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Abstract: In this article, we introduce a novel framework for the design of multi set-point nonlinear
explicit controllers for process systems engineering problems where the set-points are treated as
uncertain parameters simultaneously with the initial state of the dynamical system at each sampling
instance. To this end, an algorithm for a special class of multi-parametric nonlinear programming
problems with uncertain parameters on the right-hand side of the constraints and the cost coeffi-
cients of the objective function is presented. The algorithm is based on computed algebra methods
for symbolic manipulation that enable an analytical solution of the optimality conditions of the
underlying multi-parametric nonlinear program. A notable property of the presented algorithm
is the computation of exact, in general nonconvex, critical regions that results in potentially great
computational savings through a reduction in the number of convex approximate critical regions.

Keywords: multi-parametric programming; explicit MPC; enterprise-wide optimisation; set-point
tracking; algebraic geometry

1. Introduction

High-fidelity and computationally efficient optimisation models are key for profitable
decision making in process industries and have been the focus of extensive research over
the years [1]. In recent years, the need for exploiting and explicitly considering interdepen-
dencies throughout the different layers of decision making has been underpinned by the
enterprise-wide optimisation (EWO) concept [2]. Stemming from the progressively volatile
and competitive market conditions, it is imperative for process industries to operate with
agility in order to maximise their profitability [3]. EWO is aiming at increased profitability
and resilience in process operations through the integration and simultaneous optimisation
of existing information streams. Nonetheless, it comes at a considerable cost. Because of
the multiple scales considered, EWO leads to computational challenges, thus preventing
practitioners from harnessing the potential benefits such wide integration has to offer.
Particularly, incorporating control considerations in an EWO fashion results in (mixed
integer) nonconvex problems which are hard to solve.

By the same token, control considerations are ubiquitous in EWO problems. Figure 1
showcases how real-time optimisation and production scheduling exchange information
with the layer of APC because of their interdependent decisions.

Real-time optimisation is concerned with the manipulation of systems’ dynamics in
order to achieve optimised profitability and operations. On the other hand, production
scheduling determines the optimal allocation of resources for the completion of competing
tasks. As indicated by Figure 1, both RTO and process scheduling exchange information
with the layer of APC so as to achieve optimal dynamic operations. To this end, the research
community has proposed different methods for their integration.

A common shortfall when focusing on integrating RTO and APC is that two different
models are employed for the optimisation of the same system. Typically, a locally linear
model of the initial nonlinear dynamics is used at the APC because of the need for fast
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solution rates while RTO considers the original nonlinear model. This leads subsequently
to issues related to suboptimal trajectories and non-reachable states [4].

existing information streams. Nonetheless it comes at a considerable cost. Be-
cause of the multiple scales considered, EWO leads to computational challenges
thus hindering practicioners from harnessing the potential bene�ts such wide
integration has to o�er. Particularly, incorporating control considerations in an
EWO fashion results in (mixed integer) nonconvex problems which are hard to
solve.

By the same token, control considerations are ubiquitous in EWO prob-
lems. Fig. 1, showcases how real time optimisation and production scheduling
exchange information with the layer of APC because of their interdependent
decisions.

Figure 1: Interaction of APC with di�erent layers of decision making in process industries

Real time optimisation is concerned with the manipulation of systems' dy-
namics in order to achieve optimised pro�tability and operations. On the other
hand, production scheduling determines the optimal allocation of resources for
the completion of competing tasks. As indicated by Fig. 1, both RTO and
process scheduling exchange information with the layer of APC so achieve op-
timal dynamic operations. To this end, the research community has proposed
di�erent methods on their integration.

A common shortfall when focusing on integrating RTO and APC is that
two di�erent models are employed for the optimisation of the same system.
Typically, a locally linear model of the initial nonlinear dynamics is used at
the APC because of the need for fast solution rates while RTO considers the
original nonlinear model. This leads subsequently to issues related to suboptimal
trajectories and non-reachable states (Young, 2006).

Darby et al. (2011) through their literature review regarding the integration
of RTO and MPC suggested that for a succesful integration common issues such
as model mismatch among the layers of RTO and APC should be eliminated.
Nonetheless in real industrial processes, model degradation and other factors
can result in model mismatch, the consideration of parameter estimation and
data reconciliation functionalities are needed to integrate RTO and MPC as
indicated by Fig. 2.

2

Figure 1. Interaction of APC with different layers of decision making in process industries.

Darby et al. [5], through their literature review regarding the integration of RTO
and MPC, suggested that for a successful integration, common issues such as model
mismatch among the layers of RTO and APC should be eliminated. Nonetheless, in real
industrial processes, model degradation and other factors can result in model mismatch, so
the consideration of parameter estimation and data reconciliation functionalities is needed
to integrate RTO and MPC, as indicated by Figure 2.

Figure 2. Interaction between advanced process control and real-time optimisation.

The interaction between real-time optimisation and model predictive control can be
categorised broadly into three classes: (i) dynamic RTO (d-RTO), (ii) static RTO (s-RTO)
and (iii) economic model predictive control (e-MPC). Both s-RTO and d-RTO are two-
layer schemes where reference trajectories are passed to the layer of APC in the form of
set-points [6]. While under the static real-time optimisation paradigm, the optimisation
problem is solved at specific instances whenever new data become available or when steady
state is achieved, in the d-RTO paradigm, the system’s transient behaviour is explicitly
considered, thus resulting in dynamic optimisation problems. e-MPC [7] refers to single-
layer strategies which are incorporated into the control structure economic considerations.
In that spirit, De Souza et al. [8] proposed the inclusion of the gradient of the economic
objective function into the MPC objective as a single-layer strategy. Considering uncertain
systems, Chachuat et al. [9] examined alternative model adaptation strategies.
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This article is motivated by the abovementioned issues and aims at introducing a
method for designing multi set-point explicit controllers for nonlinear systems through
recent advances in multi-parametric programming. Multi-parametric programming (mp-P)
has received considerable attention from the process systems engineering community
because of its unique ability to aid in the design of explicit model predictive controllers
and thus shift the computational burden associated with offline control [10]. We examine a
case of multi-parametric nonlinear programs (mp-NLPs) that involve both endogenous
uncertainty, in the form of left-hand side parameters (LHS), as well as exogenous uncer-
tainty in the cost coefficient of the objective function (OFC), and, on the right-hand side of
the constraints (RHS), uncertain parameters on the right-hand side (RHS). In engineering
problems, LHS uncertainty arises from variations in model coefficients, due to parameter
estimation errors or model mismatch; OFC uncertainty arises due to fluctuation in market
prices or control penalties while RHS uncertainty can be due to varying system exogenous
factors. The contribution of the present work is a novel framework for the design of multi
set-point explicit controllers for nonlinear process systems.

The remainder of the article is organised as follows: in Section 2, an overview of the
field of multi-parametric programming and explicit MPC is given, and then, in Section 3,
the proposed algorithm is detailed and a framework for multi set-point explicit controllers
is introduced. In Section 4, two case studies are examined so as to illustrate the main
computational steps of the proposed methodology and, lastly, in Section 5, concluding
remarks are made.

2. Background
2.1. Multi-Parametric Programming

Overall, multi-parametric programming problems are concerned with the effect of
parametric perturbations on the optimal solution of an optimisation problem. Consider the
following optimisation problem:

z(θ) = min
x∈Rnx

f (x, θ)

subject to : g(x, θ) ≤ 0
θ ∈ Rnθ

(1)

where θ stands for the vector of uncertain parameters, which is nθ-dimensional, x is the
nx-dimensional vector of continuous decision variables, g(x, θ) is the vector of inequality
constraints and f is the objective function as a mapping Rnx×nθ → R, both of which are
assumed to be C2 (twice continuously differentiable). Problem (1) is a multi-parametric
program and its solution results in the partition of the parametric Rnθ -space into a number
of regions, also know as critical regions (CRs). Within each CR, the optimal solution and
the objective value are given as functions of the uncertain parameters, i.e., x(θ) and z(θ), re-
spectively. Even though mp-P has been studied quite actively, the class of multi-parametric
nonlinear programming problems remains one of the most challenging ones [11,12]. De-
pending on the convexity of the nonlinear functions that form Problem (1), different
solution techniques have been proposed in the literature to date.

Advances in the algorithms and theory of parametric nonlinear programs (p-NLPs)
date back to the early works of Fiacco [13] and Bank et al. [14]. More specifically, in the
books of Bank et al. [14] and Fiacco [13], a collection of the early research works for para-
metric NLPs can be found and invaluable theoretical foundations for some classes of
convex p-NLPs with perturbations in the OFC and the right-hand side of the constraints are
provided. Even though the term “parametric nonlinear optimisation/programming” was
widely established from the aforementioned works, the early works on numerical stability
analysis of NLPs by [15,16] and the work of Robinson [17,18] on generalised equations
provided a significant way of studying the effect of parametric variations on the optimal
solution of p-NLPs. Kyparisis [19] studied the uniqueness and differentiability of solutions
of parametric nonlinear complementarity problems while in Ralph and Dempe [20], the
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directional derivatives of parametric nonlinear programs were used to characterise their
explicit solution. However, the first algorithm for the multi-parametric case of convex
NLPs was due to Dua and Pistikopoulos [21]. The authors, based on the findings about the
convexity properties of the parametric value function (z(θ)), devised an iterative procedure
in which the integer variables were fixed by the solution of a primal mixed integer non-
linear program (MINLP) and the resulting mp-NLP was then transformed into an mp-LP
following the outer approximation idea. Because of the value function’s convexity property,
the maximum error of the approximation occurs at the vertices of the CRs and if the error is
greater than the prespecified tolerance, the CR is partitioned again; otherwise, integer and
parametric cuts are implemented and then the algorithm iterates until the primal MINLP
is infeasible. The same algorithm was revisited by Acevedo and Salgueiro [22], where the
authors proposed heuristics to improve its computational efficiency while quadratic ap-
proximations were studied by Johansen [23] and Domínguez and Pistikopoulos [24]. An ap-
proximate algorithm for the solution of convex mp-NLPs was proposed by Johansen [25],
who proposed the consecutive subdivision of the parametric space in hyper-rectangles and
the interpolation of the parametric solution through the solution of 2nθ NLPs at each step.
Further approaches involve the geometric vertex search by Narciso [26] and sub-gradient
methods by Leverenz et al. [27]. For the nonconvex cases, Dua et al. [28] developed suitable
parametric under/overestimators which were then incorporated into a spatial branch and
bound routine for the global optimisation of the nonconvex problem within ε−tolerance.
For a more thorough discussion on the algorithms that have been proposed for the solution
of mp-NLPs, the interested reader is directed to the review of Domínguez et al. [29] while
Hale [30], in her doctoral thesis, also offers a thorough discussion on several classes of para-
metric optimisation. Fotiou et al. [31,32] initially studied the polynomial multi-parametric
programming problem with application to control, however, their approach did not include
the definition of final nonconvex CRs, while the mixed integer polynomial case was studied
by Charitopoulos and Dua [33] and a procedure for the computation of exact nonconvex
CRs was presented. Despite the aforementioned research effort, mp-NLP problems remain
one of the most difficult to tackle and, as illustrated in Table 1, all the aforementioned
algorithms can handle uncertain parameters only on the right-hand side (RHS) of the
constraints. Recently, Pappas et al. [34], by generalising the basic sensitivity theorem of
Fiacco [13], devised an algorithm for the exact solution of multi-parametric quadratically
constrained quadratic programs.

Table 1. Summary of multi-parametric nonlinear programmming algorithms.

mp-NLP Solution Techniques RHS LHS OFC Comments

Dua and Pistikopoulos [21] X - - Convex
Johansen [23] X - - Convex

Acevedo and Salgueiro [22] X - - Convex
Johansen [25] X - - Convex
Dua et al. [28] X - - Nonconvex

Fotiou et al. [31] X - - Polynomial
Narciso [26] X - - Convex

Domínguez and Pistikopoulos [24] X - - Convex
Charitopoulos and Dua [33] X - - Polynomial

Pappas et al. [34] X - - QCQPs

Among the wide range of appplications that multi-parametric programming has been
applied to, the invention of explicit model predictive control (mp-MPC) is undoubtedly the
most dominant area where mp-P has had the biggest impact [10,12,35]. The main concept
of mp-MPC is that instead of solving the optimisation problems related to standard MPC
at each sampling instance, the state of the system is treated as an uncertain parameter and
an mp-P can be solved offline to derive the explicit control solution once and for all [10,36].

The general formulation of mp-MPC for discrete time systems is shown by (2):
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(mp−MPC)





Φ(x(tk)) = min
u

PH−1
∑

i=0
L(xt, ut) + E(xN)

subject to: xt|t=0 = x(tk)

xt+1 = f (xt,ut) t = 0, 1, . . . , PH − 1
yt+1 = h(xt,ut) t = 0, 1, . . . , PH − 1
Axt ≤ α t = 0, 1, . . . , PH

Byt ≤ β t = 0, 1, . . . , PH

Cut ≤ γ t = 0, 1, . . . , PH

(2)

where xt, ut, zt are the state, control input and system output vectors, respectively, at every
sampling point, t, and are nx, nu, ny-dimensional. A, B, C are matrices of appropriate
dimensions and α, β, γ vectors of pertinent dimensions which represent inequality con-
straints for the state, output and control inputs while L: Rnx+nu → R is a stage cost and
E : Rnx → R is a terminal cost function. The repetitive solution of Problem (2) provides
the optimal cost Φ(x(tk)) and the optimisation vector, i.e., the sequence of optimal control
inputs u∗ =

[
u∗1 , u∗2 , . . . , u∗PH−1

]
over the finite prediction horizon PH . Compared to the

conventional model predictive control fashion, in which an optimisation problem is solved
at each sampling point, through the mp-MPC notion, the explicit control law is calculated
offline once and for all. The solution of the resulting mp-P problem results in the optimal
control inputs as explicit functions of the (uncertain) parameters, i.e., the state of the system
at each sampling instance, along with the corresponding CRs, as shown by Equation (3).

u∗ =





ν1(x(tk)) i f x(tk) ∈ CR1

ν2(x(tk)) i f x(tk) ∈ CR2
...

...
νω(x(tk)) i f x(tk) ∈ CRω

(3)

For the case of MPC for linear systems, instead of solving a quadratic program at each
sampling instance, the explicit MPC requires the offline solution of an mp-QP while online,
so only simple function evaluations are required [10,37,38]. This concept is also known as
online via offline optimisation and it is shown in Figure 3.

Figure 3. Online via offline optimisation framework [10,39].
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Even though mp-MPC is the niche area of mp-P, designing mp-MPCs of nonlinear
systems for set-point tracking is still a computationally strenuous task as one has to design
an mp-MPC for each set-point based on the algorithms that exist in the literature to date [40].
Next, we review two mathematical techniques that will enable the development of novel
multi set-point explicit controllers though the algorithm we propose in the present work.

2.2. Computer Algebra
2.2.1. Gröbner Bases Theory

The idea of the present work is to devise an algorithm for the solution of mp-NLPs
from an analytical and not numerical perspective, and the reason is two-fold. Firstly,
for the case that we are interested in, i.e., mp-NLPs with combined uncertainty on the
RHS and OFC, no theoretical foundations exist for the computation of the explicit solution
like the basic sensitivity theorem of Fiacco [13] which serves as the basis of the numerical
mp-P approaches. Secondly, because of the nonconvex nature of the parametric problem,
the numerical solution would require global optimisation techniques similar to the ones
presented in Dua et al. [28] and would lead to an explosion in the number of convex
approximate CRs.

Gröbner bases theory was introduced by the doctoral research of Bruno Buchberger [41]
as a method of analytically solving systems of multivariate polynomial equations. In brief,
Gröbner bases and the Buchberger algorithm can be considered as the polynomial counter-
part of Gaussian elimination for the case of nonlinear systems. Before formally defining
what a Gröbner basis is, it would be useful to define some preliminary concepts.

Definition 1. Power products
Let R be any field and let R[x1, . . . , xn] be the ring of polynomials in n-indeterminates.

Any polynomial can be described as a sum of terms of the form: αxβ1
1 · · · x

βn
n with α ∈ R and

βi ∈ N, i = 1, . . . , n and the term xβ1
1 · · · x

βn
n is called a power product.

Definition 2. Term order
A term order is defined with regard to a set of power products (Tn) and imposes a total order <

on the set in compliance with the conditions below:

1. 1 < xβ for all xβ ∈ Tn

2. If xα < xβ → xαxγ < xβxγ, for all xγ ∈ Tn

A number of alternative power product orderings exist but the most commonly
employed is the the lexicographic one due to its computational efficiency [42]. Lastly,
the notion of ideals is crucial within the Gröbner bases theory.

Definition 3. Ideals
Let R be a field and R[x1, x2, . . . , xn] be a ring over the field of n-variate polynomials. Let a

finite subset of the field, G = {g1, g2, . . . , gt}, then an ideal I can be generated by G as follows:

I = {
n

∑
i=1

uigi| ui ∈ R[x1, x2, . . . , xn], gi ∈ R, ∀i

For problems that accept analytical solutions, their existence is guaranteed by the
Hilbert basis theorem [43], which also guarantees that algorithms used to compute Gröbner
bases can terminate in a finite number of steps.

Definition 4. Gröbner basis [41]
A set of non-zero polynomials G = {g1, . . . , gt}, contained in an ideal I, is called a Gröbner

basis for I if and only if for all g ∈ I, such that g 6= 0, there exists i ∈ {1, . . . , t} such that lp(gi)
divides lp(g), where lp(· ) stands for the leading power product of a polynomial function.
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For the calculation of Gröbner bases, apart from Buchberger’s algorithm, Faugère has
presented algorithms F4 [44] and F5 [45] as two variants of another algorithm. They exploit
concepts from linear algebra and represent polynomials using matrix forms, thus enabling
successive truncated Gröbner bases to be created. Lastly, software implementations of
different algorithms that compute Gröbner bases computations can be found in freely
available CAS such as Singular, SymPy and SageMath as well as commercial tools like
Maple and Mathematica.

2.2.2. Cylindrical Algebraic Decomposition (CAD)

The notion of cylindrical algebraic decomposition was presented by Collins in 1975 [46]
in an effort to solve the problem of quantifier elimination over real closed fields. In this
article, as will be shown later on, CADs are used for computing nonconvex regions in the
space of parameters. Thus, we provide the following definitions for ease of exposition in
the algorithmic steps that we detail later on in the manuscript.

Definition 5. Semi-Algebraic Sets [43].

Let R[x1, x2, . . . , xn] indicate the ring of polynomials in n-indeterminates with real
coefficients. If, for example, a subset S of Rn can be developed by a finite number of
applications of the complementation, union and intersection operations, it is called semi-
algebraic and can have the following form:

{x ∈ Rn| g(x) ≤ 0}, where g ∈ R[X]

Definition 6. Standard atomic formula
A formula that includes a functional relation over a polynomial ring in either of the ways

shown below is called a standard atomic formula:

g(x) = 0, g(x) 6= 0, g(x) < 0, g(x) > 0, g(x) ≤ 0, g(x) ≥ 0

Proposition 1 ([43]). Semi-algebraic sets of Rn can be written as a finite union of semi-algebraic
sets of the form:

{x ∈ RnX | g1(x) = . . . = gω(x) = 0, gω+1(x) > 0, . . . , gt(x) > 0}

where g1 . . . , gω, gω+1, . . . , gt are in g ∈ R[X].

The proof of the proposition can be found in the book of Bochnak et al. [43].
Using the definitions and propositions given above, in summary, one can use CAD

routines to compute the solution to polynomial inequalities. In the process of computations,
one partitions the related space over finite cells and qualifies whether or not standard atomic
formulas hold. A comprehensive exposition on the solution of polynomial inequalities
using CAD is given at the book of Jirstrand [47].

3. Algorithms and MPC
3.1. Multi Set-Point Explicit Controller via Multi-Parametric Programming

In the context of multi-parametric model predictive control, the state of the system
at each sampling point is treated as an uncertain parameter and as a result an mp-P with
RHS uncertainty arises [10,37,38,40]. Its solution results in the explicit control law, i.e., the
control decisions as explicit functions of the system’s initial conditions at a sampling
instance along with the related CRs.

In many applications, however, particularly those related to continuous manufactur-
ing, there is a great need for fast calculations in order to communicate decisions between
the different layers of decision making in an effective manner. For instance, set-point
tracking goals for APC are, most of the time, passed down from either the functionality of
process scheduling or RTO [39,48]. In these cases, it becomes obvious that explicit MPC
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can provide a significant advantage in computational time by treating the set-points or
estimated model inputs as uncertain parameters. One way to design such explicit con-
trollers, assuming the existence of the nu set-point, is to solve nu mp-P problems and thus
design nu mp-MPCs. Another way, which has not been investigated in the literature, is
to consider the set-points and/or model inputs as uncertain parameters and thus derive
a multi set-point explicit MPC. Conceptually, by doing so, we would design a layered
controller as given by Figure 4.

Conventionally, when mp-MPC is employed for set-point tracking of nonlinear sys-
tems, one would have to compute a different mp-MPC for each of those set-points as well as
account for any time delay in the offline solution of the related mp-P should a new set-point
arise. Stringent market regulations and an increasingly volatile market environment lead
process industries to constantly optimise their operations and give rise to new set-points
from a control perspective which in turn hinder the deployment of mp-MPC. As illus-
trated by Figure 4, in this article, by considering the set-points as uncertain parameters
which lie within prespecified bounds, we overcome the abovementioned drawback of
explicit MPC since, by solving one mp-NLP, we can design a “multi set-point” mp-MPC
for nonlinear systems.

Figure 4: Concept of a multi set-point mp-MPC setting where instead of separate explicit
controllers one designs a universal explicit MPC for all the set-points.

The design problem of a multi set-point mp-MPC can be formulated as in
(4).





Υ (x(tk), xsp) = min
u

PH−1∑
t=0
L(xt,ut, xsp) + E(xN, xsp)

subject to : xt|t=0 = x(tk)

xt+1 = f(xt,ut) t = 0, 1, . . . ,PH − 1

yt+1 = h(xt,ut) t = 0, 1, . . . ,PH − 1

Axt ≤ α t = 0, 1, . . . ,PH

Byt ≤ β t = 0, 1, . . . ,PH

Cut ≤ γ t = 0, 1, . . . ,PH

xsp ∈ Rnsp

(4)

The notation adopted is the same as in the previous section, aside from the
following: we treat the set-point together with the initial state of the system as
uncertain parameters thus resulting in a problem with simultaneous variations
on the RHS and OFC. As indicated by (4), we consider both the initial states
(x(tk)) and the various set-points (xsp) as uncertain parameters. Notice that
within an EWO framework, the deployment of such universal controllers is of
great importance since they allow for rapid communication between the layer
of control with RTO and scheduling. For instance when integrating scheduling
with control the changeover times as well as the production rates are immediate
results of the dynamic decisions made through the control system. In the next
section, an algorithm for the design of such �multi set-point� explicit MPC is
presented.
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Figure 4. Concept of a multi set-point mp-MPC setting where instead of separate explicit controllers
one designs a universal explicit MPC for all the set-points.

The design problem of a multi set-point mp-MPC can be formulated as in (4).




Υ(x(tk), xsp) = min
u

PH−1
∑

t=0
L(xt, ut, xsp) + E(xN , xsp)

subject to: xt|t=0 = x(tk)

xt+1 = f (xt,ut) t = 0, 1, . . . , PH − 1
yt+1 = h(xt,ut) t = 0, 1, . . . , PH − 1
Axt ≤ α t = 0, 1, . . . , PH

Byt ≤ β t = 0, 1, . . . , PH

Cut ≤ γ t = 0, 1, . . . , PH

xsp ∈ Rnsp

(4)

The notation adopted is the same as in the previous section, aside from the following:
we treat the set-points together with the initial state of the system as uncertain parameters,
thus resulting in a problem with simultaneous variations on the RHS and OFC. As indicated
by (4), we consider both the initial states (x(tk)) and the various set-points (xsp) as uncertain
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parameters. Notice that within an EWO framework, the deployment of such universal
controllers is of great importance since they allow for rapid communication between the
layer of control with RTO and scheduling. For instance, when integrating scheduling with
control, the changeover times as well as the production rates are immediate results of the
dynamic decisions made through the control system. In the next section, an algorithm for
the design of such “multi set-point” explicit MPC is presented.

3.2. Solution Algorithm for Analytical mp-NLPs with Global Uncertainty

Here, we present an algorithm that can solve multi-parametric nonlinear programs
with non transcendental nonlinear terms, i.e., nonlinear terms that have closed-form
solutions. The proposed method can be seen as a generalisation of the our previous work
on the solution of multi-parametric mixed integer polynomial programs [33] as well as
the algorithm of Fotiou et al. [32] for multi-parametric polynomial programs. However,
both of these methods were employed only for instances that the uncertainty is present on
the right-hand side of the constraints and the latter does not compute the critical regions
associated with each explicit solution.

The main idea of the algorithm proposed herein can be explained as follows: given a
multi-parametric nonlinear program with analytical terms, or terms that can be expressed
in a nontranscendental fashion, derive the first order KKT conditions and compute its
solution using Gröbner bases by treating the uncertain parameters as symbols. The output
of this step is a collection of candidate solutions which are explicit in θ and encompass:
global and local optima as well as infeasible solutions. For these solutions, examine their
dual and primal feasibility along with a constraint qualification so as to remove infeasible
candidate solutions. Lastly, in order to report only the globally optimal solutions, perform
a comparison procedure [33].

Problem (1) details a general formulation of multi-parametric programs. The case that
f and/or g are analytically nonlinear and the uncertain parameters are in the OFCs along
with the RHS and LHS of the constraints is used.

Deriving the 1st order KKT conditions of Problem (1) returns a system of equations
that is square and is given by Equations (5) and (6).

∇x L(x, θ) = 0 (5)

λTg (x, θ) = 0 (6)

L(x, θ) is the Lagrangian function of Problem (1), ∇x is the nabla operator with re-
spect to the decision variables and λ are the Lagrange multipliers corresponding to the
constraints. Because of the assumption that the nonlinearities have an analytical solution,
Gröbner bases can be employed for the solution of the square system of equations because
of its elimination property. Even though a tailored implementation of one of the already
existing algorithms for computing Gröbner bases may be advantageous from a computa-
tional standpoint, it is beyond the scope of the present work and thus Mathematica 10 was
employed as the computer algebra software in which the calculations were performed.

By solving the system of Equations (5) and (6), a number of candidate solution sets
are returned. Note that although the original optimisation problem involves nx variables,
in the current step, the variables for which we compute the explicit solution are nx + ng.
The candidate solutions include the Lagrange multipliers together with the optimisation
variables as explicit functions of the uncertain parameters, i.e., λ(θ) and x(θ), respectively.

Definition 7. Candidate solutions [49]
A solution of the Problem (1) is said to be candidate if it satisfies the system of Equations (5) and (6)

along with a constraint qualification, e.g., linear independence constraint qualification [15].

In this part of the algorithm, due to strict complementary slackness, the collection of
candidate solutions indicates the active and inactive constraints for each solution. Until this
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step, the set of solutions computed may be infeasible, local or global optima. By evaluating
the primal and dual feasibility of the candidate solutions, the infeasible solutions can be
rejected, i.e., Equations (7) and (8).

g(θ) ≤ 0 =⇒ f easibility conditions (7)

λ(θ) ≥ 0 =⇒ optimality conditions (8)

Conditions (7) and (8) are evaluated by substituting the explicit expressions of the op-
timisation variables and they form a collection of parametric constraints. If for a candidate
solution there exists a subset of the initial parametric space such that the aforementioned
inequalities are satisfied, then this region is called the CR of the candidate feasible solution;
otherwise, the candidate solution is infeasible and thus removed from further consideration.
Note that the evaluation performed at this step, from a computer algebra perspective, is
equivalent to computation of the corresponding CAD.

Definition 8. Critical region [39,49]
A critical region (CR) is a partition of the parametric space where Conditions (7) and (8) are

satisfied for a specific candidate solution. A critical region is characterised by a set of inactive/active
constraints and can be discontinuous or nonconvex.

In Algorithm 1, the pseudo-code of the presented method is given. The comparison
procedure is outlined in [33].

3.3. Illustrative Example

The proposed methodology will be motivated through the following modified exam-
ple by Domínguez et al. [29].

min
x1,x2

x + 2x2
1 − 5x1 + x2

2 − 3θ1x2 − 6

Subject to:

2x1 + x2 ≤ 2.4− θ2 (9)

0.5θ3x1 + x2 ≤ 1.5

x1 ≥ 0, x2 ≥ 0

0 ≤ θ1 ≤ 6, 0 ≤ θ2 ≤ 4, 0 ≤ θ3 ≤ 2

In the beginning, the first order KKT conditions of (9) are formulated and we derive
the square system of Equations (10) and (14)

∇xL(x, λ, θ) = 0 (10)

λ1(2x1 + x2 − 2.5 + θ2) = 0 (11)

λ2(0.5θ3x1 + x2 − 1.5) = 0 (12)

λ3(−x1) = 0 (13)

λ4(−x2) = 0 (14)

where L(x, λ, θ) is the Langangian of Problem (9). Equations (10) and (14) can be analytically
solved through symbolic computations which return the dual and primal variables as
functions of the uncertain parameters, i.e., λ(θ) and x(θ). Systems (10)–(14) are solved in
0.006 s and, as shown in Table A1, fifteen candidate solutions are computed.

The primal and dual feasibility of the candidate solutions is examined by computing
the CAD of the related disjunctions. If the result of this step is “False” the solution violates
feasibility (in either the primal or dual sense), otherwise, a collection of explicit inequalities
is returned which characterises the candidate solution’s CR. The CAD computations of this
example take 5.33 s and nine of them are nonempty. Despite the fact that nine candidate
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solutions are primal and dual feasible, their global optimality is not guaranteed given
the nonconvex nature of the problem. To this effect, for those regions, a new set of CAD
computations is performed so as to identify overlaps.

Algorithm 1: mp-NLP under global uncertainty
Input: f , g, x, θ
Output: x(θ), CRs

1 Formulate 1st order KKT conditions of mp-NLP
2 Solve the 1st order KKT conditions of mp-NLP using Gröbner Bases
3 TEMP← solutions, i.e., x(θ), λ(θ), z(θ)
4 if TEMP = ∅ then
5 mp-NLP is infeasible.

6 else
7 for ( i ∈ range(1, . . . , Length[TEMP]) ) {
8 Evaluate with a first order constraint qualification, e.g. Linear

Independence Constraint Qualification (LICQ)
9 Evaluate with primal and dual feasibility conditions (Cylindrical

Algebraic Decomposition computation):
10 CR = {∃ θ such that [λi(θ) ≥ 0] ∧ [gi(θ) ≤ 0]}
11 if CR = ∅ then Candidate solution i is infeasible and discard from TEMP.
12 else
13 Candidate solution i is feasible and append CRi to TEMP.

14 i+=1

15 for ( (k, j) ∈ range(1, . . . , Length[TEMP]) ∧ k 6= j ) {
16 Identify if any overlapping CRs exist (Cylindrical Algebraic

Decomposition computation):
17 CRint = {θ|CRk ∧ CRj}
18 if CRint = ∅ then The two CRs are not overlapping
19 else
20 Follow the comparison procedure from Charitopoulos et al. (2016) so

as to remove the overlaps

21 Collect the final non-overlapping CRs and the corresponding explicit solutions,
i.e., x(θ)

It was found that CR10 and CR11 were overlapping, as shown by Figure 5, where the
overlap (CRint) is shown as the dark partition in between the two CRs.

For the elimination of the resulting overlap, the comparison procedure is invoked and
the logic disjunction, as illustrated below, is used for the CAD, as shown by
Equations (15) and (16).

∃θ| {θ1, θ2, θ3} ∈ CRint ∧ zCR10(θ) ≤ zCR11(θ) (15)

or

∃θ| {θ1, θ2, θ3} ∈ CRint ∧ zCR10(θ) ≥ zCR11(θ) (16)

where zCRi(θ) denotes the optimal explicit value within CRi. The result of this step is
partitioning of the parametric space where each explicit solution is the globally optimal.
In this case, CR10 was shown to be dominant within the common parametric space and thus
the overlap was subtracted from CR11. The algorithm terminates once no more overlapping
critical regions are identified. In Table 2, an overview of the explicit solutions is presented,
while in Figure 6, the final critical regions are shown. Practically, one would consult the
CR column of Table 2 to identify based on the uncertain parameter values where the
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uncertainty is realised, i.e., CR1 or CR2, and then the optimal cost can be computed by
evaluating the corresponding expression from the “Explicit solution” column.

In the beginning, the �rst order KKT conditions of (9) are formulated and
we derive the square system of eq. (10)-(14)

∇xL(x,λ,θ) = 0 (10)

λ1(2x1 + x2 − 2.5 + θ2) = 0 (11)

λ2(0.5θ3x1 + x2 − 1.5) = 0 (12)

λ3(−x1) = 0 (13)

λ4(−x2) = 0 (14)

where L(x,λ,θ) is problem's (9) Langangian. Eq. (10)-(14) can be analyt-
ically solved through symbolic computations which return the dual and primal
variables as functions of the uncertain parameters, i.e. λ(θ) and x(θ). Sys-
tem (10)-(14) is solved in 0.006s and as shown in Table A.1, �fteen candidate
solutions are computed.

The primal and dual feasibility of the candidate solutions is examined by
computing the CAD of the related disjunctions. If the result of this step is
�False� the solution violates feasibility (in either the primal or dual sense), oth-
erwise a collection of explicit inequlities is returned which characterises the
candidate solution's CR. The CAD computations of this example take 5.33s
and nine of them are non-empty. Despite the fact that nine candidate solutions
are primal and dual feasible, their global optimality is not guaranteed given the
non-convex nature of the problem. To this e�ect, for those regions a new set of
CAD computations is performed so as to identify overlaps.

It was found that CR10 and CR11 were overlapping as shown by Fig. 5 where
the overlap (CRint) is shown as the dark partition in between the two CRs.

Figure 5: Instance of overlap between CRs

15

Figure 5. Instance of overlap between CRs.Figure 6: Visualition of the critical regions for motivating example

4. Case studies

Here we examine two case studies from process systems and their corre-
sponding explicit controllers are designed. The computatonal experiments were
performed on a workstation with 24GB RAM, 3.80 GHz processor and Windows
10 64-bit operating system. For the symbolic calculation the computer algebra
system that was employed was Mathematica 10.2.

4.1. Multiple-input multiple-output non-isothermal CSTR

We examine a non-isothermal MIMO multiproduct CSTR where the decom-
position reaction A →R happens under the kinetic law: −Rb = krCb. Addi-
tional details on the design and kinetics can be found in Camacho and Alba
(2013). The system has two control input: the liquid (Fl) and coolant (Fc)
�owrates whereas system's states are the temperature of the liquid (Tl) and the
concentration of the decomposition product (Cb). Using the mass and energy
balances the dynamic model of the system is derived as given by eq. (17)-(18).

d(VlCb)

dt
= Vlkr(Ca0 − Cb)− FlCb (17)

d(VlρlCplTl)

dt
= FlρlCplTl0 − FlρlCplTl + FcρcCpc(Tc0 − Tc) + Vlkr(Ca0 − Cb)H

(18)

17

Figure 6. Visualition of the critical regions for motivating example.
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Table 2. Optimal explicit solutions of motivating example.

CRs Explicit Solution

CR1 =





2.667 ≤ θ1 ≤ 4.
0 ≤ θ2 ≤ 1

10
3θ1−3 ≤ θ3 ≤ 2

z1(θ) = −3.75− 4.5θ1

CR2 =









0.666667
√

19− 18θ1 + θ2 ≥ 3.8333
0 ≤ θ1 ≤ 2.005302497 · 10−16

1.5θ1 + θ2 ≤ 0.927401
0 ≤ θ3 ≤ 2





3.2118·10−8
√

8.186× 1015 − 7.7552× 1015θ1 + θ2 ≥ 3.8333
0 ≤ θ1 ≤ 0.8333
θ2 ≤ 2.5
0 ≤ θ3 ≤ 2

z2(θ) =0.015625(5− 2θ2)
3 + 0.125(5− 2θ2)

2

−1.25(5− 2θ2)− 6

4. Case Studies

Here, we examine two case studies from process systems and their corresponding
explicit controllers are designed. The computatonal experiments were performed on a
workstation with 24 GB RAM, a 3.80 GHz processor and a Windows 10 64-bit operating
system. For the symbolic calculation, the computer algebra system that was employed was
Mathematica 10.2.

4.1. Multiple-Input Multiple-Output Non-Isothermal CSTR

We examine a non-isothermal MIMO multi-product CSTR where the decomposition
reaction A→R happens under the kinetic law: −ℛb = krCb. Additional details on the
design and kinetics can be found in Camacho and Alba [50] and the data used for this
case study can be found in Table 3. The system has two control inputs: the liquid (Fl)
and coolant (Fc) flow rates, whereas the system’s states are the temperature of the liquid
(Tl) and the concentration of the decomposition product (Cb). Using the mass and energy
balances, the dynamic model of the system is derived as given by Equations (17) and (18).

d(VlCb)

dt
= Vlkr(Ca0 − Cb)− FlCb (17)

d(VlρlCplTl)

dt
= FlρlCplTl0 − FlρlCplTl + FcρcCpc(Tc0 − Tc) + Vlkr(Ca0 − Cb)H (18)

Table 3. Data of the multiple-input multiple-output CSTR case study.

kr reaction constant 26 1
h

Vl tank volume 24 L
ρl liquid density 800 kg

m3

ρc coolant density 1000 kg
m3

Cpl specific heat of liquid 3 kJ
kg·K

Cpc specific heat of coolant 4.19 kJ
kg·K

Tl0 entering liquid temperature 283 K
Tc0 inlet coolant temperature 273 K
Tc outlet coolant temperature 303 K
Ca0 initial concentration of the reactant 4 mol

L

Firstly, the systems (17) and (18) are transformed into an algebraic one in order to
design the explicit controllers. Using the forward Euler method, the MPC problem of the
discretised system is shown by Equations (19) and (20).
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min
u

J(θ) =
PH

∑
t=0

∥∥∥x(t)− xre f

∥∥∥
2

(19)

Subject to:





Cbt+1 = Cbt +
he(kr(Ca0−Cbt )−Flt Cbt )

Vl
, 0 ≤ t ≤ PH − 1

Tlt+1 = Tlt + he
Flt ρlCpl Tl0−Flt ρlCpl Tlt+Fct ρcCpc(Tc0−Tc)+Vlkr(Ca0−Cbt )

Vl ρlCpl

0.8 ≤ Cbt ≤ 3.5, 0 ≤ t ≤ PH

280 ≤ Tlt ≤ 400, 0 ≤ t ≤ PH

0 ≤ Fct ≤ 1000, 0 ≤ t ≤ PH

0 ≤ Flt ≤ 2000, 0 ≤ t ≤ PH

Cbt|t=0
= θ1, Tlt|t=0

= θ2

Cre f
b = θ3, Tre f

l = θ4,

(20)

By employing the presented solution algorithm for mp-NLPs, the related KKT system
is solved analytically using Gröbner bases. It takes 0.76 s to compute 29 candidate solutions
explicit in θ1, θ2 and a collection is shown in Table 4.

Table 4. Collection of candidate solutions of MIMO mp-MPC.

Candidate Solution Fc Fl

1 0 0
2 2000 −0.2011θ1 − 38.178θ2 − 0.00796θ4 + 10807.5
3 23376(θ1−0.714579)

θ1
− 0.2011(θ2

1+2219.4θ1θ2−628088.θ1−1585.96θ2+448827)
θ1

4 23376.θ1−24000.θ3+2496.
θ1

−0.201θ1
2−446.32θ1θ2+126307θ1+458.23θ2θ3−47.66θ2−129680θ3+13486.7

θ1

As mentioned in the previous section, the proposed algorithm can facilitate both
continuous as well as discrete set-points for the solution of the resulting problem. For the
MIMO case study, we consider 8 different set-points for which the explicit control law is
derived. In Table A2, we outline the explicit solutions for the different set-points while the
optimal partition of the uncertainty space is shown in Figure 7.

Figure 7. Critical regions for the mp-MPC controller for the MIMO CSTR.

We validate the performance of the explicit multi set-point controller by examining the
transition between two steady states. We benchmark the controller’s predictions against
the globally optimal solution as computed using the BARON 14.4 solver. In Figure 8, the
control and state evolution can be seen.
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(a) [Cb, Tl ] = f (t) (b) [Fc, Fl ] = f (t)

Figure 8. Comparative graphs of the control performance of the mp-MPC vs. NLMPC for case study 1.

4.2. Isothermal Polymerisation CSTR

Next, we examine the design of a multi set-point controller for the grade transition
problem with polymerisation CSTRs. The model nonlinearities involve bilinear terms
and square roots. The free radical polymerisation reaction happens in a CSTR that oper-
ates isothermally at 335 K, where methyl methacrylate (MMA) is produced [51,52]. The
mathematical model is given by Equations (21) and (25). The system has 4 state variables,
i.e., the concentrations of the monomer (Cm) and the initiator (Cl), the dead chains’ molar
concentration (D0) and the dead chains’ mass concentration (Dl). The control input is the
flow rate of the initiator (Fl) and one output, i.e., the molecular weight of the polymer
produced (y). In the multiple steady states, different polymeric grades can be produced
corresponding to alternative molecular weights. We provide the notation for this system in
Table 5 and model parameter values can be found in Table 6.

dCm

dt
= −(kp + k f m)

√
2 f ∗klCl

kTd + kTc
Cm +

F(Cmin − Cm)

V
(21)

dCl
dt

=
FlClin − FCl

V
− klCl (22)

dD0

dt
= (0.5kTc + kTd)

2 f ∗klCl
kTd + kTc

Cm + k f m

√
2 f ∗klCl

kTd + kTc
Cm −

FD0

V
(23)

dDl
dt

= Mm(kp + k f m)

√
2 f ∗klCl

kTd + kTc
Cm −

FDl
V

(24)

y =
Dl
D0

(25)

Table 5. MMA CSTR notation.

Cm (kmol/m3) state: monomer concentration
Cl (kmol/m3) state: initiator concentration
D0 (kmol/m3) state: molar concentration of dead chains

Dl (kg/m3) state: mass concentration of dead chains
Fl (m3/h) control: initiator flow rate

y = Dl/D0 output: molecular weight
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Table 6. Model parameters for the MMA polymerisation reactor.

F = 10.0 m3/h monomer flow rate
V = 10.0 m3 reactor volume

f ∗ = 0.58 initiator efficiency
kp = 2.50× 106 m3

kmol·h propagation rate constant

kTd = 1.09× 1011 m3

kmol·h termination by disproportionation
rate constant

kTc = 1.33× 1010 m3

kmol·h termination by coupling
rate constant

Clin
= 8.00 kmol/m3 inlet initiator concentration

Cmin = 6.00 kmol/m3 inlet monomer concentration
k f m = 2.45× 103 m3

kmol·h chain transfer to monomer rate constant
kl = 1.02× 10−1h−1 initiation rate constant

Mm = 100.12 kg/kmol molecular weight of monomer

The model nonlinearities are not transcedental and, thus, the presented method for
the design of the multi set-point mp-MPC can be used. This polymerisation system has
been examined intensively by the research community and it has been noted that online
computation of its optimal control law can be challenging due to numerical instabilities
arising because of scaling issues [52]. As a trade-off between computational complexity
and stability of the integration scheme, we employ the forward Euler method with a step
size of h = 36 s.

Following the proposed method, the globally optimal solutions are computed, whereas
employing off-the-self global optimisation solvers for online implementation leads to
extensive computational times. In Table 7, the results using the BARON 14.4 solver in
GAMS with different prediction horizons are given.

Table 7. Computational effort for varying prediction horizons using BARON 14.4 [53].

Prediction Horizon CPU (s)

1 603
2 1906
5 3600 †

10 3600 †

20 3600 †

† Reached time limit.

In this case study, eight uncertain parameters were considered, one for each state
and set-point. In Table 8, we provide a mapping of the uncertain parameters of the
control problem. Whilst having the set-point as continuous, uncertain parameters increase
the computational complexity of the mp-P and one could argue that in the context of
systems integration where the APC receives data by the real-time optimisation functionality,
the same set-points may not always be realised. In such cases, following conventional
mp-MPC frameworks, the explicit laws would have to be recomputed from the beginning
(mp-P solution and implementation of the explicit solutions, possibly in a microchip),
whereas, following the proposed framework, if the bounds of the set-points remain within
the prespecified ranges, then the same multilayer controller can be readily used.
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Table 8. MMA CSTR uncertain parameters.

Parameter Range Notation

θ1 ∈ [0, 5] Cm|t=0
θ2 ∈ [0, 0.5] Cl|t=0
θ3 ∈ [0, 0.05] D0|t=0
θ4 ∈ [0, 300] Dl|t=0
θ5 ∈ [0, 5] Set-points for Cm
θ6 ∈ [0, 0.5] Set-points for Cl
θ7 ∈ [0, 0.05] Set-points for D0
θ8 ∈ [0, 300] Set-points for Dl

The resulting mp-NLP involves one optimisation variable, eight uncertain parameters
and ten constraints when a prediction horizon of unity is considered. Overall, we seek
analytical solutions to eleven variables, i.e., the Lagrange multipliers and the optimisation
variables. The solution of the mp-NLP returns five candidate solutions, as shown in
Table A3.

Substituting the explicit expressions into the constraints, the feasible region is projected
into the uncertainty space. Candidate solutions that satisfy primal/dual feasibility are
considered for the next step of the algorithm; otherwise, they are discarded as infeasible.
For instance, the 6th candidate solution violates dual feasibility as any value of θ6 would
result in negative λ8.

Subsequently, the explicit inequalities for the remaining solutions are examined.
The intersection of the feasible regions defined by the parametric inequalities defines
the critical regions of the candidate solution. Because of the nonconvex nature of the
problem, it is likely that explicit solutions may be valid in the same uncertainty space,
thus overlapping. In order to compute only the global explicit solutions, we employ the
comparison procedure. Three overlapping solutions were identified. An example of the
inequalities defining the overlap between CR1, CR2 is shown by Equation (26).

CRint := CR1 ∩ CR2 =





0 ≤ θ3 ≤ 0.05

0 ≤ θ4 ≤ 300

0 ≤ θ5 ≤ 5

0 ≤ θ7 ≤ 0.05





4.9899 ≤ θ1 ≤ 5

1617.74 + 40280.2
θ2

1
≤ 16144.7

θ1
+ θ2

θ2 ≤ 1.48197
θ2

1

0 ≤ θ4 ≤ 300

θ2 + 0.00242674 = 1.01114θ6

0 ≤ θ2 ≤ 0.199802

0 ≤ θ1 ≤ 2.72345

(26)

For illustration purposes, the mathematical definition of CR2 is given by Equation (A1)
in the Appendix A. Due to the extensive set of inequalities defining the rest of the CRs, we
do not detail them in the manuscript for the sake of space.

After the algorithm’s convergence and with the optimal explicit solutions reported,
the performance of the multi set-point mp-MPC’s explicit control law is compared to that
of conventional MPC. The solution of the online MPC is found by implementing the related
NLP in GAMS and solving it to global optimality using BARON 14.4. As can be seen
in Figure 9, the state and control evolution of the system are in perfect agreement when
the two schemes are compared, thus highlighting the accuracy and correctness of the
proposed framework while in Figure 10 the stability of the resulting control policy can be
envisaged.
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(a) y = f (t)

(b) Fl = f (t)

Figure 9. Plots comparing the control solutions computed by the proposed method (mp-MPC) and
online NLMPC for the polymerisation CSTR.

Figure 10. Graph of the control cost function vs. time for the polymerisation CSTR.

We assess the performance of the controller for set-point tracking between two
set-points. At the beginning, we assume the CSTR to be operated at a steady state of
y = 15,000 kg

kmol and then controlled towards y = 45,000 kg
kmol where it is regulated for nine

hours to produce a specific polymer grade. Next, the controller steers the system to
the next set-point (y = 19,250 kg

kmol ), in which steady state another polymer is produced.
The performance of the set-point tracking can be seen in Figure 11.

Finally, with respect to the scalability of the proposed method, a number of systems
and prediction horizon settings were examined and, as shown in Table 9, for the current
state of the art in computer algebra software, only small- to medium-scale systems can be
efficiently facilitated.
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Figure 11. Set-point tracking performance of the polymerisation reactor case study.

Table 9. Computational statistics of the proposed method for different case studies.

Case Study Problem Statistics Uncertainty CPU (s)

nx ng nθ

SISO CSTR (PH = 1) 1 2 2 OFC, RHS 1.32
SISO CSTR (PH = 2) 2 4 2 OFC, RHS 65.8
SISO CSTR (PH = 2) 3 6 2 OFC, RHS 4652
MMA CSTR (PH = 1) 1 10 8 OFC, RHS 1.86
MMA CSTR (PH = 1) 1 10 9 OFC, RHS, LHS 4.86
MMA CSTR (PH = 2) 2 20 8 OFC, RHS Memory limit
MIMO CSTR (PH = 1) 2 8 4 OFC, RHS 2.76
MIMO CSTR (PH = 2) 4 16 4 OFC, RHS 192.75
MIMO CSTR (PH = 3) 6 24 4 OFC, RHS 5929

5. Conclusions

We have presented a computer algebra-based algorithm for the analytical solution
of mp-NLPs that involve uncertain parameters on the RHS and OFC as well as the LHS
of the constraints. In the first step, Gröbner bases are used for symbolically expressing
the optimisation variables and the Lagrange multipliers as functions of the uncertain
parameters. Next, by computing cylindrical algebraic decompositions, the globally optimal
CRs are defined. Building upon the proposed algorithm, we introduce a framework for
the design of multi set-point explicit MPC for nonlinear systems. The proposed technique
expands the scope of mp-MPCs, as we illustrate that it is feasible to design a single “multi-
layer” controller for capturing set-point tracking problems and potentially new model
parameter estimations. Ongoing research focuses on the latter and how current progress in
algebraic geometry can alleviate the related computational burden and allow for solutions
of large-scale studies. Specifically, the application of machine learning techniques for faster
evaluations of standard atomic formulas and thus reductions in the computational expense
of CAD calculations is a promising direction.

Author Contributions: Conceptualization: V.M.C. and V.D.; Data curation: V.M.C.; Formal Analysis:
V.M.C.; Funding acquisition: L.G.P. and V.D.; Investigation: V.M.C.; Methodology V.M.C., L.G.P. and
V.D.; Visualization: V.M.C.; Writing—original draft: V.M.C.; Writing—review & editing: V.M.C. and
V.D. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge financial support from EPSRC grants EP/M027856/1
and EP/M028240/1.

Acknowledgments: The authors gratefully acknowledge financial support from EPSRC grants
EP/M027856/1 and EP/M028240/1.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2021, 9, 1156 20 of 23

Nomenclature

APC Advanced Process Control
CAD Cylindrical Algebraic Decomposition
CAS Computer Algebra Software
CR Critical Region
CSTR Continuous Stirred Tank Reactor
e-MPC Economic Model Predictive Control
EWO Enterprise Wide Optimisation
KKT Karush–Kuhn–Tucker
LHS Left-hand Side
MIMO Multiple Input Multiple Output
MINLP Mixed Integer Nonlinear Program
MMA Methyl Methacrylate
mp-(NL)P Multi-parametric (Nonlinear) Program
NLMPC Nonlinear Model Predictive Control
OFC Objective Function Coefficient
RHS Right-hand Side
(s/d)-RTO (Static/Dynamic) Real-time Optimisation

Appendix A

Table A1. Candidate solutions of motivating example.

x1 x2 λ1

1 -2.12 0 0
2 -2.12 1.5θ1 0
3 0 1.5 0
4 0 0.5(5− 2θ2) 3θ1 + 2θ2 − 5
5 0 0 0
6 0 1.5θ1 0
7 0.786 0 0
8 0.786 1.5θ1 0
9 −0.577

√−6θ1 − 4θ2 + 27− 2 0.5
(
2.309

√−6θ1 − 4θ2 + 27− 2θ2 + 13
)

0.333
(
−6.9282

√−6θ1 − 4θ2 + 27 + 9θ1 + 6θ2 − 39
)

10 0.333
(
1.732

√−6θ1 − 4θ2 + 27− 6
)

0.166
(
−6.928

√−6θ1 − 4θ2 + 27− 6θ2 + 39
)

2.309
√−6θ1 − 4θ2 + 27 + 3θ1 + 2θ2 − 13

.

.

.

.

.

.

.

.

.

.

.

.
14 0.0833

(
−
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304− θ2
3 − 8

)
0.0416

(
θ3
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + θ3 + 8θ3 + 36
)

0

15 0.0833
(√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304− θ2
3 − 8

)
0.0416

(
−θ3

√
θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + θ3 + 8θ3 + 36
)

0

λ2 λ3 λ4
1 0 0 −3θ1
2 0 0 0
3 3(θ1 − 1) 0.5(3θ1θ3 − 3θ3 − 10) 0
4 0 6θ1 + 4θ2 − 15 0
5 0 −5 −3θ1
6 0 −5 0
7 0 0 −3θ1
8 0 0 0
9 0 0 0
10 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

14 0.0833(−θ3
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + 36θ1 − θ3
3 − 8θ3 −

36)
0 0

15 0.0833(θ3
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + 36θ1 − θ3
3 − 8θ3 − 36) 0 0

Table A2. Final CRs and explicit solutions for PH = 1 of the MIMO CSTR for two of the set-points.

Set-Point Explicit Solution

(θ3 = 1, θ4 = 290)

∧





(θ1, θ2) ∈ CRsp1
1





Fc(t=0) = 0

Fl(t=0) = 0.00796θ2-0.2011θ1 − 0.00796θ4 + 0.8044

(θ1, θ2) ∈ CRsp1
2





Fc(t=0) = 2000

Fl(t=0) = 10807.5− 0.2011θ1 − 38.178θ1 − 0.00796θ4

(θ1, θ2) ∈ CRsp1
3





Fc(t=0) =
23376(θ1−3.487)

θ1
Fl(t=0) = 0

(θ1, θ2) ∈ CRsp1
4





Fc(t=0) =
23376θ2

1+θ1(−3.495·1010θ2−24000θ3+9.889·1012)+θ2×109(1.38θ2−1.38θ4−251)+3.913×1011θ4−3.95×1013

θ2
1+3.318×109θ2

2−1.878×1012θ2+2.658×1014

Fl(t=0) = 0

(θ1, θ2) ∈ CRsp1
5





Fc(t=0) =
23376θ1−24000θ3+2496

θ1

Fl(t=0) =
−0.2011θ2

1+θ1(−446.31θ2−0.00796θ4+126309)+θ2(458.24θ3−47.66)−129680θ3+13486.7
θ1

(θ3 = 1.6, θ4 = 325)

∧





(θ1, θ2) ∈ CRsp2
1





Fc(t=0) = 2000

Fl(t=0) = 10807.5− 0.2011θ1 − 38.178θ1 − 0.00796θ4

(θ1, θ2) ∈ CRsp2
2





Fc(t=0) =
23376(θ1−3.487)

θ1
Fl(t=0) = 0
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Table A3. Candidate solutions for MMA CSTR problem.

Fl λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

1 125θ6 − 124 0 0 0 0 0 0 0 0 0 0

2 0.4 −0.0158237θ2 +
0.016θ6 − 0.0000512 0 0 0 0 0 0 0 0 0

3 0 0 0.0158237θ2 − 0.016θ6 0 0 0 0 0 0 0 0
4 −124θ2 0 0 0 −2θ6 0 0 0 0 0 0
5 62.5− 124θ2 0 0 0 0 0 0 0 2θ6 − 1 0 0

CR2 =





0 ≤ θ3
0 ≤ θ4
0 ≤ θ5 ≤ 5
0.0032 + 0.988θ2 ≤ θ6
θ6 ≤ 0.5
0 ≤ θ7 ≤ 0.05
0 ≤ θ8 ≤ 300





θ1 = 1.87695









0.42 ≤ θ2 ≤ 0.5
0.00113θ2 + 0.0000457

√
θ2 + θ3 ≤ 0.05

4.6722
√

θ2 + θ4 ≤ 303.03





0 ≤ θ2 ≤ 0.42
θ3 ≤ 0.05
θ4 ≤ 300

0.0000243
√

θ1
2θ2 + 0.00113θ2 + θ3 ≤ 0.050





{
θ4 + 2.489

√
θ2θ1 ≤ 303.03

θ2 ≤ 0.5









1.48
θ2
1

< θ2

1.72 < θ1 < 1.877

{
1.87695 ≤ θ1 ≤ 5

0.0002319θ2
1 + 0.446 < 8.8528·10−16

√
6.864× 1022θ4

1 + 2.645× 1026θ2
1 + θ2




0 ≤ θ1 ≤ 1.72

0.0002319θ2
1 + 0.446 < 8.8528·10−16

√
6.864× 1022θ4

1 + 2.645× 1026θ2
1 + θ2

θ4 ≤ 300



1.72 < θ1
0.0002319θ2

1 + 0.446 < 8.8528·10−16
√

6.864× 1022θ4
1 + 2.645× 1026θ2

1 + θ2
θ2 ≤ 1.48

θ2
1

θ3≤0.05





8.8528 · 10−16
√

6.864× 1022θ4
1 + 2.64509× 1026θ2

1 + θ2 ≤ 0.0002319θ2
1 + 0.446









1.877 < θ1 ≤ 5
θ2 > 1.48

θ2
1

θ4 + 2.489
√

θ2θ1 ≤ 303.03

{
0 ≤ θ1 < 1.879
θ4 ≤ 300

θ2 ≤ 1.48
θ2
1





{
1.87 < θ1 ≤ 4.989
θ4 ≤ 300




θ1 > 4.989
40280.2−16144.7θ1

θ2
1

+ 1617.74 ≤ θ2

(A1)
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