
Journal of Transport Geography 94 (2021) 103119

Available online 18 June 2021
0966-6923/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A global comparison of bicycle sharing systems 

James Todd *, Oliver O’Brien , James Cheshire 
UCL Department of Geography, Gower Street, London WC1E 6BT, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Bicycle sharing systems 
Micro-mobility 
Metric creation 
Clustering 

A B S T R A C T   

Increasing urban populations have created pressures on the transportation networks that serve them. Bicycle 
sharing systems (BSS) have seen a dramatic increase in popularity as cities around the world begin to implement 
and see significant use and benefit from this growing mode of urban micro-mobility. As a result, the research 
surrounding bicycle sharing systems has also increased, although this has been primarily focused on the analysis 
of individual systems. There is therefore a need for a global comparison of systems, particularly given that prior 
research often omits China, which is currently the largest BSS market in the world. This paper therefore marks a 
major step forward through its analysis of data from 322 schemes situated on all major continents. Conducting 
such analysis, there appear to be 5 main types of BSS: very large, high use BSS, large BSS in major cities, medium BSS 
with extensive cycling infrastructure, small to medium efficient BSS and small to medium inefficient BSS. From these 
major cluster groups, we are able to group schemes by usage, contextual indicators and the behavioural char-
acteristics of their users. This not only facilitates a global comparison of scheme performance, but also offers a 
basis to new schemes to identify established BSS with similar characteristics that can be used as a template for 
anticipating the likely demand from users.   

1. Introduction 

The number of Bicycle Sharing Systems (BSS) has seen a dramatic 
increase in recent years rising from 13 systems in 2004 to over 2000 in 
2019 (Bicycle Sharing Blog, 2019), making it one of the fastest growing 
modes of transportation. The docked BSS we find in many cities – such as 
Santander Cycles in London and Paris’s Vélib’ System – are known as 
“third generation” schemes (Corcoran et al., 2014; Médard de Chardon 
and Caruso, 2015; Médard de Chardon et al., 2017; DeMaio and Gifford, 
2004; ter Beek et al., 2014) and can be characterised as having cus-
tomised bicycles with automated docking stations secured by user 
payment card details. They are typically accompanied by websites that 
provide data on the occupancy rates of each docking station (Médard de 
Chardon and Caruso, 2015; Davis, 2014). 

In the decade since 2010, when the London BSS commenced oper-
ation, the global urban population increased from 3.6 billion to 4.3 
billion (Worldbank, 2021). With urban growth comes increased levels of 
congestion (Çolak et al., 2016) that cities need to manage across both 
public and private transportation modes. As technologies around BSS 
have improved and become cheaper, they have become an attractive 
solution to help improve both congestion levels and also health as 
cycling is a form of active transport that reduces emissions (Fishman 

et al., 2013; O’Brien et al., 2014; Pucher and Buehler, 2012; Shaheen 
et al., 2010; Woodcock et al., 2014; Zhang et al., 2019). In a study 
conducted by Yang et al. (2019), they find evidence to show a change in 
travel behaviour of BSS users near metro stations, which exemplifies the 
uptake of BSS as a mode to help overcome issues around the ‘last mile 
problem’. This refers to the difficulty that commuters encounter when 
travelling from a transportation hub, such as a train or bus station, to 
their final destination. 

User-focused research has shown that weekday journeys during peak 
hours may actually be faster using BSS services compared to taxi jour-
neys (Faghih-Imani et al., 2017). Similarly, with a careful integration 
with existing public transportation networks, BSS has been found to 
reduce overall travel times as well as increase use of these more envi-
ronmentally friendly modes of public transportation as a whole 
(Jäppinen et al., 2013; Zhang et al., 2015). In addition, the benefits of 
cycling can outweigh disbenefits of air pollution exposure (Mueller 
et al., 2015) as well as provide a safer means to travel, in comparison to 
private cyclists (Fishman and Schepers, 2016). 

Whilst the literature on individual BSS is extensive there have been 
few comparisons of schemes globally. This can be attributed to the lack 
of routine data releases from BSS operators (Mátrai and Tóth, 2016) and 
has meant there is currently no established standard for the comparison 

* Corresponding author. 
E-mail addresses: james.todd.15@ucl.ac.uk (J. Todd), o.obrien@ucl.ac.uk (O. O’Brien), james.cheshire@ucl.ac.uk (J. Cheshire).  

Contents lists available at ScienceDirect 

Journal of Transport Geography 

journal homepage: www.elsevier.com/locate/jtrangeo 

https://doi.org/10.1016/j.jtrangeo.2021.103119 
Received 27 May 2020; Received in revised form 19 April 2021; Accepted 8 June 2021   

mailto:james.todd.15@ucl.ac.uk
mailto:o.obrien@ucl.ac.uk
mailto:james.cheshire@ucl.ac.uk
www.sciencedirect.com/science/journal/09666923
https://www.elsevier.com/locate/jtrangeo
https://doi.org/10.1016/j.jtrangeo.2021.103119
https://doi.org/10.1016/j.jtrangeo.2021.103119
https://doi.org/10.1016/j.jtrangeo.2021.103119
http://creativecommons.org/licenses/by/4.0/


Journal of Transport Geography 94 (2021) 103119

2

of BSS (Médard de Chardon and Caruso, 2015). One important conse-
quence of this is that it allows operators to overstate the success of their 
BSS in comparison to others in search of benefits such as increased in-
vestment (Médard de Chardon and Caruso, 2015). This paper therefore 
provides a timely update and extension of the global analysis conducted 
in O’Brien et al. (2014) and delivers a comprehensive comparison of an 
unprecedented number of docked BSS around the world. 

Utilising a very large collection of BSS data, this research conducts a 
two-staged clustering analysis to help gain insights into the global 
landscape of docked BSS, their evolution, and individual system suc-
cesses and failures. To achieve this, it was first necessary to establish 
comparative metrics across all systems in the dataset through the 
manipulation of dock capacity data. These metrics – detailed in Section 
4.1 – provide the foundations to the global classification created through 
a combination of K-means and Dynamic Time Warping (DTW) 
clustering. 

2. Literature review 

The body of BSS literature has been comprehensively detailed in 
Fishman (2016) and Fishman (2019), so our focus in this literature re-
view is on those studies that offer comparisons between BSS (Médard de 
Chardon et al., 2017; O’Brien et al., 2014; Kou and Cai, 2019; Sarkar 
et al., 2015; Zaltz Austwick et al., 2013; Zhang et al., 2015), as well as 
variables that influence usage across systems. The variables that are 
found to be influential (detailed in Section 2.1) have helped to inform 
decisions on the counterfactual variables to underpin the classification 
process detailed in Section 4.2. 

2.1. Variables of influence 

When assessing the factors that can influence the use of BSS, it makes 
sense to start with the attributes of BSS themselves. As Table 1 shows, 
the size of a system appears to play a large role in influencing users’ 
propensity to use it as well as influence the absolute number of riders 
(O’Brien et al., 2014). We also find that the larger the system and higher 
the density of docking stations, the more a BSS is used (Médard de 
Chardon et al., 2017; O’Brien et al., 2014). There is also a growing body 

of literature surrounding users’ propensity to use systems based on 
factors such as their distance from the nearest docking station. Such 
insights are usually garnered through survey methods and can shed light 
on how far users are willing to travel in order to use BSS (Guerra et al., 
2012; Bachand-Marleau et al., 2012). For example, Bachand-Marleau 
et al. (2012) found that the maximum distance a user is willing to walk 
to the nearest BSS station is around 500 m. Similarly, Gu et al. (2019) 
used 500 m as the ‘acceptable walking distance’ for commuters using 
BSS in combination with public transportation. Therefore, 500 m has 
been adopted as the standardised distance for the circle of operation 
around each docking station, which has been used to calculate the 
operational area for each BSS in this paper. A fixed distance is used in 
order to maintain metric homogeneity across BSS. 

Another important determinant in the use of BSS are the character-
istics of the population in close proximity to them. Fishman (2016) 
shows that higher population density and higher income areas have 
more active BSS use (Faghih-Imani et al., 2014; Fishman et al., 2014; 
Woodcock et al., 2014). Research by Bachand-Marleau et al. (2012) and 
Buck et al. (2013) have found that users’ income levels have a mixed 
level of influence both within BSS as well as between BSS, with evidence 
showing that in Montreal, Canada, those users earning less than Can 
$40,000 were 32% less likely to use BSS, whereas those users in 
Washington D.C., United States, were typically of lower income in 
comparison to private cyclists. BSS is more likely have a closer gender 
balance although still with a male bias (Pucher et al., 2011). Research on 
the ethnicity and education of BSS users in western cities shows higher 
use rates in urban areas with a higher proportion of white people as well 
as more educated populations (Fishman et al., 2014; Martin and Sha-
heen, 2014; Buck et al., 2013). The schemes have often favoured more 
affluent areas in the city but Goodman and Cheshire (2014) found that 
residents from more deprived areas use BSS if these are built in their 
local areas and remain affordable relative to other modes. 

Weather and topography have been found to play a significant role in 
the use patterns within BSS and seasonal impacts are clear from the 
number of trips (Ahmed et al., 2010), with areas/times with high levels 
of average rainfall seeing a decrease in the use of BSS (Campbell et al., 
2016; Corcoran et al., 2014; Miranda-Moreno and Nosal, 2011; Nan-
kervis, 1999). Temperature also appears to play a significant role in the 

Table 1 
A summary of some of variables which influence the use of BSS, extracted from the papers discussed.  

Variable Relationship Paper 

BSS Factors Number of Stations Positive Faghih-Imani et al. (2014), Médard de Chardon et al. (2017) 
Station Density Positive Médard de Chardon et al. (2017) 
Station Capacity Positive Tran et al. (2015), O’Brien et al. (2014) 
Distance to Station Negative Tran et al. (2015), Bachand-Marleau et al. (2012) 

Socio-Demographic Population Positive Médard de Chardon et al. (2017), Faghih-Imani et al. (2014), Tran et al. (2015) 
Income Positive 

Negative 
Fishman et al. (2014), Roy et al. (2019), Woodcock et al. (2014), Bachand-Marleau et al. (2012) 

Age Positive Fishman et al. (2014), Zhang et al. (2016) 
Gender Male Fishman et al. (2014), Zhang et al. (2016), Goodman and Cheshire (2014), Murphy and Usher (2015) 
Jobs Positive Tran et al. (2015), Woodcock et al. (2014) 
Education Positive Fishman et al. (2014), Shaheen et al. (2013) 
Ethnicity (White) Positive Buck et al. (2013) 

Weather/Climate Rainfall Negative Corcoran et al. (2014), Miranda-Moreno and Nosal (2011) 
Windspeed Negative 

Insignificant 
Corcoran et al. (2014), Miranda-Moreno and Nosal (2011) 

Air Pollution Negative Campbell et al. (2016) 
Temperature Insignificant 

Positive 
Corcoran et al. (2014), Faghih-Imani et al. (2014) 

Humidity Negative Faghih-Imani et al. (2014) 
Topography Slope Negative Frade and Ribeiro (2014), Mateo-Babiano et al. (2016) 

Altitude Negative Tran et al. (2015) 
Cycling Infrastructure Cycling Infrastructure Positive Fishman et al. (2014), Faghih-Imani et al. (2014), Buck and Buehler (2012), Mateo-Babiano et al. (2016) 
Other Public/School Holidays Insignificant Corcoran et al. (2014), Brandenburg et al. (2007), Borgnat et al. (2011) 

Helmet Requirement Negative Médard de Chardon et al. (2017), Fishman et al. (2014), O’Brien et al. (2014) 
Temporality Weekday/Weekend – Faghih-Imani et al. (2014), Faghih-Imani et al. (2017), O’Brien et al. (2014), Zaltz Austwick et al. (2013) 

Season – Ahmed et al. (2010), Faghih-Imani et al. (2017) 
Time of day – Faghih-Imani et al. (2017), O’Brien et al. (2014)  
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uptake of BSS. Generally, an increase in temperature has been associated 
with an increase in BSS activity (Faghih-Imani et al., 2014), up to a limit 
(Miranda-Moreno and Nosal, 2011). Other research shows a negative 
correlation between topographical relief and BSS use (Midgley, 2011), 
with Mateo-Babiano et al. (2016) finding that there was nearly 2 times 
more downhill than uphill journeys in the Brisbane BSS. 

With safety concerns found to be one of the largest barriers to BSS use 
(see Fishman et al., 2014) those urban areas with more dedicated cycling 
infrastructure benefit from greater BSS use (Faghih-Imani et al., 2014; 
Mateo-Babiano et al., 2016). However, research also suggests that reg-
ulations requiring users to wear helmets can limit the appeal of BSS 
(Médard de Chardon et al., 2017; Fishman et al., 2013; O’Brien et al., 
2014), with BSS users significantly less likely to wear helmets as 
compared to private bicycle users in those cities which do not mandate 
cyclists to wear helmets (Fischer et al., 2012; LDA Consulting, 2013). 

There are numerous other variables which have been assessed at the 
individual BSS level, but the impact of temporality is one which has been 
found to have the most consistent impacts across BSS. The number of 
journeys within a BSS conform to seasonal, weekly and daily trends 
(Ahmed et al., 2010; Faghih-Imani et al., 2017; Faghih-Imani et al., 
2014; Zaltz Austwick et al., 2013). In particular we can see clear dif-
ferences in the use patterns within a system, when comparing weekday 
and weekend journey patterns. As a result, the weekday-weekend divide 
has been a consistent feature of the majority of analysis which considers 
use patterns across BSS literature (Faghih-Imani et al., 2017; Faghih- 
Imani et al., 2014; Mateo-Babiano et al., 2016. 

2.2. Bicycle sharing system comparisons 

Comparisons between BSS provide a way of assessing the relation-
ships between different attributes across systems. This enables us to 
develop a deeper understanding of the BSS landscape as a whole, as it 
allows us to see how the variables impact BSS performance globally. 
Previous work in this respect has been limited by poor data availability, 
therefore few regional comparisons have been attempted. There are 
exceptions, which include Zaltz Austwick et al. (2013) who compare 5 

systems, and a number of studies that seek to investigate differences in 
usage patterns as well as clustering (see also Bieliński et al., 2019; Kou 
and Cai, 2019; Sarkar et al., 2015; Zhang et al., 2015). 

The scope for substantive international comparisons across BSS is 
constrained by the inconsistency of BSS data collection practices and 
formats, and the limited availability of data for many systems. As a 
result, when making comparisons between BSS the “trips per day per 
bicycle” metric (TDB) is commonly used as it is straightforward to 
calculate and enables some understanding of the usage rates in a BSS. 
This metric is calculated using the dock capacity information, which is 
the most commonly available form of real-time BSS data. For example, it 
is the basis to Médard de Chardon et al.’s (2017) comparison of 75 
systems from around the world that determined common variables that 
influence the use of each BSS. Similar to Table 1, the authors identified 5 
categories of variable: BSS attributes, density and compactness, geog-
raphy, weather and transportation infrastructure. Although the authors 
express TDB as a ‘good standardised measure of success’ (Médard de 
Chardon et al., 2017), in this paper TDB has been used primarily as a 
measure of system efficiency and rate of use. 

There is a need for a large global comparison of systems, particularly 
given that prior research often omits China, which is currently the 
largest BSS market in the world with 1.9 million bicycles in over 430 
cities in 2016 (Gu et al., 2019). The research in this paper therefore 
marks a major step forward given it benefits from data collected from 
schemes situated on all major continents. It can thus reveal new simi-
larities/differences between systems and offer insights at a truly global 
level. 

3. Data 

3.1. Bicycle sharing system data 

Dock capacity information is the most abundantly available data for 
BSS as it offers a real-time indication of the number of bicycles and 
spaces at each docking station within a particular BSS. These data are 
typically used to notify users and system operators of bike availability 

Fig. 1. The size and location of the 322 BSS used within the final analysis.  
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across the system. But for the purposes of this research, these data were 
collected and stored within a database at 2-min intervals (for the ma-
jority of systems), enabling us to build up a detailed understanding of 
the size of the fleet within each system as well as the flow of bicycles in 
and out of docking stations. A subset of BSS (see Appendix) also release 

Origin-Destination (O–D) journey data, which is used within this 
research for calibrating and validating journeys detected from the 
manipulation of dock capacity data (Section 4.1.1). Fig. 1 depicts the 
distribution and size of the 322 BSS for which we have complete data 
and used within the final analysis. The dataset provides the most holistic 
view of BSS which is currently available, with BSS data from all conti-
nents. The coordinates of docking stations within each BSS were also 
recorded and stored within a database. These were used to estimate the 
operational extent and to extract the confounding variables for each 
scheme (Sections 4.1.3 and 4.1.4). 

3.2. Confounding variable data 

In an effort to account for different contextual settings of each BSS 
additional confounding variables were calculated and clustered. These 
were chosen based on the literature in Section 2.1 and are detailed in 
Table 2. We have attempted to choose from each variable category, 
prioritising those which exhibited the most consistent impacts across 
BSS. Unfortunately, the choice of variables was limited to those with 
global coverage, as it was necessary to maintain metric homogeneity 
across the BSS within this analysis. After careful consideration, the 
metrics of population, topography, precipitation and cycling infra-
structure were selected and used to calculate those additional con-
founding variables (detailed in Section 4.1.4). 

Data on cycling infrastructure was derived from OpenStreetMap 
(OSM) data. OSM is widely used has been found to be a more updated 
and granular source of such data in comparison to proprietary alterna-
tives like Google Maps (Natera et al., 2020). 

4. Methodology 

4.1. Metric creation 

The careful manipulation of dock capacity data enables the creation 
of metrics indicating the size and use of each BSS, whilst dock location 
data can be used to determine the operational area of each BSS as well as 
enable the calculation of confounding variables within these areas. The 
metrics calculated provide the foundations for the creation of two 
datasets (Section 4.2) that split the time constant and time series vari-
ables and are used to conduct the two-staged classification process. 

4.1.1. Journey estimation, validation and cleaning 
In order to estimate the number of journeys within each system, the 

dock capacity records were examined sequentially. A fall in the number 
of bicycles between two consecutive collection periods (usually 2-min) 
was used as a proxy for the start of a journey from that docking 

Table 2 
Confounding variable data sources, resolutions and buffer distances.  

Data source Variables 
calculated 

Raster/ 
Vector 
(resolution) 

Time period Buffer 
distance 

Global Human 
Settlement 
Population Grid 
by the European 
Commission 

Population Raster (250 
m cells) 

2015 1000 m 

Mapzen Terrain 
Tiles accessed 
through elevatr R 
package 

Topography Raster 
(Variable 
[zoom = 9a]) 

Accessed 
11th July 
2019 

300 m 

Average 
precipitation 
1970–2000 from 
worldclim.org 

Precipitation Raster 
(1000 m 
cells) 

1970–2000 1000 m 

OpenStreetMap Cycling 
Infrastructure 
Length 

Vector Accessed 
1st July 
2020 

Convex 
Hull  

a https://github.com/tilezen/joerd/blob/master/docs/data-sources.md#wh 
at-is-the-ground-resolution 

Fig. 2. Visual representation of the data noise detection algorithm.  

Table 3 
K-means cluster characteristics.  

Cluster Very large, high use 
BSS 

Large BSS in major 
cities 

Medium BSS with extensive cycling 
infrastructure 

Small to medium efficient 
BSS 

Small to medium inefficient 
BSS 

Variable 

No. of BSS 3 15 5 66 233 
Population 4,299,516.9 1,786,311.1 448,719.2 350,354.4 111,302.1 
Area (Km2) 441.3 167.5 73.6 36.1 16.7 
Slope (o) 3.2 2.6 1.4 2.2 1.8 
Precipitation 

(mm) 
176.8 142.3 66.4 82.3 77.0 

Road Length (Km) 5780.2 4741.4 14497.3 1294.1 748.1 
Cycle Length(Km) 211.0 394.4 1533.5 181.5 80.4 
Weekday Journeys 68659.5 24902.8 2708.1 4447.5 359.2 
Weekday Max 

Bikes 
18681.1 6001.5 1124.9 967.4 279.4 

Weekday TDB 4.6 4.7 1.5 4.9 1.0 
Weekend Journeys 65097.1 21728.7 2716.2 3384.3 305.0 
Weekend Max 

Bikes 
18839.5 6015.0 1121.7 968.7 277.5 

Weekend TDB 4.2 3.9 1.4 3.8 0.9  
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station. This heuristic was applied to each docking station within a BSS, 
helping to build up a detailed picture of the frequency of journeys. 
Similar journey estimation methods have been used by Médard de 
Chardon and Caruso (2015) who found that aggregating journey esti-
mations to the daily level proved to be the most accurate. Journeys were 
also aggregated to the hourly level, in order to be able to examine 

patterns of use throughout a day in more detail. 
The validation of journey estimations was an essential step due to the 

importance of the variable in the creation of other metrics such as TDB 
as well as in the second-stage DTW cluster analysis of the use profile for a 
typical day. For these reasons, many precautions were taken in order to 
ensure its validity. 

Fig. 4. Results of DTW clustering on average weekday use for the very large, high use BSS cluster.  

Fig. 5. Results of DTW clustering on average weekend use for the very large, high use BSS cluster.  
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For the systems for which we have journey data available (see Ap-
pendix), it was possible to compare the calculated journey estimations to 
the journey data. This contains the O–D flows of each journey taken 
within a BSS, as opposed to dock capacity data that is likely to contain 
operator redistributions as well as data errors. Therefore, the data is 
aggregated to the same 24-h period as the estimated journey figures and 
used to calculate the percentage difference. After initial investigations, 
journey estimations were found to both under and overestimate journey 
counts. On average, the estimated journey figures varied by up to 15% 
with respect to actual journey records from the journey data. Un-
derestimations can arise from the frequency of observations not being 
sufficient to capture all dock changes. This effect can be reduced by 
using a shorter collection interval (Médard de Chardon and Caruso, 
2015). Overestimations are typically due to operator actions such as 
rebalancing or bicycle removal for repairs, which are likely to get 
captured within dock capacity data. There were also periods of over-
estimations triggered largely by transmission errors from docking sta-
tions. These were identified within the dock capacity data where 
sequential records fluctuated between the same value across several 
collection periods (as seen in Fig. 2). For this method to be effective at 
identifying all periods of potential data collection errors across all BSS, it 
was necessary to test several threshold levels. Due to the high data 
volume and the large variability in BSS size, it was found that low 
threshold levels were necessary to capture all true positive cases of false 
data collection. This meant that differences in the number of bikes of 
more than 1 over a period greater than 6 sequential data collection in-
stances were identified as periods of potential data error. Since the 
threshold values were very low, there were instances where the 

algorithm captures some false positives. As a result, it was necessary to 
manually confirm each case identified as potential false data and remove 
those periods which were verified to be a false positive. 

4.1.2. Maximum available bicycles and trips per day per bicycle 
The number of operational bicycles (total number of bikes in a single 

collection period) was recorded and TDB calculated by dividing the 
estimated number of journeys within a particular day, by the maximum 
number of operational bicycles for the same day. TDB helps to account 
for differences in the size of the system and allows for cross comparison 
between systems in terms each bicycle’s use per day. 

4.1.3. Operational area 
As mentioned in Section 2.1, the operational area of a BSS was 

defined by placing a 500 m radius buffer around each of the docking 
stations. These were dissolved into a single polygon and were used to 
calculate the average operational area. Similar to all the other metrics 
calculated within this analysis, it was important to ensure homogeneity 
in the way that the metrics were calculated, not only to ensure 
comparative rigor, but also to help automate the calculation process 
across large number of BSS. We therefore opted for this simpler rule of 
thumb, rather than attempting to determine operational areas – which 
are also subject to change – on an operator by operator basis. This 
approach has been taken in other studies, including Fuller et al. (2013), 
Hosford et al. (2019), Hosford et al. (2018) and Bachand-Marleau et al. 
(2012). A sensitivity analysis was conducted to determine the impacts of 
buffer size since smaller buffers have been used in other studies (see 
Kabra et al., 2019; Tran et al., 2015). The results suggest that using a 

Fig. 6. Results of DTW clustering on average weekday use for the large BSS in major cities cluster.  
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300 m radius buffer to determine operational area makes no difference 
to the K-means cluster assignments in Section 5.1, whilst a 250 m radius 
buffer causes a change in the classification of just 1 system out of the 322 
BSS within this analysis. This is a very minor change, reinforcing the 
strong cluster identities found within the results (Section 5). 

4.1.4. Confounding variables 
Time invariant confounding variables (population, precipitation, 

topography and cycle paths) were estimated for each BSS to add addi-
tional contextual information to our clusters. Active docking stations, in 
the period between April and September 2018, were buffered to 
generate polygons for overlay onto the confounding variable datasets 
(Section 3.2). The buffer distances used for each variable are shown in 
Table 2. For both the population and precipitation variables we decided 
to use a 1 km buffer to incorporate some of the urban characteristics 
beyond the immediate limits of the outer docking stations in a scheme. 
Although literature suggests that willingness to walk to a docking station 
is around 500 m for some systems (Gu et al., 2019; Bachand-Marleau 
et al., 2012), we know that users of BSS are likely to use BSS as a mode to 
solve issues around the “last mile problem” (Fan et al., 2019; Yang et al., 
2019), which implies users travelling from outside that 500 m walking 
boundary. Similarly, when considering the topography and length of 
cycling infrastructure of a docked BSS, it is important to consider that 
journeys will be taken between docking stations, therefore calculations 
for these variables were limited to 300 m buffers and a convex hull. 
Much like the determination of the use of 500 m radius buffers for 
calculating operational area, the buffer sizes/methods were chosen to 
best capture the nature of each confounding variable in the context of 

each BSS in a homogenous manner. 

4.2. Panel style data curation and BSS clustering 

Following the creation of the metrics detailed across Section 4.1, the 
data was split into time constant and time series data to allow for a two- 
staged clustering analysis to be conducted. This method was chosen to 
take advantage of the multiple metric types that were created as well as 
current limitations with the simultaneous clustering of time series and 
time constant variables. 

For the first stage of clustering, a time constant dataset was created 
for analysis using a K-means technique (MacQueen, 1967). K-means 
clustering is a standard method for exploratory clustering where the 
number of clusters are specified by the user (Wagstaff et al., 2001). Here, 
it is employed to gain a detailed, static understanding of the global BSS 
landscape. The variables included within this time constant dataset (see 
Appendix) were a combination of BSS variables (Sections 4.1.1 to 4.1.3), 
as well as the confounding variables (Section 4.1.4). Since these metrics 
were calculated for each day that we have operational data, it was 
necessary to aggregate metrics to the same time period for comparative 
purposes. As a result, the metrics were aggregated for the 6-month 
period between April and September 2018, since this was the period 
for which the largest group of BSS had operational data. Each metric was 
aggregated between this period, and BSS variables split between 
weekday and weekend measures due to the large amount of variability 
found between patterns of use (Faghih-Imani et al., 2014; Faghih-Imani 
et al., 2017; O’Brien et al., 2014). In addition to the time aggregation, 
variables were normalised in order to remove scale and weighting issues 

Fig. 7. Results of DTW clustering on average weekend use for the large BSS in major cities cluster.  
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in the K-means clustering. Conducting this first-stage of clustering 
analysis allows us to gain an understanding of the type of system, in 
terms of its size, environment and general use as well as where each of 
these systems are situated in comparison to other BSS around the world. 

In the second stage of clustering, the hourly journey estimations were 
used to create a time series dataset on each BSS. Similar to the creation 
of the time constant dataset for the first stage of clustering, the hourly 
journey estimations (Section 4.1.1) were aggregated for the same 6- 
month period between April and September 2018 and split between 
weekday and weekend (Faghih-Imani et al., 2014; Faghih-Imani et al., 
2017; O’Brien et al., 2014). The time series data was also normalised, 
again to counter issues around scales. By aggregating the data in this 
way, the resulting dataset depicts the average pattern of use within each 
BSS for a typical weekday or weekend. For each of the clusters created in 
the first stage of clustering, a DTW cluster analysis was conducted. DTW 
is a shape-based clustering method for time series data, computing the 
smallest Euclidean distances between each time series based on moving 
window (Berndt and Clifford, 1994). These distances were then clus-
tered using a hierarchical clustering method based on the Ward’s 
method (Mojena, 1977). This was chosen after assessing the 3 alterna-
tives – namely the single, complete and average methods (Edelbrock, 
1979). It was found that the Ward’s method provided the cleanest sep-
aration of clusters whilst minimising the within-cluster sum of squares 
variance. This second stage of clustering was employed to help give 
additional detail into each first stage cluster by investigating how sys-
tems within the first stage cluster are further grouped, based on their 
patterns of use. 

5. Results 

5.1. Bicycle sharing system clustering 

The first-stage of the clustering was designed to create an under-
standing of the general groups that exist in the current BSS landscape. 
Although direct and statistical methods of deriving the number of 
clusters largely suggested 2 to be optimal, namely the elbow method, the 
Calinsky Criterion and average silhouette method, the decision was 
taken to group BSS into 5 clusters using a K-means clustering algorithm. 
Dividing 322 BSS into 2 unequal groups would not be beneficial in 
helping to uncover a deeper understanding of the global BSS landscape, 
whilst 5 clusters allowed for a large enough differentiation between 
clusters with clear cluster identities and kept the number of clusters at a 
minimum. The centres of each of these clusters are detailed in Table 3. 
The clusters have been named, based on these characteristics, as: ‘very 
large, high use BSS’, ‘large BSS in major cities’, ‘medium BSS with extensive 
cycling infrastructure’, ‘small to medium efficient BSS’, and ‘small to medium 
inefficient BSS’. Within this section, we refer to the ‘efficiency’ of a BSS 
using the TDB metric. Those systems that demonstrate higher TDB fig-
ures are taken to be more efficient, since this means that each bike is 
used on multiple occasions throughout an average day. 

5.1.1. Very large, high use BSS 
The first cluster, ‘very large, high use BSS’, contains the largest and 

most used BSS in terms of the absolute number of journeys. This cluster 
only contains three systems, all of which are located in East Asia: Taipei, 
Suzhou and Weifang. These systems do not appear to have extensive 

Fig. 8. Results of DTW clustering on average weekday use for the medium BSS with extensive cycling infrastructure cluster.  
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road or cycle infrastructures. Research suggests that there is a positive 
correlation between the level of cycling infrastructure and the number of 
journeys, so there may be further unmet demand in these cities. 

Assessing the results of the sub-clusters we can see that all of the 
systems have a very similar daily use pattern (Table 4). During an 
average weekday all of the systems have two major peaks at the start and 
end of the working day (Fig. 4), which informs us that these systems are 
typically used by commuters. Suzhou and Weifang appear to exhibit 
similar use patterns throughout the weekend, although the Taipei City 
BSS demonstrates a single, large peak throughout the weekend (Fig. 5). 
This suggests a dominance of leisure and tourism activity on non- 
working days (O’Brien et al., 2014). 

5.1.2. Large BSS in major cities 
The second cluster, ‘large BSS in major cities’, contains 15 systems that 

include New York, Paris, London, Barcelona, and Seoul (Table 5). These 
BSS are typically located in sprawling conurbations with large and 
densely populated cores. These systems hold similar characteristics to 
those very large, high use BSS, the main difference being their absolute 
size. Large BSS in major cities appear to have a greater proportion of roads 
with cycling infrastructure compared to very large, high use BSS. The 
success of BSS within this cluster may help to reinforce previous liter-
ature which finds that greater investment in cycle safety helps 
encourage greater BSS use (Faghih-Imani et al., 2014; Fishman et al., 
2014; Mateo-Babiano et al., 2016). 

Assessing the sub-clusters, we can see that there are two distinct 
patterns of use that we can identify during the average weekday (Fig. 6) 
and weekend (Fig. 7) within these large systems in major cities. During the 

weekdays we find that the majority of the systems have a typical two 
commuter peaks. We also find that five of the systems appear to have a 
more gradual use patterns, with less defined commuter peaks, although 
they are still identifiable. During the weekend, we find that the majority 
of systems appear to have one large peak, which is likely driven by 
leisure and tourism use. There are four systems that appear to have two 
commuter peaks at the weekend, displaying similar patterns to the 
weekday. These systems are all in Chinese cities. This gives us an indi-
cation that the users within these systems continue to work throughout 
the weekends. 

5.1.3. Medium BSS with extensive cycling infrastructure 
The third cluster, medium BSS with extensive cycling infrastructure is a 

small cluster of five systems (Table 6), which are characterised by an 
unusually large road and cycling infrastructure network for their size. 
Although these systems benefit from good levels of cycling infrastruc-
ture, they appear to have relatively low levels of use. The cities with 
these systems also are relatively flat and dry. Both these aspects 
contradict the earlier literature (Campbell et al., 2016; Corcoran et al., 
2014; Midgley, 2011; Miranda-Moreno and Nosal, 2011; Nankervis, 
1999), which goes to show that the confounding variables within this 
analysis do not have consistent implications on the activity and use 
within BSS. Further investigation into these systems would provide new 
understandings of how these variables can impact the use of BSS in 
different ways. 

Looking into the aggregated daily travel patterns shows that for the 
majority of systems, there appears to be a clear two-commuter peak 
trend during the weekdays (Fig. 8) and a large extended peak during the 

Fig. 9. Results of DTW clustering on average weekend use for the medium BSS with extensive cycling infrastructure cluster.  
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weekends (Fig. 9). The BSS in Stuttgart (Germany) appears to be an 
anomaly in terms of its typical use on both the weekday and weekend. 
This is primarily due to its small size in comparison to the other systems 
in this cluster, as well as the fact that this system was used electric bi-
cycles. Electric BSS were much more uncommon at this time, which may 
help to explain its differing journey patterns. At the end of October 2018, 
the system was replaced by another operator after losing its contract in a 
competitive retendering process, for whom we do not have data. 

5.1.4. Small to medium efficient BSS 
The fourth cluster, small to medium efficient BSS, is a large group of 66 

systems (Table 7). Although much smaller, these systems appear to have 
a similar density of cycling infrastructure as those very large, high use 

BSS, which follow the trends suggested in the current literature. For 
their size, these systems achieve high numbers both in terms of the 
number of journeys and TDB, during both the weekends and weekday. 
This suggests that these systems are well managed, and ideally set up to 
cater to the surrounding population. 

An investigation into the sub-clusters shows that there are three main 
types of journey pattern during the weekday and weekend. During the 
weekday (Fig. 10), the first two sub-clusters depict the typical two 
commuter peak pattern, with the first sub-cluster depicting two defined 
peaks whilst the second sub-cluster has much smaller peaks. The third 
sub-cluster of journey patterns during the weekday depict two very 
small peaks during commuting hours, although there appears to be a 
gradual increase in journeys throughout the day until around 6 or 7 pm 

Fig. 10. Results of DTW clustering on average weekday use for the small to medium efficient BSS cluster.  
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when the number of journeys start to fall. These systems therefore 
appear exhibit a more varied user base, with general trends similar to 
those of leisure and tourism use, with small surges in demand during 
peak hours by commuters. During the weekends (Fig. 11), again we see 
that two of the clusters follow the typical trend of having one large peak 
across the weekend. Both of these sub-clusters show a steep incline 
throughout the morning hours between 8 am and noon, with a steep 
decline in use in the late evening around 9 pm. The third sub-cluster 
appears to have a much more even distribution of journeys 
throughout the day, with journeys appearing to gradually increase 
throughout the morning hours accompanied by a gradual decrease in the 
number of journeys into the evening and night. 

5.1.5. Small to medium inefficient BSS 
The final cluster, small to medium inefficient BSS, contain the largest 

number of systems (233) (Table 8 and 9) but are, on average, the 
smallest BSS within the dataset and experience the lowest levels of use. 
These systems appear to be inefficient, with bicycles used less than once 
a day. Although they have the lowest average measures for most metrics, 
they appear to have a comparatively similar levels of average precipi-
tation and total relief to those medium BSS with extensive infrastructure 
and small to medium efficient BSS schemes. 

Assessing the travel patterns of these systems, the journey patterns 
are arranged into 4 sub-clusters for both the weekdays and weekends. 
For those weekday travel patterns (Fig. 12), we have 2 sub-clusters 
which appear to have the typical two-commuter peak, one containing 

Fig. 11. Results of DTW clustering on average weekend use for the small to medium efficient BSS cluster.  
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Fig. 12. Results of DTW clustering on average weekday use for the small to medium inefficient BSS cluster.  
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Fig. 13. Results of DTW clustering on average weekend use for the small to medium inefficient BSS cluster.  
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large and distinct peaks (sub-cluster 3), with the other characterised by 
smaller peaks during commuting hours with a more even use throughout 
the day (sub-cluster 4). The first sub-cluster appears to have a fairly 
uniform use throughout the day, which may suggest systems charac-
terised by a mix of leisure and commuter users, although large peaks and 
variations identify systems may help to identify systems with poor use or 
poor data quality. Similarly, the second sub-cluster has no prominent 
pattern due to infrequent use of the systems therefore with the potential 
for messy data. The patterns we find for the weekend use (Fig. 13) is 
similar with the second and third sub-clusters showing typical weekend 
behaviour with one large peak, with a steady increase throughout the 
morning and steady use throughout the afternoon and early evening. 
The first sub-cluster appears to depict a more of a uniform BSS use 

throughout a typical weekend, although we find large spikes during the 
early hours of the morning at 3 am, which may be a result the 24 h 
operation of BSS in comparison to alternative public transportation 
modes or operational maintenance such as bicycle rebalancing. The final 
weekend sub-cluster appears to contain those systems with the lowest 
number of journeys and therefore appear to show sporadic use 
throughout the day. This occurs since these systems rarely get used and 
when there a few journeys that occur they cause a large spike the 
number of journeys. 

6. Applications 

The analysis here offers new insights and perspectives on the global 
BSS landscape, allowing for a greater understanding of the structure and 
relationships between BSS at the global level. A prominent issue with 
analysis of BSS is availability and the quality of the data (Médard de 
Chardon and Caruso, 2015; Mátrai and Tóth, 2016). This has allowed for 
unchallenged exaggerations in terms of the published statistics from BSS 
operators (Médard de Chardon and Caruso, 2015). The data and heu-
ristics adopted here could therefore be used to verify the published 
statistics for those systems whose operators release highlight statistics, 
as well as helping to predict the use for those systems that do not release 

Table 4 
K-means Cluster 1 DTW sub-cluster allocation.  

BSS sub-cluster allocation in K-means cluster 1 

Weekday Weekend 

1 1 2  

- Weifang  
- Suzhou  
- Taipei City  

- Weifang  
- Suzhou  

- Taipei City  

Table 5 
K-means Cluster 2 DTW sub-cluster allocation.  

BSS sub-cluster allocation in K-means cluster 2 

Weekday Weekend 

1 2 1 2  

- Barcelona  
- Paris  
- Moscow  
- Seoul  
- Warsaw  

- London  
- Chicago  
- Montreal  
- Changshu  
- Kaohsiung  
- Kunshan  
- Mexico City  
- New York  
- Wenzhou  
- Zhongshan  

- London  
- Barcelona  
- Chicago  
- Kaohsiung  
- Mexico City  
- Montreal  
- Moscow  
- New York  
- Paris  
- Seoul  
- Warsaw  

- Changshu  
- Kunshan  
- Wenzhou  
- Zhongshan  

Table 6 
K-means Cluster 3 DTW sub-cluster allocation.  

BSS sub-cluster allocation in K-means cluster 3 

Weekday Weekend 

1 2 1 2  

- Bremen  
- Los Angeles  
- Mannheim  
- Washington D.C. (CaBi)  

- Stuttgart  - Bremen  
- Los Angeles  
- Mannheim  
- Washington D.C. (CaBi)  

- Stuttgart  

Table 7 
K-means Cluster 4 DTW sub-cluster allocation.  

BSS sub-cluster allocation in K-means cluster 4 

Weekday Weekend 

1 2 3 1 2 3  

- Milan  
- Toronto  
- Gaomi  
- Changyi  
- Boston  

- Lyon  
- Huangyan  
- Valencia  
- Toulouse  
- Seville  

- Helsinki  
- Sanxiang  
- Daejeon  
- Oslo  
- Łódź  

- Toronto  
- Boston  
- Lyon  
- Toulouse  
- Helsinki  
- Łódź  

- Milan  
- Gaomi  
- Changyi  
- Huangyan  
- Daejeon  
- Oslo  

- Valencia  
- Seville  
- Sanxiang  

Table 8 
K-means Cluster 5 DTW weekday sub-cluster allocation.  

BSS sub-cluster allocation in K-means cluster 6 (Weekday) 

1 2 3 4  

- Mödling  
- Lake 

Neusiedl  
- Hamburg  
- Vannes  
- Wachau  

- Yangzi  
- Dajiawa  
- Bhopal  
- Abu Dhabi  
- King Abdullah Economic 

City  

- Nantong  
- Brussels  
- Brisbane  
- Vancouver  
- Anqiu  

- Tel Aviv  
- Minneapolis  
- Budapest  
- Miami Beach  
- Almaty  

Table 9 
K-means Cluster 5 DTW weekend sub-cluster allocation.  

BSS sub-cluster allocation in K-means cluster 6 (Weekend) 

1 2 3 4  

- Lake Neusiedl  
- Hamburg  
- Vannes  

- Nantong  
- Brussels  
- Tel Aviv  
- Brisbane  
- Minneapolis  
- Yangzi  
- Wachau  
- Bhopal  
- Abu Dhabi  
- King Abdullah Economic City  
- Vancouver  
- Anqiu  
- Budapest  
- Miami Beach  
- Almaty  

- Mödling  - Dajiawa  
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data at all. Since the metrics calculated within this research are inde-
pendent of any operator motivations, they may be considered impartial. 
They also provide insights into systems that fail to share data. 

In addition, this research offers a tool to help those cities better plan 
BSS, should they wish to implement new or improve existing BSS. By 
comparing the characteristics of the city to those within the analysis, 
city officials can learn from those more efficient systems. This is timely 
due to the fast-expanding nature of this mode of micro-mobility. Alter-
native modes of micro-mobility, such as scooters and dockless BSS, have 
a similar data format and are similarly limited in terms of data avail-
ability. The methods outlined in this research can easily be extended to 
other new modes of urban micro-mobility and help to provide a 
framework for comparison between system metrics. 

Finally, by using the metric creation methodology outlined in this 
paper it is possible to gain a detailed understanding into the operation of 
a BSS using dock capacity data alone. This means that it is straightfor-
ward to scale the analysis by running the heuristics on data inputs from 
additional schemes as their data become available. 

6.1. Summary 

The analysis detailed here offers new insights into the global land-
scape of BSS, outlining a robust method that manipulates a voluminous 
dataset in a manageable way to create a comprehensive global com-
parison of BSS. 

Dock capacity data provides the foundations for the majority of the 
comparative metrics created within this research, which has been 

supplemented with additional confounding variables to enable further 
contextual understanding of each BSS. Using a two-staged clustering 
process on the calculated metrics provides a framework for comparison 
between BSS and helps to situate individual systems within this rapidly 
growing mode of urban micro-mobility. 

Conducting such analysis, there appear to be 5 main types of BSS: 
very large, high use BSS, large BSS in major cities, medium BSS with extensive 
cycling infrastructure, small to medium efficient BSS and small to medium 
inefficient BSS. From these major cluster groups, we are able to group 
schemes by usage, contextual indicators and the behavioural charac-
teristics of their users. This not only facilitates a global comparison of 
scheme performance, but also offers a basis to new schemes to identify 
established BSS with similar characteristics that can be used as a tem-
plate for anticipating the likely demand from users. 
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Appendix 

Fixed variable panel style dataset (K-means clustering)  

System Population Area Slope Road 
Length 

Cycle 
Length 

Weekday 
Journeys 

Weekday Max 
Bikes 

Weekday 
TDB 

Weekend 
Journeys 

Weekend Max 
Bikes 

Weekend 
TDB              

BSS with published or inferable journey data  

Albany Glasgow Ottawa 
Atlanta Hailey/Ketchum Oxford (Hourbike) 
Berlin Hamilton Oxford (oBike) 
Beverly Hills Hoboken Phoenix 
Bialystok Karlsruhe Portland 
Bielsko-Biała Kraków Reading 
Boise Lincoln (UK) San Mateo 
Brighton Liverpool Santa Monica 
Brno Long Beach (California, USA) Sheffield 
Budapest Long Beach (New York, USA) Tampa 
Buffalo Monash University Topeka 
Bydgoszcz New Orleans UCLA 
Cardiff Northampton Warsaw 
Charleston Nottingham Washington D.C. (JUMP) 
Cologne Orlando West Hollywood 
Derby   
Gibraltar    

BSS cluster allocation 

K-Means Cluster 1 (Very large, High use (3)).  

- DTW Weekday Sub-Cluster 1 

Suzhou, Taipei City, Weifang. 
K-Means Cluster 2 (Large systems in major cities (15)) 
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- DTW Weekday Sub-Cluster 1 

Barcelona, Moscow, Paris, Seoul, Warsaw.  

- DTW Weekday Sub-Cluster 2 

Changshu, Chicago, Kaohsiung, Kunshan, London, Mexico City, Montreal, New York, Wenzhou, Zhongshan. 
K-Means Cluster 3 (Medium systems with extensive cycling infrastructure (5))  

- DTW Weekday Sub-Cluster 1 

Bremen, Los Angeles, Mannheim, Washington D.C. (CaBi).  

- DTW Weekday Sub-Cluster 2 

Stuttgart 
K-Means Cluster 4 (Small to medium efficient systems (66)).  

- DTW Weekday Sub-Cluster 1 

Belfast, Boston, Changyi, Dublin, Gaomi, Milan, Nantes, San Francisco, Saragossa, Sarajevo, Toronto, Washington D.C. (JUMP).  

- DTW Weekday Sub-Cluster 2 

Bergen, Bordeaux, Buenos Aires, Bydgoszcz, Castellon, Girona, Guadalajara, Honolulu, Huangyan, Kanazawa, Lille, Ljubljana, Lyon, Madrid, 
Marseille, Nice, Palma, Pisa, Querétaro, Rio, Santos, Seville, Toulouse, Turin, Valencia, Vienna, Vila Velha, Vilnius.  

- DTW Weekday Sub-Cluster 3 

Białystok, Brighton, Cardiff, Daejeon, Gliwice, Helsinki, Kalisz, Katowice, Kołobrzeg, Kraków, La Rochelle, León, Łódź, Lublin, Ordu, Oslo, Porto 
Alegre, Poznan, Radom, Recife, Salvador, Sanxiang, São Paulo, Sorocaba, Szczecin, Wrocław. 

K-Means Cluster 5 (Small to medium inefficient systems (233))  

- DTW Weekday Sub-Cluster 1 

Vor Wien, Amstetten, Aruba, Auckland, Bath, Bottrop, Brinje, Byblos, Christchurch, Columbia, Exeter, Flensburg, Gelsenkirchen, Gibraltar, 
Greenville, Groß-Enzersdorf, Gütersloh, Hailey/Ketchum, Hamburg, Hamm, Herne, Hollabrunn, Ivanić-Grad, Jurmala, Karlovac, Kent State Uni-
versity, Kingston (UK), Laa an der Thaya, Lincoln (UK), Lunz am See, Makarska, Marchfeld, Metković, Mödling, Munich, Norderstedt, Northampton, 
Nottingham, Oberhausen, Offenbach am Main, Prague, Quickborn, Romerland, Rüsselsheim am Main, Saratoga Springs, Schenectady, Serfaus, Sisak, 
Slavonskibrod, Slough, Sursee, Traisen, Tubingen, Tulln, Tuzla, Vannes, Velikagorica, Victoria, Vukovar, Wachau, West Palm Beach, Wienerwald, 
Wiesbaden, Wiener Neustadt, Wurzburg, Zadar, Lower Traisental  

- DTW Weekday Sub-Cluster 2 

Abu Dhabi, Bhopal, Dajiawa, Jackson, King Abdullah Economic City, Konstancin-Jeziorna, Porec, Šibenik, Yangzi.  

- DTW Weekday Sub-Cluster 3 

Aksu, Amiens, Anqiu, Aral, Besançon, Brisbane, Brussels, Bucharest, Changle, Cluj, Cergy, Dayton, Denver, Dijon, Drammen, Fenhuzhen, Glasgow, 
Gospić, Gothenburg, Hamilton, Hoboken, Indianapolis, Innsbruck, Lillestrøm, Limassol, Lincoln (NE, USA), Linqu, Lund, Luxembourg City, Lucerne, 
Maastricht, Malta, Milton Keynes, Mulhouse, Namur, Nancy, Nantong, Offenburg, Omaha, Petrolina, Philadelphia, Puebla, Reading, Rennes, Rouen, 
Salt Lake City, Shengzezhen, St Polten, Taibaozhuang, Toyama, University of South Florida, Valence, Vancouver, Zagreb.  

- DTW Weekday Sub-Cluster 4 

Albany, Almaty, Aspen, Astana, Atlanta, Augsburg, Austin, Avignon, Batumi, Belfort, Berlin, Bochum, Boise, Boulder, Broward County, Budapest, 
Buffalo, Calais, Charlotte, Chattanooga, Cincinnati, Clermont-Ferrand, Cologne, Colorado Springs, Columbus, Créteil, Derby, Des Moines, Detroit, 
Dortmund, Dresden, Duisburg, Düsseldorf, Essen, Fort Worth, Frankfurt, Grodzisk Mazowiecki, Houston, Kaiserslautern, Kansas City, Karlsruhe, 
Kazan, Klagenfurt, Kona, Konya, Kranj, Lake Neusiedl, Las Vegas, Leipzig, Liverpool, Long Beach (CA, USA), Long Beach (NY, USA), Louisville, Lviv, 
Madison, Marburg, Marrakech, Melbourne, Memphis, Miami Beach, Milwaukee, Minneapolis, Monash University, Montevideo, Montpellier, Mülheim 
an der Ruhr, Nashville, New Orleans, Nitra, Nuremberg, Opole, Orlando, Park City, Phoenix, Pioneer Valley, Pittsburgh, Portland, Potsdam, Reykjavik, 
Richmond (CA, USA), Riga, San Antonio, San Diego, San Jose, Santa Monica, Santander, Shymkent, Stalowa Wola, Saint-Étienne, Stirling, St 
Petersburg (FL, USA), Szamotuły, Tallinn, Tampa, Tel Aviv, Timisoara, Topeka, Trondheim, Tucson, University of Warwick, Usedom, Virginia, 
Oakland/Berkeley. 
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