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We present a new approach to build models of quintessence interacting with dark or baryonic matter. We
use a variational approach for relativistic fluids to realize an effective description of matter fields at the
Lagrangian level. The coupling is introduced directly in the action by considering a single function mixing
the dynamical degrees of freedom of the theory. The resulting gravitational field equations are derived by
variations with respect to the independent variables. New interesting phenomenology can be obtained at
both small scales, where new screening mechanisms for scalar fields can be realized, and large scales,
where one finds an original and rich class of interacting quintessence models. The background cosmology
of two of these models is studied in detail using dynamical system techniques. We find a variety of
interesting results: for instance, these models contain dark energy dominated late-time attractors and
scaling solutions, both with early-time matter dominated epochs and a possible inflationary origin. In
general this new approach provides the starting point for future in-depth studies on new interacting
quintessence models.
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I. INTRODUCTION

The Universe is currently experiencing an epoch of
accelerated expansion. During the last 15 years, since it was
first suggested by type-Ia supernovae surveys [1,2], this
important conclusion has been confirmed by cosmological
observations of ever increasing precision, which includes
measurements of the cosmic microwave background [3,4],
the Hubble constant [5], baryon acoustic oscillations [6],
and again type-Ia supernovae [7]. Unfortunately, despite all
these inputs from astronomical observations, on the theo-
retical ground, we still lack a fully satisfactory explanation
of this phenomenon. The standard cosmological model, the
simplest model capable of fitting all the present observa-
tional data, assumes the existence of both a nonvanishing
cosmological constant and a cold dark matter component.
The former is introduced to produce the required accel-
erated expansion at late times, while the latter is postulated
in order to increase the amount of structure formation
needed to be in agreement with observed cosmological
structures at both large and small scales. The cosmological
constant, however, suffers from some profound theoretical
issues arising from its extremely small measured value if
compared with predicted values by (quantum) field theo-
retical considerations; see Ref. [8] for a recent review.
To solve these issues, or at least to alleviate them, it has

been proposed that the current cosmological acceleration
might be due to the effect of some dynamical field,

mimicking the properties of a cosmological constant at
late times. To agree with current observations, such new
components must be invisible to electromagnetic radia-
tion, which is the reason why it has been called dark
energy, in analogy with dark matter. The fact that both
dark matter and dark energy cannot be detected through
the visible sector could imply new interesting phenom-
enology. In fact, as long as we are unable to probe these
dark components but through their gravitational effects,
one cannot exclude the possibility of nongravitational
interactions between them. Following this reasoning, one
is thus naturally led to consider cosmological theories
where interactions are possible. Note, however, that, if
both dark matter and dark energy can be measured solely
by their gravitational influence, then the physical conse-
quences of their interaction might be observationally
indistinguishable from similar effects arising in other
cosmological models without interaction, as for example
in modified gravity and warm dark matter models [9–11].
Nevertheless it is important to study different interacting
dark energy models not only to search for new interesting
phenomenological features but also to support the obser-
vational efforts to focus on possible distinctive signatures
of such models; a tentative review on these models has
recently been proposed in Ref. [12] (see also Ref. [13]).
The simplest dynamical models of dark energy identify

this mysterious component with a minimally coupled
canonical scalar field ϕ. Dark energy theories of this kind
are generally known by the name of quintessence and are
quite popular in the literature because they are sufficiently
simple to handle and sufficiently complicated to produce
nontrivial dynamics; for reviews see e.g. Refs. [14,15].
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On the other hand, the cosmological evolution of (cold)
dark matter is usually described by a perfect fluid with
energy density ρ and vanishing pressure p ¼ 0. Simple
models of interacting dark energy can thus be constructed
by coupling the scalar field ϕ to the energy density ρ of the
dark matter fluid. Such a coupling is usually introduced at
the level of the cosmological field equations adding a term
mixing the quintessence and dark matter equations of
motion. Specifically in the presence of a general coupling
between the two dark components, the background cos-
mological equations are commonly expressed as

3H2 ¼ κ2ðρþ ρϕÞ; _ρþ 3Hρ ¼ −Q;

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ Q; ð1Þ

where H is the Hubble rate, ρϕ the energy density of
quintessence, pϕ its pressure, and κ2 ¼ 8πG. We set c ¼ 1.
An overdot denotes differentiation with respect to cosmo-
logical time, and the variableQ quantifies the rate of energy
exchanged in the dark sector and generally depends on both
ϕ and ρ (and possibly their time derivatives). If Q > 0 the
energy flows from dark matter to quintessence, while if
Q < 0 the energy transfer is in the opposite direction. The
dependence on ϕ and ρ of Q is a phenomenological
assumption which, together with the form of the scalar
field potential, determines the interacting quintessence
model at hand. Throughout the last 15 years, an impressive
amount of possible choices have been studied, the most
common being Q ∝ ρ _ϕ, which can easily be motivated in
the Einstein frame formulation of scalar-tensor theories
[16–19]. We cannot discuss in detail this vast amount of
literature, and the interested reader is referred to
Refs. [12,13] and to the references therein which provide
a general overview of this subject (see also Refs. [20–23]
for some recent works).
In the present paper, we will consider a new approach to

build models of quintessence interacting with dark matter.
The coupling will not be added at the level of the
cosmological field equations as in Eq. (1), but it will be
directly introduced into an action characterizing both
quintessence and dark matter. Variations with respect to
the scalar field ϕ and the matter degrees of freedom will
then provide the coupled equations of motion of dark
matter and dark energy. We will assume that dark matter
can still effectively be characterized by a perfect fluid with
vanishing pressure even at the Lagrangian level. This
implies that a Lagrangian description for perfect fluids
must be adopted in order not only to obtain the correct
expression for the dark matter energy-momentum tensor
but also to define its coupling to the quintessence field.
There are different Lagrangian approaches to perfect

fluids that have been developed during the years; see e.g.
Refs. [24–29]. Pourtsidou et al. [30] have recently con-
sidered a Lagrangian approach to a scalar field coupled to a
fluid based on the so-called pullback formalism [29]. In this

framework they constructed three new models of interact-
ing dark energy with completely new features with respect
to the models defined by the standard coupling of Eqs. (1).
Subsequently they analyzed their impact on the cosmo-
logical observables showing new interesting phenomenol-
ogy capable of being tested against observational data. The
same approach has also been used to study theories of
interacting cosmological fluids in the context of effective
field theories [31].
In this paper we will develop the Lagrangian formulation

of quintessence coupled to the dark matter fluid. Instead of
using the pullback formalism, we will employ the frame-
work with Lagrangian multipliers outlined by Brown in
Ref. [28], which is easier to handle and will lead to new
phenomenology at both Solar System and cosmological
scales. Our philosophy will be to fully embrace the
variational methods of Ref. [28], and in particular we will
discuss the most general actions that one can build out of
all the dynamical degrees of freedom associated with the
matter fluid. A similar approach has already been studied
for dark matter nonminimally coupled to gravity where the
fluid 4-velocity is coupled to the Ricci tensor and the fluid
energy density is coupled to the Ricci scalar [32,33]. Here,
however, we will not modify the gravitational sector, which
will be described by standard general relativity, but we will
limit the interaction of the matter fluid with the quintes-
sence field. The couplings obtained in this way will first be
applied to describe the phenomenology of dark energy at
small scales, where models presenting environment depen-
dent interactions will be able to efficiently screen any scalar
field effect and thus satisfy all Solar System constraints.
Then the background cosmology obtained within this
framework will be studied, and the dynamics of different
interacting quintessence models will be analyzed in depth.
The paper is organised as follows. In Sec. II we will

briefly review the variational setup for relativistic fluids
exposed in Ref. [28]. In Sec. III this variational approach
will be employed to build theories of a perfect fluid
interacting with a scalar field. The most general algebraic
coupling will be considered, deriving the equations of
motion and discussing the conservation equations. In
Sec. IV this new way of coupling a relativistic fluid with
a scalar field will be used to build screening mechanisms
for dark energy capable of passing every experimental test
and Solar System observation. Section V will then be
dedicated to cosmology: the cosmological equations will be
obtained, and the evolution of the Universe will be analyzed
with dynamical system techniques. Finally we will draw
conclusions and discuss future perspectives in Sec. VI.
Unless otherwise specified we will assume standard

general relativistic notation with signature ð−;þ;þ;þÞ
and Greek indices running from 0 to 3. Sometimes the
comma notation for partial derivatives will be used: for
example ϕ;μ ¼ ∂μϕ. Units where c ¼ ℏ ¼ 1 will be
employed together with κ2 ¼ M−2

P ¼ 8πG.
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II. LAGRANGIAN FORMULATION OF
RELATIVISTIC FLUIDS

In this section we outline the variational approach to
relativistic fluids following closely the formulation of
Brown. We will only introduce the Lagrangian and derive
the equations of motion while skipping the detailed dis-
cussions regarding the thermodynamical features that can
be obtained in this context. The reader interested in more
information is referred to Ref. [28].
Within Brown’s framework the Lagrangian for the

relativistic fluid can be written as

LM ¼ −
ffiffiffiffiffiffi
−g

p
ρðn; sÞ þ Jμðφ;μ þ sθ;μ þ βAα

A
;μÞ; ð2Þ

where g is the determinant of the metric tensor gμν and ρ
is the energy density of the fluid. We assume ρðn; sÞ to
be prescribed as a function of n, the particle number
density, and s, the entropy density per particle. φ, θ, and
βA are all Lagrange multipliers with A taking the values
1,2,3, and αA are the Lagrangian coordinates of the
fluid. The vector-density particle number flux Jμ is
related to n as

Jμ ¼ ffiffiffiffiffiffi
−g

p
nUμ; jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνJμJν
p

; n ¼ jJjffiffiffiffiffiffi−gp ; ð3Þ

where Uμ is the fluid 4-velocity satisfiyng UμUμ ¼ −1.
The independent dynamical variables which have to be

considered in the variation of the Lagrangian (2) are gμν, Jμ,
s, φ, θ, βA, and αA.
Variation with respect to the metric gμν gives the energy-

momuntum tensor

Tμν ¼ ρUμUν þ
�
n
∂ρ
∂n − ρ

�
ðgμν þUμUνÞ; ð4Þ

which can be rewritten in the standard perfect fluid form

Tμν ¼ pgμν þ ðρþ pÞUμUν; ð5Þ

once the pressure p has been identified with

p ¼ n
∂ρ
∂n − ρ: ð6Þ

Variation with respect to the other variables gives

Jμ∶ μUμ þ φ;μ þ sθ;μ þ βAα
A
;μ ¼ 0; ð7Þ

s∶ −
∂ρ
∂s þ nUμθ;μ ¼ 0; ð8Þ

φ∶ Jμ;μ ¼ 0; ð9Þ
θ∶ ðsJμÞ;μ ¼ 0; ð10Þ

βA∶ JμαA;μ ¼ 0; ð11Þ

αA∶ ðJμβAÞ;μ ¼ 0; ð12Þ

where

μ ¼ ρþ p
n

¼ ∂ρ
∂n ð13Þ

is the chemical potential. Equations (9) and (10) stand for
the particle number conservation constraint and the entropy
exchange constraint, respectively. These can be rewritten
also as

∇μðnUμÞ ¼ 0 and ∇μðsnUμÞ ¼ 0; ð14Þ

where∇μ is the covariant derivative with respect to gμν. The
scalar fields φ and θ are thus Lagrange multipliers which
impose these two constraints. In the same manner, βA are
three Lagrange multipliers which are needed to restrict the
fluid’s 4-velocity vector to be directed along the flow lines
with constant αA, as specified by Eq. (11). The meaning of
Eq. (8) can be understood by recalling from the first
principle of thermodynamics. If the particle number is
conserved, one can identify the temperature T with

T ¼ 1

n
∂ρ
∂n : ð15Þ

From Eq. (8) we thus have that θ behaves as a potential for
the temperature

T ¼ Uμθ;μ: ð16Þ

Finally Eq. (12) determines the dynamics of the Lagrange
multipliers βA, while Eq. (7) is known as the potential
representation of the fluid’s 4-velocity. Combining this
equation with Eqs. (8) and (11), we find

F ¼ μ − Ts ¼ Uμφ;μ; ð17Þ

where F is the chemical free energy. We thus obtain an
analogy with Eq. (16) implying that φ is a potential for the
chemical free energy.
It is possible to show that the fluid field equations

∇μTμν ¼ 0 ð18Þ

are indeed implied by Eqs. (7)–(12). To prove this one can
follow the calculations outlined in Appendix A assuming
no interaction with the scalar field; see also Ref. [28]. Here
we just mention that contracting Eq. (18) with the projec-
tive tensor

hμν ¼ gμν þUμUν ð19Þ
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gives the equation

dUμ

dλ
þ Γμ

αβU
αUβ ¼ p;ν

ρþ p
hνμ; ð20Þ

which reduces to the usual geodesic equation for a
pressureless fluid (dust); see for example Ref. [34].
Toconclude this section,wemention thatonceEqs. (7)–(12)

are imposed, one can obtain the on-shell Lagrangian by
substituting them back into (2). This procedure yields

LM ¼ −
ffiffiffiffiffiffi
−g

p
ρ ¼ ffiffiffiffiffiffi

−g
p

p ðon-shellÞ; ð21Þ

with the last equivalence holding up to total derivatives. This
means that the on-shell Lagrangian can be represented by
either negative energy density or simply by the pressure. This
result does not hold, however, if the fluid is coupled to other
fields or nonminimally coupled to gravity [35–37].

III. RELATIVISTIC FLUID INTERACTING WITH
A SCALAR FIELD: ALGEBRAIC COUPLING

The standard way of coupling two interacting matter
components in general relativity consists of adding a
nonvanishing current Qμ to the right-hand side of the
conservation equations. If TðAÞ

μν and TðBÞ
μν are the energy

momentum of these two matter components, then their
conservation equations can be written as

∇μTðAÞ
μν ¼ Qν and ∇μTðBÞ

μν ¼ −Qν; ð22Þ

while the Einstein field equations are still given by

Gμν ¼ κ2ðTðAÞ
μν þ TðBÞ

μν Þ: ð23Þ

This applies also to the case in which one of the two
components is the dark matter fluid while the other is a
scalar field, namely quintessence.
In what follows, instead of introducing the interaction at

the level of the field equations as above, we will employ the
variational methods developed in Sec. II in order to define a
coupling between a scalar field and a perfect fluid at the
Lagrangian level.

A. Lagrangian formulation and field equations

Taking into account the formulation of Sec. II, we can
now set up our model where a scalar field ϕ interacts with a
matter fluid. The action we will consider is

S ¼
Z

d4xðLgrav þ LM þ Lϕ þ LintÞ; ð24Þ

where the matter Lagrangian LM represents a perfect fluid
and is given in (2); the gravitational sector Lgrav is given by
the standard Einstein–Hilbert Lagrangian

Lgrav ¼
ffiffiffiffiffiffi−gp

2κ2
R; ð25Þ

where R is the curvature scalar with respect to the metric
gμν; the scalar field Lagrangian is given by

Lϕ ¼ −
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþ VðϕÞ

�
; ð26Þ

with V a general potential for ϕ; finally for the interacting
sector, we will consider a general algebraic coupling of the
type

Lint ¼ −
ffiffiffiffiffiffi
−g

p
fðn; s;ϕÞ; ð27Þ

where fðn; s;ϕÞ is an arbitrary function which will specify
the particular model at hand. Note that f cannot depend on
the Lagrange multipliers, which are needed to impose the
constraints (8)–(12) for the matter fluid and are not
supposed to mix with the scalar field. In other words,
we are assuming that only the dynamical degrees of
freedom of the fluid, namely n and s, couple with the
scalar field. Note that in the Lagrangian approach of Sec. II
the particle number n is not treated as a fundamental
variable to use in the variation, but only as a function
composed by Jμ and gμν according to Eqs. (3). One can thus
also consider a more general coupling between the vari-
ables Jμ, s, and ϕ. However, if no derivatives are assumed
to enter the interacting term, then the function (27) still
represents the most general coupling one can build out of
the variables Jμ, s, and ϕ. In the first part of the present
work (namely the present paper), we will only consider
algebraic couplings of the kind (27) where no derivatives
appear. Interacting terms with derivatives will be discussed
in the second part [38].
Action (24) has to be varied with respect to the fields gμν,

ϕ, Jμ, s, φ, θ, βA, and αA. However, the variation with
respect to the last four among these will give again
Eqs. (9)–(12) and thus will not be repeated.
We start considering the variation in s which produces

the following equation:

Uμθ;μ ¼
1

n
∂ρ
∂nþ 1

n
∂f
∂n ¼ T þ T int: ð28Þ

The scalar field θ represents now a potential not only for the
fluid temperature T but also for the “interacting temper-
ature” T int. Variation with respect to Jμ yields the equation

ðμþ μintÞUμ þ φ;μ þ sθ;μ þ βAα
A
;μ ¼ 0; ð29Þ

where μint ¼ ∂f=∂n has been defined in analogy with
the chemical potential (13). This equation modifies the
potential representation of the fluid 4-velocity (7). Using
Eqs. (11), (28), and (29), we can show that
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Uμφ;μ ¼ F þ Fint; ð30Þ

where Fint ¼ μint − sT int. This equation generalizes
Eq. (17) and tells us that φ is now a potential for the
chemical free energy of the fluid plus its interacting
counterpart. In general Eqs. (28)–(30), together with
Eqs. (9)–(12), define how the thermodynamical properties
of the fluid change due to the interaction with the scalar
field. We will not discuss these relations further but focus
on the spacetime dynamics only.
At this point we perform the variation with respect to the

metric tensor which results in the Einstein field equations

Gμν ¼ κ2ðTμν þ TðϕÞ
μν þ TðintÞ

μν Þ; ð31Þ

where Tμν is the fluid energy-momentum tensor given in (5)
and

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂μϕ∂μϕþ VðϕÞ

�
ð32Þ

is the energy-momentum tensor of the scalar field ϕ.
The interacting energy-momentum tensor TðintÞ

μν can be
written as

TðintÞ
μν ¼ pintgμν þ ðpint þ ρintÞUμUν; ð33Þ

where we have defined

ρint ¼ fðn; s;ϕÞ and pint ¼ n
∂fðn; s;ϕÞ

∂n − fðn; s;ϕÞ
ð34Þ

as the interacting energy density and pressure. Finally the
variation with respect to the scalar field yields the modified
Klein–Gordon equation

□ϕ −
∂V
∂ϕ −

∂f
∂ϕ ¼ 0; ð35Þ

where □ ¼ ∇μ∇μ.

B. Conservation equations

It is interesting to reformulate the field equations above
as in the standard approach to the coupled matter compo-
nent in general relativity, i.e. as defined by Eqs. (22)–(23).
For this purpose one can define a new energy-momentum
tensor for the fluid as ~Tμν ¼ Tμν þ TðintÞ

μν with the energy
density ~ρ ¼ ρþ ρint and pressure ~p ¼ pþ pint. In this case
the Einstein field equations (31) become

Gμν ¼ κ2ð ~Tμν þ TðϕÞ
μν Þ; ð36Þ

resembling Eqs. (23). Using the Klein–Gordon equa-
tion (35) and the energy-momentum tensor (32),

the conservation equation for the scalar field can be
written as

∇μTðϕÞ
μν ¼ ∂ ~ρ

∂ϕ ∂νϕ ¼ Qν; ð37Þ

which shows that the scalar field is not conserved due to the
interaction with the fluid.
To prove that also the fluid energy momentum is not

conserved, it is better to split its conservation equation into
the parallel and perpendicular components to the fluid flow,

∇μ ~Tμν ¼ hλν∇μ ~Tμλ − UνUλ∇μ ~Tμλ; ð38Þ

where hμν is defined in Eq. (19). Then using Eqs. (9)–(12)
and Eq. (29), one can show that (see Appendix A)

hνμ∇λ ~Tλν ¼ −hνμ
∂ ~ρ
∂ϕ∇νϕ; and Uν∇μ

~Tμν ¼ −Uν ∂ ~ρ
∂ϕ∇νϕ:

ð39Þ

Inserting this back into Eq. (38) gives

∇μ ~Tμν ¼ −
∂ ~ρ
∂ϕ ∂νϕ ¼ −Qν: ð40Þ

This shows that the Lagrangian formulation we are con-
sidering in the present paper can be mapped back into the
standard relativistic approach defined by Eqs. (22)–(23).
Note, however, that the energy density and pressure of the
fluid differ from the uncoupled case inasmuch as they now
depend also on the scalar field through the interacting
term. In particular even if p ¼ 0, e.g. in cold dark matter
applications, the pressure ~p is not expected to vanish. As
we will see, these new features will give rise to a new
interesting phenomenology at both small and large scales.
The argument above can also be repeated directly with

Tμν which does not depend on the scalar field. This
provides

Uν∇λTλν ¼ 0 and hμν∇λTλν ¼ −2nUλ∇½λðUμ�μintÞ;
ð41Þ

where square brackets between two indices denote anti-
symmetrization. Equation (41) implies that in general

∇μTμν ≠ 0; ð42Þ

meaning that the uncoupled part of the matter fluid is no
more conserved in the presence of the coupling to the scalar
field. Note, however, that the longitudinal part of the
conserved equation, the one aligned with Uμ, is always
conserved. This will be relevant for cosmology where the
isotropy and homogeneity of the spacetime will imply the
conservations of Tμν at the background level.
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IV. SMALL SCALE PHENOMENOLOGY

Before employing the results developed so far to con-
struct new models of quintessence coupled to dark matter,
we study their possible applications to Solar System and
galaxy scale phenomenology. For this purpose in this
section we will use the Lagrangian approach developed
in Sec. III A to investigate new couplings between the
scalar field ϕ and baryonic matter. In what follows thus ρ
and p will represent the energy density and pressure of
matter constituted by Standard Model particles.

A. Fifth force

We start recalling that, because of the Bianchi identity,
the relation ∇μGμν ¼ 0 holds. We then expect the right-
hand side of Eq. (31) to be covariantly conserved, giving in
this way the equations of motion of the matter fluid. Taking
the covariant derivative of Eq. (31), contracting with hμν as
given in Eq. (19), and using the scalar field equation (35)
eventually yields

dUμ

dλ
þ Γμ

σνUσUν

¼ −
1

ρþ pþ pint þ ρint

�
p;ν þ pint;ν þ

∂f
∂ϕϕ;ν

�
hνμ;

ð43Þ

which generalizes Eq. (20). For a pressureless fluid, or
equivalently for point particles, this expression reduces to

dUμ

dλ
þ Γμ

σνUσUν

¼ −
1

ρþ pint þ ρint

�
pint;ν þ

∂f
∂ϕϕ;ν

�
hνμ ¼ fμ: ð44Þ

Comparing Eqs. (44) and (20), one realizes that the
interaction between the scalar field and the matter fluid
gives rise to a fifth force fμ. Thus, as one could expect, the
motion of the matter fluid is nongeodesic due to the
presence of the extra force fμ which in general depends
on both n and ϕ. Note, however, that if fμ does not depend
on either ϕ or n, then it vanishes completely, reflecting the
fact that there is no effective interaction in such cases.
Furthermore, according to the definition of 4-force in
relativistic theories, fμ is always orthogonal to the fluid
4-velocity: Uμfμ ¼ 0.
The appearance of this fifth force can give rise to

interesting phenomenology at both Solar System and
galactic scales. For example the nongeodesic motion of
luminous matter can be used as an alternative to dark matter
in explaining the anomalies observed in the galaxy rotation
curves. The situation here is similar to the one arising from
nonminimally coupled theories [39], where an extra force
depending on the local curvature produces effects similar to

the ones predicted by Modified Newtonian Mechanics
(MOND) theories [40]. In MOND theories, however, the
modification of Newtonian mechanics at galactic distances
depends on an effective acceleration aM (or equivalently on
an effective length lM) which is usually assumed to be
constant and thus difficult to adapt to different galaxy
profiles. In nonminimally coupled theories, such effective
acceleration depends on the small value of the local
gravitational curvature as well as on the matter energy
density of the environment. This might help in fitting the
rotational velocity curves of several galaxies within a single
model where aM varies from one galaxy to the other.
Exactly the same argument applies to the scalar field
interacting model considered here. From the fifth force
(44), it is in fact possible to define an effective acceleration
aϕ which modifies the Newtonian equations at galactic
distances in exactly the same way as aM does. The
difference resides in the fact that aϕ depends on the scalar
field ϕ rather than on the local curvature and thus might
predict quite different results even for galaxies having
roughly the same matter density distribution.
At Solar System scales, the fifth force (44) is highly

constrained by the experiments which do not show any
violation on the inverse-square Newtonian law up to parts
in 109 [41]. The effects of the interaction between the scalar
field and the matter fluid must then be negligible at those
distances. Fortunately, as we are now going to see, the
dependence of the fifth force on the fluid dynamical
degrees of freedom allows us to build efficient screening
of possible deviations from the geodesic motion.

B. Chameleon mechanism

From the Klein–Gordon equation (35), one can realize
that the scalar field ϕ “feels” an effective potential given by

Veff ¼ VðϕÞ þ fðn; s;ϕÞ; ð45Þ

which can be used to screen the interaction between the
scalar field and matter at Solar System scales. The effective
potential (45) represents in fact a generalization of the
so-called chameleon theories where the scalar field couples
to the matter energy density and acquire an effective mass
characterized by the surrounding environment [42]. To
show this we can consider an interacting term defined by

fðn; s;ϕÞ ¼ ρðn; sÞγðϕÞ; ð46Þ

where ρ is the matter energy density and γ is a function
of ϕ. With this choice the interacting energy density and
pressure (34) read

ρint ¼ ρðn; sÞγðϕÞ and pint ¼ pðn; sÞγðϕÞ: ð47Þ

Next we assume the scalar field potential to be of the
“runaway kind,” i.e. to satisfy
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lim
ϕ→∞

V ¼ 0; lim
ϕ→∞

∂ðiÞV
∂ϕðiÞ

�∂ði−1ÞV
∂ϕði−1Þ ¼ 0 for i ¼ 1;2; 3;…;

ð48Þ

lim
ϕ→0

V ¼∞; lim
ϕ→0

∂ðiÞV
∂ϕðiÞ

�∂ði−1ÞV
∂ϕði−1Þ ¼∞ for i¼ 1;2;3;…:

ð49Þ

Such constraints are usually imposed on the scalar field
potential in order to obtain a late-time cosmic speedup such
as for example in the well-known inverse power law
potential [43]

VðϕÞ ¼ M4þα

ϕα ; ð50Þ

where M is a constant with mass units and α a positive
parameter. If we now set

γðϕÞ ¼ γ0eκβϕ; ð51Þ

with β and γ0 positive constants, we obtain the effective
potential

Veff ¼ VðϕÞ þ γ0ρeκβϕ; ð52Þ

which coincides with the single matter chameleon potential
of Ref. [42]. Of course if we considered more than one
matter fluid, we would have ended up with exactly the
multicomponent equation considered in Ref. [42]; however,
for our scopes a discussion with one matter fluid is enough.
The fact that the Veff has a minimum for Solar System
values of ρ implies that at those distances the scalar field
acquires an effective mass. If this mass is sufficiently high,
then all possible interactions with particles of the Standard
Model are efficiently suppressed. At cosmological scales
though, where the matter energy density is extremely low,
the effective potential (52) reduces simply to VðϕÞ which,
given the assumptions (48) and (49), can thus drive the late-
time acceleration of the Universe; see Ref. [42] for more
details.
From these considerations we have seen that the for-

mulation developed in Sec. III A, with the assumption
fðn; s;ϕÞ ¼ ρðn; sÞγðϕÞ, can be used to derive chameleon
field theories from a Lagrangian approach. Moreover if
other interacting terms fðn; s;ϕÞ are considered, the same
formulation can also be adopted to build more general
screening mechanisms for the scalar field. In fact as long as
the effective potential (45) posses a minimum for Solar
System values of n and s, then the scalar field will always
appear with a nonzero mass at those scales, which, if large
enough, will allow the scalar field to pass all Solar System
tests. Of course, in order to properly check its viability, any

such model should undergo an analysis similar to the one
performed for the original chameleon theories of Ref. [42].
A deeper analysis of the possible screening mechanisms
that can be obtained with different choices of the interacting
term fðn; s;ϕÞ will be left for future studies. Here, in order
to present some of the potentialities that derive from our
approach, we will limit the discussion on few consider-
ations regarding a particular model.
First we will assume the function fðn; s;ϕÞ to depend on

n and s only through ρðn; sÞ. This reduces the space of
possible new models but allows for an immediate physical
interpretation, and the analysis can be better compared with
the standard chameleon paradigm as given by Eq. (46). In
any case the reader should keep in mind that from the
Lagrangian formulation developed in Sec. III A it is
possible to construct screening mechanism where the mass
of the scalar field depends on the local number density n
and entropy s. Note that, though the effects of n might be
similar to the one obtained with ρ, the possibility of
creating “entropic screenings” using different values of s
is an interesting feature arising from our approach which
might be worthy investigate in future works.1

For the particular model we will consider here, we will
take a scalar field with vanishing self-interaction, i.e. with
VðϕÞ ¼ 0. Without a coupling to the matter sector, such a
massless scalar field could never accelerate the late-time
expansion of the Universe, and thus it would never
constitute a viable dark energy model. We will, however,
assume an interacting term of the general form

Veff ¼ fðρ;ϕÞ ¼ Λ cosh

�
βs

ϕ

MP

�
ρ

M4
P

�
α
�
; ð53Þ

where βs and α are two dimensionless parameters, Λ is the
cosmological constant, and MP ¼ 1=κ ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the

reduced Planck mass. For any fixed value of the matter
energy density ρ, the mass of the scalar field is given by

mϕ ¼ βs

ffiffiffiffi
Λ

p

MP

�
ρ

M4
P

�
α

: ð54Þ

To drive the late-time accelerated expansion of the
Universe, the inverse of this mass, i.e. the Compton
wavelength λϕ, should be of the order of the Hubble length
1=H0 at cosmological scales, where the energy density is
roughly ρc ≃ 10−29 g=cm3. In this manner the effective
potential (53) reduces to nothing but the standard cosmo-
logical constant for sufficiently large distances, and thus it
provides an accelerated expansion with the simplest pos-
sible mechanism. On the other hand, if ρ is sufficiently high
around laboratories on Earth, then the interaction mediated

1One might also think to relax the condition on the
conservation on the entropy density (10) to probe possible
nonadiabatic effects.
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by the scalar field will be efficiently suppressed because of
its large mass. This situation is qualitatively depicted in
Fig. 1 where it is shown how the potential (53) changes for
different values of ρ.
Imposing now the condition λϕ ¼ 1=H0 at ρc, one finds

βs ¼ H0

MPffiffiffiffi
Λ

p
�
MP

ρc

�
α ≃ 1010þ122α; ð55Þ

which given any positive value of α represents an anoma-
lously large number for the coupling constant βs.
Nevertheless, leaving this problem aside, one can now
look at the values the massmϕ takes on the Earth and within
a galaxy. Using the order of magnitude values ρE≃
10 g=cm3, ρatm ≃ 10−3 g=cm3, and ρgal ≃ 10−24 g=cm3,
respectively, for the energy density inside the Earth, in
our atmosphere and in the galaxy, one finds

λEϕ ≃ 10−30α

H0

; λatmϕ ≃ 10−26α

H0

; λgalϕ ≃ 10−5α

H0

: ð56Þ

As an example we consider the values α ¼ 1 and α ¼ 2
which yield

λEϕ ≃ 10−4 m; λatmϕ ≃ 1 m;

λgalϕ ≃ 1021 m≃ 100 kpc; ðα ¼ 1Þ; ð57Þ

λEϕ ≃ 10−34 m; λatmϕ ≃ 10−26 m;

λgalϕ ≃ 1016 m≃ 1 pc; ðα ¼ 2Þ: ð58Þ

In both cases the interactions mediated by ϕ are short range
on the Earth and long range on galactic scales. In the case
α ¼ 2, the mass on the Earth is so high that any effect of the
scalar field is practically undetectable. Nevertheless in both

cases at galactic scales, the scalar field characterizes a
long-range force which might give rise to the interesting
phenomenology related to the anomalous rotations of
galaxies discussed in the previous subsection. The same
fifth force could also produce testable effects at the level of
clustering scales which are easy to analyze within linear
cosmological perturbations theory. From these consider-
ations we obtain that, within a single scalar field model
defined by the interaction (53), one could in principle
explain dark energy, dark matter, and automatically pass all
Solar System constraints.
These brief calculations show the potential of the

approach developed in this paper as a powerful tool to
construct efficient screening mechanisms which can also
provide desirable effects at both galactic and cosmological
scales. We will now turn to the study of cosmological
applications of the framework of Sec. III A and leave further
analyses at Solar System and galactic distances, as well as at
the linear perturbation level, for future investigations.

V. COSMOLOGY

In this section we will consider the evolution of the
Universe as a whole using models based on the interacting
formulation developed in Sec. III A and deriving suitable
equations for their dynamics. The fluid matter sector will
now describe dark matter, and thus the interacting term
between the scalar field and the fluid variables must be
considered as an effective coupling between dark energy
and dark matter. Note that, due to the results of Sec. IV, we
could also consider a viable coupling to luminous matter if
an efficient screening acts at Solar System distances.
Nevertheless we will only analyze a coupling to dark
matter since this dark component dominates over baryonic
matter in the cosmological matter sector.

A. Cosmological equations

We start considering a Friedmann–Robertson–Walker
(FRW) line element as required by the cosmological
principle. The metric will then be determined by

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
; ð59Þ

where aðtÞ is the cosmological scale factor, k ¼ −1; 0; 1
according to the spatial openness, flatness, or closeness and
dΩ2 is the two-dimensional line element of a sphere. We
will also assume that all the dynamical quantities are
homogeneous; i.e. they depend only on t. In particular
we will have that ϕ, ρ, n, s will be functions of t only.
Moreover taking into account coomoving coordinates, the
perfect fluid 4-velocity becomes simply Uμ ¼ ð−1; 0; 0; 0Þ.
The cosmological dynamics is determined by Eqs. (14),

(31), and (35). However, in a cosmological setting, we will
always have that Eqs. (14) yields

E

gal

c

Veff

FIG. 1. Qualitative behavior of the interacting potential (53) for
different values of ρ. On Earth (ρE) the scalar field is highly
massive, while for galactic densities (ρgal) the mass is lower. At
cosmological scales (ρc) the mass is so low that the potential
effectively becomes a cosmological constant.
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_nþ 3Hn ¼ 0 and _s ¼ 0; ð60Þ

where the overdot denotes differentiation with respect to t
and H ¼ _a=a. These equations tells us that the entropy
density per particle is conserved through the Universe
evolution, while the particle density decays according to

n ∝ a−3; ð61Þ

which is expected from geometric considerations. The only
two dynamical quantities that determine the evolution of
the Universe are thus a and ϕ, the behavior of which is
controlled by Eqs. (31) and (35). In a FRW cosmology,
those equations yield three independent evolution equa-
tions, namely the two Friedmann equations

3
k
a2

þ 3H2 ¼ κ2
�
ρþ 1

2
_ϕ2 þ V þ ρint

�
; ð62Þ

k
a2

þ 2 _H þ 3H2 ¼ −κ2
�
pþ 1

2
_ϕ2 − V þ pint

�
; ð63Þ

and the scalar field equation

ϕ̈þ 3H _ϕþ ∂V
∂ϕ þ ∂ρint

∂ϕ ¼ 0: ð64Þ

Since at the cosmological scales all the dynamical fields
are effectively homogeneous, the right-hand side of
Eq. (44) vanishes. More explicitly for every dynamical
quantity χ, we have χ;μ ¼ −_χUμ, and thus χ;μhμν ¼ 0. It
follows that the matter equations of motion are not
modified at large cosmological scales

_ρþ 3Hðρþ pÞ ¼ 0; ð65Þ

and, assuming p ¼ wρ, the energy density decays exactly
as in a noninteracting universe,

ρ ∝ a−3ð1þwÞ: ð66Þ

This is in agreement with the conservations equations (41)
since in a homogeneous and isotropic cosmological frame-
work the transverse part of those equations vanishes; see
below for a derivation using the cosmological equations.
At late times a ≫ 1, the cosmological dynamics will be

completely determined by the scalar field ϕ since both n
and ρ decay, and ρint and pint will depend on ϕ only. If in
our model we have that pint ¼ 0 at late times, then ρint just
describes further dust (dark matter), and, provided ρϕ ≫
ρint at late times, the Universe evolution will be determined
by the form of the potential VðϕÞ. Choosing a suitable
quintessence potential will thus gives rise to a late-time
cosmic speedup as required by observations.

B. Conservation equation

As it is not trivial to see that the standard matter
conservation equation indeed holds, we will show this
explicitly in the following. We consider the derivative of
(62) and the combination (62) minus (63). Respectively,
they give

−3H
�
2
k
a2

− 2 _H

�
¼ κ2ð_ρþ _ϕ ϕ̈þV 0 _ϕþ _ρintÞ; ð67Þ

2
k
a2

− 2 _H ¼ κ2ðρþ pþ _ϕ2 þ ρint þ pintÞ: ð68Þ

Therefore, we get

_ρþ _ϕ ϕ̈þV 0 _ϕþ _ρint ¼ −3Hðρþ pþ _ϕ2 þ ρint þ pintÞ:
ð69Þ

A few algebraic manipulations give the equation

_ρþ 3Hðρþ pÞ þ _ϕ
�
ϕ̈þ 3H _ϕþ V 0	

þ _ρint þ 3Hðρint þ pintÞ ¼ 0: ð70Þ

Using (34), the last terms involving ρint and pint can be
expanded as

d
dt

ρint þ 3Hðρint þ pintÞ

¼ ∂ρint
∂n _nþ ∂ρint

∂s _sþ ∂ρint
∂ϕ _ϕþ 3Hn

∂ρint
∂n ð71Þ

¼ ∂ρint
∂n ð _nþ 3HnÞ þ ∂ρint

∂s _sþ ∂ρint
∂ϕ _ϕ: ð72Þ

The first and second terms are zero due to (60). Now we can
rewrite (70) in the following way:

_ρþ 3Hðρþ pÞ þ _ϕ

�
ϕ̈þ 3H _ϕþ V 0 þ ∂ρint

∂ϕ
�
¼ 0: ð73Þ

The term proportional to _ϕ is zero because of the equation
of motion of the scalar field (64). Therefore, we have
proven that

_ρþ 3Hðρþ pÞ ¼ 0; ð74Þ

in agreement with Eq. (65).

C. Relation with standard interacting models

In the following we will clarify the relationship between
the variational approach used here and the frequently used
approach of introducing couplings at the level of the
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conservation equations. Using the notation ~ρ ¼ ρþ ρint
and ~p ¼ pþ pint, one can rewrite Eq. (70) in the form

_~ρþ 3Hð~ρþ ~pÞ þ _ϕ

�
ϕ̈þ 3H _ϕþ V 0

�
¼ 0; ð75Þ

which is the sum of two conservation equations, that of the
fluid with ~ρ, ~p and the conservation equation of the scalar
field. Let us now recall the equation of motion of the scalar
field (64) which we write

ϕ̈þ 3H _ϕþ ∂V
∂ϕ ¼ Q

_ϕ
with Q ¼ −

∂ρint
∂ϕ _ϕ; ð76Þ

so that it takes the standard form with coupling Q; see also
Eq. (1). Consequently, Eq. (75) implies a coupled equation
for the matter

_~ρþ 3Hð~ρþ ~pÞ ¼ −Q: ð77Þ

Note that these equations can equivalently be derived from
the general covariant equations (37) and (40).
We are now in a position to link the two different

approaches to coupled cosmological models. Our approach
is equivalent to standard coupled models provided we
identify ~ρ and ~p with the usual matter variables ρ and p
in the standard approach. In other words, the standard
approach uses an effective description of the matter sources
present. The quantity ~ρ, for instance, contains a scalar field
dependence, and therefore the standard approach does not
allow the consistent separation into matter and interaction
parts without additional ad hoc assumptions. This is not an
issue solely concerned within scalar field models, but it
equally arises in any dark energy model interacting with
dark matter, as recently pointed out in Ref. [44].
At least for scalar fields, we can conclude that every

standard coupled model can be derived from the
Lagrangian formulation presented here. However, it is also
clear that the correct identification of matter is required to
make this approach consistent.

D. Dynamical system techniques

The subsequent analysis of the background dynamics
relies on the use of dynamical systems techniques. For it to
be self-contained, we briefly introduce the most important
concepts tailored to three-dimensional systems. A three-
dimensional autonomous system of differential equations,
also called a dynamical system, is given by the three
equations

x0 ¼ f1ðx; y; zÞ; y0 ¼ f2ðx; y; zÞ; z0 ¼ f3ðx; y; zÞ;
ð78Þ

where the prime denotes differentiation with respect to a
suitable time parameter. The three functions fiðx; y; zÞ do

not explicitly depend on the time parameter; they only
depend on the dynamical variables x; y; z. In technical terms
this means we are dealing with autonomous systems only.
A fixed point, critical point, or stationary point of the

system (78) is a point with coordinates ðx0; y0; z0Þ such that
fiðx0; y0; z0Þ ¼ 0 for i ¼ 1; 2; 3. This corresponds to a
stationary point of a mechanical system where the potential
has an extremal point and a fictitious particle would remain
at rest. In analogy, at the point ðx0; y0; z0Þ the system is at
rest since all evolution equations are identically satisfied; in
principle the system could remain in this state indefinitely.
Linear stability theory clarifies whether a stationary

point is stable or unstable with respect to small perturba-
tions away from that point. The basic idea behind this
approach is to Taylor expand the three functions fiðx; y; zÞ
around the fixed point ðx0; y0; z0Þ. Since the functions
vanish at the fixed point, the first nontrivial terms in the
Taylor series will involve the first partial derivatives of the
functions. Let us denote xj ¼ ðx; y; zÞ for j ¼ 1; 2; 3. It is
therefore natural to define the matrix of first derivatives

J ¼ ∂fi
∂xj ; i; j ¼ 1; 2; 3; ð79Þ

which is the familiar Jacobian matrix of vector calculus (not
to be confused with the current Jμ). The information on
stability is contained in the eigenvalues of this matrix J
evaluated at the critical point ðx0; y0; z0Þ. Since J is a 3 × 3
matrix, it will have three, not necessarily distinct, eigen-
values. If all eigenvalues of J are positive, we speak of an
unstable point since all perturbations would grow expo-
nentially. On the other hand, if all eigenvalues are negative,
this point would be regarded stable. If at some fixed point
the matrix J contains positive and negative eigenvalues,
then one speaks of a saddle point.
One could also encounter a pair of complex conjugate

eigenvalues and one additional real eigenvalue. In this case,
stability and instability will depend on the signs of the real
parts of the eigenvalues. Linear stability theory breaks
down when at least one of the eigenvalues has a zero real
part. In this case one has to use techniques beyond linear
stability theory to understand the dynamics of the system
near this fixed point; see, for instance, Ref. [45]. However,
these techniques will not be required in the following as
linear stability theory turns out to be sufficient.

E. Cosmological dynamics

In this section we will study the dynamics of a universe
described by Eqs. (62)–(64) employing dynamical systems
methods to determine its complete dynamical properties.
Similar analyses for dark energy models coupled directly
through the cosmological equations, i.e. considering
Eqs. (1) for different phenomenological choices of Q, have
already been performed in several works; see e.g.
Refs. [17,46,47]. We introduce the dimensionless variables

BÖHMER, TAMANINI, AND WRIGHT PHYSICAL REVIEW D 91, 123002 (2015)

123002-10



σ2 ¼ κ2ρ

3H2
; x2 ¼ κ2 _ϕ2

6H2
; y2 ¼ κ2V

3H2
; z¼ κ2ρint

3H2
;

ð80Þ

which straightforwardly generalize the normalized varia-
bles usually employed to analyze the dynamics of quintes-
sence [48]. In general, since ρint is a function of n and ϕ [s
is constant because of (60) and will not be considered in
what follows] which in turn can be seen as functions of ρ
and V, respectively, we can always write it as a combination
of the variables σ and y. However, unless the function ρint is
specifically chosen not to do so, this will require the
introduction of another variable such as ~z ¼ H=ðH0 þHÞ
with H0 a constant. To directly consider a fourth variable z
as defined in (80) simplifies the analysis since it allows us
to reduce the Friedmann equation (62) to the constraint

1 ¼ σ2 þ x2 þ y2 þ z; ð81Þ
which will permit us to replace σ in terms of the other
variables. Moreover we consider only y > 0 since we can
assume V > 0. Alternatively we will see that the system
will be invariant under the changes y ↦ −y, meaning that
its dynamics will be specular over the xy planes.
In what follows we will assume that p ¼ wρ with w a

constant, called the matter equation of state parameter,
physically constrained to be between 0 and 1=3. For (dark)
matter one has w ¼ 0; however, we will keep w as a general
constant for the moment. We will also assume the potential
V to have an exponential form of the kind

VðϕÞ ¼ V0e−λκϕ; ð82Þ
with V0 a constant and λ a dimensionless parameter. The
exponential form for V is the only one which consents to
close the autonomous system of equations without intro-
ducing another variable. This happens because V 0 ∝ V,
and thus derivatives of the potential can be related to y.

For different potentials instead a further variable must be
added in order to take into account the derivatives of the
scalar field potential [49].
With these assumptions the cosmological field equa-

tions (62)–(64) can be rewritten as

x0 ¼ −
1

2

�
3xððwþ 1Þy2 þ wz − wþ 1Þ

þ 3ðw − 1Þx3 −
ffiffiffi
6

p
λy2

�
þ xA − B; ð83Þ

y0 ¼ −
1

2
y
�
3ðw − 1Þx2 þ 3ððwþ 1Þy2 þ wz − w − 1Þ

þ
ffiffiffi
6

p
λx

�
þ yA; ð84Þ

z0 ¼ 2Aðz − 1Þ
þ 2Bx − 3zððw − 1Þx2 þ ðwþ 1Þy2 þ wðz − 1ÞÞ;

ð85Þ
where a prime denotes differentiation with respect to
dη ¼ Hdt and we have defined

A ¼ κ2pint

2H2
and B ¼ κffiffiffi

6
p

H2

∂ρint
∂ϕ : ð86Þ

To close the system, we must specify the function ρint
and then compute A and B using (34). If ρint is chosen
accordingly, the quantities A and B become functions of x,
y, z, and the system results to be close. If instead A and B
cannot be written as functions of x, y, z, then another
variable has to be added in the dynamics, and the
dimensions of the system increase.
The following choices do not increase the dimensions of

the system further: where α, β, and γ are dimensionless
parameters. These choices are the simplest ones found by
the authors which do not require a dynamical system of

ρint pint A B

Model I γρα expð−βκϕÞ ½αðwþ 1Þ − 1�ρint 3
2
½αðwþ 1Þ − 1�z −β

ffiffi
3
2

q
z

Model II γκϕρ wρint 3
2
wz γ

ffiffi
3
2

q
ð1 − x2 − y2 − zÞ

of more than three dimensions, i.e. for which A and B can
be written as functions of x, y, z. Mathematically they are
simple to analyze, and physically they are sufficiently
complex to allow us to investigate the new and rich
phenomenology of the scalar-fluid coupling considered
in this work.
These two models are also characterized by a linear

equation of state pint ¼ wintρint with wint being constant,
and thus they represent the simplest three-dimensional

models one can think of. However, by considering
other forms of ρint, one can construct models where the
equation of state wint itself becomes dependent on the
variables x; y; z. One such choice is ρint ¼ γV expðρ=ρ0Þ
where ρ0 is some constant characteristic density.
This gives pint ¼ ½ð1þ wÞρ=ρ0 − 1�ρint which means
wint ¼ ð1þ wÞρ=ρ0 − 1. Recall that ρ is related to σ2

which satisfies (81) and thus introduces the dependence
on x; y; z.
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Unfortunately, such a model would increase the dimen-
sions of the corresponding dynamical system since
wint cannot be written solely in terms of the variables
x, y, z. A coupling where this can be achieved corresponds
for example to the rather complicated choice ρint ¼
γV= lnðρ=ρ0Þ with VðϕÞ the potential (82). In this case
one obtains wint ¼ −1 − ðwþ 1Þz=ðγy2Þ, and both A and B
can be written as functions of x, y, z without introducing
other dynamical variables.
In what follows we will consider only the two simplest

choices corresponding to a linear interacting equation of
state and leave analyses of the more complicated models for
future studies. We will label them as Model I and Model II
as outlined by the table above.

1. Model I

In this subsection we analyze Model I of the dynamical
system (83)–(85). Now the two Friedmann equations (62)
and (63) can be written to give the acceleration equation

_H
H2

¼ 3

2
½−ð1þ wÞ þ ðw − 1Þx2 þ ð1þ wÞy2

− ð1þ wÞðα − 1Þz�; ð87Þ

which can be solved for a at any fixed point ðx�; y�; z�Þ of
the phase space to give

a ∝ ðt − t0Þ2=3½ð1þwÞ−ðw−1Þx2�−ð1þwÞy2�þð1þwÞðα−1Þz��; ð88Þ

where t0 is a constant of integration. This represents a
power law solution, where the scale factor a evolves as a
power of cosmological time t. If the denominator of (88)
vanishes, this forcesH to be constant, which corresponds to
the Universe undergoing a de Sitter expansion. If we define
the effective energy density and pressure of the system to be

ρeff ¼ ρþ 1

2
_ϕ2 þ V þ ρint; ð89Þ

peff ¼ pþ 1

2
_ϕ2 − V þ pint; ð90Þ

we can then define an effective equation of state paramter
weff , which can be expressed in terms of the dimensionless
variables (80)

weff ¼
peff

ρeff
¼w− ðw− 1Þx2− ð1þwÞy2þð1þwÞðα− 1Þz:

ð91Þ

These definitions allow us to write (88) in the simple form

a ∝ ðt − t0Þ2=½3ð1þweffÞ�: ð92Þ

The energy density and pressure of the scalar field are
given by

ρϕ ¼ 1

2
_ϕ2 þ V; ð93Þ

pϕ ¼ 1

2
_ϕ2 − V; ð94Þ

and we can also define the equation of state of the scalar
field at any point in our phase space,

wϕ ¼ pϕ

ρϕ
¼ x2 − y2

x2 þ y2
: ð95Þ

Now that we have specified the model, we can find the
critical/fixed points of the autonomous system (83)–(85).
These are defined to be the points ðx; y; zÞ of phase space
which satisfy

x0 ¼ 0; y0 ¼ 0; z0 ¼ 0: ð96Þ

If the system is at one of these points, there is no dynamical
evolution, and the Universe evolves according to (92). To
exist, the critical points must lie in the three-dimensional
phase space, which are all points ðx; y; zÞ such that

x2 þ y2 þ z ≤ 1: ð97Þ

This follows from the assumption σ2 > 0, i.e. ρ > 0, and
the Friedmann constraint (81). Stability of critical points is
determined by linearizing the autonomous system around
the critical point under consideration, which leads to
analyzing the eigenvalues of the Jacobian matrix

Mij ¼
∂fi
∂xj ð98Þ

evaluated at the critical point, where we have compactly
written the dynamical system (83)–(85) as x0 ¼ fxðx; y; zÞ,
y0 ¼ fyðx; y; zÞ, and z0 ¼ fzðx; y; zÞ. If all three eigenval-
ues of M have a negative real part, the critical point is
stable; if all three have a positive real part, the point is
unstable; and if some eigenvalues have different signs, the
point is a saddle.
There are up to eight critical points of the system,

depending on the values of the parameters α, β, w, and λ.
They are outlined in Table I.
We have checked explicitly that there are no critical

points at infinity. We did this by using the compact variable
ζ ¼ arctanðzÞ, and it turns out that there are no critical
points where ζ ¼ �π=2.
Case α ¼ 1.
The dynamics of the system depends on the four

constants α, β, λ, and w. To simplify the analysis, we will
first consider the natural choice α ¼ 1. This particular
choice makes the critical point E coincide with the origin
O. We will also only analyze the dynamics in a matter
dominated universe with w ¼ 0; the dynamics of the
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system for other values of w are qualitatively the same and
not relevant for models interacting with (cold) dark matter.
We are thus left with the critical points listed in Table II.
Properties of these critical points, including existence and

stability, can be found in Table III. There are potentially up to
seven critical points depending on the values of λ and β:

(i) Point O: The origin of the phase space exists for
all values of λ and β and corresponds to a matter
dominated universe. In this case weff ¼ 0 (or more
generally weff ¼ w), so there is no acceleration at
this point. This point is always a saddle point.

(ii) Point A�: These two points are dominated by the
scalar field kinetic energy, with the effective equa-
tion of state reducing to that of a stiff fluid weff ¼ 1.
Thus, no acceleration is present at this point. These
points are either unstable or saddle points depending
on whether the absolute values of λ and β are less
than

ffiffiffi
6

p
and 3=

ffiffiffi
6

p
, respectively.

(iii) Point B: This point exists for all values of λ and β.
It corresponds to the usual scaling solution where
the effective equation of state matches the matter
equation of state, yet the scalar field energy density
does not vanish. Hence, the universe behaves as if it
were completely matter dominated, yet the energy
densities of both the matter field and scalar field do
not vanish. This point is only stable when β > 0.

(iv) Point C: This point corresponds to a universe
completely dominated by a scalar field. It exists
only for λ2 < 6. It is stable when λ2 < 3 and λβ >
λ2 − 3 and a saddle node otherwise. This point is the
usual cosmological accelerated expansion driven by
a sufficiently flat scalar potential: λ2 < 2.

(v) Point D: This point exists for all values of λ and β
and is specific of interacting quintessence models.
The effective equation of state parameter is always
positive, so this point never corresponds to an
accelerating universe. This point is either unstable
or a saddle point depending on the values of β and λ.
In the limit β → 0, this point merges with the origin.

(vi) Point F: This point exists only when βðβ − λÞ >
−3=2. The energy density of the scalar field and
interaction components are nonzero, and the energy
density of matter vanishes. This point can correspond
to an accelerating solution when the parameters lie
in the range −2 < λ

β < 1 and corresponds to either a
stable spiral or a saddle node. The region in parameter
space where this point is stable is indicated by region
F in Fig. 2. Thus, we can conclude there are points in
parameter space where this point describes a late-time
cosmological accelerating attractor solution.

Analyzing the stability of the fixed points, we see that
when β > 0 the late-time behavior of the dynamical system
is qualitatively the same as the case of the canonical scalar
field with no interaction term. Although we now potentially
have up to two extra critical points arising, they are either
unstable or saddle points, and at late times the solution will
either limit toward the scalar field dominated point C or the
scaling solution B. On the other hand, when β < 0 we have
new late-time behavior arising. Depending on the parameter
values, the late-time attracting solutions are either the scalar
field dominated point C or the point F, a point in which the
energy density of the matter, scalar field, and interaction term
is nonzero. This point can represent an accelerating solution
for a wide range of parameter values. Note that Point F can
in principle represent a solution to the cosmic coincidence
problem since one can attain an accelerating late-time
attractor where the energy density of dark energy does
not dominate completely (accelerating scaling solution).
Now the phase space of the dynamical system is the

subset of R3 defined by −∞ < x < ∞, y ≥ 0, −∞ < z ≤
1 − x2 − y2. Hence, the phase space is noncompact. To plot
the phase space, we therefore compactify the system by
introducing the following new variables:

X ¼ arctan x; Y ¼ arctan y; Z ¼ arctan z: ð99Þ
The phase space is now compact, with X; Y; Z now
lying in the range −π=2 < X < π=2, 0 ≤ Y < π=2, and
−π=2 < Z < arctanð1 − tan2X − tan2YÞ. This is displayed
in Fig. 3. One could have chosen other functions to
compactify, for instance, X ¼ arctanhx, etc., which leads
to the same qualitative results.

TABLE I. Critical points of Model I.

Point x y z

O 0 0 0

A� �1 0 0

B
ffiffi
3
2

q
ð1þwÞ

λ

ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þwÞð1−wÞ

p
λ 0

C λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0

D −
ffiffi
2
3

q
β

αðwþ1Þ−2 0 1 − 2β2

3ðαþαw−2Þ2

E
ffiffi
3
2

q
ð1þwÞð1−αÞ

β 0 3
2

ð1−αÞð1þwÞð1−wÞ
β2

F
ffiffi
3
2

q
ð1þwÞα
λ−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðwþ1Þα−3ðwþ1Þ2α2þ2βðβ−λÞ

p ffiffi
2

p jλ−βj
λðλ−βÞ−3ð1þwÞα

ðβ−λÞ2

TABLE II. Critical points of Model I with w ¼ 0 and α ¼ 1.

Point x y z

O 0 0 0

A� �1 0 0

B
ffiffi
3
2

q
1
λ

ffiffi
3
2

q
1
λ 0

C λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0

D
ffiffi
2
3

q
β 0 1 − 2β2

3

F
ffiffi
3
2

q
1

λ−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2βðβ−λÞ

p ffiffi
2

p jλ−βj
λðλ−βÞ−3
ðβ−λÞ2
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We show phase space diagrams with a few trajectories
for two distinct cases, when β > 0 and β < 0 in Figs. 3
and 4, respectively. In Fig. 3 the trajectories start from
either of the stiff matter states A� and evolve toward point
B, which serves as the global attractor for this choice of
parameters. This dynamics, similar to the case of the
canonical scalar field with no interaction term, is well
suited to describing the late-time phenomenology of our
Universe as it has trajectories describing a decelerated to
accelerated transition, corresponding to the dominance of
dark energy over dark matter at late times. However, this
model suffers from the same issues as the canonical scalar
field at early times, since the early-time attractors are the
points A�, which have effective equation of state weff ¼ 1
which is not physically viable on the classical level. In
Fig. 4 all trajectories again start at either A�; however, they
now evolve to the point F which is the global attractor,
which for this choice of parameters is a solution with
weff ¼ −5=6. Again, for suitable choice of the parameters,
this model can well describe the late-time universe phe-
nomenology; however, it breaks down at early times.

Case α ¼ 3.
We will now consider the effects on model I of the above

dynamical system when we take a different value of α. In
general when α ≠ 1, the number of fixed points of the
system increases. For simplicity, wewill not consider α ¼ 2
as this gives us critical points at infinity, so we will analyze
the case α ¼ 3, again in a matter dominated universe with
w ¼ 0. Note that values of α different from 1 correspond
to scalar-fluid couplings nonlinear in ρ. Such a kind of
nonlinear couplings can only be built using the variational
formalism presented in this work, whereas other interacting
theories can only couple the scalar filed to ρ linearly, as in

FIG. 2. β-λ parameter space indicating the region where the
critical points B, C, and F are stable.

FIG. 3. Phase space showing trajectories of the dynamical
system (83)–(85) when α ¼ 1; β ¼ 1; λ ¼ 2, and w ¼ 0. Point B
is the global attractor where the universe behaves as though it
were completely matter dominated.

TABLE III. Stability of critical points of Model 1 with w ¼ 0 and α ¼ 1.

Point Existence weff Acceleration Stability

O ∀λ; β w No Saddle node

A− ∀λ; β 1 No Unstable node: β > −3ffiffi
6

p ; λ > −
ffiffiffi
6

p
Saddle node: otherwise

Aþ ∀λ; β 1 No Unstable node: β < 3ffiffi
6

p ; λ <
ffiffiffi
6

p
Saddle node: otherwise

B λ2 > 3 w No Stable node: 3 < λ2 < 24=7 & λβ > 0
Stable spiral: λ2 > 24=7 & λβ > 0
Saddle node: λβ < 0

C λ2 < 6 λ2−3
3

λ2 < 2 Stable node: λ2 < 3 & λβ > ðλ2 − 3Þ
Saddle node: β < ðλ2 − 3Þ=λ

D ∀λ; β 2β2

3
No Unstable node: β2 > 3=2 & λ < ð3β2 þ 3Þ=β

Saddle node: otherwise

F 3þ 2βðβ − λÞ > 0 β
λ−β −2 < λ

β < 1 Stable spiral: region in Fig. 2
Saddle node: otherwise
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the case of scalar-tensor theories for example [16–18].
Depending on the parameter choices, the system now has
potentially up to eight fixed points which are displayed in
Table IV.
The existence and stability properties of these critical

points, along with the values of weff are displayed in
Table V. Qualitatively, the properties of the critical points
O;A�; B, and C remain the same as the α ¼ 1 case, the
only modification being the exact regions of β − λ param-
eter space where stability/instability arises are slightly
different. However, the points D, E, and F exhibit new
behavior when α ¼ 3.

(i) PointD: This point exists for all values of λ and β. It
describes a solution where the kinetic energy of the
scalar field and the energy density of the interaction
term is nonzero, but the energy density of matter

vanishes. Unlike the α ¼ 1 case, this point can now
describe an accelerating solution and is also stable
for certain regions of parameter space. If β2 > 7=2
this solution describes an accelerating universe,
and when β2 > 3 and 2βλ < 2β2 − 9, this point is
a stable node. Hence, whenever the point is stable, it
describes an accelerating solution.

(ii) Point E: This point only exists when β > 3. The
potential energy of the scalar field vanishes, yet the
scalar field’s kinetic energy along with the energy
density of the matter and interaction fields are all
nonzero. This solution is a scaling solution where
the universe behaves as if it were completely matter
dominated, yet the universe evolves under the
influence of all three present fields. This solution
is never a late-time attractor; it is either an unstable
node or a saddle point.

(iii) Point F: This point only exists when 2βðβ − λÞ > 9.
As in the α ¼ 1 case, this point represents a solution
with both scalar field and interaction term compo-
nents, with the energy density of the matter field
vanishing. For certain values of parameter space, this
solution is a stable spiral and the global attractor;
see Fig 5. The solution is accelerating only if
−2=7 < λ=β < 1.

The late-time behavior of this model is much more
complex than the case α ¼ 1. The qualitative late-time
behavior of the phase space can be divided into essentially
six regions of β − λ parameter space. Two of these regions
have two stable critical points, so the late-time behavior is
dependent on the initial conditions. The remaining four
regions have one stable point, corresponding to a global
attractor. The different regions are plotted in Fig. 5, dis-
playing the corresponding critical points which are stable in
that region. To plot trajectories in the phase space, we again
compactify the phase space using the variables (99). We plot
some example trajectories for two different choices of the
parameters in Figs. 6 and 7. The parameter choices for Fig. 6
correspond to the same parameter choices used in Fig. 3,
except now with α ¼ 3 instead of α ¼ 1, to enable us to see
the effects of changing α. In Fig. 6 the qualitative behavior
does not change much from the α ¼ 1 case. Trajectories start
at A− and end at the global attractor which is the point B.
Many trajectories now pass near the point D, which for the
choice of parameters used has an effective equation of state
weff ¼ 4=3, which is not physically viable. However, in
Fig. 7, where β < 0, all the trajectories start at the point D
and end at the global attractor which is the scaling solution
B. This model never contains an early-time accelerating
solution; such a solution is required to describe an infla-
tionary phase of the universe. The early-time attractors are
either A�, E, or D, with D being the only point that can
accelerate for certain values of parameter space.
Unfortunately in the region in which D describes an
accelerating solution, the point is a saddle, so it does not

FIG. 4. Phase space showing trajectories of the dynamical
system (83)–(85) when α ¼ 1; β ¼ −5; λ ¼ 2, and w ¼ 0. Point
F is the global attractor, and for this choice of parameters, it
corresponds to a solution with weff ¼ −5=6.

TABLE IV. Critical points of Model I with w ¼ 0 and α ¼ 3.

Point x y z

O 0 0 0

A� �1 0 0

B
ffiffi
3
2

q
1
λ

ffiffi
3
2

q
1
λ 0

C λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0

D −
ffiffi
2
3

q
β 0 1 − 2β2

3

E −
ffiffi
6

p
β 0 − 3

β2

F
ffiffi
3
2

q
3

λ−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−9þ2βðβ−λÞ

p ffiffi
2

p jλ−βj
λðλ−βÞ−9
ðβ−λÞ2
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describe an early-time inflationary universe. Requiring
special initial conditions, for which the universe remains
in the vicinity of point D for a sufficiently long time, one
can, however, obtain a transient accelerating phase, which
can still be used to describe early-time inflationary stages.
The analysis of Model I with α ¼ 3 shows the possible

interesting applications at cosmological scales of this
particular coupling between quintessence and dark matter.
One can in fact not only obtain late-time accelerating
attractors and scaling solutions but also transient infla-
tionary epochs useful for early-time applications. Moreover
multiple late-time attractors can be found for some values
of the model parameters. This is a feature which usually
does not appear in quintessence models of dark energy and
can interestingly be analyzed with advanced dynamical
systems methods such as bifurcation theory. The complex-
ity of Model I prevents a detailed study for every value
of α. However, the analyses we considered for the values
α ¼ 1 and α ¼ 3 show that these interacting quintessence

models can successfully be used to describe the dynamics
of dark energy at late times. Furthermore the presence of
accelerating scaling solutions attracting the phase space
trajectories at late times indicates a possible solution for the
cosmic coincidence problem, as usually achieved intro-
ducing a coupling between dark energy and dark matter.

2. Model II

Now we will analyze the second model of the dynamical
system (83)–(85) where we assume the interaction energy

FIG. 5. β-λ parameter space indicating the different regions
where the critical points B;C;D, and F are stable.

FIG. 6. Phase space showing trajectories of the dynamical
system (83)–(85) when α ¼ 3; β ¼ 1; λ ¼ 2, and w ¼ 0.

TABLE V. Stability of critical points of Model I with w ¼ 0 and α ¼ 3.

Point Existence weff Acceleration Stability

O ∀λ; β w No Saddle node

A− ∀λ; β 1 No Unstable node: β > −3ffiffi
6

p ; λ > −
ffiffiffi
6

p
Saddle node: otherwise

Aþ ∀λ; β 1 No Unstable node: β < 3ffiffi
6

p ; λ <
ffiffiffi
6

p
Saddle node: otherwise

B λ2 > 3 w No Stable node: 3 < λ2 < 24=7 & β=λ > −2
Stable spiral: λ2 > 24=7 & β=λ > −2
Saddle node: β=λ < −2

C λ2 < 6 λ2−3
3

λ2 < 1 Stable node: λ2 < 3 & λβ > ðλ2 − 9Þ
Saddle node: λβ < ðλ2 − 9Þ or λ2 > 3

D ∀λ; β 6−2β2
3

β2 > 7=2 Stable node: β2 > 3 & 2βλ < ð2β2 − 9Þ
Unstable node: β2 < 3=2 & 2βλ > ð2β2 − 9Þ
Saddle node: otherwise

E β2 > 3 w No Unstable node: λ=β > −1=2
Saddle node: λ=β < −1=2

F 2βðβ − λÞ − 9 > 0 2λþβ
λ−β −2=7 < λ

β < 1 Stable spiral: region VI in Fig. 5
Saddle node or unstable node: otherwise
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density to take the simple form ρint ¼ γκϕρ, where γ is a
dimensionless parameter. As before we can define an
effective energy density and pressure, and this time the
acceleration equation now reads

_H
H2

¼ 3

2
½−ð1þ wÞ þ ðw − 1Þx2 þ ð1þ wÞy2�; ð100Þ

and thus we can define the effective equation of state
parameter in this model to be

weff ¼ w − ðw − 1Þx2 − ð1þ wÞy2; ð101Þ

whichwenote is independent of the interaction energydensity
z. The critical points of this model are displayed in Table VI.
We see that all the critical points are independent of the

parameter γ. We note that the origin of the phase space is
not a critical point in this model. The existence and stability
properties of the points are displayed in Table VII.
Depending on the value of λ, the system has either four
or five critical points:

(i) Point A�: These two points appeared in Model I
and correspond to the scalar field kinetic energy
dominated points with the effective equation of state
reducing to that of a stiff fluid weff ¼ 1. No accel-
eration is present at this point. These points are
either unstable or saddle points depending on
whether the absolute value of λ is less than

ffiffiffi
6

p
.

(ii) Point B: Unlike the canonical case when no inter-
action energy is present, this point exists for all
values of λ. This solution is dominated by the energy
density of the scalar field and the interaction energy
density, and the universe behaves as if it is matter
dominated at this point. The Jacobian matrix at this
point has one zero eigenvalue and two negative
eigenvalues, and hence this point is not hyperbolic,
meaning its stability properties cannot be deter-
mined by simply looking at the eigenvalues. To
investigate its stability properties, one could use
center manifold theory; however, here we will just
examine this issue numerically. Based on numerical
results, and by making a comparison with the
corresponding point in the noninteracting scalar
field model, we postulate that this point is stable
if 3ð1þ wÞ < λ2 and unstable otherwise.

(iii) Point C: This point only exists when λ2 < 6. It
corresponds to a scalar field dominated universe,
with both the matter and interaction energy densities
vanishing. It is stable if λ2 < 3ð1þ wÞ and a saddle
point otherwise. The effective equation of state param-
eter is λ2=3 − 1, and hence the solution describes an

FIG. 7. Phase space showing trajectories of the dynamical
system (83)–(85) when α ¼ 3; β ¼ −1; λ ¼ 2, and w ¼ 0.

TABLE VI. Critical points of Model II.

Point x y z

A� �1 0 0

B
ffiffi
3
2

q
ð1þwÞ

λ

ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þwÞð1−wÞ

p
λ

λ2−3ð1þwÞ
λ2

C λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0

D 0 0 1

TABLE VII. Stability of critical points of Model II.

Point Existence weff Eigenvalues Stability

A− ∀λ 1 3 − 3w; 3 − 3w; 3þ
ffiffi
3
2

q
λ Unstable node for λ > −

ffiffiffi
6

p

Saddle node: otherwise

Aþ ∀λ 1 3 − 3w; 3 − 3w; 3 −
ffiffi
3
2

q
λ Unstable node: λ <

ffiffiffi
6

p

Saddle node: otherwise

B ∀λ w 0;− 3
4
ð1 − wÞ þ 3

4λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − wÞð24ð1þ wÞ2 − λ2ð7þ 9wÞÞ

p
Non-hyperbolic

− 3
4
ð1 − wÞ − 3

4λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − wÞð24ð1þ wÞ2 − λ2ð7þ 9wÞÞ

p
Unstable: λ2 < 3ð1þ wÞ

C λ2 < 6 −1þ λ2

3
λ2−6
2

; λ2 − 3ð1þ wÞ, Stable node: λ2 < 3ð1þ wÞ
λ2 − 3ð1þ wÞ Saddle node: 3ð1þ wÞ < λ2 < 6

D ∀λ w 0; 3
2
ðw − 1Þ; 3

2
ðwþ 1Þ Unstable
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accelerating universe if λ2 < 2. This point is the well-
known cosmological accelerated expansion driven by
a sufficiently flat scalar field potential.

(iv) Point D: This point is entirely dominated by the
interaction energy z. It exists for all λ and always lies
on the boundary of the phase space. It is a scaling
solution withweff ¼ w, so the universe behaves as if it
were completely matter dominated at this point. This
point is nonhyperbolic as one of the eigenvalues of its
stability matrix is zero; however, the matrix always
has one positive eigenvalue so the point is unstable.

To plot the trajectories, we again compactify the phase
space using the variables (99) as previously done for Model
I. We plot the phase space and some trajectories for three
different values of λ, assuming a matter equation of state
w ¼ 0 in Figs. 8, 9, and 10.
We see that this model qualitatively is almost identical to

the case of the canonical scalar field when no interaction
term is present. As seen in Figs. 8, 9, and 10, all trajectories
start at either of the stiff matter points A� and then evolve
until they reach the global attractor which is either the point
B or C, the former corresponding to an effective dust
(scaling) solution, while the latter corresponds to an accel-
erating universe solution if λ2 < 2. The main difference
between this model and the canonical scalar field is the
origin is replaced by PointD, corresponding to an interaction
dominated universe, and the point B now exists for all values
of λ. The matter dominated solution of the universe is thus
represented by a phase in which the interaction term between
dark energy and dark matter dominates. Though this phase
can present the same dynamics of the ΛCDM model in the
background evolution, differences might arise at the pertur-
bation level. The analysis of cosmological perturbations as
well as the comparison with observational data within the
framework of these interacting dark energy models falls
outside the scopes of the present work and will be left for
future studies.

VI. DISCUSSION AND CONCLUSION

Themainmotivation of this work was to study interacting
quintessencemodelswhich can be derived fromavariational
approach. Many interacting dark energy models considered
in the past were constructed by adding suitable interaction

FIG. 8. Phase space showing trajectories of the dynamical
system when γ ¼ 1; λ ¼ 1.5, and w ¼ 0.

FIG. 9. Phase space showing trajectories of the dynamical
system when γ ¼ 1; λ ¼ 2, and w ¼ 0.

FIG. 10. Phase space showing trajectories of the dynamical
system when γ ¼ 1; λ ¼ 4, and w ¼ 0.
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terms at the level of the field equations. In many cases these
terms could not be rigorouslymotivated from an underlining
theoretical framework. Here we showed that one can use a
rigorous Lagrangian formulation to define interacting
quintessence models generally depending on one function
fðn; s;ϕÞ mixing the dynamical degrees of freedom of the
matter fluid with the quintessence scalar field.
This Lagrangian formulation has been used to build first

screening mechanisms for Solar System experiments and
then interesting models of dark energy coupled to dark
matter. As shown in Sec. IV, new mechanisms capable of
screening the effects of the scalar field at Solar System scales
can be obtained. These solutions generalize the well-known
chameleon mechanism which can now be derived from a
variational approach. As an example of the new phenom-
enology that can be obtained in this manner, in Sec. IV we
considered a cosh-type of interaction proving that the scalar
field can be highly massive at Solar System distances while
being practically massless at cosmological scales.
The cosmological implications of our approach at the

background cosmological level have then been studied in
Sec. V. The main difference between the cosmology of our
models and the one of previous models is that the matter
conservation equation does not change in our case.
Therefore, matter will always decay according to ρ ∝
a−3ð1þwÞ in agreement with the observations. However, the
coupling does affect the Hubble constraint equation, and
therefore the total energy density depends on the coupling.
We proposed two simple interacting models, both of

which have a cosmological three-dimensional phase space
and can be studied efficiently using dynamical systems
techniques. The natural phase space of these models is
unbounded, and we introduced new variables which make
this phase space compact. The resulting models contain
some very interesting phenomenology which we discussed
in some detail. In particular for Model I, we found late-time
accelerating solutions where the energy density of dark
energy either dominates or scales according to the matter
interacting energy density. This situation is similar to the
one generally arising in standard interacting quintessence
models and can be used to solve or at least alleviate the
cosmic coincidence problem. As an example, Fig. 11 shows
the behavior of the effective equation of state for one
particular trajectory of Model I. We note that at late times
the universe evolves through a matter dominated epoch
followed by an epoch of late-time accelerated expansion, or
simply dark energy. This is exactly the behavior observed
for our Universe, where a matter to dark energy transition
must occur at late times. Note that for this particular
trajectory the early-time evolution does not correspond to
the one we obtain from observations since, as shown by
Fig. 11, a stiff effective equation of state is always attained
with even excursions to the superstiff region (weff > 1).
This is a common feature of quintessence models with
exponential potential [48] where the early-time attractor is

always represented by a scalar field dominated solution with
a stiff equation of state, and not by a matter dominated
solution or even an inflationary epoch as suggested by
observations. In these situations the model is taken as an
effective description valid at late times but not at early times.
Note, however, that the dynamics of Model I (with

α ¼ 3) allows also for possible early-time inflationary
solutions described by Point D. This behavior is neatly
shown in Fig. 12 where the effective equation of state for a
trajectory passing close to Point D has been plotted for
w ¼ 1=3 and some particular values of the model param-
eters. A transient early-time inflationary epoch, with weff ¼
−1 and a brief excursion into the phantom regime, is
dynamically achieved after stiff domination, while Point B
is the late-time attractor describing a radiation dominated
scaling solution, and not an accelerating solution. Such a
situation cannot be used to describe dark energy but can
interestingly be adopted to characterize an inflationary
phase followed by a radiation dominated era, avoiding in
this way the need for reheating, a remarkable result by
itself. Strong observational constraints are inevitably
expected on such a model since the presence of the scalar
field would be non-negligible during radiation domination,
Point B being a scaling solution. Nevertheless this simple
example shows how the scalar-fluid interaction presented in

FIG. 11. The effective equation of state weff of model I with
α ¼ 3, w ¼ 0, β ¼ 2, and λ ¼ 1=5. We see a matter dominated
epoch (corresponding to point E) for some time, followed by the
dark energy dominated late-time attractor (point C).

FIG. 12. The effective equation of state weff of Model I with
α ¼ 3, w ¼ 1=3, β ¼ 2

ffiffiffi
3

p
, and λ ¼ 2. After a stiff matter period,

we see an inflationary era (corresponding to pointD) for some time,
before ending at the late-time attractor;which is the scaling solution
point B.
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this work can be employed to produce new interesting
phenomenology even at early times.
Fora suitablechoiceof themodelparameters, andfora fine-

tuning of initial conditions, such an inflationary solution
might even be connected to a late-time accelerating attractor
through a transient matter dominated epoch. This is an
interesting possibility since it would allow for a unified
description of dark energy and inflation. An in-depth analysis
about the viability of this solution is outside the scope of the
present paper, and it will be left for future studies. Finally
another interesting feature obtained within Model I is the
possibility of multiple late-time attractors which are theoreti-
cally and mathematically interesting to study.
Regarding Model II, at the background level, it is

almost (qualitatively) identical to the uncoupled standard
scalar field cosmological models. However, one expects
differences at the perturbation level since in this model the
scalar field has a non-negligible role during the matter
dominated era, this being described by a scaling solution.
The frameworkwe introduced to study interacting quintes-

sence models is in fact even wider than the one considered
here. In the present paper, we focused on interactions of the
form fðn; s;ϕÞ where no spacetime derivatives appear.
However, there is in principle no obstacle to consider
functions which also depend on those derivatives. Under a
theoretical perspective, such models are the next logical case
to study and will be investigated in the second part of this
work [38].One could even consider radically differentmodels
where the entropy density s becomes an increasing function
of time instead of being a constant. Such models, taking into
account the second law of thermodynamics, would contain a
preferred direction of time and provide possible material for
quantum gravity speculations.
To investigate the cosmological implications of all these

models in more detail, one has to study their cosmological
perturbations. This would clarify the issues of structure
formation and stability, both of which are quite challenging
to address in general interacting dark energy models. This
is because at the level of perturbations spacetime deriva-
tives of the coupling enter the perturbed field equations,
and in general there is no unique procedure to promote the
background equations to fully covariant equations [50].
Our approach, however, makes this conceptually much
easier since we have an underlying theory from which all
equations are derived from first principles. In particular the
fully covariant generalizations of the Einstein and Klein–
Gordon field equations can be easily obtained, implying
that the perturbations equations can be straightforwardly
derived and analyzed once an interaction has been specified
at the level of the Lagrangian.
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APPENDIX: DERIVATION OF EQS. (39) AND (41)

In this Appendix we will explicitly show the calculations
around Eqs. (39) and (41). We start with the first one of
Eqs. (39),

Uν∇μ
~Tμν

¼ Uν∇μ½ ~pgμν þ ð~ρþ ~pÞUμUν� ðA1Þ

¼ Uμ∇μ ~p − Uμ∇μð~ρþ ~pÞ − ð~ρþ ~pÞ∇μUμ

þ ð~ρþ ~pÞUμUν∇μUν ðA2Þ

¼ −
∂ ~ρ
∂n∇μðUμnÞ − Uμ ∂ ~ρ

∂s∇μs −Uμ ∂ ~ρ
∂ϕ∇μϕ ðA3Þ

¼ −Uμ ∂ ~ρ
∂ϕ∇μϕ; ðA4Þ

where in the line (A2) we used Uμ∇νUμ ¼ 0, obtained
from the covariant differentiation of the constraint
UμUμ ¼ −1, and in the line (A3) we used Eqs. (14), i.e.
∇μðnUμÞ ¼ 0 and ∇μs ¼ 0.
The second of Eqs. (39) is longer to verify. Defining

~μ ¼ μþ μint and using again Eqs. (14) and Uμ∇νUμ ¼ 0,
one finds

hμν∇λ
~Tνλ

¼ ðgμν þUμUνÞ∇λð ~pgνλ þ ð~ρþ ~pÞUνUλÞ ðA5Þ

¼ hνμ∇ν ~pþ n ~μUλ∇λUμ ðA6Þ

¼ hνμ∇ν ~pþ n½Uλ∇λð ~μUμÞ −UμUλ∇λ ~μ� ðA7Þ

¼ hνμ∇ν

�
n
∂ ~ρ
∂n − ~ρ

�

þ n

�
2Uλ∇½λð~μUμ�Þ þ Uλ∇μð~μUλÞ −UμUλ∇λ

∂ ~ρ
∂n

�

ðA8Þ
¼ n

�
2Uλ∇½λð ~μUμ�Þ þ

1

n
hνμ∇ν

�∂ ~ρ
∂n

�

−
1

n
hνμ∇ν ~ρ − hνμ∇ν

∂ ~ρ
∂n

�
ðA9Þ

¼ n

�
2Uλ∇½λð~μUμ�Þ þ hνμ

∂ ~ρ
∂n∇νn −

1

n
hνμ∇ν ~ρ

�
ðA10Þ

¼ 2nUλ∇½λð~μUμ�Þ − hνμ
∂ ~ρ
∂ϕ∇νϕ: ðA11Þ

To show that the first term in the last line above vanishes,
we recall Eq. (29), namely
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~μUμ þ φ;μ þ sθ;μ þ βAα
A
;μ ¼ 0: ðA12Þ

Using this we obtain

2nUλ∇½λð ~μUμ�Þ
¼ 2Uλ½∇½λ∇μ�φþ s∇½λ∇μ�θ

þ∇½λβA∇μ�αA þ βA∇½λ∇μ�αA� ðA13Þ

¼ 2Uλð∇λβA∇μα
A −∇μβA∇λα

AÞ ðA14Þ

¼ 0; ðA15Þ
where in the line (A13) we used the fact that covariant
derivatives commute on any scalar, and in line (A14) we
applied Eqs. (9)–(12). We thus derive

hμν∇λ
~Tνλ ¼ −hνμ

∂ ~ρ
∂ϕ∇νϕ; ðA16Þ

which corresponds to the second of Eqs. (39).

To prove Eqs. (41), one repeats the calculations (A1)–(A4)
with Tμν instead of ~Tμν, obtaining simply

Uν∇μTμν ¼ 0; ðA17Þ

because ρ does not depend onϕ. Analogously one repeats the
calculations (A5)–(A11) which yields

hμν∇λTνλ ¼ 2nUλ∇½λðμUμ�Þ: ðA18Þ

Then, using again Eq. (A12), and following the similar
computations to (A13)–(A15), one finds

hμν∇λTνλ ¼ −2nUλ∇½λðμintUμ�Þ; ðA19Þ

implying the validity of Eqs. (41).
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