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Abstract

Motivation: Over the past 50 years, our ability to model protein sequences with evolutionary information

has progressed in leaps and bounds. However, even with the latest deep learning methods, the modelling

of a critically important class of proteins, single orphan sequences, remains unsolved.

Results: By taking a bioinformatics approach to semi-supervised machine learning, we develop Profile

Augmentation of Single Sequences (PASS), a simple but powerful framework for building accurate single-

sequence methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary

structure prediction. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single

method, which achieves an unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides

a blueprint for the development of a new generation of predictive methods, advancing our ability to model

individual protein sequences.

Availability: The S4PRED model is available as open source software on the PSIPRED GitHub repository

(https://github.com/psipred/s4pred), along with documentation. It will also be provided as a part of the

PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/)

Contact: d.t.jones@ucl.ac.uk, lewis.moffat@cs.ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past two decades, sequence-based bioinformatics has made
leaps and bounds towards better understanding the intricacies of DNA,
RNA, and proteins. Large sequence databases (UniProt-Consortium,
2019) have facilitated especially powerful modelling techniques that use
homology information for a given query sequence to infer aspects of
its function and structure (Kandathil et al., 2019b). A keen example
of this progress is in current methods for protein structure prediction
that utilize multiple sequence alignments (MSAs) and deep learning to
accurately infer secondary and tertiary structure (Jones, 2019; Senior et al.,
2020; Greener et al., 2019). Unfortunately, much of this progress has not
extended to orphan sequences, a very important but very difficult to model
class of sequences which have few to no known homologous sequences
(Perdigão et al., 2015; Levitt, 2009; Greener et al., 2019). Also, even when

homologues are available, multiple sequence alignment is often too slow
to apply to the entirety of a large sequence data bank, and so improved
annotation tools which can work with just a single input sequence are also
vital in maintaining resources such as InterPro (Blum et al., 2020).

Here we present Profile Augmentation of Single Sequences (PASS),
a general framework for mapping multiple sequence information to
cases where rapid and accurate predictions are required for orphan
sequences. This simple but powerful framework draws inspiration from
Semi-Supervised Learning (SSL) to enable the creation of massive single-
sequence datasets in a way that is biologically intelligent and conceptually
simple. SSL methods represent powerful approaches for developing
models that utilize both labelled and unlabelled data. Where some recent
works (Alley et al., 2019; Heinzinger et al., 2019) have looked to take
advantage of unlabelled biological sequence data using unsupervised
learning, borrowing from techniques in natural language processing (Dai
et al., 2019; Devlin et al., 2019), we instead look to modern SSL
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2 Moffat & Jones

methods like FixMatch (Sohn et al., 2020) for inspiration. These methods
have demonstrated that pseudo-labelling, amongst other techniques, can
significantly improve model performance (Berthelot et al., 2019; Sohn
et al., 2020; Lee, 2013). Pseudo-labelling techniques use the model
being trained to assign artificial labels to unlabelled data, which is then
incorporated into further training of the model itself (Lee, 2013).

Fig. 1. Plot showing reported test Q3 scores for a range of published secondary structure

prediction methods over the previous three decades. This includes single-sequence

methods(Asai et al., 1993; Frishman and Argos, 1996; Schmidler et al., 2000; Aydin et al.,

2006; Bidargaddi et al., 2009; Heffernan et al., 2018) and homology methods(Rost et al.,

1993; Cuff et al., 1998; Jones, 1999; Meiler and Baker, 2003; Cole et al., 2008; Mirabello

and Pollastri, 2013; Li and Yu, 2016; Hanson et al., 2019) separately to provide an illustrative

view of how single-sequence methods have improved very slowly, compared to homology

methods, over time. We include this work, S4PRED, to demonstrate how it is a step upwards

in accuracy. In order to avoid conflation with Rosetta ab initio, we use the name Rosetta +

Neural Network (Rosetta+NN) in this figure to refer to the work of Meiler & Baker(Meiler

and Baker, 2003).

PASS uses a bioinformatics-based approach to pseudo-labelling to
develop a dataset for a given prediction task before training a predictive
single-sequence model. First, a large database of sequences is clustered
into MSAs. Each MSA is then used as input to an accurate homology-
based predictor. The predictions are then treated as pseudo-labels for a
single sequence from the MSA. This allows a large unlabelled set of
single sequences to be converted into a training set with biologically
plausible labels, that can be combined with real labelled data, for training
a deep learning based predictor. As an exemplar of the effectiveness of the
PASS framework we apply it to the well explored field of single-sequence
secondary structure prediction resulting in Single-Sequence Secondary
Structure PREDictor (S4PRED), the next iteration of PSIPRED-Single,
our current method. S4PRED achieves a state-of-the-artQ3 score of 75.3%
on the standard CB513 test set (Cuff and Barton, 1999). This performance
approaches the first version of the homology-based PSIPRED (Jones,
1999) and represents a leap in performance for single-sequence based
methods in secondary structure prediction (Figure 1).

Starting from a three class accuracy (Q3) of ∼ 76% (Jones, 1999)
in the late 1990’s, our secondary structure prediction tool, PSIPRED, has
grown to a current state-of-the-art Q3 of 84.2%, and is used globally
in both experimental and computational research (Buchan and Jones,
2019). PSIPRED, along with other methods, is able to produce high
accuracy predictions by leveraging valuable homology information found
in MSAs (Yang et al., 2018). This approach is in stark contrast to single-
sequence methods, like PSIPRED-Single (Buchan and Jones, 2019), that
are designed to predict secondary structure based only on a single query
sequence, without relying on homology information. Unfortunately, over
the past decades, single-sequence methods have been slow to improve

relative to homology based methods, as can be seen in Figure 1. Currently,
the most performant single-sequence methods achieve low Q3 scores of
71-72% (Bidargaddi et al., 2009; Buchan and Jones, 2019; Heffernan et al.,
2018; Torrisi et al., 2019), where homology based methods are achieving
scores of > 84% (Buchan and Jones, 2019; Torrisi et al., 2019; Hanson
et al., 2019) and are approaching a hypothesized theoretical maximum of
88-90% (Rost, 2001).

Accurate single-sequence prediction enables the modelling of any
given sequence without the constraints of homology, which represents a
valuable research prospect with a plethora of use cases. The most apparent
of these is being able to better model any part of the known protein space,
especially given that a quarter of sequenced natural proteins are estimated
to have no known homologues (Levitt, 2009) and an even larger portion are
inaccessible to homology modelling (Perdigão et al., 2015; Ovchinnikov
et al., 2017; Greener et al., 2019). For example, a particularly important
area where this is often the case is viral sequence analysis. The structures
of viral proteins are often attractive targets for the development of antiviral
drugs or the development of vaccines (Mokili et al., 2012), however,
viral sequences tend to be highly diverse and typically have no detectable
homologues, making structural modelling difficult (Mokili et al., 2012;
Edwards and Rohwer, 2005; Riesselman et al., 2018). Another example is
being able to better model the homology-poor “dark proteome” (Perdigão
et al., 2015). The value of single-sequence methods also extends outside
of natural proteins to areas like de novo protein design (Marcos and Silva,
2018), where novel sequences and structures typically, by their very design,
have no homologues (Koga et al., 2012).

Even in the case of a sequence having known homologues, single-
sequence methods have many valuable uses. One clear example is in
variant effects (Riesselman et al., 2018), where methods like PSIPRED
that use MSAs are limited because their predictions for a given sequence
will be biased towards a family “average" (Kandathil et al., 2019b).
Single-sequence methods avoid this bias in not utilizing any homology
information and may have the potential to better model the changes in
secondary structure across a family even for highly divergent members.
This also extends to being able to better model large single-species
insertions that intrinsically have no homology information. Being able to
avoid the bias of homology methods could also benefit protein engineering
tasks (Yang et al., 2019), where the aim may be to generate a sequence
that is highly divergent from its homologues.

2 Methods

For S4PRED, we use the PASS framework to develop a pseudo-labelling
approach that is used to generate a large set of single sequences with highly
accurate artificial labels. The first step is taking a large set of unlabelled
protein sequences clustered as alignments and then removing the clusters
containing a small number of sequences. The MSA-based PSIPRED V4
(Buchan and Jones, 2019) is then used to generate secondary structure
predictions for each remaining cluster alignment. The representative
sequence for each cluster is used as the target sequence when predicting
secondary structure. The target sequence is then kept along with the three-
class predictions, and the alignment is discarded. In this way, each cluster
produces a single training example, constituting a single sequence and its
pseudo-labels.

This approach effectively utilizes a homology-based predictor to
provide accurate pseudo-labels for individual unlabelled sequences.
PSIPRED generates high accuracy predictions, so it can be inferred that
it’s providing highly plausible secondary structure labels. These labels are,
therefore, able to provide valuable biological information to the S4PRED
model during training. Because each sequence is sampled from a separate
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cluster, there is also the added benefit of diversity between individual
sequences in the dataset.

Training sets are used by the machine learning model to learn the
predictive mapping of an amino acid sequence to secondary structure
sequence. During training the validation set is used as a means of
monitoring the performance of a model, but it does not learn from this
set. The test set is the final unseen benchmark set that the trained model is
tested against.

In this work we use the Uniclust30 database (Mirdita et al., 2017) to
generate a pseudo-labelled training set, which, after a rigorous process
of benchmarking and cross-validation, contains 1.08M sequences with
pseudo-labels. To accompany the pseudo-labelled sequences, we construct
a labelled training set and a labelled validation set from protein structures
in the PDB (Burley et al., 2019). For proper cross-validation, sequences
in both the labelled training and labelled validation sets were removed if
they were homologous to any sequences in the CB513 test set, evaluated
by CATH (Sillitoe et al., 2019) Superfamily-level classification. The final
labelled training and validation sets contain 10143 and 534 sequences
respectively.

In summary, there is a labelled training set along with a labelled
validation set and labelled test set. There is also the pseudo-labelled
training set. The neural network model learns from both labelled and
pseudo-labelled training sets, and, during training in both cases, the
labelled validation set is used to measure overtraining and perform early
stopping. The final trained model that has learned from both training sets
is then tested against the labelled test set (CB513).

To train the S4PRED model using both sets of data we adapt the ‘fine-
tuning’ approach from recent work of Devlin and collaborators (Devlin
et al., 2019). In the context of S4PRED, fine-tuning consists of first training
on the large pseudo-labelled training set (See Supplementary Materials
S3), after which a small amount of additional training is performed with
the labelled dataset (See Supplementary Materials S4). Fine-tuning in
this manner provides an effective and regimented training scheme that
incorporates both sets of sequences. The S4PRED model itself uses
a variant of the powerful AWD-LSTM (Merity et al., 2018) model,
a recurrent neural network model that uses a variety of regularization
techniques. See Supplementary Materials Figure S2 for a diagram of the
neural network model during inference.

2.1 Labelled dataset construction

The first stage in our construction of a labelled dataset is generating a
non-redundant set of PDB chains using the PISCES server (Wang and
Dunbrack Jr, 2003) with a maximum identity between structures of 70%
and a maximum resolution of 2.6Å. This produces a list of 30630 chains, all
with a length of 40 residues or more. At the cost of introducing some noise
but retaining more examples we do not remove any chains with unlabelled
residues.

From this list we then remove any chains that share homology with
the test set. We use the standard test set for secondary structure prediction,
CB513. Homology is assessed and qualified as having any overlapping
CATH (Sillitoe et al., 2019) domains at the Superfamily level with any of
the sequences in the test set (Jones, 2019). This removes approximately 2⁄3
of the chains leaving a total of 10677 from which to generate training and
validation sets. This approach ensures no test set data leakage in either the
labelled training set or the labelled validation set

The remaining chains are clustered at 25% identity using MMseqs2
(Steinegger and Söding, 2017). From the resulting 6369 clusters, a subset
is randomly sampled such that the total sum of their sequences makes
up ∼ 5% of the 10677 chains. This is to create a validation set that
achieves a 95%/5% split between training and validation sets, as well
as keeping the validation and test sets similarly sized. This leaves a final

split of 10143/534/513 examples for the training, validation, and test sets
respectively.

Secondary structures are specified using DSSP (Kabsch and Sander,
1983). For each residue in each sequence the eight states (H, I, G, E, B,
S, T, -) are converted to the standard 3 classes (Q3) of strand for E & B,
helix for H & G, and loop (coil) for the remainder. Protein sequences are
represented as a sequence of amino acids, where each residue is represented
by one of 21 integers; twenty for the canonical amino acids and one for "X"
corresponding to unknown and non-canonical amino acids. Each integer
represents an index to a 128-dimensional embedding that is learned by the
neural network model during training (See Supplementary Materials S2
and S3 for further architecture details).

2.2 Pseudo-labelled dataset generation

To assemble a dataset of pseudo-labelled sequences we start with
Uniclust30 (Januray 2020 release) (Mirdita et al., 2017). This consists
of UniProtKB (UniProt-Consortium, 2019) sequences clustered to 30%
identity, making up 23.8M clusters. Each cluster is then considered as a
single potential example for the pseudo-labelled training set. Any cluster
can be converted into a target sequence and alignment which can then be
passed to PSIPRED to generate high accuracy predictions of secondary
structure. These secondary structure predictions are then one-hot encoded
and treated as pseudo-labels with the target sequence providing a single
example.

Clusters are filtered from the initial 23.8M Uniclust30 set by removing
clusters that are either too short or have too few sequence members. If a
cluster has a representative sequence with a length of less than 20 residues
or contains less than 10 non-redundant sequences in its alignment it is
removed. Applying these restrictions leaves a much smaller set of 1.41M
clusters. These are the candidate clusters for generating a training set from
which homology with the validation and test sets is to be removed.

2.3 Removal of test set homology from the pseudo-labelled

dataset

The S4PRED model is trained on labelled and pseudo-labelled data and, as
such, the pseudo-labelled set requires removal of sequences homologous
to the CB513 (Cuff and Barton, 1999) test set. When S4PRED is training
on the pseudo-labelled set it uses the real-labelled validation set for early
stopping. As such, we also seek to remove sequences from the pseudo-
labelled set that are clearly homologous with the validation set.

For the vast majority of clusters, solved structures are not available.
This leaves sequence-based approaches to identify and eliminate clusters
that share any homology with the test set. It is widely known that using a
simple percent identity (e.g. 30%) as a homology threshold between two
sequences is inadequate and leads to data leakage (Jones, 2019). As such
we employ a rigorous and multifaceted approach to removing clusters that
are homologous to the test set.

The first step is performing HMM-HMM homology searching for
each member of CB513 with HHblits (Remmert et al., 2012) using
one iteration and an E-value of 10 against the remaining clusters. An
accurate means of homology detection, using a high E-value also provides
an aggressive sweep to capture any positive matches at the expense of a
small number of false hits. One iteration was performed as this was broadly
found to return more hits. For removing test set homology, this step acts
as a fast single pass to remove a large number of potential homologues.

For the validation set, the same procedure is followed, however the
default E-value (1 × 10−3) is used with two iterations. We use these
more standard parameters for the validation set as the set is only used
for early stopping and not for benchmarking. As such it does not require
as aggressive and wide sweeping an approach to removing homologous
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4 Moffat & Jones

Fig. 2. (A) Table showing the difference in final accuracy (Q3 score) between the improved S4PRED, the AWD-GRU benchmark, and the current version of PSIPRED-Single on the

CB513 test set. (B) Table of classification metrics for the S4PRED model test set predictions. These are shown for each of the three predicted class; α-helix, β-sheet, and loop (or coil). The

support is normalized across classes to 100 for clarity - there are a total of 84484 residue predictions in the test set. (C) Confusion matrix for the three classes in the S4PRED model test set

predictions.

sequences as is done for the test set. All clusters that are matches to the
test and validation sets are then removed.

The remaining clusters are copied and combined to create a single
large sequence database which is processed with pFilt (Jones and
Swindells, 2002) to mask regions of low amino acid complexity. The
test set alignments produced by HHblits are used to construct HMMER
(Eddy, 2011) HMMs which are then used to perform HMM-sequence
homology searches against the sequence database using hmmsearch.
The ‘–max’ flag is used to improve sensitivity and the default e-value is
used. All sequences that are positive hits to the test set HMMs, along with
their respective clusters, are removed from the remaining pseudo-labelled
sequence set.

A secondary and overlapping procedure is also performed. Each
member of the test set is mapped to one or more Pfam (El-Gebali
et al., 2019) families by pre-existing annotations. These are found by a
combination of SIFTS (Dana et al., 2019) and manual searching. From
the test set, 17 structures were not found to belong to any Pfam family.
For each Pfam family linked to the remaining members of the test set,
a list of UniProt sequence IDs is generated. This is extracted from the
family’s current UniProt-based Pfam alignment (01-2020) and is used to
remove clusters following the same procedure as positive hits from the
HMM-sequence search.

In total these methods remove approximately a quarter of the initial
1.41M clusters, leaving a final 1.08M clusters to construct the final pseudo-
labelled training set. While the fear of data leakage remains ever present,
we believe that in the absence of structures this process constitutes a
rigorous and exhaustive approach to homology removal.

2.4 Generating pseudo-labels with PSIPRED

A given cluster can provide a sequence with pseudo-labels by first
taking its representative sequence as the target sequence and splitting
off the remainder of the cluster alignment. This is treated as if it
was the target sequence alignment. Both sequence and alignment are
then processed using the standard PSIPRED procedure. The three-class
secondary structure labels predicted by PSIPRED V4 (Buchan and Jones,
2019) are then kept along with the target sequence as a single example for
the training set. The version of PSIPRED used to generate labels is trained
on a set of sequences that are structurally non-homologous with the CB513
test set. This ensures that the pseudo-labels contain no information derived
from the test set implicitly through PSIPRED. This procedure is repeated
to generate a training set of 1.08M sequences each paired with a sequence
of pseudo-labels.

3 Results

3.1 The prediction of secondary structure from a single

sequence

The final model achieves an average test set Q3 score of 75.3%. This
improves the Q3 of PSIPRED-Single by almost 5% (Figure 2A), currently
being 70.6%. This is clearly seen in Figure 3A, which shows how the
distribution of test setQ3 scores for S4PRED has improved as a whole from
PSIPRED-Single scores. In some cases, this has led to a large improvement
in prediction accuracy, an example of which is visualized in Figure 3B.
Although this represents a significant improvement it is not necessarily
a fair comparison as PSIPRED-Single uses a much simpler multi-layer
perceptron model (Jones, 1999; Buchan and Jones, 2019).

The most comparable method to date is SPIDER3-Single (Heffernan
et al., 2018) which uses a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) trained in a supervised manner. This method
predicts secondary structure and other sequence information, like solvent
accessibility and torsion angles, from a single sequence. SPIDER3-
Single uses one model to make preliminary predictions, which are then
concatenated with the original input sequence, to be used as input to a
second model that produces the final predictions. It reports a Q3 score of
72.5%, however, this is on a non-standard test set based on a less stringent
definition of homology (Jones, 2019).

To establish an equivalent and informative comparison we provide a
second benchmark by training a similar supervised model to SPIDER3-
Single which predicts only secondary structure in a standard supervised
manner, without a secondary network. This uses the same network
architecture as our SSL method but only trains on the labelled sequence
dataset. This achieves a Q3 score of 71.6% on CB513. This is a similar
result to that achieved in a recent work (Torrisi et al., 2019), which reported
a single-sequence Q3 score of 69.9% and 71.3% on a validation set with
a perceptron model and a LSTM-based model respectively. Although
the second benchmark used here does not utilize a secondary prediction
network like SPIDER3-Single, it is< 1% less performant than SPIDER3-
Single’s reported test set performance. Importantly, it provides a direct
comparison to S4PRED by using the same model and test set. We use
the name AWD-GRU, after the AWD-LSTM variant (Merity et al., 2018)
used herein, to refer to this benchmark model. Although they use the same
architecture, S4PRED still exceeds the performance of the AWD-GRU
benchmark by a difference in Q3 of almost 4%. Not only is this a large
improvement for single-sequence prediction, it directly demonstrates the
benefit of the SSL approach.

To more precisely determine the benefit that fine-tuning contributes
to this performance gain, we tested a model trained on only pseudo-
labelled sequences. This achieves a testQ3 score of 74.4%. As is expected,
this demonstrates that fine-tuning is a functional approach to combining
both datasets that markedly improves prediction by ∼ 1%. Aside from
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the obvious benefit of learning from real labelled data, we speculate
that part of the fine-tuning improvement derives from a softening of
class decision boundaries. The model trained on only pseudo-labels has
a prediction entropy of 0.325, averaged across classes, residues, and
sequences. The final model shows a notably higher entropy of 0.548
suggesting that fine-tuning is possibly softening classification probabilities
and improving predictions for cases that sit on those boundaries. One
clear aspect of S4PRED that should be a focus of future improvement is
β-strand prediction. Of the three classes it has the lowest F1 score by
a reasonable margin, 0.66 compared to 0.78 and 0.76 for loop and helix
respectively (Figure 2B). This is likely due to a combination of being the
least represented class in the training set and the most difficult class to
predict.

As a tool, S4PRED is capable of being run on either a CPU or a
GPU. Predicting the secondary structure of a single sequence on a single
Threadripper 2950X 3.5 GHz core takes an average of 10.9 seconds and
a median of 9.9 seconds, for 100 randomly selected sequences from the
pseudo-labelled training set. Using a single RTX 2080 Ti GPU the average
prediction time is 1.51 seconds and the median is 1.47 seconds. If a large
number of predictions needs to be made these can be run rapidly in batches.
For example, 128 randomly generated sequences of length 500 can be
predicted for as a batch in an average of 4.19 seconds total, and a median
of 4.22 seconds, on a GPU.

3.2 Predictive performance in the wild

We stress that the testing performed here against CB513 is exactly
equivalent to having tested on a set of unseen orphan proteins. When
the model predicts the secondary structure for each test sequence, to the
model, these sequences are orphans. The model has not been exposed to
the test set sequences or their homologues, and in the process of testing
only predicts from the individual sequences.

This taken into account we wished to provide a secondary and
confirmatory test of model performance on orphan proteins that directly
compares against SPIDER3-Single. To do so, we create and test on two
further test sets. First, we derived a test set of 23 recently published de

novo designed proteins (See Supplementary Materials S1.1). On this test
set S4PRED achieves a Q3 score of 90.7% and SPIDER3-Single achieves
89.4% (See Table 1). These high Q3 are unsurprising given de novo

designed proteins are often designed to have well predicted secondary
structure (Marcos and Silva, 2018). However, it is still very encouraging
and a sign of generality for S4PRED to have achieved such a high score.

We derived a second test set of 45 recently published orphan proteins
(See Supplementary Materials S1.2). On this test set S4PRED achieves
a Q3 score of 75.3% and SPIDER3-Single achieves 73.3% (See Table

Table 1. Showing the Q3 scores and micro-averaged F1 scores achieved by
S4PRED, SPIDER3-Single, and PSIPRED-Single on two test sets; a test set
of de novo designed proteins (labelled ‘Designed’) and a test set of orphan
proteins (labelled ‘Orphans’). Results in bold show the superior performance
of S4PRED.

1). This further confirms that S4PRED is able to accurately predict the
secondary structure of orphans and represents a significant improvement
in performance.

3.3 Data efficiency using the semi-supervised learning

approach

Another aspect we wished to investigate was the data efficiency of the SSL
approach. We trained the AWD-GRU benchmark model on training sets of
different sizes, randomly sampling from the 10143-sequence real-labelled
training set (See Supplementary Materials S5). To a good degree, the
test set accuracy linearly increases with the logarithm of the real-labelled
training set size (R2 = 0.92), as can be seen in Supplementary Materials
Figure S1. This trend suggests that the SSL approach simulates having
trained on a real sequence dataset that is ∼x7.6 larger. Under the loose
assumption that the ratio of PDB structures to labelled training set size
stays the same, there would need to be greater than 1.2M structures in
the PDB (as compared to the 162816 entries available as of 04-2020) to
achieve the same performance as S4PRED using only real data.

We also looked to estimate the number of sequences that would be
required in UniProt (Swiss-Prot and TrEMBL) and other metagenomic
sequence resources (Mitchell et al., 2020; Carradec et al., 2018) for a
PASS-based model to achieve the current performance of the state-of-
the-art homology-based PSIPRED. For each single-sequence method in
Figure 1, published since the inception of CATH (Orengo et al., 1997),
we find the number of CATH S35 sequence families available the year
the method was published. This number serves as a proxy for the number
of redundancy-reduced PDB chains that would have been available for
generating a dataset. We perform exponential regression between the Q3

scores and the number of CATH S35 sequence families. The S4PRED
result is included however 1.08M is used for the number of families. The
resulting regression suggests that 25B non-redundant PDBs or sequence

Fig. 3. (A) Histogram of Q3 scores on the CB513 test set showing the improved results of S4PRED over PSIPRED-Single (PSIPRED-S). (B) Example of S4PRED and PSIPRED-Single

secondary structure predictions relative to the true structure for the C terminal domain of pyruvate oxidase and decarboxylase (PDB ID 1POW).
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6 Moffat & Jones

clusters would be required for an S4PRED-like model to reach 84%.
We then use the average UniClust30 (2016) sequence cluster depth as a
multiplicative factor to estimate the number of raw sequences needed. This
provides a soft estimate of a minimum of 160 Billion sequences needed
for a method based on PASS, like S4PRED, to achieve similar results to
current homology based models.

3.4 Single-sequence prediction in context

In this work we consider single-sequence prediction in the strictest
sense. This is a model that, for a single example, provides predictions
without using information derived from related sequences or evolutionary
information. This is an important distinction because using even a
small number of homologous sequences improves prediction by several
percentage points (Aydin et al., 2006).

The recently published SPOT-1D (Hanson et al., 2019) provides a clear
example of this phenomenon. Hanson and collaborators (Hanson et al.,
2019) showQ3 scores of several homology-based models when predicting
with low diversity alignments. The criterion for this low diversity is having
Neff < 2, a measure of alignment diversity, as provided by HHblits
(Remmert et al., 2012). This is reported as Neff = 1, however, all
values are rounded down to the nearest integer. This is clearly not a single-
sequence approach. It is also further evidenced in the reported Q3 scores.
Of the methods reported, Porter 5 (Torrisi et al., 2018, 2019) achieves the
highest Q3 with 78%, followed by SPOT-1D at 77%. Separate to these
results, Porter 5 reports a validation set Q3 of 71.3% when trained on only
single sequences without profiles (Torrisi et al., 2019). Ignoring the further
potential training set and test set overlap for the values reported in SPOT-
1D, this difference inQ3 clearly demonstrates that using even low diversity
alignments is enough to significantly improve predictive performance, over
a purely single-sequence approach.

Information from homologous sequences can also improve results
by being present in the bias of a trained model. A subtle example of
this is in the recent DeepSeqVec model (Heinzinger et al., 2019), which
trained an unsupervised neural network to produce learned representations
of individual sequences from UniRef50 (Suzek et al., 2015). The
unsupervised model is subsequently used to generate features which are
used to train a second model that predicts secondary structure. This
second model achieves a Q3 score of 76.9% on CB513 (Heinzinger
et al., 2019). Although this two model approach is providing secondary
structure predictions for individual sequences, it is not a single-sequence
method because the unsupervised model has access to implicit evolutionary
information for both the training set and test set sequences. This is partly
due to being improperly validated, a split was not performed between the
training and test sets. With no split the model is able to learn relationships
between test set and training set sequences. It is also due to the training
objective of the underlying ELMo language model (Peters et al., 2018).
The model is able to learn relationships between homologous sequences
in a shared latent space, especially given that residue representations are
optimized by trying to predict what residue is likely to be found at each
position in a given input sequence.

Even if the model uses a small amount of evolutionary information, it
still precludes it from being a single-sequence method. The predictions
from such a model still benefit from evolutionary information. This
not only highlights the difficulty in developing accurate methods that
are strictly single-sequence, it also highlights how achieving a Q3

score of 75.3% with S4PRED represents a step up in performance for
single-sequence methods.

4 Discussion

Secondary structure prediction from the typical homology-based
perspective has improved year-on-year and published Q3 scores are
beginning to rise above 85%. It is non-trivial to disentangle the exact
relationship between the amount of data available and model performance
but the different versions of PSIPRED provide a valuable insight. From
an architecture and training perspective, the current version (Buchan
and Jones, 2019) (V4) remains mostly similar to the original first
published model (Jones, 1999), yet the current version is a state-of-the-
art model under strict testing criteria (Buchan and Jones, 2019). The
primary difference between versions is the much larger available pool
of training examples. This suggests strongly that the primary bottleneck
on performance has been data availability.

Looking to single-sequence prediction, it stands to reason that methods
have improved relatively little over time. Data availability, or more
generally the amount of information available to a classifier, appears to be
a driving force in performance, and by their very nature single-sequence
methods have much less available information. This is likely applicable
across many orphan sequence modelling tasks, not just secondary structure
prediction (Greener et al., 2019; Perdigão et al., 2015). In this work we
developed and applied the PASS framework to directly tackle this issue
of data availability. This led to the development of S4PRED which, in
achieving a leap in single-sequence performance, stands as an exemplar
to the effectiveness of the PASS approach. PASS, and S4PRED, leverages
a semi-supervised approach to provide a neural network classifier with
information from over a million sequences. Not only is this successful, it
is also a conceptually simple approach. A homology based method (in this
case PSIPRED) is used to generate accurate labels for unlabelled examples.
The new example and label pairs are then combined with real-labelled data
and used to train a single-sequence based predictor.

S4PRED has achieved significant progress in improving single-
sequence secondary structure prediction, but there is still much work
to be done. There remains an 8-9% performance gap between S4PRED
and current state-of-the-art homology-based methods (Yang et al., 2018).
Given the importance of data availability, an immediate question that arises
is whether the best approach to closing the gap is to simply wait for larger
sequence databases to be available in the near future. To an extent, this
appears to be a feasible approach. The number of entries in UniProt grows
every year (UniProt-Consortium, 2019) and a massive amount of data is
available from clustered metagenomic sequences in databases like the BFD
(Steinegger and Söding, 2018; Steinegger et al., 2019).

It is likely that increasing the training set every year will improve
performance but to what extent is unknown and the computational cost
will correspondingly increase. An increase in training set size will also
be dictated by an increase in the number of new families in a database (a
sequence cluster being a proxy for a family) and not the number of new
sequences. Our estimations suggest that 160 Billion sequences would be
required to match homology levels of performance with a PASS method.
Given the speed at which sequence databases are growing (UniProt-
Consortium, 2019; Steinegger et al., 2019) this is not unreasonable,
but unlikely to be within reach in the near future. Instead, a focus on
methodological improvements stands to yield the best results.

Looking forward, it is always difficult to speculate what specific
methods will result in further improvements. Continuing from the
perspective of secondary structure prediction, the field has, in recent years,
focused on developing larger and more complex neural networks (Yang
et al., 2018). There is certainly a benefit to this approach. Prototyping
tends to be quick so any improvements found can be shared with the
scientific community quickly. Unfortunately, there is limited novelty
in this overall approach and, most importantly, the results of applying
the PASS framework suggest that there are only small gains to be
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had. Waiting for databases to grow in size, and for the development
of more complex network architectures, is unlikely to be the answer.
Instead, focusing on developing methods that provide pre-existing models
with more prediction-relevant information will likely result in the most
significant progress.

The most obvious approach to this kind of development is to explore
further techniques from semi-supervised learning. Methods like data
augmentation, that have shown success with image data (Berthelot et al.,
2019; Sohn et al., 2020), would be ideal in getting the most out of the
data that is available. Unfortunately, it is nontrivial to augment biological
sequences even when the structure or function is known which makes
data augmentation a difficult approach to pursue (Kandathil et al., 2019a).
That being said, homologues of a given sequence in the training set can
loosely be viewed as biologically valid augmentations of the original
target sequence. From this perspective, including multiple pseudo-labelled
sequences from each cluster as separate examples, instead of the current
method which only includes a single target sequence from each cluster,
could be viewed as a proxy for data augmentation. Another approach to
improving results may be to train models like S4PRED to predict the class
probabilities outputted by the label-providing homology model, instead of
predicting the hard class assignments, in a manner similar to Knowledge
Distillation (Hinton et al., 2015). Alternatively, S4PRED could be limited
to learning only labels predicted by PSIPRED with a high degree of
confidence. A more general method like MixUp (Zhang et al., 2018),
that is application domain agnostic, might also improve classification by
improving the classifiers overall generalizability. Suffice it to say, the semi-
supervised approach of PASS brings with it a variety of potential ways
to improve performance by directly providing more information to the
classifier.

Given the success of S4PRED, PASS provides a simple blueprint from
which further methods can be developed for modelling orphan sequences.
An obvious first step with protein sequences is looking to predict other
residue level labels like torsion angle prediction (Heffernan et al., 2018), or
even extending to the difficult task of protein contact prediction (Kandathil
et al., 2019b). PASS could also be applied to other biological sequences,
such as in the prediction of RNA annotations (Hanumanthappa et al.,
2020). Extending PASS to other prediction tasks in the future will also
likely be aided by recent efforts to consolidate databases of sequences
with pre-calculated predictions of various attributes from a range of
tools. One such example being the residue-level predictions provided in
DescribePROT (Zhao et al., 2020). As more of the protein universe is
discovered the need for methods that are independent of homology only
grows. Methods like S4PRED will hopefully come to represent a growing
response to this need, the PASS framework providing a path forward. With
this in mind we provide S4PRED as an open source tool and as an option
on the PSIPRED web service. We also make the 1.08M example pseudo-
labelled training set publicly available from our web service as a flat file
for further research and investigation.
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