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Abstract: Drones are being increasingly used in conservation to tackle the illegal poaching of animals.
An important aspect of using drones for this purpose is establishing the technological and the
environmental factors that increase the chances of success when detecting poachers. Recent studies
focused on investigating these factors, and this research builds upon this as well as exploring the
efficacy of machine-learning for automated detection. In an experimental setting with voluntary
test subjects, various factors were tested for their effect on detection probability: camera type
(visible spectrum, RGB, and thermal infrared, TIR), time of day, camera angle, canopy density, and
walking/stationary test subjects. The drone footage was analysed both manually by volunteers and
through automated detection software. A generalised linear model with a logit link function was used
to statistically analyse the data for both types of analysis. The findings concluded that using a TIR
camera improved detection probability, particularly at dawn and with a 90◦ camera angle. An oblique
angle was more effective during RGB flights, and walking/stationary test subjects did not influence
detection with both cameras. Probability of detection decreased with increasing vegetation cover.
Machine-learning software had a successful detection probability of 0.558, however, it produced
nearly five times more false positives than manual analysis. Manual analysis, however, produced
2.5 times more false negatives than automated detection. Despite manual analysis producing more
true positive detections than automated detection in this study, the automated software gives
promising, successful results, and the advantages of automated methods over manual analysis make
it a promising tool with the potential to be successfully incorporated into anti-poaching strategies.

Keywords: drones; detection; camera; TIR; RGB; poachers; canopy; time of day; angle; automated

1. Introduction

Poaching is continually fuelling the illegal wildlife trade, and it is currently on the
rise, becoming a global conservation issue [1,2]. This leads to the extinction of species,
large reductions in species’ abundance, and to cascading consequences on economies,
international security, and the natural world itself [3,4]. Evidence from the 2016 General
Elephant Consensus (GEC) showed that one African elephant is killed every 15 min, causing
their numbers to dwindle rapidly [5]. One of the main drivers of this is the increasing
demand for ivory and other illegal wildlife products, particularly in Asian countries, driven
by the belief that products such as rhino horn hold a significant status symbol and are
relied upon in traditional medicine. Rhino horn is currently valued on the black markets in
Vietnam at between USD 30,000 and 65,000 per kilogram [6–8].

Sensors 2021, 21, 4074. https://doi.org/10.3390/s21124074 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6353-0170
https://orcid.org/0000-0002-4674-537X
https://orcid.org/0000-0003-3954-5174
https://doi.org/10.3390/s21124074
https://doi.org/10.3390/s21124074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124074
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124074?type=check_update&version=2


Sensors 2021, 21, 4074 2 of 24

At present, there are a number of anti-poaching techniques employed in affected
countries, such as ground ranger patrols, rhino de-horning operations, community and
education projects, and schemes focused on enforcing illegal wildlife trade laws [4,9].
In addition, whilst these strategies are crucial in the reduction of poaching, curbing the
demand for ivory products is equally as important to ensure the long-term effectiveness of
anti-poaching methods [10]. More recently, drones were considered as an addition to these
methods due to their decreasing cost, higher safety compared to manned aircrafts and
ranger patrols, and their flexibility to carry a variety of payloads, including high resolution
cameras of different wavelengths. Drones present an opportunity for larger areas to be
surveyed and controlled compared to ground-based patrols, which is useful for when
‘boots on the ground’ and other resources are limited [11–13].

Drones are increasingly utilised over the last few decades as a conservation tool. They
are successfully used for detecting animal densities and distributions, land-use mapping,
and monitoring wildlife and environmental health [14–17]. For example, Vermeulen et al. [18]
used drones fitted with an RGB (red, green and blue light) camera to successfully monitor
and estimate the density of elephants (Loxodonta africana) in southern Burkina Faso, West
Africa. RGB cameras obtain images within the visible light spectrum and are generally more
affordable than multispectral cameras and are found on the majority of consumer grade
drones. They also obtain images with a higher resolution than multispectral cameras [13].
TIR (thermal infrared) cameras, on the other hand, operate by detecting thermal radiation
emitted from objects, making them useful for detecting activity that occurs at night, such
as poaching, and events in which detection of heat sources is important [13,19]. For ex-
ample, studies demonstrated the use of drone-mounted thermal cameras to successfully
study arboreal mammals, such as Kays et al. [20], who studied mantled howler monkeys
(Aloutta palliata) and black-handed spider monkeys (Ateles geoffroyi) using this method and
found thermal cameras were successful in observing troops moving amongst the dense
canopy, particularly during night and early morning. A similar study by Spaan et al. [21],
also studying spider monkeys (Ateles geoffroyi), found that, in 83% of surveys, drone-
mounted thermal cameras obtained greater counts than ground surveys, which is thought
to be due to the larger area able to be covered by drones.

In the last few years, the proven success of drones in conservation and the increases
in wildlife crime sparked research into the use of drones to detect and reduce illegal
activity such as poaching and illegal hunting [22–24]. However, there is a lack of studies
investigating the factors that influence detection, which are instrumental for understanding
the environmental situations in which poachers may elude detection as well as the technical
attributes that aid successful detection. Hambrecht et al. [25] contributed to research
focused on investigating this topic, and this was based on a study by Patterson et al. [12],
who studied the effect of different variables on the detection of boreal caribou (Rangifer
tarandus caribou). Hambrecht et al. [25] used similar variables and adapted the focus
towards poacher detection. A number of conclusions were made from this research. Using
thermal cameras significantly improved detection as well as vegetation cover having a
negative impact on detection during thermal flights. Time of day was not found to be a
significant factor, despite results suggesting cooler times of day improved detection. The
contrast of test subjects to surroundings (e.g., the colour t-shirt they were wearing) and
drone altitude significantly affected detection during RGB flights as well as canopy density.

Despite these conclusive results, there are a number of knowledge gaps which, if
investigated, will provide protected area managers, NGOs, and other stakeholders with
additional reliable scientific information, allowing them to make informed decisions about
whether to allocate the time and the resources into incorporating drones into anti-poaching
operations and how to do this in a way that maximises success. One of the knowledge
gaps recognised was the effect of camera angle on poacher detection. Perroy et al. [26]
conducted a study to determine how drone camera angle impacted the aerial detection
of an invasive understorey plant species of miconia (Miconia calvescens) in Hawaii. It
was found that an oblique angle significantly improved detection rate. Based on this



Sensors 2021, 21, 4074 3 of 24

information, this study aimed to investigate whether the same effect could be found with
poacher detection. Furthermore, Hambrecht et al. [25] did not find any significance in the
effect of time of day on detection, which could be due to the small number of flights that
were conducted. Other studies such as one by Witczuk et al. [27] found that the timing
of drone flights had a significant influence on detection probabilities depending on the
camera type. It was suggested that dawn, dusk, and night-time were the optimal times for
obtaining significant quality images with a thermal camera. In addition to these factors,
this study aimed to investigate whether walking test subjects were more easily detected
than stationary ones, particularly through TIR imaging, as walking test subjects are more
easily differentiated from objects with a similar heat signature. This was also found in a
study Spaan et al. [21], who successfully used drone mounted TIR cameras to detect spider
monkeys (Ateles geoffroyi) amongst the dense canopy.

Finally, this study also tested the efficiency of a machine-learning model for automated
detection using trained deep learning neural networks as an alternative to the manual
analysis of collected data [28]. Thus far, research relied on data recording on-board the
drone for later manual analysis, which can be labour intensive and time consuming,
particularly when studying animal abundance or distribution [13,17]. Automated detection
methods were successfully used previously to detect and track various species including
birds and domestic animals, and they are being investigated further as a potential means for
detecting threats to wildlife in real-time, e.g., poaching and illegal logging [17,29–31]. For
example, a study by Bondi, Fang et al. [3] explored the use of drones mounted with thermal
cameras and the use of an artificial intelligence (AI) application called SPOT (Systematic
Poacher de-Tector) as a method for automatically detecting poachers in near real-time. It
incorporated offline training of the system and subsequent online detection. More recently,
a two-part study by Burke et al. [32] and Burke et al. [33] evaluated the challenges faced in
automatically detecting poachers with threshold algorithms, addressing environmental
effects such as thermal radiation, flying altitude, and vegetation cover on the success
of automated detection. A number of recommendations were made to overcome these
challenges, which are discussed and evaluated later in the paper.

This study builds upon the research by Hambrecht et al. [25], investigating the knowl-
edge gaps as well as collecting a larger amount of data to increase the statistical power of
the results. It aimed to provide additional knowledge to what was already conducted in
the use of automated detection to combat wildlife crime, a field that is still in its infancy. It
was predicted that, provided the deep learning model was trained sufficiently, automated
detection would prove to be equally as successful in detecting poachers as manual analysis,
if not more. Various studies also found this result, such as Seymour et al. [34], who used au-
tomated detection to survey two grey seal (Halichoerus grypus) breeding colonies in eastern
Canada. Automated detection successfully identified 95–98% of human counts. In addition,
it was hypothesised that, for both types of analysis, the variables having a significant effect
on detection would be time of day, canopy density, and walking/stationary subjects.

2. Materials and Methods
2.1. Study Area and Flight Plan

The study took place at the Greater Mahale Ecosystem Research and Conservation
(GMERC) field site in the Issa Valley, western Tanzania (latitude: −5.50, longitude: 30.56).
The main type of vegetation in this region is miombo woodland, dominated by the tree
genera Brachystegia and Julbernardia. This region is also characterised by a mosaic of other
vegetation types such as riverine forest, swampland, and grassland [35,36]. The vegetation
was dense and green due to the study being conducted in early March of 2020 towards the
end of the rainy season.

An area of miombo woodland of approximately 30 × 30 m was chosen for its proximity
to the field station and also for visual characteristics, as it offered a variety of canopy
densities and open-canopy areas to utilise as take-off and landing zones. This site was the
same approximate area in which the study by Hambrecht et al. [25] was conducted, which
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also influenced the choice of site, as it offered the opportunity for standardisation and to
build upon the research.

Within the study area, five different sequences of locations were selected. Each
sequence consisted of 4 locations, marked with blue tape, representing open, low, medium,
and high canopy densities. These sequences were changed each day to create a larger
sample size. Therefore, over the 7 days of data collection, a total of 35 different sequences
were used, and the GNSS coordinates and the canopy density of each location were
recorded. A diagram of the study site and example sequences is shown in Appendix A.
A total of 20 drone flights were conducted over 7 days, with 3 flights per day at dawn
(7:00), midday (13:00–13:30), and dusk (19:15). All flights conducted at dawn and dusk
were conducted with a drone-mounted TIR camera, and all midday flights were conducted
with a drone-mounted RGB camera. One midday flight did not proceed due to rain. The
drone was hovered consistently at an altitude of 50 m for all but 2 thermal flights (which
were conducted at 70 m) and in approximately the same location above the study site for
each flight.

2.2. Drones and Cameras

The drones used for this study were a DJI Mavic Enterprise with an RGB camera for
the midday studies and a DJI Inspire 1 with a FLIR Zenmuse XT camera (focal length:
6.8 mm, resolution: 336 × 256) for the TIR studies. A TIR camera was not used at midday
due to the high thermal contrast at that particular time of day, and it is already known
that the surrounding temperatures would significantly hinder the chances of detection [20].
The cameras mounted to both drones were continuously recording footage throughout the
flights, which lasted for a maximum time of 10 min. All flights were conducted by KD
and SAW.

2.3. Canopy Density

The canopy density of each location was classified by first taking photos of the canopy
using a Nikon Coolpix P520 camera with a NIKKOR lens (focal length: 4.3–180 mm)
mounted onto a tripod set at a height of 1 m. The camera was mounted at a 90◦ angle so
that the camera lens was facing directly upwards. The photos were then converted to a
monochrome BMP format using Microsoft Paint.

Following this, the canopy densities were calculated in ImageJ software by importing
each photograph and obtaining the black pixel count from the histogram analysis and
converting this into a percentage. The densities were then classified into open (0–25%), low
(25–50%), medium (50–75%), and high (75–100%) canopy density categories.

2.4. Stationary or Walking Test Subjects

Five test subjects were voluntarily recruited for each flight, and each test subject was
randomly assigned to one of the five sequences of locations. Beginning at the open canopy
location, the test subjects were instructed to walk between each location on command,
remaining stationary at each location for 10 s. They would then repeat this same routine
backwards, starting at the high canopy density location and finishing at the open canopy
location. See Appendix A again for a visual explanation of this. Ethical approval reference:
20/NSP/010.

2.5. Camera Angle

During each flight, the camera was first placed at a 90◦ angle, during which time the
test subjects walked from the open to high canopy density. The camera was then tilted to
45◦, and the drone was moved slightly off-centre from the study site for the second half of
the study, where the test subjects walked from the high to the open canopy densities. The
camera angle was changed via the drone’s remote controller, which had a tablet attached,
giving a first-person view (FPV) of the camera as well as a scale of camera angle, allowing
the pilot to adjust this remotely when required.
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2.6. Image Processing and Manual Analysis

The drone footage for each flight was recorded in one continuous video. Each video
was split into sections, representing the conditions of the flight. For example, one video
was split into 14 smaller videos, 7 videos for the first half of the flight (90◦ camera angle)
and 7 videos for the second half on the flight (45◦ camera angle). The 7 videos from each
half represented when the test subjects were stationary (4 different canopy densities) and
when they were walking between points (3 point-to-point walks).

Each video was then converted into JPG images of the same resolution using an online
conversion website: https://www.onlineconverter.com/ (accessed 15 July 202). Due to the
high volume of images produced per video, they were condensed down to 5 images per
video, leaving 1400 overall to be analysed. The images were then split amongst 5 voluntary
analysts, all of whom had never seen the images before and had no previous knowledge of
the research or any experience conducting this type of analysis. Each analyst received 1 of
the 5 images per video, meaning each individual was given 280 images in total to analyse.
The images were presented in a random order and in controlled stages (i.e., 20 per day),
and the analysts were not told how many test subjects were in the image; they simply
confirmed the number of subjects they could see, which was recorded along with false
positives and false negatives. In this study, false negatives were classed as subjects that
were identifiable in images with a trained eye but were missed during analysis.

2.7. Automated Detection Software

Prior to the study, a machine-learning model was trained using a Faster-Region-based
Convolutional Neural Network (Faster-RCNN) and transfer learning [37]. The training
was done by tagging approximately 6000 aerial-view images of people, cars, and African
animal species (elephants, rhinos, etc.), both TIR and RGB images, via the framework:
www.conservationai.co.uk (accessed 9 April 2020) using the Visual Object Tagging Tool
(VoTT) version 1.7.0. In order to classify objects within new images, the deep neural
network extracts and ‘learns’ various parameters from these labelled images [28,38].

Following the training of the model, the drone images used for manual analysis were
uploaded into the model for testing, 1400 in total. The developed algorithm subsequently
analysed the characteristics within each image, also comparing them to previously tagged
images, enabling positive identifications of test subjects to be automatically labelled, giving
the results of automated detection [29].

2.8. Rock Density vs. False Positives

In addition to the core analysis of this study, the data were analysed further to establish
whether more false positives occurred in the automated detection data images with a higher
rock density. All 1400 images were split into three categories of rock density: low (0–40%
ground cover), medium (40–70%), and high (>70%). The number of false positives in each
image was recorded, and due to the number of images per category differing, the total
number of detections was also recorded in order to calculate a percentage of false positives.
To statistically compare the three categories, a three-proportion Z-test was conducted.

2.9. Statistical Analysis

All statistical analyses were carried out in R Studio using glm2, MuMIn, and ggplot2
packages [39,40]. The statistical analyses explained were repeated for both manual and
automated detection data. Any data entries that contained missing values were removed
from the data set (15 entries out of 7001 were excluded). The data set was split into two
separate base data models, representing TIR flight data and RGB flight data. The variables
used for statistical analysis are shown in Table 1. Due to the test subjects transitioning
between canopy density classes when walking from point to point, 6 more factors of canopy
density were added in addition to ‘open’, ‘low’, ‘med’, and ‘high’ for stationary subjects.
These represented canopy density with walking subjects at a 90◦ camera angle (open-low,
low-med, med-high) and at a 45◦ camera angle (high-med, med-low, low-open). The ‘open’

https://www.onlineconverter.com/
www.conservationai.co.uk
www.conservationai.co.uk
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canopy density category was used as the reference factor for all canopy density analyses in
R, using the relevel() function [41]. Time of day was not included in analysis of the RGB
data model, as RGB flights were only conducted at midday. Analyst was not included as a
random intercept due to the controlled environment in which the analysis took place and
the fact that all analysts had no prior experience.

Table 1. A summary of the variables used for statistical analysis including their description.

No. Variable Variable Type No. of Factors Description

Response variable
0 Detected Binary 2 Detected = 1, not detected = 0

Predictor variables
1 Time of day Nominal 2 Dawn = 1, dusk = 3
2 Camera angle Binary 2 90◦ = 1, 45◦ = 0
3 Walking/stationary Binary 2 Walking = 1, stationary = 0

4 Canopy density Nominal 10 Canopy density class, e.g., open,
low, med-low, open-low, etc.

As the response variable was binary (i.e., detected(1)/notdetected(0)), a global gen-
eralised linear model with a logit link function was created for both RGB and thermal
data [42,43]. This was done using the glm() function of the glm2 package [40]. Following
the methods described by Grueber et al. [44], sub-models were created for both global
models using the dredge() function from the MuMIn package [40]. This produced a list
of models with every possible combination of predictor variable, along with the Akaike
Information Criterion corrected for small samples (AICc), Akaike weight, log-likelihood
(LogLik), and delta. For both manual and automated analysis, a total of 8 sub-models were
produced for the RGB data and 16 sub-models for the TIR data. The AICc and the weight
allowed for the sub-models to be compared, as a lower AICc value describes a better fit
of the data, and a high Akaike weight indicates a better parsimonious fit overall [12]. To
select the sub-models with the best fit to the data, the get.models() function with a cut-off
value of 2AICc from the MuMIn package was used. This test ranks the sub-models by their
AICc values and their Akaike weight [44,45]. The best fitting model was then tested using
a generalised linear model with a logit link function, producing beta coefficient estimates
and a p-value derived from a Wald chi-square test for each predictor variable [46]. The 95%
confidence intervals were also calculated for each variable in the best-fitting model. RGB
and TIR detection data were then compared using a Wald chi-square test.

For further analysis, camera angle data were incorporated into canopy density analysis
for both camera type, to test whether detection probabilities for varying canopy densities
differed with both camera angles.

3. Results
3.1. Manual Analysis: Thermal Data Model

Through sub-model creation and selection, two models were found to offer the best
fit to the data. These are shown in Appendix B, Table A1. These models had the same
AICc and weight, only differing in the inclusion of walking/stationary subjects, suggesting
this variable did not alter the fit of the model in any way. A Wald chi-square test was
conducted to confirm this, and the variable did not significantly affect probability of
detection (p = 0.211). Therefore, the variable was removed from the model, and the best
fitting model contained the variables camera angle, canopy density, and time of day. This
model is described in more detail in Table 2. Time of day was a significant factor affecting
detection, indicating that there is a decreased probability of detection at dusk compared
with dawn. In addition, a 90◦ camera angle increased probability of detection compared to
an oblique angle, and an increase in canopy density caused a decrease in the probability of
detection. This is portrayed in Figure 1.
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Table 2. The model with the best fit to the data for TIR images with manual detection includes time
of day, camera angle, and canopy density.

Estimate 95% Confidence Intervals p-Value

(Intercept) 2.0822 1.828, 2.349 <2 × 10−16

Time of day (dusk) −0.292 −0.422, −0.163 9.65 × 10−6

Camera angle (90◦) 0.383 0.209, 0.558 0.00016
Canopy density (low) −0.837 −1.141, −0.542 4.09 × 10−8

Canopy density (med) −1.576 −1.865, −1.295 <2 × 10−16

Canopy density (high) −2.448 −2.738, −2.169 <2 × 10−16

Canopy density (open to low) −0.496 −0.892, −0.0941 0.0145
Canopy density (low to med) −1.145 −1.504, −0.788 3.48 × 10−10

Canopy density (med to high) −1.959 −2.299, −1.627 <2 × 10−16

Canopy density (high to med) −1.867 −2.198, −1.544 <2 × 10−16

Canopy density (med to low) −1.125 −1.466, −0.789 6.73 × 10−11

Canopy density (low to open) −0.665 −1.0213, −0.308 0.000253
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detection for TIR images with manual detection.

For analysis of canopy density at different camera angles, a 90◦ angle provided a
higher probability of detection at higher canopy densities than an oblique angle. This is
shown in Appendix C, Table A3 in the coefficients. The number of false positives in the
thermal data was 168, accounting for 74.34% of all false positives for manual analysis.
Examples of these false positives are shown in Appendix D. The number of false negatives
was 126, accounting for 38.06% of all false negatives for manual analysis.

3.2. Manual Analysis: RGB Data Model

Two models offered the best fit to the data and are shown in Appendix B, Table A2. As
with the thermal data, these two models had the same AICc and weight, again indicating
that walking/stationary subjects was a redundant variable. A Wald chi-squared test
confirmed this (p = 0.69), and the variable was removed from the model. The best fitting
model contained only two predictor variables: camera angle and canopy density, and this
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is described in Table 3. Camera angle was a significant factor affecting detection, with a 90◦

angle decreasing the probability of detection compared with an oblique angle. As with the
thermal data, higher canopy densities produced a significant decrease in the probability of
detection, except for ‘open-low’ density (Figure 2).

Table 3. The model with the best fit for RGB images with manual detection includes the variables
camera angle and canopy density.

Estimate 95% Confidence Intervals p-Value

(Intercept) 0.891 0.615, 1.175 4.13 × 10−10

Camera angle (90◦) −0.356 −0.622, 0.0906 0.00868
Canopy density (low) −0.633 −0.967, −0.303 0.000185
Canopy density (med) −1.382 −1.726, −1.044 1.84 × 10−15

Canopy density (high) −3.906 −4.582, −3.319 <2 × 10−16

Canopy density (open to low) −0.268 −0.689, 0.155 0.214
Canopy density (low to med) −1.140 −1.567, −0.713 2.20 × 10−7

Canopy density (med to high) −2.467 −3.044, −1.934 <2 × 10−16

Canopy density (high to med) −1.739 −2.193, −1.297 2.58 × 10−14

Canopy density (med to low) −0.785 −1.212, −0.360 0.000299b
Canopy density (low to open) −0.758 −1.185, −0.333 0.000481
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Figure 2. Scatterplot showing the relationship between increasing canopy density and probability of
detection for RGB images with manual detection.

For analysis of canopy density at different camera angles, the same was found for
RGB data—a 90◦ angle produced a higher probability of detection at high canopy densities.
This relationship is shown in Figure 3 and is also described in more detail in Appendix C,
Table A4. The number of false positives in the RGB data was 58, accounting for 25.66% of
all false positives for manual analysis (see Appendix D). The number of false negatives
was 205, accounting for 61.93% of all false positives for manual analysis.
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Figure 3. Scatterplots showing the relationship between increasing canopy density and probability
of detection for both camera angles with manual detection. (A) Canopy vs. 90◦ camera angle for
TIR data, (B) canopy vs. 90◦ camera angle for RGB data, (C) canopy vs. 45◦ angle for TIR data, (D)
canopy vs. 45◦ angle for RGB data. The x axes for (A) and (B) (90◦ angle) and (C) and (D) (45◦ angle)
are in opposite directions to represent the direction the test subject walked from point to point.
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3.3. Manual Analysis: Comparison between Thermal and RGB Models

The overall probability of detection was higher for thermal images (0.69, sample size:
4885) than for RGB images (0.396, sample size: 2100). The Wald chi-square test indicated a
significance in the increased probability of detection with a thermal camera (p ≤ 2 × 10−16).

3.4. Automatic Detection Analysis: Thermal Data Model

Sub-model creation and selection produced four models which provided the best fit
to the data, and these are described in Appendix E, Table A5. Of these four, two models
shared the lowest AICc and the highest Akaike weight. Similar to results from manual
analysis, these two models only differed in the inclusion of walking/stationary subjects,
suggesting it did not improve the model in any way, which was confirmed by the Wald
chi-squared test (p = 0.844). The two best-fitting models also did not include time of day,
and this variable was found not to be a significant contributor to the model (p = 0.849).
Therefore, the best fitting model included the variables camera angle and canopy density.
This model is described in more detail in Table 4. A 90◦ camera angle significantly improved
detection probability, and excluding ‘low’ and ‘open-low’ densities as well as increasing
canopy density significantly decreased detection probability (Figure 4). The number of
false positives for the TIR data was 1059, accounting for 96.97% of all false positives for
automated detection (see Appendix F). The number of false negatives was 42, accounting
for 31.82% of all false negatives for automated detection.

Table 4. The model with the best fit to the data for TIR images with automated detection includes the
variables camera angle and canopy density.

Estimate 95% Confidence Intervals p-Value

(Intercept) 1.564 1.359, 1.777 <2 × 10−16

Camera angle (90◦) 0.234 0.0648, 0.403 0.0068

Canopy density (low) 0.0303 −0.248, 0.309 0.831
Canopy density (med) −0.929 −1.1801, −0.682 2.59 × 10−13

Canopy density (high) −1.514 −1.761, −1.272 <2 × 10−16

Canopy density (open to low) 0.0418 −0.328, 0.423 0.827
Canopy density (low to med) −0.429 −0.767, −0.0861 0.0135
Canopy density (med to high) −1.185 −1.496, −0.875 6.66 × 10−14

Canopy density (high to med) −1.074 −1.376, −0.775 2.41 × 10−12

Canopy density (med to low) −0.562 −0.877, −0.245 0.000482
Canopy density (low to open) −0.379 −0.702, −0.0539 0.0216

3.5. Automated Detection Analysis: RGB Data Model

The four models offering the best fit to the data are shown in Appendix E, Table A6.
The best fitting model included only canopy density and is described in Table 5. Camera
angle (p = 0.704) and stationary/walking test subjects (p = 0.475) had no significant effect on
probability of detection with an RGB camera. Increasing canopy density caused a decrease
in detection probability (Figure 5), however, only three density classes were significant
(high, med-high, and high-med). The number of false positives for RGB data was 33,
accounting for 3.03% of all false positives for automated detection. The number of false
negatives was 90, accounting for 68.18% of all false negatives for automated detection.

3.6. Automated Detection Analysis: Comparison between Thermal and RGB Models

The overall probability of detection was higher for thermal images (0.731, sample size:
4885) than for RGB images (0.137, sample size: 2100). The Wald chi-square test indicated a
significance in the increased probability of detection with a thermal camera (p ≤ 2 × 10−16).
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Figure 4. Scatterplot showing the relationship between increasing canopy density and probability of
detection for TIR images with automated detection.

Table 5. The model with the best fit to the data for TIR images with automated detection includes the
variables camera angle and canopy density.

Estimate 95% Confidence Intervals p-Value

(Intercept) −1.516 −1.821, −1.230 <2 × 10−16

Canopy density (low) −0.271 −0.712, 0.164 0.223
Canopy density (med) −0.271 −0.712, 0.164 0.223
Canopy density (high) −1.177 −1.750, −0.644 2.72 × 10−5

Canopy density (open to low) 0.130 −0.375, 0.621 0.608
Canopy density (low to med) −0.0931 −0.627, 0.418 0.726

Canopy density (med to high) −0.609 −1.233, −0.0337 0.0453
Canopy density (high to med) −0.839 −1.518, −0.227 0.0103
Canopy density (med to low) −0.192 −0.740, 0.3296 0.479
Canopy density (low to open) −0.245 −0.801, 0.283 0.374

3.7. Comparison between Manual and Automated Analysis

Analysis of the variation in the number of positive detections revealed that both forms
of analysis showed similar probabilities of detection (automated: 4007 positive detections,
manual: 4205 positive detections), however, overall manual analysis was found to be
statistically better at detecting subjects (p = 9.26 × 10−8). The number of false positives was
also significantly higher with automated detection (1089) compared with manual detection
(226). In contrast, the number of false negatives was higher with manual detection (331)
than with automated detection (132).

Manual analysis required approximately 35 h of image analysis and recording of
results, whereas the automated detection software allowed all 1400 images to be analysed
within a few minutes. Recording the results of this automated detection required no more
than 2 h to complete.
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detection for RGB images with automated detection.

3.8. Rock Density vs. False Positives in Automated Analysis

Upon analysing each density category separately, it was found that, in images with
the highest density of rocks, there was a much larger number of false positives. These
results are outlined in Table 6. The results of the three-proportion Z-test revealed that
the differences between the three density categories in the number of false positives were
significant (p = 2.2 × 10−16).

Table 6. Results of automated image analysis showing the total number of false positives in each
density category as well as the total number of detections and a calculated percentage of false
positives.

Rock Density No. of False
Positives

Total Number of
Detections

Percentage of False
Positives (%)

Low 178 1578 11.28
Medium 429 1498 28.64

High 659 1152 57.21

4. Discussion

The aim of this study was to identify the variables that significantly affect the proba-
bility of ‘poacher’ detection using drones fitted with either a TIR or RGB camera, building
upon findings from studies already conducted on this topic, in particular the study by
Hambrecht et al. [25]. The factors found to have a significant effect on detection through
manual analysis were time of day, camera type, camera angle, and canopy density. Walk-
ing or stationary test subjects had no significant effect on detection. Through automated
analysis, camera type, camera angle, and canopy density significantly influenced detection.
Time of day and walking or stationary test subjects had no significant effect. Analyst was
not included as a predictor variable because, similarly to Patterson et al. [12], analysts
had no previous experience with this type of analysis, and it took place in a controlled
environment (i.e., a set number of images were analysed per day).
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For the purpose of analysis, the drone footage was viewed through a limited number
of images after the flight, but in a realistic and ideal scenario, drone footage would be
analysed or monitored through a real-time video stream. Despite this, the study provides
detailed information to stakeholders about the environmental and the technological factors
that enhance poacher detection, such as when to fly or what camera angle to use, and
also provides results on the detection capabilities of machine learning models under these
different optimal conditions. At present, many studies are exploring the effectiveness of
drones in more in situ scenarios and in some cases are focused on the use of real-time
footage in combination with automated object detection [3,37,47,48].

4.1. Technical and Environmental Attributes

Overall, it was found that the probability of detection was significantly higher in
flights with a TIR camera than an RGB camera. A TIR camera was not used at midday in
this study; it is already known that thermal capabilities are very low during the heat of the
day, as thermal contrasts are too high to distinguish features within the environment [21].
Similarly, an RGB camera was not used for dawn and dusk studies, as it relies on the
presence of sunlight and thus is not useful during darker times of day [32,49]. These results
thus indicate that, for detection of humans, flying a drone with thermal capabilities is likely
to be more successful than flying a drone with only RGB capability.

For thermal studies with manual analysis, the probability of detection at dawn was
found to be significantly higher than at dusk. The advantage of using TIR cameras is that
they offer a defined thermal contrast which displays homeothermic animals, including
humans, as a white object against a black background due to thermoregulatory behaviours
of the individual. The thermal characteristics of the environment change throughout the
day, e.g., rocks and trees heat up, giving the test subjects a reduced thermal contrast to
their surroundings. Therefore, at dusk, the test subjects may have been less likely to be
seen within images or easily confused amongst rocks, trees, and paths that also appear
white in images [27,32,50]. This was reflected in the number of false positives found in the
manual thermal data (74.34%) compared with RGB data (25.66%).

In the studies previously mentioned by Burke et al. [32,33], it was reported that the
main causes of false positives were hot rocks, reflective branches, and hot or reflective
patches of ground, and the best time of day to operate in order to minimise these false
positives is in the early morning. It was suggested that modelling the terrain prior to drone
flights could allow spurious sources to be pre-empted and discarded; also suggested was
using an oblique angle to detect objects under dense vegetation.

Despite the dusk flights in this study being conducted after sunset at 19:15, at this
time, it was not completely dark, and it is likely that the environmental temperatures were
still high from high temperatures during the day, which subsequently had an effect on
thermal contrast and detection probabilities. Despite the results of automated analysis
producing a detection probability greater than 0.5, it revealed a higher number of false
positives compared with manual analysis.

The number of rocks present in the thermal images were found to significantly affect
these numbers of false positives that were identified in automated analysis, which was
expected. In order to limit these false positives and for the model to accurately distinguish
between people and aspects of the environment, the model requires more thorough training
and testing before being used for operational purposes as well as incorporating some of
the recommendations by Burke et al. [32,33]. In contrast, the number of false negatives was
found to be higher with manual analysis compared with automated detection. These false
negatives occurred due to confusion with other objects in the environment that were close
by (e.g., hot rocks), vegetation cover blocking part of the subject, and a reduced thermal
contrast. This result was also found in the study by Burke et al. [32].

For future improvements, it would be useful to incorporate the daily temperature
recordings from the field station to observe whether this correlates with an increase or
a decrease in detection probabilities for thermal flights. It would also be beneficial to
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conduct dusk flights later in the evening, when the environmental temperatures may
be cooler, but it would be expected that detection probabilities would remain higher
at dawn than dusk. Our results, however, still coincide with evidence on the modus
operandi of poachers in relation to the time of day they are most likely to operate. A
study by Koen et al. [19], in which an ecological model was produced to structure the rhino
poaching problem, reported that most poaching events occurred at twilight, i.e., dawn and
dusk. This provides a co-occurrence between the optimal time of day for drone detection
and the preferred operational time for poachers.

Our study also showed a variance in detection probabilities with different camera
angles. For thermal data in both forms of analysis, a 90◦ angle was found to increase
the probability of detection, yet for RGB data (manual analysis), the opposite was true;
an oblique angle gave a higher probability of detection. It was expected that, for both
camera types, an oblique angle would allow for test subjects underneath the dense canopy
to be more easily detected. Oblique camera angles allow for blind spots, hard-to-see
environmental characteristics, and various fields of view to be exposed, none of which are
facilitated by a nadir camera-view [27,33,51]. During thermal flights, when the camera was
at an oblique angle, test subjects may have blended into their environment, particularly
during dusk flights, being blocked by or mistaken for tree trunks or boulders by having
a reduced thermal contrast. At a 90◦ angle, only leaves and small branches blocked the
test subjects. Leaves do not absorb and retain as much heat as the trunk and cool down
via transpiration, meaning, through thermal imaging, test subjects have a much higher
thermal contrast compared to the leaves, making them more visible through gaps in the
canopy [52]. For the RGB flights, without the advantage of a thermal contrast, it is more
difficult to detect subjects, particularly in high density foliage and from 50 m above ground
level (AGL). It is evident that, with an oblique camera angle, where, in thermal studies,
tree trunks and test subjects were sometimes indistinguishable, subjects were more easily
detected, particularly if they were wearing brighter coloured t-shirts, giving them a greater
contrast against the environment (Appendix G). Similar effects were also found in other
studies with both humans and animals [12,22,25].

Camera angle was not found to be a significant variable with automated analysis.
Burke et al. [33] concluded that using an oblique camera angle could hinder the efficiency
of automated detection, as the apparent size of objects in the camera’s field-of-view (FOV)
differs due to the FOV covering a wider area at the top and becoming increasingly narrow
towards the bottom. It was recommended that, to achieve the minimum resolution required
to detect and identify an object with an oblique camera angle, it is necessary to reduce the
altitude of the drone. This would not be beneficial in anti-poaching operations, where it is
essential for the drone to remain undetected (discussed later in the paper). It is also possible
the lack of significance was due to the small number of positive detections produced by
the model for RGB data (288 out of 2100 potential detections). An improvement to the
study would be to conduct flights where the drone is flown around the test area rather than
stationary, as it could increase chances of detection by facilitating different fields of view,
particularly at higher canopy densities. It would also more closely represent a real-time
anti-poaching operation in which drones are deployed to survey large protected areas or
known poaching hotspots [23,47].

Canopy density had a significant negative effective on probability of detection for
both types of analysis. This result was also found in a variety of other studies investigating
detection rates of plants, animals, and humans [23,25,26,53]. Schlossberg et al. [54] found
that the detectability of African elephants (Loxodonta africana) was influenced by habitat
type and corresponding vegetation density. It was thought that an increase in the poach-
ing of elephants caused an increase in woody vegetation that was previously grazed by
these megaherbivores, which subsequently contributed to the decrease in detectability of
poachers who utilised this habitat to evade detection.

In our study, it was also found that, at higher canopy densities, a 90◦ camera angle
was more efficient at detecting test subjects with both camera types. As already explained,
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with an oblique camera angle, a high density of both tree trunks and foliage makes it more
difficult for subjects to be seen [26].

Walking or stationary test subjects did not affect detection for either form of analysis.
It was predicted that walking subjects would be more easily detected, particularly at higher
canopy densities, as they would be spotted through gaps in the canopy [20,28]. It is possible
this relationship was not found due to all the flights being viewed through a limited number
of photos rather than videos; if the flights were viewed as videos, it is more likely the
walking subjects would be spotted. Therefore, in the future, it would be useful to analyse
more photos per flight or to analyse the footage as videos as well as photos, allowing this
variable to be tested under more realistic conditions [3,11]. Detection of moving subjects is
made even more difficult when the camera itself is also moving (on-board the drone), but
there are studies that successfully tested algorithms and detection methods that specifically
track and detect moving objects with drone-mounted cameras [13,48].

4.2. Manual vs. Automated Detection

Automated detection software proved to be successful and time efficient in detecting
subjects from both thermal and RGB drone images, despite manual analysis being statisti-
cally more advantageous. Overall, automated detection is a more convenient method to
analyse data because, as previously mentioned, manual analysis is extremely error-prone
and often time-consuming when large data sets need to be processed [13,50]. As shown
from our results, automated detection saves a substantial amount of time spent analysing
data, enabling focus to be on other important tasks, and it allows more data to be collected
and analysed in a shorter timeframe. It also significantly reduces associated monetary and
time costs by eliminating the need to sustain teams of researchers or rely on citizen scien-
tists for the purpose of analysis [55,56]. For example, Norouzzadeh et al. [57] explored the
use of deep learning to automatically detect 48 species of wildlife in 3.2 million camera trap
images and found that automated detection saved researchers >8.2 years of human analysis
of this data set. It also opens doors to a wider range of other conservation-related uses, such
as real-time monitoring of environmental health, monitoring the expansion of invasive
species, and allowing larger-scale projects to be more practical and feasible [29,55,58].

In the context of this research, automated detection systems mounted on-board drones
can aid in increasing the speed and the efficiency at which poachers are prevented and
detained. Previously, anti-poaching operations with incorporated drones relied on individ-
uals continually supervising a live video stream, during which the detection of a poacher
is then communicated with ground patrols. This method relies on the reaction time of
those involved, which can be subject to human error, distraction, and delay, particularly if
more than one drone is deployed at the same time. A delay of just 5 min is long enough for
a rhino to be killed and de-horned. With automated detection, masses of incoming data
can be quickly filtered and analysed, instantly notifying ground patrols at the presence
of a poacher, who can produce quicker responses [7,11,58]. Including the system used
in this study, automated detection systems are also using more complex deep learning
pipelines and Faster-RCNNs to improve the speed at which poachers are detected. Bondi,
Kapoor et al. [59] used a Faster-RCNN to detect poachers in near real-time from drones
and found the inference time of the Faster-RCNN was 5 frames per second (fps), whilst
that of the live video stream was 25 fps, meaning the accuracy and the synchronisation
of the detection pipeline were compromised. Therefore, a downside of this method is
that the training and the use of these models in near real-time are extremely costly, along
with a steep learning curve, due to the complex network and computational requirements.
However, research is currently being conducted to overcome these challenges [38,60].

Whilst there are technological approaches other than deep learning for automating the
detection of objects, such as edge detection, they often rely on experts manually defining
and fine-tuning parameters for specific drone models and cameras before each mission.
Guirado et al. [61] evaluated the success of machine learning for detecting and mapping
Ziziphus lotus shrubs compared with the more commonly used object-based image analysis
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(OBIA). The deep learning method achieved 12% better precision and 30% better recall
than OBIA. Deep neural networks within these deep learning models have the ability to
extract parameters directly from labelled examples as a result of supervised learning [3,57].

4.3. Challenges for the Usage of Drones in Conservation Management

Wildlife protection and conservation efforts require adaptation of methods and re-
sources in order to keep up with the continual growth of international trade networks and
the detriment caused to wildlife numbers and the environment [47].

Manned aircrafts are widely used in anti-poaching operations and other conservation-
related applications such as mapping land cover change and monitoring animal distri-
butions [13,62,63]. However, lower implementation costs, high spatial and temporal
resolution of data, and higher safety of drones deem them a more feasible option for
these conservation purposes. The facilitation of high-resolution data collection allowed for
evidence of poaching and logging, such as fire plumes from poaching camps, to be detected
from as high as 200 m above ground level [64,65]. In addition, the lower noise emissions
and the ability to fly lower than manned aircrafts are extremely beneficial for anti-poaching,
as the drone can remain undetected whilst offering a higher chance of detecting poaching
activity. This reduced noise compared with manned aircrafts is also beneficial in reduc-
ing negative impacts on wildlife and the environment and is a less invasive technique
for tracking and monitoring small populations of endangered species [58,66]. A study
compared the noise levels of drones and manned aircrafts, during which the flying altitude
was standardised at 100 m. At this altitude, a fixed-wing drone produced 55 dBA, whereas
the manned aircraft produced 95 dBA [67].

Drones are also capable of monitoring hostile or otherwise inaccessible environments
(e.g., montane forests, dense mangroves, swamps), some of which may be unsociable
territory for ground-based patrols [68]. Other positive social implications of using drones in
conservation include empowerment and strengthening of local communities, enabling them
to take conservation efforts into their own hands by collecting their own data and helping to
raise awareness of conservation issues amongst the community. This is made possible due
to the high-resolution images and the large amount of data they can provide [68,69]. On
the other hand, the presence of drones within community areas may invoke confusion and
hostility if residents do not understand the purpose of the drone, particularly in developing
countries where exposure to modern technology is limited. However, drones can also have
an indirect positive effect on feelings of safety within communities if these drones reduce
the activity of local criminals and military forces [69].

Despite the obvious advantages of drones over alternative methods, there are still
drawbacks that should be considered to maximise the success of drones as an anti-poaching
tool. Even though they have the ability to cover more ground for surveillance than ground
patrols, the small size of most drones means they have a limited payload capacity, restricting
the size of battery they can carry. The areas required to be surveyed are often extremely
large, such as Kruger National Park (19,500 km2), and due to battery restrictions, the
maximum flight time is around 1 h at optimal speed, giving the drone a footprint that
covers less than 1% of the park. This is particularly problematic considering poachers are
continually adapting and improving their methods and operating in unpredictable ways.
Studies are exploring the use of models that can predict poacher behaviour, thus drone
flight plans can be optimised to increase the chances of detection [13,67,70].

In addition, there is no way as of yet to completely silence drones, and despite them
being quieter and able to fly lower than manned aircrafts, in order to remain undetected by
poachers, the drone must still be a significant distance AGL. This can reduce the spatial
resolution of surveillance cameras on-board and could, in turn, hinder the efficiency of
automated detection. This is particularly problematic when conservation strategies are
using cheaper lightweight models for automated detection. A strategy called ‘You Only
Look Once’ (YOLO) uses a lightweight model with a single CNN, and although this
provides faster inference time, it has the downside of having a poor overall accuracy of
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detection. This accuracy worsens when the drone is flown at higher altitudes [38,71]. More
advanced drones and software can be used to overcome these limitations, having longer
operating times and higher spatial resolutions, but they are restrictive in terms of their
cost, which is unrealistic for small NGOs in developing countries. Research was conducted
on ways of attenuating the noise of drones through methods such as adding propellers
with more blades and installing engine silencers or propeller sound absorbers. This could
overcome the need to jeopardize spatial resolution by flying higher but, again, they require
additional funds that may not be readily accessible [59,72]. On the other hand, rather
than being a stealthy surveillance technique, drones are also found to act as a deterrent
themselves if poachers are aware they are being used in the area [73,74].

Overall, drones have the potential to be a useful addition to methods already employed
within anti-poaching operations. They cannot tackle poaching as a stand-alone initiative,
rather, they are best incorporated in combination with other methods; they can offer
additional support where other methods may be lacking, such as larger ground cover as
support for ground-based patrols. Although advancements in anti-poaching technology
are crucial in order to ‘keep up’ with the increased sophistication and militarisation of
poaching methods, technology as a whole cannot be the sole driver of conservation efforts.
Enforced legislation and community involvement are important factors attributed to a
decline in poaching incidents [59,70].

5. Conclusions

We outlined the technological factors that can optimise poacher detection during
manual and automated detection, and whilst accurate and reliable detection comes with
a number of environmental challenges, we accounted for some of these issues, such as
vegetation cover and thermal signatures of the environment, by providing technological
recommendations to overcome them.

We discussed how drones can benefit anti-poaching efforts better than other methods,
and we showed the potential of drones as the future of conservation strategies when
coupled with automated detection and when these technological and environmental factors
are considered. The data suggest that, overall, using a thermal camera at either dawn or
dusk provides the most success in detecting poachers. However, an RGB camera is more
useful during the day when environmental temperatures are higher. Poachers under high
density vegetation are less likely to be detected, but detection is improved when a 90◦

camera angle is used at this high density. Automated detection software had a successful
detection probability of greater than 0.5, but the full potential of the software could be
reached through more training of the model, and this would also reduce the large number of
false positives produced in detection results. All of the findings summarised in combination
with findings from other studies about advancements in machine learning, poaching
hotspots, and the success of drones in anti-poaching scenarios [3,23–25,30,48,50,54,74]
will be useful when incorporating drones into anti-poaching operations and will aid in
increasing the efficiency of expenditure of anti-poaching resources. In future research,
it would be beneficial to repeat this study with a focus on the efficiency of automated
detection in real-time video on-board the drone under technological and environmental
conditions recommended by this study to increase detection probability.
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Appendix B. Model Selection for Manual Analysis

Table A1. The models with the best fit to the TIR data showing AICc and weight values.

Df LogLik AICc Delta Weight

Camera angle + canopy density 11 −1193.274 2408.7 0.000 0.46
Camera angle + canopy density + stationary/walking 11 −1193.274 2408.7 0.000 0.46

Table A2. The models with the best fit to the RGB data showing AICc and weight values.

Df LogLik AICc Delta Weight

Camera angle + canopy density + time of day 12 −2728.998 5482.1 0.000 0.5
Camera angle + canopy density + stationary/walking + time of day 16 −2728.998 5482.1 0.000 0.5



Sensors 2021, 21, 4074 19 of 24

Appendix C. Probability of Detection vs. Canopy Density at Different Camera Angles
for Manual Analysis

Table A3. A summary of coefficients and p-values showing the effect of canopy density on detection
with different camera angles for TIR data with manual analysis.

90◦ Camera Angle 45◦ Camera Angle

Estimate p-Value Estimate p-Value

(Intercept) 3.338 <2 × 10−6 (Intercept) 1.497 <2 × 10−6

Canopy density Canopy density
Open-low −1.523 4.36 × 10−6 High −1.599 <2 × 10−6

Low −1.783 4.39 × 10−8 High-med −1.429 3.06 × 10−16

Low-med −2.1697 1.09 × 10−11 Med −1.256 7.72 × 10−13

Med −2.464 6.55 × 10−15 Med-low −0.6903 0.000129
Med-high −2.973 <2 × 10−16 Low −0.466 0.0114

High −3.864 <2 × 10−16 Low-open −0.231 0.221

Table A4. A summary of coefficients and p-values showing the effect of canopy density on detection
with different camera angles for RGB data with manual analysis.

90◦ Camera Angle 45◦ Camera Angle

Estimate p-Value Estimate p-Value

(Intercept) 1.0809 8.53 × 10−9 (Intercept) 0.378 0.0230
Canopy density Canopy density

Open-low −0.813 0.00114 High −2.914 <2 × 10−6

Low −1.161 3.10 × 10−6 High-med −1.225 4.97 × 10−7

Low-med −1.685 3.14 × 10−11 Med −0.485 0.0377
Med −2.426 <2 × 10−16 Med-low −0.271 0.245

Med-high −3.0117 <2 × 10−16 Low −0.137 0.559
High −6.0849 2.49 × 10−9 Low-open −0.244 0.295
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Appendix E. Model Selection for Automated Analysis

Table A5. The models with the best fit to the TIR data showing AICc and weight values.

Df LogLik AICc Delta Weight

Camera angle + canopy density 11 −2796.136 5614.3 0.00 0.338
Camera angle + canopy density + stationary/walking 11 −2796.136 5614.3 0.00 0.338

Camera angle + canopy density + time of day 12 −2796.090 5616.2 1.92 0.130
Camera angle + canopy density + stationary/walking + time of day 12 −2796.090 5616.2 1.92 0.130

Table A6. The models with the best fit to the RGB data showing AICc and weight values.

Df LogLik AICc Delta Weight

Canopy density 10 −823.393 1666.9 0.00 0.348
Canopy density + stationary/walking 10 −823.393 1666.9 0.00 0.348

Canopy density + camera angle 11 −823.213 1668.6 1.66 0.152
Canopy density + stationary/walking + camera angle 11 −823.213 1668.6 1.66 0.152
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Appendix G. Comparison between Thermal and RGB Images with an Oblique
Camera Angle
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