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Abstract 

Environmental policies often underperform due to so-called rebound effects, namely 

behavioural and systemic responses to technical change leading to additional consumption 

and environmental damage. While evidence of rebound is abundant, studies generally focus 

on technical changes that are neither associated with specific technologies nor their 

production costs, making it difficult to connect these changes with the policies governing 

them. To overcome this limitation, this study proposes to combine a technology-rich model 

based on life cycle assessment and a behaviour-optimising model for the global economy 

based on computable general equilibrium modelling. This approach allows to quantify 

policy-induced economy-wide rebound effects for four relevant environmental impacts: 

climate change, acidification, photochemical ozone formation, and particulate matter. We 

apply this approach to evaluate the effectiveness of the United Kingdom’s subsidy on 
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electric cars. The results show notable economy-wide rebound effects associated with this 

subsidy: over or close to 100% (no environmental benefits) for acidification and particulate 

matter impacts, and a lower, yet notable, magnitude for climate change (~20-50%) and 

photochemical ozone formation (~30-80%) impacts. The results also show the important 

role of macro-economic effects from price changes, particularly how the shift from petrol to 

electricity triggered additional demand for cheaper petrol. 
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1. Introduction 

 

Energy and broader environmental policies often underperform due to so-called rebound 

effects [1–3]. Rebound effects relate to behavioural and systemic responses to technical 

change leading to additional consumption and environmental pressures, such as energy use 

and greenhouse gas (GHG) emissions [4–6]. Rebound effects are generally classified into 

two broad types, namely micro-economic or partial equilibrium and macro-economic or 

general equilibrium rebound, together adding to the so-called economy-wide rebound [7]. 

The first type relates to situations where increases in effective income/profits from 

consumers/producers are re-invested leaving prices constant [8,9], whereas the second type 

accounts for changes in output and factor prices which lead to further changes in market 

composition and economic growth [10]. Micro-economic rebound is generally divided into 

direct and indirect effects [4], for instance when economic savings from energy-efficient 

light bulbs lead users to increased luminosity and burn time (direct effect) [11] and 

additional consumption of other commodities (indirect effect). An example of macro-

economic rebound is the widespread fuel efficiency improvements in transport driving 

down oil prices and triggering further demand for energy services worldwide [7]. Rebound 

effects are gaining attention among policymakers and are even regarded in policy impact 

assessments and policy design guidelines [12]. 

While quantitative evidence of rebound is abundant [4,7,13], studies generally focus on 

broad and costless technical changes that are unrelated to the policies that govern their 

diffusion, technical standards, financing, etc. [14,15]. For instance, many studies analyse the 

implications of costless and arbitrary improvements in resource productivity [2,10,16]. 
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Moreover, the few studies that have explicitly addressed policy-induced rebounds do not 

address adequately four key aspects relating to the (1) scope of analysis, (2) product 

properties, (3) rebound mechanisms, and (4) indicators [17]. First, technical changes are 

poorly connected to particular policies and lack a sufficient technological detail to assess 

specific technologies. It is thus common to analyse resource productivity improvements in 

broad economic sectors without considering the specific technical changes needed to 

achieve these [18]. Second, and in the same vein, changes in product attributes and capital 

costs are often ignored or estimated with a broad brush. For instance, a specific technology 

can be associated with specific behaviours [19] as well as capital costs [20]. Third, macro-

economic rebound effects related to market price, composition, and economic growth [7] 

are generally not addressed. Most policy-induced rebound analyses thus focus solely on 

how additional income is re-spend while keeping prices constant [17]. Lastly, studies often 

express rebound magnitudes mostly via direct energy and energy-based emissions, 

disregarding trade-offs between life cycle stages and/or environmental pressures. This 

limitation is often imposed by the models used, such as macro-economic models lacking the 

use and end-of-life stages as well as environmental extensions other than energy. 

To overcome the above limitations, we here propose a novel life cycle general equilibrium 

approach to quantify policy-induced rebound effects for various environmental pressures. 

Our approach combines two popular modelling traditions in rebound analysis, namely life 

cycle assessment (LCA) and computable general equilibrium (CGE) modelling (see 

supporting information S1 for an introduction), using consistent benchmark data and partly 

consistent assumptions. LCA has been used to calculate rebound effects for specific 

products and technologies, from cheese [21] to electric car models [22] and biofuel crop 

production [23]. This approach, sometimes referred to as the environmental rebound effect, 
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is characterised by the possibility to incorporate a high technology detail and costs through 

a life cycle perspective, and to express rebound in terms of multiple environmental 

indicators [24]. Rebound studies using LCA, however, often suffer from truncation issues 

when describing economic systems [25], namely leaving out processes that complete global 

supply chains. LCA studies also systematically ignore broader economic consequences of 

technical change beyond supply chain effects, such as price, distributive, and growth effects 

[26–28]. 

Modelling the consequences of the complex interactions between economic agents is 

possible with macro-economic models, such as growth, econometric, and CGE models [29]. 

Among these, CGE models offer clear advantages with respect to other models [30] despite 

obvious limitations [31]. In particular, CGE models are ex ante in nature (compared, for 

example, to the ex post focus of econometric approaches) and offer great flexibility in terms 

of modelling the interactions and specific characteristics of different economic agents, for 

example regarding different possible closures (e.g. tax and income closures), and so they 

can be adapted to address future consequences of a wide range of shocks. Moreover, CGE 

models have been widely used for rebound analysis [29,32] and have been applied to 

estimate the so-called ‘general equilibrium rebound’ [10], which incorporates the effects of 

changes in output and factor prices. Standard CGE models, however, generally lack 

technology detail and environmental extensions [27,33]. Following previous works that 

linked macroeconomic and systems engineering models [34], some studies combine LCA 

and CGE to exploit their strengths. Such hybrid LCA-CGE approaches combine the 

technology detail of LCA with the economic behaviour of CGE models without loss of 

information nor modelling power, generally at the expense of ontological discrepancies that 

can be only partially solved currently [27,35,36]. Two main LCA-CGE approaches can be 
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identified in the literature (see supporting information S1 for a detailed review). One 

approach is to incorporate LCA concepts and data into a CGE modelling framework, as done 

in the works of Pothen [28], Bosello et al. [45], and the United States Environmental 

Protection Agency [37]. An alternative approach is to focus on using parameters and/or 

results from CGE models to inform an LCA, as done in the works of Kløverpris et al. [38–40], 

Nguyen et al. [41], Dandres et al. [42,43], and Igos et al. [44]. The review shows that each 

approach provides different and valuable insights according to given research questions and 

scope of analysis. Further, the study of rebound effects via LCA-CGE approaches is scarce 

and, in any case, does not allow for a deep analysis of its causes and implications. In this 

study, we develop an original hybrid LCA-CGE approach specifically tailored to quantify 

policy-induced rebound effects. 

We apply our method to the case of the promotion of electric passenger cars in the United 

Kingdom (UK) via governmental subsidies for illustration purposes. Our research question is 

thus: do UK government’s economic incentives to promote electric car uptake led to 

significant economy-wide rebound effects? While car electrification is seen as a central 

action to cut transport GHG emissions by the UK government, for instance as described in 

the UK Low Carbon Transition plan [45] and the UK Renewable Energy Roadmap [46], the 

impact of such action as a policy package nor its policy components (such as the studied 

subsidy) have not been calculated, neither in terms of GHG emission nor other 

environmental impacts. This study can thus provide valuable new insights into the 

effectiveness of this and similar policies, both in the UK and internationally. More generally, 

this research contributes to the current body of knowledge by (1) developing a novel 

technology-rich life-cycle based macro-economic model suited to comprehensively assess 

the environmental performance of any given technology-oriented policy and (2) 
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complementing the limited literature on rebound effects associated with electric car 

adoption [22,47] by providing, for the first time, estimates of both micro and macro-

economic rebound effects. 

 

2. Methods and data 

 

2.1 Case study and modelling set-up 

 

Our case study focuses on the life cycle environmental assessment of the UK government’s 

subsidy on electric cars, with a special focus on the detrimental impact of rebound effects. 

The policy intervention under investigation is the ‘Plug-in Car Grant’, which is in place since 

2011 to cover for 35% of the purchase price of full battery electric cars, limited at 4,500£ per 

vehicle (https://www.gov.uk/plug-in-car-van-grants). To assess the consequences of this 

subsidy, we designed three scenarios in order to estimate the rebound effect (see section 

2.4): (1) a counterfactual ‘no subsidy’ scenario where the subsidy would have not been 

implemented, (2) a ‘subsidy without rebound’ scenario with the subsidy implemented in the 

UK, and (3) a ‘subsidy with rebound’ scenario were the sales of electric cars associated with 

the subsidy lead to a rebound effect. For the ‘no subsidy’ scenario, we assume a shift from 

electric to comparable petrol cars through a one-to-one substitution, whereas both 

‘subsidy’ scenarios include electric car sales as reported. The effect of the subsidy on total 

car sales is thus captured by the difference between the reported electric car sales (‘subsidy’ 

scenarios) and the modelled sales of both electric and petrol cars in the hypothetical 

absence of the subsidy (‘no subsidy’ scenario). 
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We focus on the effects of the subsidy on private demand of electric cars for the period 

2011-2022. Passenger cars in the UK are driven about 12,760 vehicle-kilometres (vkm) per 

year [48] which, assuming a lifespan of 150,000 vkm from the corresponding datasets of the 

ecoinvent database (see section 2.4.2), means they are driven for about 12 years. Hence, 

the studied period would cover the entire lifespan of cars bought in 2011 and allow for 

certain structural changes in the economy. No dynamic technical changes are considered 

during the studied period, such as improvements in fuel efficiency, battery production, 

waste treatment, etc. The only technical change considered is thus the substitution between 

electric and petrol cars caused by the subsidy. Relative differences in the environmental 

performance of these scenarios will be the basis for the rebound calculations (see section 

2.4). 

 

2.2 Method overview and rebound calculation 

 

Our proposed method departs from a policy intervention (a subsidy in this case) which 

generates four effects: (1) technical change, (2) economic incentives, and (3) technology 

diffusion and (4) consumption shifts (see column A in Figure 1). The technical change effect 

will be active in all scenarios, as electric cars were sold before the policy intervention in this 

case. Both economic incentives and technology diffusion and consumption shifts will be 

active only in the ‘subsidy’ scenarios. These effects are then assessed with various 

interdependent models (column B) to obtain numerical results for various environmental 

indicators which will be the basis for the rebound calculations (column C). The models used 

are a hybrid IO-LCA model (see section 2.3.1), a CGE model coupled with a multi-regional 



9 
 

input-output (MRIO) model (see section 2.3.2), and a multiple regression and household 

demand models (see section 2.3.3). The hybrid IO-LCA model offers a high technology detail 

where car technologies can be assessed, while the CGE model allows to account for a wide 

array of economic responses to the subsidy, especially the consequences of price changes. 

The MRIO model is used to simulate the effect of the subsidy with fixed prices to isolate 

price effects (see section 2.3.2). With this modelling set-up, three rebound effects can be 

quantified in various ways: micro-economic, macro-economic, and economy-wide effects 

(see section 1). With this approach, we are able not only to apply the two mainstream 

approaches in the literature independently, namely technology-rich micro-economic (LCA) 

and general equilibrium macro-economic (CGE) approaches, but also to combine them in a 

pseudo-consistent way. We first describe the models and their relationships as well as the 

required calibration data (section 2.3), followed by the implementation of policy effects 

(section 2.4). 
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Figure 1. Overview of the proposed method to calculate policy-induced rebound effects. 

 

 

Following convention, the (environmental) rebound effect can be calculated as the 

percentage of potential environmental benefits that are ‘taken back’ [22], as 

 

𝑟𝑒𝑏𝑜𝑢𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 =  ൬
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠

|𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠|
൰ ∗ 100            (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

In this study, potential environmental benefits correspond to the difference in 

environmental impacts between the ‘subsidy without rebound’ and ‘no subsidy’ scenarios, 

whereas actual environmental benefits correspond to the difference between the ‘subsidy 
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with rebound’ and ‘no subsidy’ scenarios. Three types of rebound effects will be calculated: 

micro-economic, macro-economic, and economy-wide rebound. The micro-economic 

rebound can be calculated independently with both the IO-LCA and the MRIO models. The 

macro-economic rebound can only be calculated by the difference between the economy-

wide rebound calculated with the CGE model and the micro-economic rebound calculated 

with the MRIO model (see column C in Figure 1). The economy-wide rebound can be 

calculated with the CGE model as is standard in the literature [1,18,29,49] or, alternatively, 

by adding the macro-economic rebound (calculated by subtracting the micro-economic 

rebound [MRIO model] from the economy-wide rebound [CGE model]) to the micro-

economic rebound from the IO-LCA model, an approach we refer to as the ‘combined 

approach’. 

The environmental rebound effect can be expressed through multiple indicators that are 

relevant to the analysed technical change [24]. Given both their relevance and availability 

across models, we have chosen the following midpoint impacts: climate change (in CO2 

equivalents), particulate matter (in PM2.5 equivalent), photochemical ozone formation (in 

C2H4 equivalents), and acidification (in H+ equivalent). Results in terms of pressures, such as 

CO2 emissions, can be converted to midpoint impacts, such as climate change in CO2 

equivalents, using characterisation factors. The characterisation factors for ecoinvent’s 

elementary flows (used in the hybrid IO-LCA model) have been obtained from the 

International Reference Life Cycle Data System 2011 midpoint method (ILCD 2011 method 

for short) [50]. The characterisation factors for EXIOBASE’s environmental extensions (used 

in the hybrid IO-LCA, the CGE, and the MRIO model), also according to the ILCD 2011 

method, have been obtained from the adaptation done by Huysman et al. [51]. The ILCD 

2011 method is based on internationally-accepted existing environmental impact 



12 
 

assessment models and factors based on both domain expertise and stakeholder 

consultations [52]. 

In order to make the results of all the models comparable, we exogenously add combustion 

emissions from the LCIs to the results of the CGE and MRIO models, where the use phase is 

missing. 

 

2.3 Model description 

 

2.3.1 Hybrid IO-LCA 

 

The hybrid IO-LCA model (see coordinate 2B in Figure 1) is a pseudo-consistent 

representation of the world economy using two levels of detail: a technology-rich system at 

the level of processes and their products based on LCI data, and a comprehensive system at 

the level of industries based on a multi-regional input-output table (MRIOT). Both systems 

can be interconnected via so-called cut-off matrices and integrated into a single input-

output matrix [53]. This approach is commonly known as integrated hybrid LCA. The cut-off 

matrices represent industry inputs into processes (upstream cut-off matrix) and product 

inputs into industries (downstream cut-off matrix) [25]. This integrated approach therefore 

minimises truncation of the LCI system boundary by extending supply chains using 

information from the IOT. 

The hybrid IO-LCA model is made up of three matrices, which follow standard IOA notation 

[54]: an input-output matrix of technical coefficients A, a stressor matrix S, and a final 
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demand matrix Y. The A matrix contains normalised data based on Leontief coefficients on 

the interdependencies between economic activities, namely processes and industries. The S 

matrix contains environmental extensions in coefficient form (in physical unit per monetary 

unit of output) for each process/industry. The Y matrix is used to shock the system using 

arbitrary levels of final demand from households, government, etc. for product/industry 

outputs. The hybrid IO-LCA model is solved using the standard demand-pull Leontief model 

[54], briefly described in the supporting information S1. 

The A and S matrices are populated using three different datasets. The process data, 

comprising the LCI system in the A matrix and the corresponding extensions in S, 

corresponds to the “allocation at the point of substitution” system model of the ecoinvent 

3.4 database [55]. The IOT within the A matrix corresponds to the GTAP 9 global database 

[56], the latest available at the time of writing from the GTAP project. The databases from 

the GTAP project are widely used in the research community to address international 

economic policy issues and its members include prominent global governance and policy 

research institutions like the World Bank, European Commission, and World Trade 

Organization. The construction of a MRIOT using the GTAP database has been done 

following the procedure described by Peter et al. [57], specifically the variant with 

endogenous international transport pool. The specific tool used, 

‘GDX_to_MRIOT_GTAPinGAMS’, written with the programming language R, can be found in 

the following repository: https://github.com/dfontv/Rtools. Note that the MRIOT is updated 

yearly according to the results of the CGE model (see section 2.3.2). The corresponding 

environmental extensions of the IOT in the S matrix have been constructed using the 

EXIOBASE 3 database [58], the latest available at the time of writing from the EXIOBASE 

project. The EXIOBASE project generates one of the most extensive environmentally-



14 
 

extended multi-regional input-output systems available worldwide. Using extensions from 

EXIOBASE instead of those from GTAP, which are currently limited to CO2 emissions, allows 

to compute a broader and more complete set of environmental impacts [59]. The many-to-

one mapping between EXIOBASE and GTAP industries has been obtained from Winning et 

al. [33] and the new extensions in absolute terms have been built by simple aggregation . 

Combining LCI and IOT data can however lead to inconsistent systems where the economy is 

heterogeneously described. Notably, LCI systems are known to overlook some services, such 

as professional, scientific, and technical services [60]. To increase the overall consistency of 

our modelling framework, we have tried to homogenise the treatment of services by largely 

following the method described by Font Vivanco [61], with the exception that we here use 

GTAP instead of EXIOBASE and thus require of original sectorial concordances (see 

supporting information S2). In short, the proposed method adds those service inputs which 

are not present in an LCI system by using service inputs per output from an input-output 

table while correcting for economic imbalances. 

 

2.3.2 Computable general equilibrium and multi-regional input-output model 

 

The CGE model (see coordinate 1B in Figure 1) is based on the mathematical programming 

system for general equilibrium analysis (MPSGE) [62], a subsystem within Generalized 

Algebraic Modeling System (GAMS) [63]. MPSGE is a modelling language designed for 

solving Arrow-Debreu economic equilibrium models [64], and is based on nested constant 

elasticity of substitution production functions. The underlying agent behaviour is based on 

the cost minimisation of firms and utility maximisation of households. The implementation 
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of the MPSGE model is done through the GTAP6inGAMS package (see supporting 

information S2 for additional details), an array of programs based on the GTAP model 

[65,66]. The model is calibrated using the GTAP 9 database for the year 2011 [56], and runs 

in a recursive-dynamic setting from 2011-2023. Both the standard versions of the 

GTAP6inGAMS model [66] and GTAP 9 database have been used except otherwise specified. 

For modelling the proposed shocks (see section 2.4), the original regions have been 

aggregated into to two regions – UK and rest-of-the-world (RoW) – by means of the 

GTAPAgg2 tool [67]. Because GTAP 9 only includes CO2 emissions in the core data set, we 

have integrated a set of environmental extensions from EXIOBASE 3.4 by defining sectorial 

concordances between both databases and aggregating the extensions accordingly to match 

the GTAP classification (see section 2.3.1). 

Given the need to isolate the effect of dynamic prices in the CGE model to estimate the 

macro-economic rebound effect (see section 2.4), we have built a mirror static model using 

the same benchmark data. The static model is a MRIO model and is equivalent to that used 

in the hybrid IO-LCA model and described in section 2.3.1. By using the mirror MRIO model, 

we intend to isolate the macro-economic rebound by controlling for the micro-economic 

rebound, which is assumed to correspond to the re-spending of economic savings by 

households on both additional electric cars (direct rebound effect) and other commodities 

(indirect rebound effect) [7]. This step is required given the modelling discipline imposed by 

the MPSGE, where the ability to change prices is a precondition of the model to find 

numerical solutions to economic shocks. Our intention is thus to produce a similar shock on 

the MRIO model and estimate the effect of dynamic prices alone – the macro-economic 

rebound – by calculating the difference between the results of the economy-wide rebound 

from the CGE model and the micro-economic rebound from the MRIO model (see Figure 1). 
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2.3.3 Multiple regression and household demand analysis 

 

Multiple regression panel and household demand analysis (see coordinate B3 in Figure 1) are 

used, respectively, to estimate the effect of the subsidy on electric car sales and the shifts in 

consumption patterns in response to changes in effective income. Multiple regression 

analysis has been used to measure the effects of regional policies by isolating the effect of a 

given policy from other covariates [68–70]. According to Yong and Park [71], electric car 

deployment can be explained by both policy factors, such as purchase subsidies and tax 

benefits, and environmental factors, such as charging infrastructure and socio-economic 

status. Accordingly, we gathered panel data on both policy and environmental factors for the 

28 EU countries and for the period 2014-2017 (see supporting information S2). After different 

tests, we have specified the following fixed effects model to conduct the econometric 

estimates: 

 

𝐸𝐶𝑆𝐻𝐴𝑅𝐸௜௧ = 𝜇௜ + 𝑐௜௧ + 𝛽ଵ𝐶𝐻𝐴𝑅𝐺௜௧ + 𝛽ଶ𝑃𝑂𝑃௜௧ + 𝛽ଷ𝐶𝑂𝑀𝑃𝑇𝐴𝑋௜௧ + 𝛽ସ𝑆𝑈𝐵𝑆௜௧ + 𝛽ହ𝑉𝐴𝑇௜௧

+ 𝑢௜௧ 

 

Where 𝐸𝐶𝑆𝐻𝐴𝑅𝐸௜௧ is the endogenous variable ‘electric car sales share’ of country i at year t; 

𝜇௜ is the specific fixed effect for country i; 𝑐௜௧ is the common fixed effect, or constant, for all 

the countries; 𝛽ଵ…௡ represents the coefficients accompanying the different variables; 

𝐶𝐻𝐴𝑅𝐺௜௧ is the number of public charging stations (both fast and normal charging); 𝑃𝑂𝑃௜௧ is 

the population; 𝐶𝑂𝑀𝑃𝑇𝐴𝑋௜௧ is the level of tax benefits for companies (from 0 to 100%); 
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𝑆𝑈𝐵𝑆௜௧ is the maximum purchase subsidy available; 𝑉𝐴𝑇௜௧ is the level of value-added tax 

benefits (from 0 to 100%), and 𝑢௜௧ is the error term. 

The outcome of estimating the model using the described panel data can be found in the 

supporting information S2. We have used the Generalized Least Squares method (EGLS) with 

cross-section weights. We observe that all estimated coefficients are statistically significant 

at 5% or 10% levels. Regression shows a good adjustment, with a weighted adjusted R-

Squared of 0.92, meaning that most of the variability of the endogenous variable is captured 

by exogenous variables. The EGLS estimation method avoids heteroskedasticity or 

autocorrelation problems. The resulting model describes an average decline in electric car 

sales in the UK of about 40% with respect to reported sales in 2011 by removing the purchase 

subsidy (see supporting information S2). Such result is then imposed into the CGE model via 

the substitution elasticity as described in section 2.4.3. 

Regarding the household demand analysis, GTAP6inGAMS uses a Cobb-Douglas utility 

function to represent final demand [65]. Final demand is first composed of a Cobb-Douglas 

aggregate of energy and non-energy consumption, and these are in turn aggregates of 

different energy and non-energy goods. The corresponding substitution elasticities are 

included in the GTAP database. Any price and/or income change could thus result in a 

corresponding shift in final demand. 

 

2.4 Policy intervention effects 
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2.4.1 Technical change 

 

To assess the comparative environmental performance of electric car uptake, we first need 

to make both electric and petrol cars explicit in our models. Both electric and petrol cars can 

be found in the LCI system through the processes ‘transport, passenger car, electric’ from 

the global geography and the comparable ‘transport, passenger car, medium size, petrol, 

EURO 5’ from the European geography, both delivering one vkm. The individual LCIs also 

include the corresponding electricity and petrol requirements. 

As with the rest of technologies, vehicle technologies are highly aggregated in GTAP, which 

is the basis of both the CGE and MRIO models. In order to make both electric and petrol cars 

explicit in these models, we use the physical inventories for the vehicle construction from 

the LCI system (kg of steel, meters of cable, etc.) to disaggregate the sector ‘mvh - Motor 

vehicles and parts: cars, lorries, trailers and semi-trailers’ into three subsectors: ‘evh – 

Electric car vehicles’,’pvh – Petrol car vehicles’, and ’ovh – Other vehicles’. We first 

transform the physical inventories for electric and petrol cars to monetary units by using 

price data for reference products as provided by ecoinvent 3.4 [72]. Currency exchanges and 

inflation rates for the UK are taken from Eurostat to match GTAP units, namely 2011 US 

dollars. We then transform the monetary inventories to GTAP classification using a sectorial 

concordance (see supporting information S2). Lastly, we scale the inventories to reflect a 

baseline scenario were the subsidy under study did not take place (see section 2.4.3). That 

is, the original inventory per vkm is scaled to the predicted number of vehicles for a ‘no 

subsidy’ scenario. Such scaling ensures an appropriate weight of the new sectors in the 

global economy. The disaggregation is carried out with Splitcom, an array of programs to 
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split a given GTAP sector while preserving the GTAP accounting identities [73]. For full 

details on the weights applied to carry out the disaggregation in Splitcom, namely partial 

shares for new columns and intersection of national matrix, shares for new rows of national 

matrix, and shares for new commodities in trade matrix, see supporting information S2. 

Furthermore, electricity and petrol are included, respectively, in the broader sectors ‘ely - 

Electricity: production, collection and distribution’ and ‘trd - Trade: all retail sales; wholesale 

trade and commission trade; hotels and restaurants; repairs of motor vehicles and personal 

and household goods; retail sale of automotive fuel’. 

 

2.4.2 Economic incentives 

 

The analysed subsidy of 35% of the purchase price of electric cars is introduced in the CGE 

model via a reduction in both ‘rtpd – Private domestic consumption tax rate’ and ‘rtpi – 

Private import consumption tax rate’ of electric cars sold in the UK. Considering the original 

tax rates for both domestic and imported vehicles of about 9%, the resulting sales tax rates 

including the subsidy would be -12.8%. A negative tax means that no tax is charged to 

consumers and a share of the purchase cost is effectively subsidised by the government. 

Given that tax rates are defined as exogenous in the standard GTAP6inGAMS model [66], 

this effectively means that our model will seek to compensate such subsidy via a reduction 

in government expenditures (see section 3.2). 
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2.4.3 Technology diffusion and consumption shifts 

 

To calculate the technology diffusion (sales of both electric and petrol cars) in the ‘subsidy’ 

and ‘no subsidy’ scenarios, we depart from sales data in the UK, which describe sales of 749 

electric cars and 925,183 petrol cars in 2011 [74]. According to the results of the multiple 

regression panel analysis described in section 2.3.3, we define the ‘no subsidy scenario’ in all 

models with the sales of 449 (749 * (1-0.4)) electric cars and 925,857 (925,183 + (749-449)) 

petrol cars. Next, we calibrate the CGE model so that it responds to the subsidy by 

endogenously adjusting the sales of electric vehicles to the reported sales in 2011. To 

achieve this, we introduce a nested structure in the household utility function (see Figure 2) 

and calibrate the CGE model via the substitution elasticity between the production of 

electric and petrol cars, which is estimated at 10,5 so as to match the expected shift in sales 

in response to the subsidy according to the regression model. This substitution elasticity 

reflects the preferences of consumers for both technologies, so such a high elasticity means 

a high willingness to shift between the two according to relative prices. The magnitude of 

this substitution elasticity will have an impact on the absolute environmental benefits 

achieved, but not on the (relative) rebound results, which are the main focus of our analysis. 

This is because such substitution does not take place at a large scale within the economy as 

a whole nor leads to meaningful structural changes, unlike the substitution between energy 

and non-energy inputs typically used in energy rebound studies [75,76]. 
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Figure 2. Nested structure of household utility; s: elasticity of substitution, esubd: 

Armington elasticity of domestic-import substitution. 

 

Once the CGE model is calibrated, we calculate the stock of electric and petrol cars for all 

scenarios and years and use it for the MRIO and IO-LCA models consistently. The MRIO and 

the hybrid IO-LCA models are based on the standard demand-pull Leontief model (see 

supporting information S1), which means that the final demand can be arbitrarily set with 

the stock results. Moreover, both electricity and petrol are endogenously linked to the use 

of vehicles in the IO-LCA model, but they are not in the CGE model. We therefore impose 

the consumption of both electricity and petrol by means of a subsistence or fixed demand. 

Specifically, we impose an initial consumption in 2011 in the ‘no subsidy’ scenario according 

to the vehicle stock and consumption per vehicle and year from the LCIs. This consumption 

is then linked to the vehicle stock so that electricity/petrol consumption will change 

proportionally to any change in electric/petrol car stock. 
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For the micro-economic rebound, we first estimate the life cycle economic savings for 

households associated with the subsidy by calculating both purchase and operation savings 

based on the original LCIs. Using the household demand model (see section 2.3.3), we 

calculate additional expenditures and impose them in the IO-LCA model. For the MRIO 

model, we assume for simplicity that differences in the domestic consumption by 

households of the newly created evh (electric cars) and pvh (petrol cars) sectors between 

the ‘subsidy’ and ‘no subsidy’ scenarios correspond to the effect of the subsidy (price effect) 

and the direct rebound (income effect) alone. This implicitly assumes that changes in 

relative prices other than the purchase price of electric cars have no effect on the sales of 

both electric and petrol cars, a necessary assumption in this case. We then estimate the 

remaining savings (indirect rebound) by calculating the difference between life cycle savings 

and the direct rebound. Life cycle savings must therefore be fully allocated to either 

additional electric cars (direct rebound effect) and other commodities (indirect rebound 

effect). A high direct rebound entails a high-income elasticity of demand for electric car 

driving, meaning low saturation for such demand. Note that the calculated micro-economic 

rebound in the MRIO model will in fact correspond to the indirect effect alone, a limitation 

with modest effects given that the indirect effect is generally the top contributor of the 

micro-economic rebound for electric cars [22,47]. 

 

3. Results 

 

This section presents the results of the proposed approaches: the IO-LCA model (section 

3.1) and the CGE model and combined approach (section 3.2). The results are presented for 
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four impact categories: climate change (CC), acidification (A), photochemical ozone 

formation (POF), and particulate matter (PM). The complete set of results can be found in 

the supporting information S2. 

 

3.1 Input-output-life-cycle-assessment model 

 

The IO-LCA model describes a noteworthy micro-economic rebound effect associated with 

the studied subsidy, ranging across impacts from 6% (POF) to 13% (A) (see Figure 3). In other 

words, about a tenth of all the potential environmental benefits would be offset due to this 

type of rebound effect. The micro-economic rebound stems mostly from the indirect effect, 

which contributes about 90% for all the studied impacts (see supporting information S2). 

Within the indirect effect, the top contributing sectors are ‘other manufacturing’ (7% from 

total micro-economic rebound), ‘other vehicles’ (6%), and ‘wearing apparel’ (5%). Overall, 

the subsidy achieved rather modest absolute decreases of about 0.2% for all impact 

categories both with and without the rebound. Such an impact is in line with the small 

technical change induced, where the subsidy caused a shift of only about 0.04% of petrol car 

sales towards their electric counterparts. 

The proposed integrated IO-LCA approach, which harmonises the treatment of services via a 

dynamic IO system that is re-calculated yearly based on the results of the CGE model, also 

allows to test the effect of both including additional services and considering dynamic 

elements. First, additional services can be disregarded by simply turning the downstream 

cut-off matrix into a zero matrix (see section 2.3.1). Under this scenario, the rebound effect 

would increase slightly, ranging from 8% (POF) to 48% (A), and similar absolute reductions 
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would be achieved. The reasons behind higher rebound magnitudes is that, according to our 

method, electric cars would require, on a life-cycle basis, a higher proportion of services 

than their petrol counterparts, especially financial, business, and trade services, and these 

are to a large extent related to electricity transmission and distribution. The impacts 

associated with these additional services reduce the environmental benefits associated with 

electric cars, thus reducing the importance of the rebound effect when using the integrated 

approach. Second, using a static rather than a dynamic IO system causes minimal changes 

for all scenarios and impacts, specifically about 8% lower rebound effects: from 5% (POF) to 

12% (A). The dynamic IO system reflects higher requirements of some commodities, such as 

chemical rubber products, which can be partly attributed to a decrease in the price of 

imported oil products (see section 3.2 and the supporting information S2). 

 

 

Figure 3. Life cycle impacts associated with a subsidy on electric cars sold in the UK during 

2011-2022 according to the input-output-life-cycle-assessment model. The left axis and the 
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bars represent impact results normalised to the reference ‘no subsidy’ scenario, while the 

right axis and the horizontal lines with percentages represent the rebound effect associated 

with the ‘subsidy + rebound’ scenario as the percentage of environmental benefits that are 

‘taken back’. 

 

 

3.2 Computable General Equilibrium model and combined approach 

 

The results of the CGE model describe notable both micro-economic and economy-wide 

rebound effects, the first ranging from 24% (PM) to 30% (CC) and the latter ranging from 

52% (CC) to 99% (A) (see Figure 4). Note that a rebound effect higher than 100% or the so-

called backfire effect [77] entails that any potential environmental benefits would be fully 

offset, rendering the subsidy ineffective from an environmental standpoint. In this sense, 

the economy-wide rebound effect for all impact categories except CC would be close to 

backfiring. Focusing on the macro-economic rebound, it originates largely from the increase 

in the household domestic demand for trade retail sales (see Figure 5). Note that the 

demand for petrol fuel associated with the stock of petrol cars has been included in the 

retail trade sector as it originally includes automotive fuel (see section 2.4.3). This increase 

can be largely attributed to the reduction in the domestic price of automotive fuel, a 

consequence of the original decrease in petrol fuel demand from the decline in the petrol 

car stock. A similar mechanism, albeit of smaller magnitude, takes place regarding imported 

petrol fuel (see supporting information S2). Overall, the subsidy increased global gross 

domestic product by 0.001% during the studied period, mostly led by the increase in 
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household domestic demand in the UK (392% contribution to total change). Conversely, 

UK’s government domestic demand decreased notably (-242% contribution to total change) 

to compensate for the subsidy. Specifically, UK’s government domestic purchases and 

imports decreased in value terms by 0.34% and 0.01%, respectively. 

 

 

Figure 4. Life cycle impacts associated with a subsidy on electric cars sold in the UK during 

2011-2022 according to the computable general equilibrium model. The left axis and the 

bars represent impact results normalised to the reference ‘no subsidy’ scenario, while the 

right axis and the horizontal lines with percentages represent the rebound effect associated 

with the ‘subsidy + rebound’ scenarios as the percentage of environmental benefits that are 

‘taken back’. 
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Figure 5. Change in domestic demand (left axis and bars) and change in domestic price (right 

axis and dots) associated with a subsidy on electric cars sold in the UK during 2011-2022 

according to the computable general equilibrium model. Only the top ten sectors in terms of 

positive changes in domestic demand are shown. Trd: trade services; cns: construction; 

ome: other machinery & equipment; obs: other business services; evh: electric vehicles; otn: 

other transport equipment; ovh: other vehicles; ele: electronic equipment; gbr: united 

kingdom; row: rest-of-the-world. 

 

 

With respect to the results of the IO-LCA model, the micro-economic rebound from the CGE 

model is significantly larger, with relative increases ranging from a factor 1.16 (A) to a factor 

4.04 (POF) (see Figure 6). The results of the combined approach (see section 2.3.2) describe 

a notable economy-wide rebound effect, ranging from 22% (CC) to 102% (A) (see Figure 7). 
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These magnitudes are generally lower than those from the CGE model (see Figure 6). Even 

so, backfire or near backfire mechanisms can be observed for both A and PM impacts. 

 

 

Figure 6. Overview of the magnitude of the micro-economic and economy-wide rebound 

effects (as the percentage of environmental benefits that are ‘taken back’) calculated with 

the input-output-life cycle assessment model (IO-LCA), the computable general equilibrium 

model (CGE), and the combined approach. The percentages within the graph indicate the 

relative change between the results of the different models. 
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Figure 7. Life cycle impacts associated with a subsidy on electric cars sold in the UK during 

2011-2022 according to an approach combining the input-output-life cycle assessment and 

the computable general equilibrium models. The left axis and the bars represent impact 

results normalised to the reference ‘no subsidy’ scenario, while the right axis and the 

horizontal lines with percentages represent the rebound effect associated with the ‘subsidy 

+ rebound’ scenario as the percentage of environmental benefits that are ‘taken back’. 

 

 

4. Discussion 

 

Our results suggest that the subsidy on electric cars implemented in the UK from 2011 may 
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change, acidification, photochemical ozone formation, and particulate matter impacts. 

Furthermore, the two components of the economy-wide rebound, namely the micro-

economic and macro-economic effects, both contribute importantly across impacts and 

modelling configurations. The relevance of the macro-economic rebound, namely that 

arising from price changes alone, is a valuable addition to the literature as it has not been 

isolated before. In this case, the decrease in the price of petrol fuel from lower demand has 

been a major factor behind the macro-economic rebound. This effect is similar, for example, 

to that observed by Dandres et al. [43], where a shift from coal to biofuels triggered 

additional demand for cheaper coal. Both the effective environmental benefits and the 

magnitude of the rebound effect are modest in absolute terms, yet this is in line with the 

trivial technical change achieved, with only about a few hundred users switching from petrol 

to electric models. It is thus expected that, with increasing sales of electric vehicles in the UK 

and in the presence of economic incentives, the rebound effect could take back 

considerable future environmental benefits in absolute terms. 

The proposed modelling approach, which combines a technology-rich model based on life 

cycle assessment and a behaviourally-realistic model for the global economy based on 

computable general equilibrium modelling, allows to calculate a wide array of results as well 

as to test some modelling assumptions for the first time. Among those studies dealing with 

the environmental implications of rebound effects, two important approaches are those 

based on either LCA or CGE models. We have been able not only to calculate estimates with 

each model individually, but also with a combined approach based on consistent benchmark 

data and partly consistent assumptions. The results describe some important discrepancies 

across models (see Figure 6), where the CGE model generally yields larger rebound 

estimates than those of both the IO-LCA and the combined approach. Key reasons for such 
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discrepancies are aggregation errors of input-output tables [78] and the incompleteness of 

LCI systems [61]. Specifically, the reduced technology detail of the CGE model, where 

industry averages are used, sometimes leads to overestimating certain environmental 

impacts, such as approximating a specific metal product with the wider metal products 

sector. Also, LCI systems suffer from systemic truncation issues where certain inputs are 

omitted, which have been here only partially solved by including service inputs. In any case, 

it merits noting that (1) rebound effects are constructs that are modelled and attributed to 

certain shocks rather than being empirically measured, (2) it is incorrect to assume any ‘true 

value’ due to modelling trade-offs, and (3) the results in any case allow for some general 

interpretations. First, any type of rebound effect is the result of a modelled counterfactual 

scenario where the rebound mechanisms are isolated at the discretion of the modeller. This 

fact prevents rebound effect estimates to be validated against empirical evidence and thus 

cross-validate the different existing rebound models. Second, trade-offs between 

technology detail and (economic) behaviour realism are mostly unresolved due to missing 

data, computational capacity, ontological discrepancies, etc [27,35,36]. A suitable 

alternative is thus to seek for convergence in the results from different models, in line with 

how ensemble modelling is used for decision-making in climate modelling, clinical research, 

etc [79]. In this sense, our results indicate that the economy-wide rebound would likely 

cause a backfire or near-backfire effect for acidification and particulate matter impacts, and 

a lower, yet notable, magnitude for climate change (~20-50%) and photochemical ozone 

formation (~30-80%). 

Our approach to calculate the economy-wide rebound of a specific technical change instead 

of a costless and exogenous change is unparalleled in the literature, which makes 

contextualising our results difficult. Even so, some similar results include those from Barker 
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et al. [18] and Broberg et al. [80], who found an economy-wide rebound for road transport, 

respectively, of about 30% and 18%. These results, which are focused on energy and/or 

carbon emissions, are close or within the range found here for climate change impacts, yet 

other impacts show higher magnitudes and even describe backfire in some cases. As 

explained in previous studies [22,81], energy is relatively uniformly used across sectors, 

which lowers the rebound magnitude. Being able to describe the rebound magnitude 

through multiple environmental impacts is thus key for identifying trade-offs and hidden 

hotspots [24]. In any case, cases of backfire in economy-wide rebound estimates are not 

rare in the literature (see, e.g., Freire-González [82] and Hanley et al. [83]). 

Our modelling approach suffers from a number of limitations, of which we highlight the 

most relevant in the following. First, both electric and petrol cars are modelled via generic 

vehicles based on European or global conditions. To better reflect the actual car models sold 

and UK conditions, such as the electricity mix, specific LCIs would need to be built. Second, 

the technology detail of the CGE model is relatively poor, and so the specific effects of 

battery construction, fuel use, etc, are not well captured. To solve this issue, one could 

either further disaggregate (and calibrate) the underlying database [33] or chose a more 

detailed database [84]. Third, and related to the previous one, modelling changes in 

demand for automotive fuel as changes in demand for the broader sector of retail trade is 

also problematic, yet leads to conservative results. Specifically, the own-price elasticity of 

demand for the UK’s retail trade sector from GTAP (-0.85) is generally more elastic than that 

of automotive fuel, estimated at about -0.53 according to a meta-analysis carried out by 

Brons et al. [85]. This higher elasticity leads to an overestimation of demand for retail trade, 

a sector associated with low environmental impact multipliers, with respect to other sectors 

when estimating the macro-economic rebound. Fourth, a very high elasticity of substitution 
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of 10,5 between electric and petrol cars has been exogenously forced into our model to 

achieve the expected short-term shift in sales in response to the subsidy according to the 

regression model (see section 2.4.3). Such a high elasticity is however rather unrealistic 

compared to existing vehicle choice models and thus limits the application of our model to 

address long-term effects and/or other shocks. To avoid having to re-calculate this elasticity 

for each shock, a more consistent and flexible approach would be to integrate a full vehicle 

choice model into the CGE model as done in Schmelzer et al. [86] and Karplus et al. [87]. 

Fifth, endogenizing final demand in the CGE model, namely including final users as an 

additional economic sector, could avoid the issue of exogenously modelling electricity/fuel 

use and associated combustion emissions. Lastly, our approach does not capture technology 

change over time, which may overestimate future impacts. For example, the current trend 

of decarbonisation of the UK’s electricity mix will likely cause a reduction of future rebound 

effects. 

More generally, it merits noting that we conducted a short-term analysis of a single policy in 

isolation, which can lead to misleading conclusions on large-scale and long-term policy 

strategies both nationally and internationally. In other words, a subsidy on electric cars is 

often just a component of a broader long-term strategy towards systemic change to 

decarbonise an economy (e.g., together with other stimulus on infrastructure, regulatory 

instruments, voluntary approaches, etc.), and so it may contribute to kick-start and/or 

facilitate broader changes on technology, institutions, consumer behaviour, etc., even 

beyond national borders. While greatly challenging, further work should ideally focus on 

long-term policy packages that explicitly address trans-boundary effects. 
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5. Conclusion and policy implications 

 

This study aims at evaluating the effectiveness of UK government’s economic incentives 

promoting electric car uptake for reducing various environmental impacts, with a focus on 

the role of rebound effects. The results describe notable economy-wide rebound effects 

that partly or completely offset environmental benefits for all studied impact categories. 

These results, which can be generalised beyond the UK context to other countries following 

similar policies, have important policy implications given the high expectations placed on 

transport electrification to mitigate climate change and air pollution. Further policy 

implications relate to the potential manifold applications of the proposed model, with 

pertinent adaptations, to assess the environmental performance, including economy-wide 

rebound effects, of other policy instruments and policy packages internationally. 

A fiscal policy resulting in both environmental benefits and increased gross domestic 

product can be interpreted to effectively achieve a ‘double dividend’ [88,89]. In the 

presence of a notable rebound effect, however, this interpretation may conceal the fact that 

significant potential environmental benefits are being lost due to a combination of policy 

and market failures. The identification and quantification of rebound mechanisms carried 

out in this study can help to redesign UK government’s economic policy for promoting 

electric car uptake and further environmental benefits by minimising such policy and market 

failures. Regarding policy failures, the studied subsidy could have been overdimensioned by 

offering too high economic incentives to purchasers. There could also be more efficient 

alternative policies, with the results of our regression analysis in fact showing that various 

other alternatives, such as public charging stations and company tax benefits, could achieve 
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similar results. A lower subsidy in favour of higher investment in charging stations would 

have likely offered a better performance. Regarding market failures, it has been long 

discussed that an energy (or carbon) tax on the most energy-intensive industries or products 

would mitigate the magnitude of energy rebound effects [12,90], and the same principle 

could be applied to address other environmental issues according to policy objectives. Thus, 

the electric car subsidy would have been much more effective were it to be accompanied by 

a broader fiscal policy were the price of air-polluting products and activities such as fossil 

fuels and private transport incorporates negative externalities related to climate change, 

urban air pollution, etc. 

Avoiding policy and market failures is paramount for achieving environmental goals, yet 

their specific implications are often difficult to assess with tools that rely almost exclusively 

on particular modelling assumptions, such as life cycle assessment or computable general 

equilibrium models. The approach presented here tries to overcome such limitations by 

combining different modelling traditions in a pseudo-consistent analytical framework. In this 

sense, we address recent calls to reconcile bottom-up and top-down modelling traditions 

[36] via common ontologies [35] and in the context of trans-disciplinary research [91]. Such 

reconciliation is also expected to increase the value of industrial ecology tools for policy 

making and evaluation [28]. Future applications and extensions of this approach could be 

used to evaluate the effects of a manifold of policies and technologies, such as pollution 

taxes, tradable quotas, emission standards, and policy mixes targeting renewable energies, 

bioplastics, etc. 

 



36 
 

Acknowledgements 

 

This research is part of the “Effective environmental policies in Europe in the context of 

rebound effects” (EFFECT) project, a Marie Skłodowska-Curie Individual Fellowship project 

(H2020-MSCA-IF-2015, grant agreement No. 702869). Jaume Freire-González would like to 

thank the financial support from the Government of Catalonia, Agència de gestió d'Ajuts 

Universitaris i Recerca, through a Beatriu de Pinós Fellowship (2017 BP 00009). The authors 

would like to thank Zhijie Jia and two anonymous reviewers for their comments. 

 

References 

 

[1] Hanley ND, McGregor PG, Swales JK, Turner K. The impact of a stimulus to energy 

efficiency on the economy and the environment: A regional computable general 

equilibrium analysis. Renew Energy 2006;31:161–71. 

https://doi.org/10.1016/J.RENENE.2005.08.023. 

[2] Allan G, Hanley N, McGregor PG, Swales JK, Turner K, Department Economics  

Strathclyde U of S. The macroeconomic rebound effect and the UK economy. 2006. 

[3] Barker T, Dagoumas A, Rubin J. The macroeconomic rebound effect and the world 

economy. Energy Effic 2009;2:411–27. https://doi.org/10.1007/s12053-009-9053-y. 

[4] Greening A, Greene DL, Difiglio C. Energy efficiency and consumption - the rebound 

effect- a survey. Energy Policy 2000;28:389–401. https://doi.org/doi: 10.1016/S0301-

4215(00)00021-5. 



37 
 

[5] Ruzzenenti F, Basosi R. The rebound effect: An evolutionary perspective. Ecol Econ 

2008;67:526–37. https://doi.org/http://dx.doi.org/10.1016/j.ecolecon.2008.08.001. 

[6] Santarius T, Soland M. How Technological Efficiency Improvements Change Consumer 

Preferences: Towards a Psychological Theory of Rebound Effects. Ecol Econ 

2018;146:414–24. https://doi.org/10.1016/J.ECOLECON.2017.12.009. 

[7] Jenkins J, Nordhaus T, Shellenberger M. Energy emergence: rebound and backfire as 

emergent phenomena. Oakland, CA, USA: Breakthrough Institute; 2011. 

[8] Brookes L. The greenhouse effect: the fallacies in the energy efficiency solution. 

Energy Policy 1990;18:199–201. https://doi.org/doi: 10.1016/0301-4215(90)90145-T. 

[9] Khazzoom JD. Economic implications of mandated efficiency in standards for 

household appliances. Energy J 1980;1:21–40. 

[10] Lemoine D. General Equilibrium Rebound from Improved Energy Efficiency. Tucson, 

AZ: 2017. 

[11] Schleich J, Mills B, Dütschke E. A brighter future? Quantifying the rebound effect in 

energy efficient lighting. Energy Policy 2014;72:35–42. 

https://doi.org/10.1016/J.ENPOL.2014.04.028. 

[12] Font Vivanco D, Kemp R, van der Voet E. How to deal with the rebound effect? A 

policy-oriented approach. Energy Policy 2016;94:114–25. 

https://doi.org/10.1016/J.ENPOL.2016.03.054. 

[13] Sorrell S. The rebound effect: an assessment of the evidence for economy-wide 

energy savings from improved energy efficiency. Project Report. London, UK: UKERC; 

2007. 



38 
 

[14] Gillingham K, Rapson D, Wagner G. The Rebound Effect and Energy Efficiency Policy. 

Rev Environ Econ Policy 2016;10:68–88. 

[15] Barker T, Ekins P, Foxon T. Macroeconomic effects of efficiency policies for energy-

intensive industries: The case of the UK Climate Change Agreements, 2000–2010. 

Energy Econ 2007;29:760–78. 

https://doi.org/http://dx.doi.org/10.1016/j.eneco.2006.12.008. 

[16] Turner K. Negative rebound and disinvestment effects in response to an 

improvement in energy efficiency in the UK economy. Energy Econ 2009;31:648–66. 

https://doi.org/http://dx.doi.org/10.1016/j.eneco.2009.01.008. 

[17] Font Vivanco D, Sala S, McDowall W. Roadmap to Rebound: How to Address Rebound 

Effects from Resource Efficiency Policy. Sustainability 2018;10:2009. 

https://doi.org/10.3390/su10062009. 

[18] Barker T, Ekins P, Foxon T. The macro-economic rebound effect and the UK economy. 

Energy Policy 2007;35:4935–46. 

https://doi.org/http://dx.doi.org/10.1016/j.enpol.2007.04.009. 

[19] Davis LW, Fuchs A, Gertler P. Cash for Coolers: Evaluating a Large-Scale Appliance 

Replacement Program in Mexico. Am Econ J Econ Policy 2014;6:207–38. 

https://doi.org/10.2307/43189409. 

[20] Mizobuchi K. An empirical study on the rebound effect considering capital costs. 

Energy Econ 2008;30:2486–516. 

https://doi.org/http://dx.doi.org/10.1016/j.eneco.2008.01.001. 

[21] Thiesen J, Christensen T, Kristensen T, Andersen R, Brunoe B, Gregersen T, et al. 



39 
 

Rebound effects of price differences. Int J Life Cycle Assess 2008;13:104–14. 

[22] Font Vivanco D, Freire-González J, Kemp R, Van Der Voet E. The remarkable 

environmental rebound effect of electric cars: A microeconomic approach. Environ 

Sci Technol 2014;48:12063–72. https://doi.org/10.1021/es5038063. 

[23] Rajagopal D, Hochman G, Zilberman D. Indirect fuel use change (IFUC) and the 

lifecycle environmental impact of biofuel policies. Energy Policy 2011;39:228–33. 

[24] Font Vivanco D, McDowall W, Freire-González J, Kemp R, van der Voet E. The 

foundations of the environmental rebound effect and its contribution towards a 

general framework. Ecol Econ 2016;125:60–9. 

https://doi.org/10.1016/j.ecolecon.2016.02.006. 

[25] Crawford RH, Bontinck P-A, Stephan A, Wiedmann T, Yu M. Hybrid life cycle inventory 

methods – A review. J Clean Prod 2018;172:1273–88. 

https://doi.org/10.1016/j.jclepro.2017.10.176. 

[26] Lenzen M. An Outlook into a Possible Future of Footprint Research. J Ind Ecol 

2014;18:4–6. https://doi.org/10.1111/jiec.12080. 

[27] Yang Y, Heijungs R. On the use of different models for consequential life cycle 

assessment. Int J Life Cycle Assess 2018;23:751–8. https://doi.org/10.1007/s11367-

017-1337-4. 

[28] Pothen F. Industrial Ecology in Policy Making: What is Achievable and What is Not? 

2010. 

[29] Dimitropoulos J. Energy productivity improvements and the rebound effect: An 

overview of the state of knowledge. Energy Policy 2007;35:6354–63. 



40 
 

https://doi.org/http://dx.doi.org/10.1016/j.enpol.2007.07.028. 

[30] Dixon PB, Jorgenson DW. Handbook of Computable General Equilibrium Modeling, 

Newnes; 2013. 

[31] Barker T. The transition to sustainability: a comparison of general–equilibrium and 

space–time–economics approaches. 2004. 

[32] Duarte R, Sánchez-Chóliz J, Sarasa C. Consumer-side actions in a low-carbon 

economy: A dynamic CGE analysis for Spain. Energy Policy 2018;118:199–210. 

https://doi.org/10.1016/J.ENPOL.2018.03.065. 

[33] Winning M, Calzadilla A, Bleischwitz R, Nechifor V. Towards a circular economy: 

insights based on the development of the global ENGAGE-materials model and 

evidence for the iron and steel industry. Int Econ Econ Policy 2017;14:383–407. 

https://doi.org/10.1007/s10368-017-0385-3. 

[34] Wene C-O. Energy-economy analysis: Linking the macroeconomic and systems 

engineering approaches. Energy 1996;21:809–24. https://doi.org/10.1016/0360-

5442(96)00017-5. 

[35] Pauliuk S, Majeau-Bettez G, Müller DB, Hertwich EG. Toward a Practical Ontology for 

Socioeconomic Metabolism. J Ind Ecol 2016;20:1260–72. 

https://doi.org/10.1111/jiec.12386. 

[36] Creutzig F, Popp A, Plevin R, Luderer G, Minx J, Edenhofer O. Reconciling top-down 

and bottom-up modelling on future bioenergy deployment. Nat Clim Chang 

2012;2:320–7. https://doi.org/10.1038/nclimate1416. 

[37] EPA. Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. 



41 
 

Washington, DC, USA: United States Environmental Protection Agency; 2010. 

[38] Kløverpris J, Wenzel H, Nielsen PH. Life cycle inventory modelling of land use induced 

by crop consumption. Int J Life Cycle Assess 2008;13:13–21. 

https://doi.org/10.1065/lca2007.10.364. 

[39] Hedal Kløverpris J. Identification of biomes affected by marginal expansion of 

agricultural land use induced by increased crop consumption. J Clean Prod 

2009;17:463–70. https://doi.org/10.1016/J.JCLEPRO.2008.08.011. 

[40] Hedal Kløverpris J, Baltzer K, Nielsen PH. Life cycle inventory modelling of land use 

induced by crop consumption. Int J Life Cycle Assess 2010;15:90–103. 

https://doi.org/10.1007/s11367-009-0132-2. 

[41] Nguyen TTH, Corson MS, Doreau M, Eugène M, van der Werf HMG. Consequential 

LCA of switching from maize silage-based to grass-based dairy systems. Int J Life Cycle 

Assess 2013;18:1470–84. https://doi.org/10.1007/s11367-013-0605-1. 

[42] Dandres T, Gaudreault C, Tirado-Seco P, Samson R. Assessing non-marginal variations 

with consequential LCA: Application to European energy sector. Renew Sustain 

Energy Rev 2011;15:3121–32. 

[43] Dandres T, Gaudreault C, Tirado-Seco P, Samson R. Macroanalysis of the economic 

and environmental impacts of a 2005-2025 European Union bioenergy policy using 

the GTAP model and life cycle assessment. Renew Sustain Energy Rev 2012;16:1180–

92. https://doi.org/10.1016/j.rser.2011.11.003. 

[44] Igos E, Rugani B, Rege S, Benetto E, Drouet L, Zachary DS. Combination of equilibrium 

models and hybrid life cycle-input–output analysis to predict the environmental 



42 
 

impacts of energy policy scenarios. Appl Energy 2015;145:234–45. 

https://doi.org/10.1016/J.APENERGY.2015.02.007. 

[45] HMG. The UK Low Carbon Transition Plan. NAtional strategy for climate and energy. 

2009. 

[46] DECC. UK Renewable Energy Roadmap. Update 2012. 2012. 

[47] Font Vivanco D, Tukker A, Kemp R. Do methodological choices in environmental 

modeling bias rebound effects? A case study on electric cars. Environ Sci Technol 

2016. https://doi.org/10.1021/acs.est.6b01871. 

[48] DFT. Vehicle mileage and occupancy. Department for Transport; 2018. 

[49] Allan G, Hanley N, McGregor P, Swales K, Turner K. The impact of increased efficiency 

in the industrial use of energy: A computable general equilibrium analysis for the 

United Kingdom. Energy Econ 2007;29:779–98. 

https://doi.org/http://dx.doi.org/10.1016/j.eneco.2006.12.006. 

[50] JRC. Characterisation factors of the ILCDRecommended Life Cycle Impact Assessment 

methods. Database and Supporting Information. Luxembourg: European Commission, 

Joint Research Centre, Institute for Environment and Sustainability; 2012. 

[51] Huysman S, Schaubroeck T, Goralczyk M, Schmidt J, Dewulf J. Quantifying the 

environmental impacts of a European citizen through a macro-economic approach, a 

focus on climate change and resource consumption. J Clean Prod 2016;124:217–25. 

https://doi.org/10.1016/J.JCLEPRO.2016.02.098. 

[52] Michael H, Mark G, Jerome G, Reinout H, Mark H, Olivier J, et al. Recommendations 

for Life Cycle Impact Assessment in the European context - based on existing 



43 
 

environmental impact assessment models and factors (International Reference Life 

Cycle Data System - ILCD handbook), 2011. 

[53] Suh S, Huppes G. Missing inventory estimation tool using extended input-output 

analysis. Int J Life Cycle Assess 2002;7:134–40. 

[54] Miller RE, Blair PD. Input-output analysis: foundations and extensions. Cambridge, 

UK: Cambridge University Press; 2009. 

[55] Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The 

ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle 

Assess 2016;21:1218–30. https://doi.org/10.1007/s11367-016-1087-8. 

[56] Aguiar A, Narayanan B, McDougall R. An Overview of the GTAP 9 Data Base. J Glob 

Econ Anal 2016;1:181–208. https://doi.org/10.21642/JGEA.010103AF. 

[57] Peters GP, Andrew R, Lennox J. Constructing an environmentallyextended multi-

regional input-output table using the gtap database. Econ Syst Res 2011;23:131–52. 

https://doi.org/10.1080/09535314.2011.563234. 

[58] Stadler K, Wood R, Bulavskaya T, Södersten C-J, Simas M, Schmidt S, et al. EXIOBASE 

3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional 

Input-Output Tables. J Ind Ecol 2018. https://doi.org/10.1111/jiec.12715. 

[59] Somé A, Dandres T, Gaudreault C, Majeau-Bettez G, Wood R, Samson R. Coupling 

Input-Output Tables with Macro-Life Cycle Assessment to Assess Worldwide Impacts 

of Biofuels Transport Policies. J Ind Ecol 2017. https://doi.org/10.1111/jiec.12640. 

[60] Majeau-Bettez G, Strømman AH, Hertwich EG. Evaluation of Process- and Input–

Output-based Life Cycle Inventory Data with Regard to Truncation and Aggregation 



44 
 

Issues. Environ Sci Technol 2011;45:10170–7. https://doi.org/10.1021/es201308x. 

[61] Font Vivanco D. The role of services and capital in footprint modelling. Int J Life Cycle 

Assess 2020;25:280–93. https://doi.org/10.1007/s11367-019-01687-7. 

[62] Rutherford TF. Applied General Equilibrium Modeling. Stanford University, 1987. 

[63] Brooke A, Kendrick D, Meeraus A, Raman R. GAMS: A User’s Guide. GAMS 

Development Corporation; 1998. 

[64] Mathiesen L. Computation of economic equilibria by a sequence of linear 

complementarity problems, Springer, Berlin, Heidelberg; 1985, p. 144–62. 

https://doi.org/10.1007/BFb0121030. 

[65] Lanz B, Rutherford TF. GTAPINGAMS, version 9: Multiregional and small open 

economy models with alternative demand systems (Working paper 16-08). University 

of Neuchatel Institute of Economic Research IRENE; 2016. 

[66] Rutherford TF. GTAP6inGAMS: The Dataset and Static Model. Appl. Gen. Equilib. 

Model. forTrade Policy Anal. Russ. CIS, 2005. 

[67] Horridge M. GTAPAgg data aggregation program. In: Narayanan BG, Aguiar A, 

McDougall R, editors. Glob. Trade, As-sistance, Prod. GTAP 9 Data Base, Center for 

Global Trade Analysis, Purdue Univer-sity; 2015. 

[68] Folmer H. Regional economic policy: Measurement of its effects. Dordrecht, The 

Netherlands: Martinus Nijhoff; 1986. 

[69] Bohm P, Lind H. Policy evaluation quality: A quasi-experimental study of regional 

employment subsidies in Sweden. Reg Sci Urban Econ 1993;23:51–65. 



45 
 

https://doi.org/10.1016/0166-0462(93)90028-D. 

[70] Petrick M, Zier P. Regional employment impacts of Common Agricultural Policy 

measures in Eastern Germany: a difference-in-differences approach. Agric Econ 

2011;42:183–93. https://doi.org/10.1111/j.1574-0862.2010.00509.x. 

[71] Yong T, Park C. A qualitative comparative analysis on factors affecting the deployment 

of electric vehicles. Energy Procedia 2017;128:497–503. 

https://doi.org/https://doi.org/10.1016/j.egypro.2017.09.066. 

[72] Weidema B, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, et al. Overview and 

methodology: Data quality guideline for the ecoinvent database version 3. 2013. 

[73] Horridge M. SplitCom: Programs to disaggregate a GTAP sector. Melbourne, Australia: 

Centre of Policy Studies, Monash University; 2005. 

[74] DFT. Statistics and data about the number of licensed vehicles, new vehicle 

registrations and roadworthiness testing (including MOTs). Department for Transport; 

2018. 

[75] Sorrell S. Energy Substitution, Technical Change and Rebound Effects. Energies 

2014;7:2850–73. https://doi.org/10.3390/en7052850. 

[76] Saunders HD. Recent evidence for large rebound: Elucidating the drivers and their 

implications for climate change models. Energy J 2015;36:23–48. 

https://doi.org/10.5547/01956574.36.1.2. 

[77] Saunders HD. A view from the macro side: rebound, backfire, and Khazzoom-Brookes. 

Energy Policy 2000;28:439–49. 



46 
 

[78] Gibbons JC, Wolsky AM, Tolley G. Approximate aggregation and error in input-output 

models. Resour Energy 1982;4:203–30. 

https://doi.org/http://dx.doi.org/10.1016/0165-0572(82)90012-3. 

[79] Stainforth DA, Downing TE, Washington R, Lopez A, New M. Issues in the 

interpretation of climate model ensembles to inform decisions. Philos Trans R Soc A 

Math Phys Eng Sci 2007;365:2163–77. https://doi.org/10.1098/rsta.2007.2073. 

[80] Broberg T, Berg C, Samakovlis E. The economy-wide rebound effect from improved 

energy efficiency in Swedish industries–A general equilibrium analysis. Energy Policy 

2015;83:26–37. https://doi.org/10.1016/J.ENPOL.2015.03.026. 

[81] Freire-González J, Font Vivanco D. The influence of energy efficiency on other natural 

resources use: An input-output perspective. J Clean Prod 2017;162:336–45. 

https://doi.org/10.1016/j.jclepro.2017.06.050. 

[82] Freire-González J. Does Water Efficiency Reduce Water Consumption? The Economy-

Wide Water Rebound Effect. Water Resour Manag 2019:1–12. 

https://doi.org/10.1007/s11269-019-02249-0. 

[83] Hanley N, McGregor PG, Swales JK, Turner K. Do increases in energy efficiency 

improve environmental quality and sustainability? Ecol Econ 2009;68:692–709. 

https://doi.org/10.1016/J.ECOLECON.2008.06.004. 

[84] Bulavskayaa T, Hua J, Moghayera S, Reynèsa F. EXIOMOD 2.0: EXtended Input-Output 

MODel. A full description and applications. Den Haag, Netherlands: TNO; 2016. 

https://doi.org/DOI: 10.13140/RG.2.2.16186.80321. 

[85] Brons M, Nijkamp P, Pels E, Rietveld P. A meta-analysis of the price elasticity of 



47 
 

gasoline demand. A SUR approach. Energy Econ 2008;30:2105–22. 

https://doi.org/10.1016/j.eneco.2007.08.004. 

[86] Schmelzer S, Miess M, Kopecna V, Scasny M. Modelling Electric Vehicles as an 

Abatement Technology in a Hybrid CGE Model. Work Pap IES 2018. 

[87] Karplus VJ, Paltsev S, Babiker M, Reilly JM. Applying engineering and fleet detail to 

represent passenger vehicle transport in a computable general equilibrium model. 

Econ Model 2013;30:295–305. https://doi.org/10.1016/j.econmod.2012.08.019. 

[88] Bento A, Parry I. Tax Deductions, Environmental Policy, and the Double Dividend 

Hypothesis. The World Bank; 1999. https://doi.org/10.1596/1813-9450-2119. 

[89] Freire-González J. Environmental taxation and the double dividend hypothesis in CGE 

modelling literature: A critical review. J Policy Model 2018;40:194–223. 

https://doi.org/10.1016/j.jpolmod.2017.11.002. 

[90] Saunders HD. Mitigating Rebound with Energy Taxes. 2011. 

[91] Pohl C. Transdisciplinary collaboration in environmental research. Futures 

2005;37:1159–78. https://doi.org/10.1016/J.FUTURES.2005.02.009. 

 


