For the specific set of variables considered in the model, A. armata’s distribution is best 387 
explained by two key variables: (i) Photoperiod and (ii) Temperature. The realized niche of the 388 
species, given the variables considered, can be found when specific values of photoperiod (13 389 
hours) meet temperatures between 15.5 and 18.5 ºC.  390 

Compared to its co-generic species, A. armata’s niche is much narrower than the A. 391 
taxiformis’. A. taxiformis is far less affected by changes in depth than A. armata and shows a 392 
generalist profile, in concordance with findings from the southern coast of Spain (Zanolla et al. 393 
2018), where they found different cohorts overlapping in time. A. taxiformis distribution cannot 394 
be explained with confidence by any of the environmental variables considered. However, there 395 
appears to be a geographic preference to locations such as Caloura beach. A. armata’s optimal 396 
temperatures and photoperiod values are expected to be met earlier in the year in latitudes closer 397 
to the equator, and later as we get farther north as Kraan and Barrington (2005) results show for 398 
the Irish coasts. 399 
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A. armata’s optimal environmental conditions in Azores Archipelago can be expected to be 400 
achieved in the early summer with explosive blooms when optimal conditions are met, and 401 
starting to decay after summer (Mata et al. 2006). Therefore, we could predict intense blooms 402 
when the water stays relatively cold in early-summer period (with high photoperiod values). 403 
When these criteria are met, we can expect suitable areas for A. armata’s gametophytic stage to 404 
overlap with A. taxiformis’. However, niche preferences of the two species are quite different to 405 
allow for a significant overlap. Nevertheless, other algal blooms may occur at various times over 406 
the year, not necessarily overlapping year on year, pointing out that photoperiod alone may not 407 
be a reliable predictor of blooms by itself (Martins et al. 2019). 408 

 A. armata does not show distribution preferences over any region of the São Miguel coast 409 
and this is something we might expect from a geographically wide-ranging invasive species. This 410 
feeds the narrative that A. armata shows opportunistic characteristics with explosive blooms 411 
when climatic conditions are met in late spring-early summer, growing all over the coast 412 
regardless of the environment’s geographical characteristics. Conversely, A. taxiformis shows a 413 
specific preference over the north-northeast coast when analyzing its geographic distribution. A. 414 
taxiformis models are not very robust, and we may be lacking essential predictor variables. Other 415 
studies have shown the importance of variables such as primary productivity, surface salinity, 416 
nutrient concentrations, Chlorophyll-a, and pH for invasive seaweeds (Karl et al. 2000; Miller et 417 
al., 2019; Guerra-García et al., 2012). Variables such as SST or sea surface salinity are freely 418 
available from remote sensing datasets but at a much broader spatial resolution than the data 419 
used in this study. Spatial resolution strongly affects model predictive capabilities (Guisan et al. 420 
2007). 421 

The relationship between the spatial resolution of species occurrence data and 422 
environmental variables is a crucial aspect for consideration. For instance, coarse resolution 423 
environmental variables may fail to identify the habitat where the species occurs, and changes in 424 
spatial resolution of environmental variables can alter our understanding of presence patterns 425 
(Guisan et al. 2007), especially when considering highly dynamic oceanographic processes.  426 

On the contrary, when considering coarse-scale occurrence datasets, such as historical 427 
collections with inherent spatial uncertainties, the use of finer-scale environmental data is not 428 
advised (Graham et al. 2004). 429 

Our case study worked with two datasets of two different natures, with presence records of 430 
high spatial resolution and low location uncertainties. The spatial resolution of our remote-431 
sensing derived occurrences made this dataset unfit to be used with coarser freely available 432 
environmental variables (Guisan et al. 2007). However, it proved to be important when 433 
undertaking ecological modeling of invasive algae. Considering this limitation, along with its 434 
poor temporal resolution (our records being limited to a small window of time where abundance 435 
peaks were expected), we decided to model our species response to solely topographic variables, 436 
at a convenient native resolution of 100m x 100m. UAV imagery allowed us to get a wide 437 
“screenshot” where representative values of the species’ topographic preferences could be easily 438 
and cost-effectively retrieved, compared to the logistic and human resources demanded for an 439 
extensive sampling field survey. 440 

On the other hand, while lacking the capacity to assess topographic preferences, the in-situ 441 
dataset allowed us to determine species preferences for specific conditions of photoperiod and 442 
temperature, independent of the topographic characteristics, (which remained constant over the 443 
3 years of sampling). In contrast to the remote-sensing dataset, the in-situ dataset provide the 444 
temporal resolution needed to study dynamic variables. The in-situ dataset was unfit to be used 445 
with coarse resolution environmental data (Guisan et al. 2007) but convenient to characterize 446 
species response to abiotic dynamic factors. 447 

Due to the limitations of environmental variable availability (outlined above), two different 448 
models were run in two separate steps of a sole modeling approach. Firstly, we assessed the 449 
species physiological response to dynamic variables, characterizing the realized niche related to 450 
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those abiotic factors, in an attempt to locate the time of potential peaks of abundance in the 451 
archipelago. In a second step, we sought to characterize species response to topographic 452 
variables, which is intrinsically linked to expected abundance peaks.  453 

With the outputs of these two modeling steps, we inferred the realized niche of the species, 454 
identifying, on the one hand, the periods of the year where invasive A. armata could pose a real 455 
threat to native A. taxiformis. On the other hand, studying the species’ topographic preferences 456 
where this peak of abundance is expected, providing spatially explicit assessments of its invasion 457 
mechanics. This spatially explicit information aims to be a convenient tool to better understand 458 
the species’ invasiveness capabilities and anticipate the expected locations where explosive 459 
blooms may occur. 460 

It is essential to consider that the presence/background model was constructed with 461 
observations from the South and West Coasts of São Miguel island, with no data in the North or 462 
East coast of São Miguel (due to weather constraints limiting survey sampling capabilities). This 463 
sampling procedure may have introduced a bias in the presence records. For this reason, the 464 
presence/background model was not projected to other islands of the archipelago (Stolar and 465 
Nielsen 2015). 466 

Image classifications used in the present study indicated overfitting in the training data. 467 
Nevertheless, remote sensing-based occurrence data proved a convenient tool to predict potential 468 
geographic distribution, allowing us to infer species niche when working in parallel with in 469 
situ datasets. 470 

While not explicitly captured in the model, the biotic interactions affecting species’ 471 
establishment can be considered an intrinsic characteristic of any given geographic area. This 472 
local competition will ultimately affect a species’ realized niche. This study aimed to assess the 473 
invasiveness trait of A. taxiformis in the Azores Archipelago by defining and studying its realized 474 
niche. Given the nature and the purpose of this modeling approach, caution is advised when 475 
considering extending these results to the whole species potential distribution (Malanson et al. 476 
1992). 477 

While the two-step approach modeling with different datasets provided good results, 478 
demonstrating its potential application when facing data scarcity scenarios, other approaches 479 
might be helpful in the present study. For example, it could be interesting to broaden study areas, 480 
even attempting to undertake a complete UAV image classification of the whole island, 481 
considering different times of the year. This will permit construction of a species niche model 482 
based entirely on remote sensing-based data sets although depending on the time of the year this 483 
approach may not be feasible due to weather constraints (Kellaris et al. 2019). Nonetheless, 484 
although solely relying on UAV imagery may not be possible, it remains an excellent 485 
complementary tool. 486 

Furthermore, once the realized niche of the invasive species is identified and possible 487 
locations for the species to appear anticipated, UAV imagery could represent a ready-to-use tool 488 
to reaffirm and validate the hypothetical locations more likely to be invaded, and so be used as 489 
an early alarm system. 490 

As stated, our results may lack the capabilities to drive firm conclusions about the 491 
geographic distribution of the species outside the Azorean archipelago. For these purposes, 492 
historical presence datasets, with a much broader spatial resolution (and location uncertainties) 493 
could be used with other sets of freely available remote-sensing derived environmental variables 494 
to assess the potential distribution of these species in a wider geographic area, with coarser 495 
resolutions. This approach would allow us to get closer to the fundamental niche of the species. 496 
However, some problematic issues would need to be considered, such as the presence of potential 497 
different genetic lines of the species, that could be included in the same occurrence dataset. Other 498 
genetic lines of the species may represent different adaptations to various environments and 499 
hence, dissimilarities in niche characteristics. This issue may affect not only the model 500 
performance but the proper identification of its niche. Nonetheless, this approach would allow 501 
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us to compare the potential distribution of the species with the assessed realized niche in the 502 
Azores Archipelago, and help better understand the invasive capabilities of A. armata. 503 

Eventually, as a consequence of ocean warming, optimal day lengths (photoperiod) will no 504 
longer match optimal temperatures for the species to thrive. Optimal photoperiod values will 505 
occur along with less suitable SST values (warmer sea surface). These conclusions are in 506 
concordance with the leading results in (Martínez et al. 2018), showing that rising values of Sea 507 
Surface Temperature (SST) are related to the ecological niche narrowing of temperate seaweeds, 508 
with solid distribution range contractions and shifts in distributions. While that may appear 509 
positive, as an invasive species may no longer find suitable habitat in the Azores with the 510 
consequent apparition of ecosystem disservices, it should be noted that many natives will suffer 511 
the same fate with severe socio-economic impacts. This is further evidence of the vital need to 512 
monitor not only invasive but native species in coastal ecosystems as a tool to inform 513 
policymakers and provide proof of socio-economic advantages derived from natural ecosystem 514 
protection and restoration. 515 

 516 

5. CONCLUSIONS 517 

Further steps need then to be taken, and explicit spatial maps of both ES and EDS provided 518 
by A. armata and A. taxiformis should be produced as a critical tool for marine and coastal 519 
conservation, following the EU Biodiversity strategy for 2020. The Outermost Regions (ORs) of 520 
Europe, such as Azores Archipelago, are expected to undertake this MAES procedure, but a lack 521 
of reliable and high-resolution data usually makes this kind of assessment and valuation 522 
infeasible. 523 

In this context, ecological niche modeling characterization represents one of the first steps of 524 
MAES in the region, helping to identify and characterize impacts and losses of ES related to 525 
Coastal ecosystems in remote and data-scarce scenarios. Future MAES procedures and spatially 526 
explicit ES assessments will strongly depend on ecological and socio-economic data, which in 527 
combination with ecological niche modeling methodologies will set a feasible scenario for MAES 528 
in the Macaronesian bioregion. 529 
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