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Abstract
Diffusion processes are important in several physical, chemical, biological and
human phenomena. Examples include molecular encounters in reactions, cel-
lular signalling, the foraging of animals, the spread of diseases, as well as
trends in financial markets and climate records. Deviations from Brownian dif-
fusion, known as anomalous diffusion (AnDi), can often be observed in these
processes, when the growth of the mean square displacement in time is not
linear. An ever-increasing number of methods has thus appeared to charac-
terize anomalous diffusion trajectories based on classical statistics or machine
learning approaches. Yet, characterization of anomalous diffusion remains chal-
lenging to date as testified by the launch of the AnDi challenge in March 2020
to assess and compare new and pre-existing methods on three different aspects
of the problem: the inference of the anomalous diffusion exponent, the clas-
sification of the diffusion model, and the segmentation of trajectories. Here,
we introduce a novel method (CONDOR) which combines feature engineering
based on classical statistics with supervised deep learning to efficiently iden-
tify the underlying anomalous diffusion model with high accuracy and infer its
exponent with a small mean absolute error in single 1D, 2D and 3D trajectories
corrupted by localization noise. Finally, we extend our method to the segmen-
tation of trajectories where the diffusion model and/or its anomalous exponent
vary in time.
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1. Introduction

Anomalous diffusion (AnDi) refers to diffusion phenomena characterized by a mean square
displacement (MSD) that grows in time with an exponent α that is either smaller (subdiffu-
sion) or greater (superdiffusion) than one (standard Brownian diffusion) [1]. Typically, this
is represented by a nonlinear power-law scaling (MSD(t) ∼ tα) [1]. The growing interest in
anomalous diffusion shown by the physics community lies in the fact that it extends the con-
cept of Brownian diffusion and helps describe a broad range of phenomena of both natural and
human origin [2]. Examples include molecular encounters in reactions [3], cellular signalling
[4, 5], the foraging of animals [6], search strategies [7], human travel patterns [8, 9], the spread
of epidemics and pandemics [10, 11], as well as trends in financial markets [12, 13] and climate
records [14].

Various methods have been introduced over time to characterize anomalous diffusion in
real data. Traditional methods are based on the direct analysis of trajectory statistics [15] via
the examination of features such as the MSD [16–19], the velocity autocorrelation function
[20] and the power spectral density [21, 22] among others [15, 23–34]. More recently, the
blossoming of machine learning approaches has expanded the toolbox of available methods
for the characterization of anomalous diffusion with algorithms based on random forests [35,
36], gradient boosting techniques [35], recurrent neural networks [37] and convolutional neural
networks [38, 39].

Despite the significant progress made, the characterization of anomalous diffusion data
still present non-negligible challenges, especially to maintain the approach insightful, easy to
implement and parameter-free [40]. First, the measurement of anomalous diffusion from exper-
imental trajectories is often hampered by the lack of significant statistics (i.e. single and short
trajectories), by limited localization precision, by irregular sampling as well as by changes
of the diffusion properties in time. Then, these limitations become even more pronounced
when dealing with non-ergodic processes [1], as the information of interest can be well hidden
within individual trajectories. Finally, while machine learning approaches are powerful and
parameter-free, more traditional statistics-based approaches typically offer deeper insight on
the underlying diffusion process.

These shortcomings have resulted in the launch of the AnDi challenge by a team of interna-
tional scientists in March 2020 (https://andi-challenge.org) [40, 41]. The goal of the challenge
was to push the methodological frontiers in the characterization of three different aspects of
anomalous diffusion for 1D, 2D and 3D noise-corrupted trajectories [41]: (1) the inference of
the anomalous diffusion exponent α; (2) the classification of the diffusion model; and (3) the
segmentation of trajectories characterized by a change in anomalous diffusion exponent and/or
model at an unspecified time instant.

Here, in response to the AnDi challenge, we describe a novel method (CONDOR: Classifier
Of aNomalous DiffusiOn tRajectories) for the characterization of single anomalous diffusion
trajectories based on the combination of classical statistics analysis tools and supervised deep
learning. Specifically, our method applies a deep feed-forward neural network to cluster param-
eters extracted from the statistical features of individual trajectories. By combining advantages
from both approaches (classical statistics analysis and machine learning), CONDOR is highly
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Figure 1. Representative anomalous diffusion trajectories. (a)–(c) Examples of single
1D anomalous diffusion trajectories in the absence of corrupting noise for (a) different
models of standard diffusion (anomalous diffusion exponent α = 1), for (b) different
models of anomalous diffusion (anomalous diffusion exponent α = 0.5), and for (c)
the same anomalous diffusion model (sbm) with different values of α. The models
considered here are the annealed transient time motion (attm), the continuous-time ran-
dom walk (ctrw), the fractional Brownian motion (fbm), the Lévy walk (lw) and the
scaled Brownian motion (sbm). Note that fbm and sbm processes are undistinguishable
when α = 1 as in (a). (d) Same trajectories as in (a) corrupted with Gaussian noise (of
zero mean and variance σnoise = 1) associated to a finite localization precision, corre-
sponding to a signal-to-noise ratio (SNR) of 1. For better comparison, each sequence
of positions xn taken at times tn is represented after subtracting its average and after
rescaling its displacements to their standard deviation to give the normalized sequence
x̂n [35]. The grey-shaded areas highlight a small portion (10 data points) of each
trajectory.

performant and parameter-free. It allows us to identify the underlying anomalous diffusion
model with high accuracy (�84%) and infer its exponent α with a small mean absolute error
(�0.16) in single 1D, 2D and 3D trajectories corrupted by localization noise. CONDOR was
always among the top performant methods in the AnDi challenge for both the inference of the
α-exponent and the model classification of 1D, 2D and 3D anomalous diffusion trajectories.
In particular, CONDOR was the leading method for the inference task in 2D and 3D and for
the classification task in 3D. Finally, in this article, we extend CONDOR to the segmentation
of trajectories.
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Figure 2. CONDOR workflow. CONDOR workflow is divided in three main parts: pre-
processing (section 2.2), classification and inference (section 2.3). In the preprocessing
step, the vector of positions x associated to a single trajectory is used to extract a vector
I of N = 1 + 92d inputs primarily based on classical statistics (with d = 1, 2, 3 being
the trajectory dimension). The vector I is the basic input for each neural network in the
classification and inference algorithms. The output of the classification is determined
by the output of up to three deep feed-forward neural networks and is the predicted
model M̃ among five possible categories: the annealed transient time motion (attm), the
continuous-time random walk (ctrw), the fractional Brownian motion (fbm), the Lévy
walk (lw) and the scaled Brownian motion (sbm). Finally, the inference algorithm pre-
dicts the value of the exponent α ∈ [0.05, 2] basing its decision on I and the predicted M̃
for each trajectory. In particular, the predicted α̃ is the arithmetic average of two distinct
predictions: α̃1 and α̃2 where M̃ is used as selection element or additional input for the
deep learning algorithm, respectively.

2. Methods

CONDOR combines classical statistics analysis of single anomalous diffusion trajectories with
supervised deep learning. The trajectories used in this work are generated numerically (with the
andi-dataset Python package [42]) from the 5 models considered in the AnDi challenge:
the annealed transient time motion (attm) [43], the continuous-time random walk (ctrw) [44],
the fractional Brownian motion (fbm) [45], the Lévy walk (lw) [46] and the scaled Brownian
motion (sbm) [47]). Briefly, AnDi challenge datasets contain 1D, 2D or 3D trajectories from
these 5 models sampled at regular time steps (tn = nΔt, with n a positive integer and Δt a uni-
tary time interval). The anomalous exponent α varies in the range [0.05, 2] with steps of 0.05,
as allowed by the respective model [41]. The shortest trajectories have at least 10 samples per
dimension (Tmin = 10Δt). Prior to the addition of the localization error, the trajectories have a
unitary standard deviation σs of the distribution of the displacements. Along each dimension i
(i = 1, . . . , d with d = 1, 2, 3), the trajectories are then corrupted with additive Gaussian noise
(with zero mean and variance σi) associated to a finite localization precision to better simulate
experimental endeavours [41, 42]. The variance σi of the additive Gaussian noise can assume

values of 0.1, 0.5 or 1.0. The overall level of noise can then be computed as σnoise =
√∑d

i=1 σ
2
i

[42]. The inverse of this value is then used to compute the signal-to-noise ratio (SNR). Figure
1 shows examples of such trajectories without noise (figures 1(a)–(c)) and with the addition
of corrupting noise (figure 1(d)). By visual inspection, these examples show how differences
between single trajectories are not always explicit, thus making the characterization of anoma-
lous diffusion challenging. Already in the absence of noise, the same diffusion process (e.g. for
α = 1 in figure 1(a) and for α = 0.5 in figure 1(b)) can be described by different models and
the same model (e.g. sbm in figure 1(c)) can assume different values of the exponent α. These
occurrences are not always easy to set apart (e.g. attm and fbm in figure 1(b)). The presence
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Figure 3. Basic neural network architecture in CONDOR. Architecture of the deep
three-layer feed-forward neural network chosen for both classification and inference
tasks. Inputs In (with n = 1, 2, . . . , N) are processed by two hidden layers and an out-
put layer to yield outputs Oq (with q = 1, 2, . . . , Q). The hidden layers have K = 20
neurons each with a sigmoidal activation function (

∫
). The output layer has Q neurons

with a softmax activation function (σ). Each neuron has a summer (Σ) that gathers its
weighted inputs and bias to return a scalar output. For each neuron, weights v and bias
b are optimised during the training of the network.

Table 1. Set of 92d quantities (with d = 1, 2, 3) used to extract statistical information
from each dimension of every trajectory as part of the N inputs for the deep learning
algorithm. The approximate entropy (ApEni) is introduced as a way to quantify the
amount of regularity and unpredictability of fluctuations over the considered time series.
m = 2, 3, . . . , Tmin

Δt − 1 and u = 1, 2. Note that we do not define ApEni for Δi(m) when
m = Tmin

Δt − 2 = 8 and m = Tmin
Δt − 1 = 9, as the numerical calculation of the approxi-

mate entropy requires at least three data points, which is not always the case for short
trajectories.

ŵi Ŵi Δi(m) ri fi IPSDi ΔMSDi WLi(u) IACFi fAsymi tAsymi AbChi

μi � � � � � � �
μi

1/2 � � � � � � � �
σi � � � � � �
βi

1 � � � � � � �
βi

2 � � � � � � �
ApEni � � (�) � � � �
Other � � � �
#/Dimension 5 6 46 1 6 6 6 12 1 1 1 1

of corrupting noise (figure 1(d)) and/or short trajectories (shaded areas in figures 1(a)–(c)) add
extra complexity.

In this section, we provide a detailed description of our method (CONDOR) to characterise
such single anomalous diffusion trajectories. The fundamental intuition behind our approach is
that different trajectories produced by the same diffusion model should share similar statistical
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features to set them apart from other models [1]. Nonetheless, in the presence of noise or with
few data points, these similarities and differences do not need be explicit in single trajectories
(figure 1). Thus, CONDOR first manipulates single trajectories to extract this hidden statistical
information and then employs the power of deep learning to analyse and cluster it. CONDOR
workflow is described in section 2.1 and shown in figure 2. We will first discuss the feature
engineering step used to preprocess the trajectories and extract a set of N relevant features
primarily based on classical statistics analysis (section 2.2). These features become the inputs
for the deep-learning part of the characterization algorithm based on deep feed-forward neural
networks (figure 3), which, in order, classifies the diffusion model and infers the anomalous
diffusion exponent α (figure 2). These two steps are performed by multiple neural networks,
whose architecture and connection is explained in section 2.3. Section 2.4 discusses the training
of CONDOR neural networks. Section 2.5 discusses how CONDOR’s performance varies with
the number of inputs. In section 2.6, we explain how CONDOR outputs can be used to perform
the segmentation of trajectories, where the model and/or its anomalous exponent change in
time. Finally, in section 2.7, we provide a brief explanation of the code behind CONDOR [48].

2.1. CONDOR workflow

CONDOR’s workflow comprises three main activities executed in order (figure 2):

• The preprocessing of the trajectories to extract the inputs for CONDOR’s neural networks;
• The classification of the anomalous diffusion model M;
• The inference of the anomalous diffusion exponent α.

Additionally, a forth activity (i.e. segmentation) can be executed in case one is also interested
in identifying a change in time of the underlying model and/or of theα exponent in a trajectory.

The first step (preprocessing) manipulates the trajectories to extract a vector I of inputs
primarily based on classical statistics. The number of inputs is independent of the length of the
trajectory but depends on its dimensionality. A detailed description of these inputs and of the
feature engineering process used to extract them follows in section 2.2.

In the following activity (classification), the inputs calculated in the previous step are used
by a series of three neural networks to identify the underlying anomalous diffusion model
behind each trajectory (figure 2). A detailed description of the architecture of these networks
follows in section 2.3. The output of the first network used for classification (step 1 in figure
2) is the main classification step, where most of the trajectories are already allocated to the
correct model. The following two networks (steps 2 and 3 in figure 2) perform an additional
check on the classification obtained from the previous steps (step 2 on step 1 and step 3 on
step 1 and step 2 combined) to either confirm their classification or reassign it for a small
percentage of the trajectories (usually �10%). Practically, the output of the first network is
directly used to classify trajectories as lw and is key to inform the following two networks
(steps 2 and 3 in figure 2) on which trajectories in the dataset to select for the additional check.
Specifically, the second network (step 2) accepts the trajectories classified as attm, fbm or sbm
by the first network (step 1) and reverifies their classification; the third network (step 3) instead
takes the trajectories classified as ctrw by the first network (step 1) and those classified as attm
by the second (step 2) and reverifies their classification. Steps 2 and 3 are particularly useful to
avoid misclassification of attm trajectories. Indeed, in the attm model, the diffusion coefficient
can vary in space or time (in the AnDi challenge only time variations were considered [41,
43]). This feature can be easily confused with features of other processes: namely, the time-
dependent diffusivity of the sbm [47], the time irregularities between consecutive steps in the
ctrw [44] and the correlations among the increments in the fbm [45].
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The next activity (inference) is to determine the anomalous diffusion exponent α (figure
2). The estimated value α̃ is obtained as the arithmetic average of the outputs of two different
approaches based on deep learning (figure 2), as the two approaches lead to predicting an under-
estimated α value (α̃1) and an overestimated α value (α̃2), respectively. In the first approach,
each trajectory is sent to a different set of networks (out of five possible sets, one per model)
using the output M̃ of the classification as a selection element. In the second approach (figure 2),
each trajectory is sent to the same set of networks where the output M̃ of the model classification
is used as an additional input together with the list of inputs identified in the feature engineering
step. A detailed description of the architecture of the networks for the inference task follows in
section 2.3.

Finally, the outputs of both classification and inference can additionally be used to identify
the presence of a change point in a trajectory. This activity is not based on the direct use of
neural networks but rather on the analysis of CONDOR’s classification and inference outputs
on all segments of each trajectory identified with an overlapping moving window. A detailed
description of the algorithm used for the segmentation task follows in section 2.6.

2.2. Feature engineering and CONDOR input definition

Before the classification and inference steps (figure 2), we analyzed each trajectory to extract
N = 1 + 92d inputs (with d = 1, 2, 3 being the trajectory dimensionality) primarily based on
classical statistics (table 1). We would like to stress the fact that the total number of inputs
is independent of the duration of each trajectory and only depends on its dimensionality.
The inputs used in this work were ultimately selected by trial and error based on the final
performance of the deep learning algorithm.

To extract the N inputs for every trajectory in 1D, 2D and 3D, we analysed the vec-
tor of the positions along each dimension xi ≡ (xi

1, xi
2, . . . xi

Tmax
Δt

) (with i = 1, . . . d) indepen-

dently, after first subtracting its average and rescaling its displacements wi
j = xi

j+1 − xi
j (with

j = 1, . . . Tmax
Δt − 1) to their standard deviation to obtain the normalised displacements ŵi

j [35].
Practically, for each dimension, this step produces new time sequences x̂i ≡ (x̂i

1, x̂i
2, . . . x̂i

Tmax
Δt

)

of positions reconstructed from the cumulative sum of the normalised displacements of the
original trajectories. Therefore these new time sequences have zero mean (〈x̂i〉 = 0) and their
displacements have a unitary standard deviation. Importantly, this step allows for a better com-
parison between trajectories of different dimensions, durations and noise levels while keeping
the performance of the deep learning algorithm optimal [35].

The first input is ln Tmax with Tmax being the duration of each trajectory. Independently of
the dimensionality d of the trajectory, this input is only defined once, and is useful to enable
the deep learning algorithm to properly weight different trajectories based on their duration.

The next subset of the N inputs is then extracted from sixteen mathematical quantities cal-
culated from the new time sequences x̂i to obtain as much statistical information as possible
from each individual trajectory. For each dimension i of a trajectory, the quantities in question
are (table 1):

• The vector of the normalised displacements ŵi ≡
(
ŵi

1, ŵi
2, . . . ŵi

Tmax
Δt −1

)
, where

ŵi
j = x̂i

j+1 − x̂i
j with j = 1, . . . Tmax

Δt − 1;

• The vector Ŵi ≡
(
|ŵi

1|, |ŵi
2|, . . . |ŵi

Tmax
Δt −1

|
)

of the absolute values of the normalized

displacements ŵi;
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• The eight vectors Δi(m) ≡
(
Δi

1(m), . . . Δi
Tmax
Δt −m

(m)
)

of the absolute values Δi
j(m) =

|x̂i
j+m − x̂i

j| of the displacements x̂i
j+m − x̂i

j (with j = 1, . . . Tmax
Δt − m) taken at time lags

τ = mΔt with m = 2, 3, . . . Tmin
Δt − 1;

• The vector ri ≡
(

ri
1, ri

2, . . . ri
Tmax
Δt −2

)
of the ratios between consecutive normalised dis-

placements ri
j =

ŵi
j+1

ŵi
j

with j = 1, . . . Tmax
Δt − 2;

• The vector f i ≡
(
|X̂i

1|, |X̂i
2|, . . . |X̂i

� Tmax
2Δt 	

|
)

of the absolute values of the discrete Fourier

transform of ŵi centered at the zero-frequency component and normalised to the trajectory
length, X̂i = Δt

Tmax
F{ŵi};

• The vector IPSDi ≡
(
|IPSDi

1|, |IPSDi
2|, . . . |IPSDi


 Tmax
δΔt �|

)
with IPSDi

j = ‖X̂i( jδ)‖2 =

1
δ2 ‖F{ŵi( jδ)}‖2

(
j = 1, ...

⌊
Tmax
δΔt

⌋)
, where ŵi( jδ) ≡ (ŵi

( j−1)δ+1, . . . ŵi
jδ) are all segments

of ŵi selected with a non-overlapping moving window of width δΔt (with δ = 3). Prac-
tically, the values IPSDi

j correspond to the integrals of the normalised power spectral
densities of ŵi( jδ). Here, the power spectral densities are estimated as a periodogram and
normalised to the length δΔt of the segments ŵi( jδ);

• The vector ΔMSDi ≡
(
ΔMSDi

1,ΔMSDi
2, . . . ΔMSDi


 Tmax
2Δt �−2

)
of the absolute values of

the variationsΔMSDi
j =

∣∣∣∣MSDi
j+1−MSDi

j

j2Δt2

∣∣∣∣ (with j = 1, . . . 
 Tmax
2Δt � − 2) of the time-averaged

mean squared displacement (MSD) normalised to the corresponding time lag τ = jΔt of
MSDi

j;
• Two vectors WLi(u) (with u = 1, 2) of the absolute values of the numerical approxima-

tion to the first two translations τ = (u − 1)Δt of the continuous wavelet transform of
ŵi (calculated with the default settings of the MATLABTM function cwt). The contin-
uous wavelet transform is a continuous mathematical function used for the analysis of
localised variations in noisy time series; it is calculated by performing the convolution of
a signal (here, ŵi) with a orthonormal family of functionsφs

u(t) = φ( t−u
s ) obtained by con-

tinuously scaling (by s) and translating (by τ ) the mother wavelet φ(t) (here, the analytic
Morse wavelet) [49].

For each of these quantities (but ri) and along each trajectory’s dimension i, we calcu-
lated the mean (μi), the median (μi

1/2), the standard deviation (σi), the skewness (βi
1), the

kurtosis (βi
2) (table 1). Note that the standard deviation for ŵi is always one by definition

and hence is not used as an input. Additionally, for each quantity (but ri), we also calculated
the approximate entropy (ApEni), which is a statistical technique used to quantify the amount
of regularity and unpredictability of fluctuations in time signals (here calculated numerically
with the MATLABTM functionapproximateEntropy) [50]: the closer to zero the value of
ApEni, the more regular and predictable the time series is. For ri, we only calculated the median
μi

1/2 instead. For every dimension i of the trajectory, based on the aforementioned quantities,
we obtain 88 inputs.

To further improve the performance of the deep learning algorithm, the following extra four
inputs were also added for each dimension to extract additional information about regular and
irregular time patterns in the trajectories (correlations, power variations and abrupt changes):

• The integral IACFi of the autocorrelation function ACFi(τ ) of ŵi normalised to the trajec-
tory length over a time window of width δΔt (with δ = 3) at the right of the autocorrelation
peak at τ = 0, i.e. calculated as Δt

Tmax

∑2
k=0ACF(kΔt);
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• The level of frequency asymmetry fAsymi in the normalized power spectral density
of ŵi calculated as

∑
k|X̂i

k|2 sgn(k − FN
2 ) with FN being the Nyquist frequency and

k = 1, . . . � Tmax
2Δt 	;

• The level of time asymmetry tAsymi in the time series of all IPSDi calculated as∑
jIPSDi

j sgn( j −
⌈

Tmax
2δΔt

⌉
) with j = 1, . . .

⌊
Tmax
δΔt

⌋
• The absence of abrupt changes AbChi in the variance of the elements of x̂i defined as

AbChi = 1 − NACΔt
Tmax

being NAC the number of points where an abrupt change is identified
using the MATLABTM function ischangewith a high threshold value (threshold = 20)
to reduce these instances to points where there is a significant change in signal variance
[51].

2.3. CONDOR architecture

In the model classification task (figure 2), the N inputs calculated in the previous step are
first fed to a deep three-layer feed-forward neural network (architecture in figure 3) with two
sigmoid hidden layers of twenty neurons each and one softmax output layer of five neurons
to predict the model M̃ of anomalous diffusion among the five possible categories (attm, ctrw,
fbm, lw and sbm). We settled for this specific architecture with two dense layers because it is
deep enough to efficiently classify noisy vectors arbitrarily while still avoiding that its learning
rate is slowed down by an excessively complex architecture. The output of the previous neural
network (step 1 in figure 2) is then refined by two additional networks (steps 2 and 3 in figure 2)
with similar architectures (but with three output neurons and two output neurons, respectively)
to improve the classification among trajectories respectively classified as attm, fbm and sbm
and as attm and ctrw, as these models can be more easily confused. Alternatively, step 1 can
be replaced by a binary classifier to extract trajectories classified as lw followed by a second
classifier with four outputs to classify the remaining trajectories among attm, ctrw, fbm ans
sbm. Steps 2 and 3 are then applied directly to the outputs of this second classifier. While this
alternative approach offers a slightly improved performance after step 1 in lower dimensions (≈
1%), the overall performance in all dimensions is optimal after step 2 and 3 and is independent
of step 1 implementation.

Once the model is identified, the next step is to infer the anomalous diffusion exponent α.
The estimated value α̃ is obtained as the arithmetic average of the outputs of two different
approaches based on deep learning (figure 2). In the first approach (α̃1 in figure 2), the out-
put M̃ of the classification is used to cluster the trajectories into five categories based on the
identified model. Each category is analysed independently by a different set of neural networks
(architectures as in figure 3). The neural networks for attm and ctrw have five output categories
predicting α̃1 in the range 0.05 to 1 [41, 42]. The neural network for lw has five output cat-
egories predicting α̃1 in the range 1 to 2 [41, 42]. Finally, the prediction for fbm and sbm is
based on two levels of neural networks (1 × 2) with a single network in the first level having
two equally spaced output categories predicting α̃1 in the range 0.05 to 2; each category is then
refined by an additional neural network with five equally spaced output categories in the cor-
responding subrange identified by the network in the first level. In the second approach (α̃2 in
figure 2), the output M̃ of the model classification is used as an additional input together with the
list of inputs identified in section 2.2. These new set of inputs feed two levels of neural networks
(1 × 4), each with the same overall architecture as in figure 3. The only neural network in the
first level has four equally spaced output categories predicting α̃2 in the range 0.05 to 2; each
of this category is then refined by an additional neural network with five equally spaced output
categories in the correspondingα subrange identified by the network in the first level. As both
approaches (α̃1 and α̃2) rely on the results of classification, misclassication of trajectories can
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Table 2. Summary of CONDOR architecture and training key information for both
classification task and inference task.

Task Classification Inference

Architecture
Feedforward neural network Feedforward neural network

Two hidden layers (20, 20) Two hidden layers (20, 20)
Output layer (2, 3 or 5) Output layer (2, 4 or 5)

# Networks 3 14

Output
Probability of the input Probability of the α exponent

Belonging to each model Belonging to a specific range

Training algorithm
Scaled conjugate Scaled conjugate

Gradient backpropagation Gradient backpropagation

Training dataset size
300k trajectories 300k trajectories

(see tables S1 and S2) (see tables S3–S12)

Training dataset usage
70% training 70% training

15% validation 15% validation
15% test 15% test

Performance function Cross-entropy Cross-entropy
Validation fails 100 100

be detrimental for the inference task. If misclassification is of concern (e.g. in the presence of
strong localization noise), a more robust approach for inference is based on using a variation of
the second approach alone (α̃2) where the model classification is no longer used as additional
input.

2.4. Training of CONDOR

After defining their architecture, we trained each network of CONDOR independently on a
set of trajectories for which either the ground-truth values of the models (for classification)
or of α (for inference) was known. The networks that we used during the AnDi challenge
(and whose results are discussed in this manuscript) were typically trained on well-balanced
datasets containing trajectories of different length and disrupted by different noise levels (tables
S1–S12). Due to how the AnDi challenge was set up, the ground truth information about the
models was not available for the datasets used for the inference task in the challenge. We thus
used the results from our own classification to train the networks for the inference task, which
indeed rely on knowing the model (or its prediction). As our classification method is highly
performant, errors due to misclassification are small. Nonetheless, if the ground truth about the
model is also available, the networks for inference can also be trained directly based on this
information, thus minimizing potential reduction in performance due to misclassification (see
section 3.3). Each training was performed using the scaled conjugate gradient backpropagation
(scg) algorithm (for speed) on mixed datasets with up to three hundred thousand trajectories
from different models and values of α, with different durations and levels of corrupting noise
[42]. The key training information is concisely summarised in table 2.

For training the networks used for classification, we typically used well-balanced sets of Nt

trajectories extracted from a dataset of 300k trajectories per dimension (≈60k trajectories per
model per dimension). While the training of the network for step 1 (figures 2 and 4) requires a
balanced combination of trajectories of all models (tables S1 and S2), the networks for steps
2 and 3 are trained on subsets of the full training dataset, which only contains trajectories of
the relevant models (tables S1 and S2): hence, for step 2, we only used trajectories belonging
to attm, fbm or sbm (i.e. up to ≈180k trajectories per dimension); and for step 3, we only
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Figure 4. Evolution of CONDOR performance with the size of the training dataset.
(a)–(c) F1 score as a function of the overall number of trajectories (N t) (i.e. including
fractions for training, validation and testing) employed to train the three consecutive net-
works of the classification task (figure 2). The Nt trajectories are a subset of the total 1D,
2D or 3D training datasets for classification of 300k trajectories each and the F1 score
is calculated only on the test fraction (15% of trajectories). Nt is normalized to the size
of a single AnDi challenge dataset (Nc = 10k trajectories). The F1 score is given at the
output of (a) the first network, (b) the second network and (c) the third network used to
refine the model predictions in the classification task (figure 2). At each of these steps,
only the best performing network (black squares) is carried forward to the next step.
(d) and (e) MAE as a function of overall number of trajectories Nt/Nc (i.e. including
fractions for training, validation and testing) for (d) α̃1 (dashed lines) and α̃2 (dotted
lines) and (e) for α̃ (solid lines) as defined in figure 2. The Nt trajectories are a subset of
the total 1D, 2D or 3D training datasets for inference of 300k trajectories each and the
MAE is calculated only on the test fraction (15% of trajectories). For each Nt/Nc, the
arithmetic average α̃ is calculated using the best performing networks used to infer α̃1
and α̃2 with the same number of training trajectories. The networks with the lowest MAE
for α̃1 and α̃2 are also shown in (d) (black circles). In all panels, each training point was
obtained by incrementally increasing the previous set of Nt trajectories used for training
with an additional well-balanced set of 10k trajectories from the full dataset. The shaded
areas correspond to one standard deviation around the mean values (calculated from the
performance of 5 distinct training attempts).

used trajectories belonging to attm and ctrw (i.e. up to ≈120k trajectories per dimension).
Similarly, for training the networks used for inference, we typically used well-balanced sets of
Nt trajectories extracted from a dataset of 300k trajectories per dimension (≈75k trajectories
per dimension for each of the following α ranges: α ∈ (0, 0.5], α ∈ (0.5, 1], α ∈ (1, 1.5] and
α ∈ (1.5, 2]). For the first approach (α̃1 in figures 2 and 4), the networks for each model are
trained using a subset of the full dataset containing the trajectories that have been classified as
the corresponding model by CONDOR. Each network is trained using only those trajectories
classified in the corresponding model and with all possible α values returned by the specific
network (i.e. allowed by the corresponding model, section 2.3) (tables S3–S10). In the case of
attm, ctrw and lw, misclassified trajectories can have a ground truth value ofα that falls outside
the range of values allowed by the specific model. To account for this during the training of the
networks associated to these three models, we assign these instances to the closest output α
category (i.e. the category that minimises the error in estimating α). For the second approach
(α̃2 in figures 2 and 4), each network is trained purely using trajectories selected based on
their α value from the full training dataset, for which the ground truth value of α is known. In
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particular, each network is trained using those trajectories with an α value falling among all
possible output α categories returned by the specific network (tables S11 and S12).

The sets of Nt trajectories used for training each data point in figure 4 were randomly split
among training (70%), validation (15%) and test (15%) trajectories. Overall, training with scg
is very efficient on a standard desktop computer (processor Intel(R) Core(TM) i7-4790 CPU
@ 3.60 GHz), being the size of the training dataset the main limiting factor. Training the three
consecutive networks used for classification (figure 2) took at most 1 h and a half, while training
the fourteen networks for the inference task took at most 3 h. Training time can be reduced by up
to 2 orders of magnitude employing a GPU. After training, CONDOR is very computationally
efficient on new data. For example, CONDOR can classify ≈80k trajectories/s on a standard
desktop computer.

Figure 4 shows the performance of the classification task and of the inference task with
the size of the training dataset. We evaluated the performance of the classification with the F1

score:

F1 =
TP

TP + 1
2 (FP + FN)

,

where TP, FP and FN are the true positive, false positive and false negative rates, respectively. In
particular, we computed the micro average of the F1 score with the Scikit-learn Python’s library
[52]. F1 can vary between 0 (no trajectory classified correctly) and 1 (all trajectories classi-
fied correctly). For balanced datasets, as those of the AnDi challenge (i.e. where each class is
equally represented), the micro average of the F1-score coincides with the accuracy obtained
as TP/Ntraj, where N traj is the number of trajectories in the dataset. To evaluate the performance
of the inference of the α-exponent, we used the mean absolute error (MAE) instead:

MAE =
1

Ntraj

Ntraj∑
j=1

|α̃ j − α j|,

where α̃ j and α j are the predicted and the ground truth values of the anomalous diffusion
coefficient of the jth trajectory, respectively. MAE has a lower limit of 0, meaning that the
coefficients of all the N traj trajectories have been predicted correctly.

Figures 4(a)–(c) shows the F1 score measured on the test fraction (15% of trajectories)
of the training dataset at the output of the three consecutive networks used for classification
(figure 2) for the 1D, 2D and 3D cases. For each step, we increased the number of trajectories
used for training progressively until the F1 score reached near saturation. Past this point any
gain in F1 score is relatively small and by far outbalanced by the increased computational cost
associated to longer training times. The performance improves with the dimension d of the
trajectories and, interestingly, at each step, saturation of the F1 score for higher d appears to
take place with smaller training datasets, as each trajectory contains intrinsically d times more
information. Only the best performing network at each step is selected (black squares in figures
4(a)–(c)) and carried forward to the next step (the details on how these networks were trained
are provided in tables 2, S1–S12). Independently of the dimensionality of the problem, the first
network produces the highest increase of F1 score with the size of the training dataset (figure
4(a)): for example, going from 10k to 100k trajectories, the F1 score increases approximately by
4% in 1D, 5% in 2D and 6% in 3D. The combined contribution of the following two networks to
the overall F1 score is less pronounced, especially for higher dimensions (figures 4(b) and (c));
nonetheless they play a key role in refining the classification among attm, fbm and sbm (figure
4(b)) or among attm and ctrw (figure 4(c)), thus boosting the final F1 score approximately by
4% in 1D, 3% in 2D and 1% in 3D.
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Similarly, figures 4(d) and (e) shows the MAE obtained on the test fraction (15% of trajec-
tories) of the training dataset for the inference of the α-exponent according to α̃1, α̃2 and their
arithmetic average α̃ (as defined in figure 2) for the 1D, 2D and 3D cases. As for F1, we report
the MAE of each method as a function of the size of the training dataset progressively until it
reaches near saturation. In general, the MAE lowers with the number of trajectories used for
training and with their dimension d. As noted earlier, independently of the dimensionality of
the problem, the arithmetic average α̃ provides a better estimate of the α exponent with respect
to both α̃1 and α̃2, leading to an overall MAE at saturation that is better than those obtained
with the individual methods by at least 0.01 in all the dimensions.

As can be seen in tables S2, S7–S10, S12 and in figure 4, the optimal size of the specific
training subset varies among the different networks of CONDOR. Increasing this size past
the optimal point can lead to overlearning the training dataset and has a detrimental effect on
CONDOR performance. For instance, this can be clearly appreciated in the training of the
second classification step (figure 4(b), step 2).

2.5. CONDOR performance vs number of inputs

In general, the performance of each network of CONDOR increases with the number of inputs
used: namely, when very few inputs are used (approximately up to N/3), adding an extra input
causes a big relative change in performance; when several inputs are already in use (approxi-
mately above 2N/3), the relative change in performance obtained by adding any extra input is
relatively smaller as CONDOR reaches a near-saturation performance value. On average, we
observed that this optimal performance is always obtained when the full set of inputs is used.
This near-saturation value is reached faster in higher dimensions as CONDOR has more sta-
tistical information available to learn from (i.e. removing an input is more detrimental in lower
dimensions). Interestingly, different subsets of inputs can ultimately provide a similar perfor-
mance (although not optimal). This means that different inputs can convey similar statistical
information that CONDOR learns to extract and distinguish. The presence of some repeated
information is not detrimental to the optimal performance achieved by CONDOR and, indeed,
helps CONDOR convergence to the same performance each time the training of its networks
is repeated; when a smaller subset of inputs is used instead, different trainings can lead to a
higher variability in the final performance after training and training of CONDOR should be
repeated for best results.

2.6. Segmentation with CONDOR

The output of the classification and the inference can also be used to identify possible change
points in a trajectory. In practice, a trajectory of length Tmax is divided in Tmax − B + 1 smaller
segments using an overlapping moving window of width B (with B � Tmax). The width of
the moving window is a trade-off between the possibility of identifying change points close
to either end of a trajectory (which increases for smaller B) and the accuracy in predicting the
correct time of the change point (which increase with B due to smaller errors in predicting the
model and the α exponent associated to each segment). Each of these segments is then fed to
CONDOR for classification and inference, thus generating two time series of Tmax − B + 1
values of the predicted model and α exponent. The occurrence of abrupt changes (up to two)
in the root-mean-square (rms) level of these time series is used to identify the point of change
of the model and/or of the α exponent [51]. To identify abrupt changes in the algorithm for the
segmentation of trajectories, we used the MATLABTM function findchangepts to simul-
taneously detect significant changes in rms level of the two-dimensional vector containing the
time series of predicted models and α exponents. We set the function findchangepts to
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detect at most two significant changes: if no abrupt change is identified, we set the change
point at the time instant corresponding to the center of the first moving window; if just one
abrupt change is identified, we set the change point for the corresponding trajectory at the time
instant where it was identified; if two abrupt changes are identified, we set the change point
half-way between the two time instants where they were identified. This approach unavoid-
ably introduces errors when the actual change point in the trajectory appears for t � B/2 and
t � Tmax − B/2. To minimise the impact associated to this uncertainty in the attribution of
the change point near the beginning and the end of the trajectory, each trajectory where no
change point is identified with a given width B can be reanalysed with windows of increas-
ingly smaller width at the expenses of a lower performance in the determination of the model
and the α exponent (due to the use of shorter segments for classification and inference).

To evaluate CONDOR’s performance in identifying the presence of a change point, we
calculated the root mean square error of the change point localization as in the AnDi challenge
[41]:

RMSE =

√√√√ 1
Ntraj

Ntraj∑
j=1

(̃t j − t j)2,

where t̃ j is the prediction and t j the ground truth value of the change point, respectively, of
a single trajectory in a dataset of Ntraj trajectories. Similar to the MAE, the root mean square
error (RMSE) has a lower limit of 0 when all the change points of the Ntraj trajectories are
correctly identified.

2.7. CONDOR codes

We have implemented all neural networks using the patternnet function in the MATLABTM-
based Deep Learning ToolboxTM. We provide the MATLABTM implementations of the key
functionalities of CONDOR [48]. Nonetheless, our approach is independent of the deep-
learning framework used for its implementation. Moreover, it is also possible to exchange
neural network models between the Deep Learning ToolboxTM and other platforms, such as
those based on TensorFlowTM.

3. Results

3.1. CONDOR overall performance on the datasets of the AnDi challenge

The best performing networks identified during the training step (black symbols in figure 4)
were carried forward and used in the prediction step, where we classified the anomalous diffu-
sion model and inferred the α exponent of the same datasets used in the AnDi challenge (with
10k trajectories each) for testing purposes [41]. Figure 5(a) shows the overall F1 score obtained
on these test databases: F1 = 0.844, F1 = 0.879 and F1 = 0.913 for the 1D, 2D and 3D cases,
respectively. Figure 5(b) shows the overall MAE instead: MAE = 0.161, MAE = 0.141 and
MAE = 0.121 for the 1D, 2D and 3D cases, respectively. These values enabled CONDOR to
be one of the top performant methods in the AnDi challenge (https://andi-challenge.org) [40].

3.2. Analysis of CONDOR performance in the model classification task

Figure 6 provides further detail on CONDOR performance in the classification task by value of
α (figures 6(a)–(c)), by model (figure 6(d)), by strength of the localization noise (figure 6(e))
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Figure 5. CONDOR performance on test datasets. (a) F1 and (b) MAE obtained using
CONDOR on the 1D, 2D and 3D datasets used in the classification and inference tasks
of the AnDi challenge (10k trajectories each). In (a), the stacked bar charts shows the
contribution of the three consecutive networks used for classification (figure 2) to the
total F1 score. In (b), the grouped bar charts shows the MAE associated to the inference
of the α-exponent according to α̃1, α̃2 and their arithmetic average α̃, which provides
the best estimate of the α exponent (figure 2).

Figure 6. Detailed analysis of CONDOR performance for the classification task. CON-
DOR classification performance (F1 score) on the 1D, 2D and 3D datasets of the AnDi
challenge used for the classification task (as in figure 5(a)) (a)–(c) by value of α for
the (a) 1D, (b) 2D and (c) 3D case, (d) by model, (e) by signal-to-noise ratio (SNR),
and (f)–(h) by trajectory length for the (f) 1D, (g) 2D and (h) 3D case, respectively. In
(a)–(c) each bar corresponds to an increment in α of 0.05. In (a)–(c) and (e) the dotted
lines represent the overall F1 as in figure 5(a). In (f)–(h), the trends are fitted to a power
law (y = c − ax−b, with a, b, c > 0) for ease of visualization. The shaded areas highlight
the values of the F1 score above the average value (figure 5(a)).

and by trajectory length (figures 6(f)–(h)). These data largely support CONDOR robustness
of performance across the parameter space.

CONDOR is able to predict the correct model relatively consistently across the val-
ues of α, with the exception of α � 0.05 in 1D and 2D and of α � 1 for all dimensions
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(figures 6(a)–(c)). This is not surprising. In fact, for α � 0.05 all trajectories are close to
stationary and show a very low degree of motion, which could be dominated by the localiza-
tion noise. Therefore, these trajectories are harder to classify, particularly in lower dimensions
where a smaller amount of information is intrinsically available. Similarly, forα � 1 all models
converge to Brownian motion, making it much more challenging to distinguish among them.
Interestingly, in 1D and 2D, CONDOR shows an above-than-average performance in classify-
ing superdiffusive trajectories, thus compensating what lost in the classification of subdiffusive
trajectories.

Consistently across the dimensions (1D, 2D and 3D), CONDOR recognises two models
(ctrw and lw) extremely well with F1 � 0.94 for ctrw and F1 � 0.98 for lw (figure 6(d)). This
is understandable as both models show typical features that stand them apart from the remain-
ing models and are relatively robust to the presence of localization noise (figure 1): i.e. long
ballistic steps in lw trajectories and long waiting times in ctrw trajectories [1]. For the remain-
ing three models (attm, fbm and sbm), CONDOR performs progressively better moving from
1D to 3D. As noticed earlier (figure 1), the distinctive features among these models are more
subtle and can be better evaluated for higher dimensions as they are intrinsically richer in infor-
mation content. While CONDOR performs equally well with fbm and sbm (F1 ≈ 0.81–0.82
in 1D, F1 ≈ 0.85–0.86 in 2D and F1 ≈ 0.87–0.89 in 3D), it struggles more with attm as this
model can be more easily confused with others (figure 1). Nonetheless, CONDOR perfor-
mance increases significantly with the dimension of the attm trajectories from F1 ≈ 0.66 in
1D to F1 ≈ 0.88 in 3D.

The performance of CONDOR with different values of SNR gives the expected results
(figure 6(e)). The F1 score increases for higher values of SNR, reaching F1 scores of 0.89,
0.92 and 0.95 for 1D, 2D and 3D, respectively (i.e. well above the overall F1 score in figure
5(a)). However, even when the noise overcomes the signal (SNR � 1), the lost in the classi-
fication performance is less than 10% of these high values for the level of noise considered
here.

Finally, figures 6(f)–(h) shows CONDOR classification performance with the duration of
the trajectory. Due to the richer information content, classification is increasingly better for
longer trajectories and for higher dimensions. The trends in figures 6(f)–(h) are well fit-
ted by power law functions (dashed lines), which show how, above a certain threshold in
duration, CONDOR performs above the average F1 scores (delimited by the shaded areas),
reaching F1 values of up to 0.96 in 1D, 0.97 in 2D and 0.99 in 3D. Moreover, this thresh-
old decreases when increasing the dimension, from ≈340 time points in 1D to ≈280 in 3D.
Note that, even though we did not perform a length specific training for our submissions to the
AnDi challenge, by directly training CONDOR neural networks for classification only with
short trajectories (� 50 time steps), its performance in classifying them can be boosted. This
possibility is particularly useful for the classification of experimental trajectories that often
are short or are interrupted by missing data points [37, 53]. For example, we were able to
improve the F1 score on short trajectories (� 30 time steps) in figures 6(f)–(h) by ≈15% on
average.

3.3. Analysis of CONDOR performance in the α-exponent inference task

Figure 7 provides further detail on CONDOR performance in the α-exponent interference task
by value of α (figures 7(a)–(c)), by model (figure 7(d)), by strength of the localization noise
(figure 7(e)) and by trajectory length (figures 5(f)–(h)). These data largely confirm the obser-
vations on CONDOR performance for the classification task, thus confirming its robustness
across the parameter space.
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Figure 7. Detailed analysis of CONDOR performance for theα-exponent inference task.
CONDOR α-exponent inference performance (MAE) on the 1D, 2D and 3D datasets of
the AnDi challenge used for the inference task (as in figure 5(b)) (a)–(c) by value of α
for the (a) 1D, (b) 2D and (c) 3D case, (d) by model, (e) by signal-to-noise ratio (SNR),
and (f)–(h) by trajectory length for the (f) 1D, (g) 2D and (h) 3D case, respectively. In
(a)–(c) each bar corresponds to an increment in α of 0.05. In (a)–(c) and (e) the dotted
lines represent the overall MAE as in figure 5(b). In (f)–(h), the trends are fitted to a
power law (y = ax−b + c, with a, b, c > 0) for ease of visualization. The dashed areas
highlight the values of the MAE below the average value (figure 5(b)).

In figures 7(a)–(c), we can see how CONDOR performs in a relatively consistent way across
the α values, with the exception of α = 0.05 in the 1D and 2D cases (MAE = 0.239 in 1D and
MAE = 0.302 in 2D). This is primarily due to a relatively large proportion of 1D and 2D attm
trajectories with α = 0.05 being assigned to other α values: for example, for these trajectories,
≈10% of the predicted values of α is greater than 1 (against only the 0.03% of the 3D attm
trajectories with α = 0.05). As in the classification case, being these subdiffusive trajectories
almost stationary, the inference is largely influenced by the localization noise.

As already noted for the model classification (figure 6(a)), CONDOR can also infer the α-
exponent very well and consistently across the dimensions for two models (ctrw and lw) with
MAE � 0.128 for ctrw and MAE � 0.141 for lw (figure 7(d)). For the three remaining models
(attm, fbm and sbm), CONDOR again performs progressively better moving from 1D to 3D.
The best results across the dimensions are obtained for the fbm (MAE ≈ 0.133 in 1D, MAE ≈
0.100 in 2D and MAE ≈ 0.083 in 3D), followed by sbm (MAE ≈ 0.173 in 1D, MAE ≈ 0.134
in 2D and MAE ≈ 0.107 in 3D). Once again, as in the classification task, CONDOR struggles
more with attm (MAE ≈ 0.274 in 1D, MAE ≈ 0.269 in 2D and MAE ≈ 0.201 in 3D).

Figure 7(e) confirms what has been discussed for the classification regarding CONDOR
performance with different SNR values. For high SNRs, the MAE values for each dimension
are well below the average MAE (figure 5(b)): MAE = 0.136 in 1D, MAE = 0.121 in 2D
and MAE = 0.112 in 3D. As expected, the MAE increases with higher levels of noise in all
dimensions, but it is still below ≈0.2 for the values of noise considered here.

Figures 7(f)–(h) shows CONDOR performance in inferring the α exponent with the dura-
tion of the trajectory. Similar to the classification task, CONDOR performance improves for
higher dimensions and for longer trajectories as the MAE becomes increasingly lower in agree-
ment with prior observations [35, 37]. The trends in figures 7(f)–(h) are well fitted by power
law functions (dashed lines), which show how, above a certain threshold in duration, CON-
DOR performance is significantly below the average MAE (delimited by the shaded areas),
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Table 3. Comparison of the mean absolute errors (MAE) obtained with different
approaches to the inference task on the AnDi challenge dataset: MAEChal corresponds to
the standard outcome of CONDOR (figure 5(b)), MAEBest and MAEWorst represent the
outcomes of CONDOR when all trajectories are either classified correctly or completely
misclassified, MAEMod is obtained from the second approach to the inference task (α̃2 in
figure 2) when the predicted model is not added to the inputs for the corresponding neu-
ral networks. Finally, MAERand is obtained assigning to each trajectory a random value
of α uniformly; this value is an average over 5 different attempts (the standard deviation
is also provided).

MAEChal MAEBest MAEWorst MAEMod MAERand

1D
α̃1 0.171 0.159 0.467

0.176 0.665 ± 0.003α̃2 0.170 0.159 0.316
α̃ 0.161 0.149 0.391

2D
α̃1 0.153 0.142 0.496

0.151 0.662 ± 0.002α̃2 0.147 0.143 0.257
α̃ 0.141 0.133 0.377

3D
α̃1 0.131 0.127 0.531

0.132 0.666 ± 0.003α̃2 0.127 0.125 0.245
α̃ 0.121 0.117 0.388

reaching values as small as 0.083 in 1D, 0.085 in 2D and 0.065 in 3D. As for the classification
task, this threshold decreases when increasing the dimension, from 350 time points in 1D to
300 in 3D. Also for the inference task, it is possible to improve the prediction of the value of α
for short trajectories (� 40 time steps) by training CONDOR neural networks only using short
trajectories (� 50 time steps). Differently from the classification task, training CONDOR’s
networks for both classification and inference on short trajectories (which we did not perform
as part of our submissions to the AnDi challenge) does not significantly reduce the error on the
inference of the α exponent. The main limiting factor is indeed the amount of information that
can be extracted from short trajectories with the statistical observables used as inputs, which
CONDOR is already performing at its best with networks trained on mixed length trajectories.

Finally, it is important to note that CONDOR’s inference performance relies on the per-
formance of the classification task. Indeed, the inference of the α exponent uses the pre-
dicted model either as a selection element or as an additional input, so the misclassification
of trajectories can be directly detrimental for the inference task too. To test the robustness
to misclassification more quantitatively, we computed the value of the MAE obtained with
both inference methods (α̃1 and α̃2 in figure 2) and their average (α̃) in the best-case sce-
nario (all trajectories are classified correctly) and in the worst-case scenario (all trajectories
are misclassified in any possible model but the correct one) using the ground truth informa-
tion about the model in the AnDi challenge dataset for the inference task. For reference, we
also compared our results with the MAE calculated assigning to each trajectory a random α
value drawn from a uniform distribution (over 5 different attempts). Table 3 shows the corre-
lation between CONDOR’s inference performance and the misclassification issue. A perfect
classification (MAEBest) allows us to slightly reduce the overall MAE reported in the AnDi
challenge (MAEChal as in figure 5(b)). This is further confirmation of the fact that CONDOR is
highly performant in classifying anomalous diffusion trajectories and, consequently, in infer-
ring their anomalous exponent. In the case of good classification, averaging between the two
methods is also likely to help reduce the impact of potential misclassifications. Nonetheless,
when misclassification becomes more of an issue (e.g. with trajectories heavily corrupted by
localization noise), the overall performance of the inference starts to deteriorate. Interestingly,
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Figure 8. Detailed analysis of CONDOR performance for the segmentation task. CON-
DOR segmentation results on the 1D, 2D and 3D datasets of the AnDi challenge used for
the segmentation task (10k trajectories each). (a) CONDOR segmentation performance
is evaluated by the root mean square error (RMSE) of the change point localization as
a function of the ground truth value of the change point (ti). The dotted lines represent
the overall RMSE for each dimension when using moving windows of width B1 = 50,
B2 = 40 and B3 = 20 sequentially (see text). The dash-dotted lines represent the average
RMSE for each dimension on all change points identified only with a moving window of
width B1 (i.e. for 25 < ti < 175). (b) Model classification and (c) α-exponent inference
with CONDOR on each of the two trajectory segments identified through segmentation.
These results are reported by (b) F1 score and (c) MAE, respectively, for the first (solid
lines) and the second (dashed lines) trajectory segment as a function of ti. The overall
F1 score (i.e. calculated over all possible segment lengths) is 0.533 in 1D, 0.534 in 2D,
and 0.572 in 3D, respectively. The overall MAE is 0.372 in 1D, 0.381 in 2D, and 0.371
in 3D, respectively.

this trend is primarily driven by the first method (α̃1, where the classification outcome is a
selection parameter for the choice of the network), while the second inference method (α̃2,
where the classification outcome is an additional input rather than a selection parameter) is
much more robust to classification errors and becomes, on its own, a better choice than the
average of the two methods. An even better choice when misclassification is of serious con-
cern is to use a revised version of the second inference method where the classification is no
longer used as an additional input (MAEMod): this revised method (fully independent of the
classification step) achieves a performance which is comparable to the performance obtained
during the AnDi challenge with the first approach (α̃1) independently. Under all circumstances,
CONDOR performs substantially better than assigning the α exponent at random (MAERand).

4. Expanding CONDOR to the segmentation of trajectories

We tested our algorithm for the segmentation of trajectories on the same datasets used in the
AnDi challenge for the segmentation task [42]. For each dimension, a dataset is composed of
10k trajectories 200 time steps long [41]. Similar to the datasets for the classification and the
inference tasks, these datasets are also corrupted by Gaussian noise corresponding to a finite
localization precision. Moreover, in these datasets, at least one parameter between the model
and the α-exponent changes at a random time ti within the duration of each trajectory. To pre-
dict the change point, we used a moving window of width B1 = 50 at first as explained in
section 2.6. We then used two moving windows of width B2 = 40 and B3 = 20 sequentially
to refine the prediction of the change point in trajectories where the previous moving win-
dow did not detect a change. As our segmentation algorithm is based on using short segments,
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we retrained CONDOR’s networks for classification and inference using only short trajectories
(� 50 data points) for an improved segmentation performance. The results of our segmentation
are reported in figure 8. As shown in figure 8(a), the error in the determination of the change
point is strongly influenced by its location in time, reaching its smallest value when the change
point is located nearer the center of each trajectory: whilst the overall RMSE for 1D, 2D and
3D trajectories are 53.45, 51.81 and 50.54 respectively, the RMSE reaches average values of
26.00 ± 0.02 in 1D, 24.20 ± 0.04 in 2D and 23.01 ± 0.37 in 3D when the change point is
located between 80 and 120 time steps. Interestingly, when the change point location can be
determined using larger windows of width B1 (i.e. for 25 < ti < 175), even the overall RMSE
is significantly reduced (RMSE equal to 39.38 in 1D, 38.41 in 2D and 36.75 in 3D, figure 8(a)),
due to CONDOR’s better performance in predicting the model and the α exponent when more
time points are available. Once the position of the change point is known, CONDOR can be
used to classify the model and infer the α exponent for each segment of the trajectory deter-
mined by its segmentation. We either used the networks identified in figure 4 for long segments
(Tmax > 40) or those trained on short trajectories for short segments (Tmax � 40). The overall
F1 score (i.e. calculated over all possible segment lengths) is 0.533 in 1D, 0.534 in 2D, and
0.572 in 3D, while the overall MAE is 0.372 in 1D, 0.381 in 2D, and 0.371 in 3D. When look-
ing at the F1 score and the MAE as a function of segment length, figures 8(b) and (c) confirms
how CONDOR performance in classifying the model and inferring the α exponent increases
with the length of the trajectory, which is here determined by the location of the change point
in time for each identified trajectory segment. The extra uncertainty introduced by the local-
ization of the change point however leads to slightly lower F1 and slightly higher MAE values
(for both their overall and length-specific values) across the dimensions with respect to those
in figures 6(f)–(h) and 7(f)–(h) for trajectories of the same length. When compared against
the other methods submitted to the AnDi challenge for the segmentation task (and using the
same metric) [40], our method is always outperformed by the best method for segmentation in
each dimension. Nonetheless, our method reaches an overall satisfactory performance compa-
rable with the other submissions beyond the top-ranking one. Indeed, our method would have
ranked 2nd in 3D (out of 4) and 4th in 1D and 2D (out of 5). Importantly, considering that the
segmentation task of the AnDi challenge was the least subscribed, our method adds a further
available tool to study the segmentation of anomalous diffusion trajectories, and could be use-
ful for a preliminary assessment of the presence of segmented trajectories in real data based
on CONDOR’s outputs.

5. Conclusion

In conclusion, we have introduced a new method (CONDOR) for the characterisation of sin-
gle anomalous diffusion trajectories in response to the AnDi challenge [40, 41]. Our method
combines tools from classical statistics analysis with deep learning techniques. CONDOR can
identify the anomalous diffusion model and its exponent with high accuracy, in relatively short
times and without the need of any a priori information. Moreover, CONDOR performance is
robust to the addition of localization noise. As a consequence, CONDOR was among the top
performant methods in the AnDi challenge (https://andi-challenge.org), performing progres-
sively better for higher dimension trajectories. A deeper understanding of the relative relevance
of different inputs for the deep learning architecture can be gained by employing advanced
interpretability algorithms [54]. This information could be important to optimise the perfor-
mance of CONDOR as a function of the most relevant input parameters, and, in the future, to
develop an in-depth understanding of how the various statistical observables are connected to
each model being classified and each α value being inferred. At the expenses of an increased
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computational cost, performance can be further improved by expanding the set of inputs fed to
the deep learning algorithm and by employing more advanced network architectures (e.g. con-
volutional neural networks or recurrent neural networks [55]). While most advanced machine
learning techniques often operate as black boxes, we envisage that CONDOR, being partially
based on classical statistics analysis, can help characterise the underlying diffusion processes
with greater physical insight in many real-life phenomena, from molecular encounters and cel-
lular signalling, to search strategies and the spread of diseases, to trends in financial markets
and climate records.
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