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Ocular inflammation imposes a high medical burden on patients and substantial costs on the health-care systems that mange these
often chronic and debilitating diseases. Many clinical phenotypes are recognized and classifying the severity of inflammation in an
eye with uveitis is an ongoing challenge. With the widespread application of optical coherence tomography in the clinic has come
the impetus for more robust methods to compare disease between different patients and different treatment centers. Models can
recapitulate many of the features seen in the clinic, but until recently the quality of imaging available has lagged that applied in
humans. In the model experimental autoimmune uveitis (EAU), we highlight three linked clinical states that produce retinal
vulnerability to inflammation, all different from healthy tissue, but distinct from each other. Deploying longitudinal, multimodal
imaging approaches can be coupled to analysis in the tissue of changes in architecture, cell content and function. This can enrich
our understanding of pathology, increase the sensitivity with which the impacts of therapeutic interventions are assessed and
address questions of tissue regeneration and repair. Modern image processing, including the application of artificial intelligence, in
the context of such models of disease can lay a foundation for new approaches to monitoring tissue health.

   

  Contribution to the field

There is an ongoing need for objective measures of disease, which is especially pressing in chronic persistent conditions such as
uveitis, whose severity may fluctuate and whose treatment may extend over many years. A review of different approaches to
scoring argues that increased synthesis of information from different modalities has the potential to improve the specificity with
which the state of tissue is defined. This would lead to improvements in understanding of the disease process and increased
sensitivity to recognizing changes caused by therapeutic intervention.

   

In review



  

Quantitative assessment of experimental ocular inflammatory disease 1 

 2 

Lydia J. Bradley1, Amy Ward1, Madeleine C.Y. Hsue1, Jian Liu2, David A. Copland2, Andrew 3 
D. Dick1,2,3 and Lindsay B. Nicholson1* 4 

 5 

1School of Cellular and Molecular Medicine, University of Bristol, United Kingdom. 6 

2Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, 7 

United Kingdom. 8 

3Institute of Ophthalmology and the National Institute for Health Research Biomedical Research 9 

Centre, Moorfields Eye Hospital and University College London, London, United Kingdom. 10 

* Correspondence:  11 
Lindsay B. Nicholson 12 
l.nicholson@bristol.ac.uk 13 

Keywords: Uveitis, EAU, OCT, Image processing, Automated analysis. 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

In review



  Quantitative assessment of EAU 

 
2 

This is a provisional file, not the final typeset article 

1 Abstract 27 

Ocular inflammation imposes a high medical burden on patients and substantial costs on the health-28 
care systems that mange these often chronic and debilitating diseases. Many clinical phenotypes are 29 
recognized and classifying the severity of inflammation in an eye with uveitis is an ongoing 30 
challenge. With the widespread application of optical coherence tomography in the clinic has come 31 
the impetus for more robust methods to compare disease between different patients and different 32 
treatment centers. Models can recapitulate many of the features seen in the clinic, but until recently 33 
the quality of imaging available has lagged that applied in humans. In the model experimental 34 
autoimmune uveitis (EAU), we highlight three linked clinical states that produce retinal vulnerability 35 
to inflammation, all different from healthy tissue, but distinct from each other. Deploying 36 
longitudinal, multimodal imaging approaches can be coupled to analysis in the tissue of changes in 37 
architecture, cell content and function. This can enrich our understanding of pathology, increase the 38 
sensitivity with which the impacts of therapeutic interventions are assessed and address questions of 39 
tissue regeneration and repair. Modern image processing, including the application of artificial 40 
intelligence, in the context of such models of disease can lay a foundation for new approaches to 41 
monitoring tissue health. 42 

 43 

2 Contribution to the field 44 

There is an ongoing need for objective measures of disease, which is especially pressing in chronic 45 
persistent conditions such as uveitis, whose severity may fluctuate and whose treatment may extend 46 
over many years. A review of different approaches to scoring argues that increased synthesis of 47 
information from different modalities has the potential to improve the specificity with which the state 48 
of tissue is defined. This would lead to improvements in understanding of the disease process and 49 
increased sensitivity to recognizing changes caused by therapeutic intervention. 50 

 51 

3 Introduction 52 

Ocular inflammation is an important medical concern with a wide range of manifestations from the 53 
easily treatable to sight threatening. It arises both as an ocular specific condition and in association 54 
with systemic disease and it manifests as more than 30 defined uveitic phenotypes. The pathogenesis 55 
is complex and multifactorial and there is a lively debate as to the relative contribution of subclinical 56 
infection, autoinflammation and autoimmunity (Lee et al., 2014; Forrester et al., 2018). Conventional 57 
approaches to imaging do not distinguish between these different causes. 58 

Animal models of uveitis are often autoimmune (e.g. experimental autoimmune uveitis; EAU), 59 
inspired in the mouse by early work identifying susceptible strains (Caspi et al., 1988; Caspi, 2010) 60 
and used widely to probe important aspects of immune function including tolerance (Lin et al., 2005; 61 
Lee and Taylor, 2015), regulation (Kerr et al., 2008b; Wang et al., 2014), microbiome (Horai et al., 62 
2015), lymphocyte dynamics (Boldison et al., 2014) and macrophage/monocyte function (Raveney et 63 
al., 2009). But other models of ocular inflammation are also important, including endotoxin induced 64 
uveitis (EIU) (Forrester et al., 1980; Chu et al., 2016a; Bell et al., 2020) and primed mycobacterial 65 
uveitis (PMU) (Pepple et al., 2015). Ocular infectious disease can also be studied and has proven to 66 
be an informative model of inflammation (Zinkernagel et al., 2009; Zinkernagel et al., 2012; 67 
Zinkernagel et al., 2013). 68 
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Over the last 15 years, techniques for imaging the mouse retina have advanced substantially, first 69 
with fundal photography, acquired by topical endoscopic fundal imaging (TEFI) (Paques et al., 2007; 70 
Copland et al., 2008; Xu et al., 2008) facilitating clinical grading by individuals blinded to the origin 71 
of the images. Then followed by adaptation of clinical tools (Chu et al., 2016a) and development of 72 
the Micron system for imaging rodent eyes (Phoenix technologies, CA). These advances have made 73 
acquisition of experimental image data more accessible and routine (Chu et al., 2013; Chu et al., 74 
2016a; Zhong et al., 2016; Chen and Caspi, 2019a). The application of optical coherence tomography 75 
(OCT) to the mouse eye adds new information on changes deep in the tissue. The eye offers unique 76 
advantages for imaging studies of the autoimmune process in a target tissue, permitting serial 77 
assessment, and sophisticated quantification of different parameters of inflammation that go beyond 78 
more general clinical scores used in models such as experimental autoimmune encephalomyelitis.  79 

Advances in image processing that have been developed in patient populations, can also find 80 
application in experimental studies. There is potential for automatic segmentation of structures (in 81 
which the boundaries between, for example, different layers of the retina are identified in an 82 
unsupervised process), quantification of infiltration and disease classification by machine learning, 83 
which can be used to support unsupervised clinical assessment (Abramoff et al., 2010; 84 
Anantrasirichai et al., 2014). This is seen in the recent application of deep learning to EAU (Sun et 85 
al., 2020). Alternative powerful technologies are also available; using bioluminescent reporters, can 86 
delineate sequential cell population specific patterns of infiltration (Gutowski et al., 2017; John et al., 87 
2020), and multi-optical imaging approaches can produce data on phenotype and the spatial 88 
relationship between different cell types (Radtke et al., 2020). Objective measurements, that provide 89 
a more granular multi-modal analysis of the state of the tissue, can then form the basis for 90 
quantifying the impact of treatment on ocular disease not limited to a single time-point but integrated 91 
across a longer disease course. 92 

 93 

4 Ocular tissue and inflammation 94 

EAU is often studied with a focus on the acute inflammation that occurs with the explosive influx of 95 
immune cells that flood into the tissue in the first wave of clinical disease. But it has been apparent 96 
for a number of years (Shao et al., 2006; Kerr et al., 2008a) that it can also be used to develop 97 
insights into the processes of persistent disease and tissue remodeling. For example, memory cells 98 
that reside in the bone  marrow are implicated in chronic retinal degeneration (Oh et al., 2011) and 99 
persistent inflammation can lead to retinal angiogenesis (Chen et al., 2012). In both mouse 100 
(Kielczewski et al., 2016) and human (Epps et al., 2020), chronic disease can drive the development 101 
of ectopic lymphoid like structures and is accompanied by changes in the other lymphocyte 102 
populations and vascular remodeling (Chen et al., 2012; Boldison et al., 2014). The ocular tissue can 103 
therefore exist in a minimum of four well demarcated states (Fig. 1).  104 

____> Fig 1 here 105 

Healthy tissue resists insult and maintains normal visual function. In the EAU model, there are a 106 
minimum of three non-healthy states, which correlate with changes in immune cell content and 107 
vascular function (Kerr et al., 2008a). Vulnerable tissue may be in the prodromal phase of EAU, at 108 
peak of disease, with active infiltration by many different leukocytes, or vulnerable but to a greater or 109 
lesser extent recovered, which state is described as post-peak. It is possible to observe experimentally 110 
that the pre-peak state can resolve to a state of health, or progress to peak disease. Tissue can reach 111 
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peak disease from either the pre-peak state or as a relapse from the post-peak state (Diedrichs-112 
Möhring et al., 2018). But it is unknown whether from peak or post-peak, tissue can ever return to a 113 
healthy state. In the broader context, a useful framework for these changes is found in the extensive 114 
literature describing the development and resolution of inflammation, but here too, the question of 115 
active resolution in the tissue and the mechanisms by which it occurs remains controversial (Weavers 116 
and Martin, 2020). While this review focuses studies in the eye, it is evident that other diseases and 117 
disease models, such as arthritis, can be fitted into a similar framework (Jones et al., 2016). 118 

One essential tool for advancing understanding of these different tissue states is a rigorous method of 119 
clinical assessment that separates healthy tissue from the vulnerable and that also distinguishes 120 
between different states of the vulnerable tissue. Such a scheme could then complement studies 121 
describing gene expression in different forms of ocular inflammation (Heng et al., 2019; Bell et al., 122 
2020). Recent advances in the range and quality of techniques that can be applied to quantify ocular 123 
inflammatory disease make such objective and transferrable assessments increasingly feasible. 124 

5 Assessment of ocular inflammation 125 

The measurement of inflammatory activity is a core objective for clinical studies of uveitis and has 126 
inspired work that seeks to improve its ability to discriminate between lower levels of disease as well 127 
as improving its sensitivity (Montesano et al., 2018). Progress in this area can also inform animal 128 
studies. 129 

5.1 Clinical Scoring 130 

In human eye disease, improvements in imaging have driven diagnostic sensitivity and specificity 131 
(Ravin, 1999; Marchese et al., 2020). Scoring systems serve as tools for categorizing disease activity 132 
into ordinal groups and as a convenient measure of clinical outcome and directional change. The first 133 
aqueous and vitreous inflammation scoring systems based on ophthalmic observation of cell counts 134 
in patients were published in 1959 (Hogan et al., 1959; Kimura et al., 1959), but consensus 135 
recommendations did not emerge until 2005, under the umbrella of the Standardization of Uveitis 136 
Nomenclature (SUN) workshop (Trusko et al., 2013). For some diseases, for example Behçet’s 137 
disease, specific scoring systems have proven useful is assessing treatment response (Kaburaki et al., 138 
2014). It is a recognized concern with scoring systems that there is a tension between precision and 139 
simplicity. Levels of interobserver agreement remain modest and non-linearity in the scaling can lead 140 
to poor resolution of differences in disease especially at lower levels of inflammation (Davis et al., 141 
2010; Hornbeak et al., 2014; Denniston et al., 2017). The use of digital images, where biological data 142 
is quantified as pixel values, expands the possibilities for analysis by computer imaging (Abramoff et 143 
al., 2010) for example for automated grading of vitreous haze (Passaglia et al., 2018). Scoring of 144 
clinical disease in EAU has evolved from early approaches using slit-lamp aided visualization and 145 
semi-quantitative histological scoring to more sophisticated scoring approaches based on blinded 146 
assessment of fundal photographs (Agarwal and Caspi, 2004; Copland et al., 2008; Xu et al., 2008; 147 
Agarwal et al., 2012; Chen and Caspi, 2019a) and most recently using machine learning . Scoring can 148 
be on a simple ordinal scale (0-4) or can categorize disease into three indicators of inflammation and 149 
one of structural damage with inflammation and structural damage reported independently or as a 150 
summary score (0-5) calculated as the total or average score for the eye (Xu et al., 2008; Copland et 151 
al., 2012; Boldison et al., 2014) (Table 1). When applied as a summary score, this approach can be 152 
insensitive to differences in aspects of the underlying pathology, for example in Fig. 2, the two 153 
images, although clearly different, received the same summary clinical score.  154 

____> Table 1 here 155 
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Complementing photography is optical coherence tomography (OCT). Developed in the 1990s 156 
(Huang et al., 1991; Drexler et al., 2014) it has rapidly become the state of the art for non-invasive 157 
retinal imaging. OCT is an interferometric technique providing depth resolved cross sectional images 158 
of the retina, known as B-scans. In normal eyes the vitreous is optically transparent, retinal layers 159 
show different degrees of backscatter, and in humans the RPE is one of the most hyper-reflective 160 
layers. Modern OCT in humans can also go some way to visualizing the choroid beneath the RPE 161 
(Mrejen and Spaide, 2013). OCT can resolve retinal substructure and its vasculature, can be 162 
important in the diagnosis and image guided management of human uveitis and can capture changes 163 
in the state of the tissue through time in EAU (Chen et al., 2013; Chu et al., 2013; Yu et al., 2013; 164 
Chu et al., 2016a). 165 

____> Fig 2 here 166 

5.2 Ocular tissue analysis 167 

In contrast to the wealth of sophisticated imaging that can be directed at the human eye in uveitis, 168 
access to human tissue is severely limited. Enucleation of the globe in uveitis is rare and is usually 169 
from individuals with long-standing disease (Epps et al., 2020). But in the EAU model, histology was 170 
the first accepted standard for disease assessment (Nussenblatt et al., 1980; Kozak et al., 1981; 171 
Mochizuki et al., 1985). Immunohistochemistry and immunofluorescence of retinal tissue revealed 172 
the profound structural disruption that accompanies acute inflammation, and was used, for example, 173 
to show how macrophages reciprocally alter their expression of CD68 and arginase-1 during the 174 
persistent (post-peak) phase of uveitis (Chen et al., 2012). For higher dimensional analysis of cell 175 
infiltrate, investigators have used multiparameter flow cytometry which can quantify many different 176 
cell populations (Thurau et al., 2004; Kerr et al., 2008b; Luger et al., 2008). Sampling the cell 177 
infiltrate at different time points has been instrumental in demonstrating important changes in the 178 
relative frequencies of CD4 T regulatory cells (Silver et al., 2015) and CD8 cells (Boldison et al., 179 
2014). In EAU this is strong evidence that at the cellular level as well as in serial imaging studies, the 180 
tissue and the immune infiltrate change and adapt through time. Developing improved quantitative 181 
methods to assess tissue health in EAU offers more sensitive and specific approaches to analyze the 182 
impact of therapies for autoimmunity and inflammation. 183 

5.3 Quantitative assessment of EAU 184 

Using formal criteria, EAU can be assessed semi-quantitatively, but interobserver disagreement and 185 
subjectivity limits the usefulness of direct comparison between results from different labs and even 186 
individual researchers (Xu et al., 2008). As with human clinical graders, experience is required to 187 
achieve the highest levels of interobserver agreement (Li et al., 2017b). Employing contemporary 188 
technology has the capacity to improve on these limitations. In addition, in EAU as in other medical 189 
images, these can be annotated, with the results of end point tissue analysis added to the meta-data 190 
associated with the image. This enriches their interpretation and provides a resource that can be 191 
applied to other studies. Pooling data from animal cohorts at selected timepoints runs the risk of 192 
obscuring subtle patterns, and overweighting the importance of the certain trends. This can be 193 
countered by the use of analysis that exploits modern image processing, with its scope for a higher 194 
degree of quantitation (Dysli et al., 2015; Li et al., 2017b; Choi et al., 2018b). A critical element of 195 
complementary analysis is therefore the use of non-invasive techniques and computational means to 196 
maximize information retrieved from the data. 197 

Fundus photography, for example obtained by TEFI, correlates well with disease scores from 198 
histopathological analysis (Copland et al., 2008) but the images produce a 2D projection of 3D semi-199 
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transparent biological tissue. Spatial information is only available in two dimensions and artifacts are 200 
introduced by flattening depth information onto a plane.  More accurate measures of infiltrate, 201 
oedema and structural changes, that are important manifestations of disease, can be obtained with 202 
OCT (Chen et al., 2013; Chu et al., 2013). Because OCT produces a depth profile of different 203 
features, it can be more sensitive than 2D fundus imaging in monitoring the appearance and 204 
development of pathological changes. In particular, cross sectional images are more sensitive to early 205 
disease because they can visualize small amounts of infiltrate around the optic nerve, and measure 206 
changes in optic nerve diameter and retinal thickness due to inflammatory oedema (Chen et al., 2013; 207 
Dysli et al., 2015; Li et al., 2017b; Chen and Caspi, 2019a). 208 

5.4 Aqueous and Vitreous assessment 209 

A defining characteristic of uveitis is cellular infiltrate, and grading is an important quantitative 210 
metric in preclinical animal model research. In human disease, anterior uveitis produces ‘flare’ which 211 
can be categorized by laser flare photometry and which correlates well with conventional clinical 212 
grading (Holland, 2007; Agrawal et al., 2016) while in the vitreous, ‘haze’  is an accepted and 213 
clinically validated proxy for inflammatory status in patients (Passaglia et al., 2018). Moreover, these 214 
changes have a marked impact on visual acuity in humans and so are biologically and clinically 215 
relevant outcome measures (Davis et al., 2010). 216 

In OCT, cells in either chamber appear as hyperreflective dots, whose profile is a function of many 217 
variables (Ruggeri et al., 2007; Keane et al., 2015; Zarranz-Ventura et al., 2016). Cells and exudate 218 
incrementally reduce the optical transparency of the ocular media leading to the aqueous and vitreous 219 
becoming inhomogeneous as disease severity increases. These changes reduce the contrast of object 220 
boundaries and the results of qualitative or quantitative image analysis lose precision. 221 

Because of difficulty in imaging the anterior chamber of small eyes, literature for OCT based cell 222 
counting in these models is relatively sparse (Pepple et al., 2016). However, automated counts of 223 
absolute cell numbers have been obtained with excellent correspondence to manual image counts. 224 
This approach has been developed into a fully automated pipeline for cell counting in volumetric 225 
OCT images, achieving 98% congruence to manual slit lamp counts. Importantly, the subjective 226 
manual element of the segmentation step was eliminated. The automated segmentation step involved 227 
removal of anatomical structures connected to image boundaries (Choi et al., 2018a). Compared with 228 
counts from histological sections, OCT tended to undercount, which was attributed to insensitivity to 229 
cell clumps, sediments and exclusion of the extremities of the iris interface (Pepple et al., 2016). It 230 
may also be contributory that histology is unaffected by overlying opacities, whereas OCT is 231 
vulnerable to signal degradation. However, histology introduces artifacts and postmortem changes 232 
that themselves affect tissue measurement (Pepple et al., 2016).  233 

Loss of precision becomes more evident when imaging the vitreous, where the optical pathway 234 
traverses deeper through affected media. Further complicating the analysis of the rodent vitreous, is 235 
the anatomical vestige of the hyaloid artery (Smith et al., 2002; Ruggeri et al., 2007), protruding 236 
upwards from the optic disc towards the lens. It confuses the vitreoretinal boundary and can appear 237 
somewhat discontinuous, with hyperreflective regions that are subjectively indistinguishable from 238 
cell clusters. 239 

Automated counting algorithms usually require a preceding segmentation step, that defines a 240 
boundary for the area or volume of interest. Variations in signal quality and the ambiguity of 241 
discontinuous image features frustrate the development of accurate, fully automated methods of 242 
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rodent image segmentation and analysis. Quantification of changes in the vitreous has largely been 243 
restricted to human images, and global signal parameters, as opposed to absolute cell counts.  244 

To account for signal strength variations in human OCT images, the average intensity of the 245 
segmented vitreous compartment can be indexed relative to a hyperreflective reference layer such as 246 
the RPE, providing a relative intensity ratio. These ratios correlate moderately with clinical vitreous 247 
haze scores, along with other surrogates of disease such as retinal thickness (Keane et al., 2014; 248 
Zarranz-Ventura et al., 2016). This process has been fully automated using rule-based algorithms for 249 
segmentation, reducing subjectivity. The same operation was also performed using a textural 250 
descriptor of the vitreous, which was marginally better correlated to clinical scores than vitreous 251 
intensity (Keane et al., 2015). These operations were performed on 2D datasets, obtaining an 252 
averaged intensity ratio based on several B-scans and data analyzed in 3D may potentially offer 253 
further improvements. 254 

Since the scan region is much smaller than the ocular globe, one consideration is the selection of a 255 
representative and informative region of interest (ROI) that must be equivalent between scans and 256 
subjects. Within human images, landmarks such as the macula can be located automatically and used 257 
as a central anchor point for region boundary positioning (Keane et al., 2015). In rodents, the optic 258 
disc is an obvious landmark choice, but the presence of the hyaloid remnant, particularly in severely 259 
diseased eyes warrants additional steps to remove its influence. Recently, an automated method of 260 
quantifying vitreous inflammation in clinical fundus photographs has been suggested (Davis et al., 261 
2010; Passaglia et al., 2018) 262 

5.5 Retinal layers 263 

OCT of the healthy retina produces good definition of the different layers of light sensitive tissue. In 264 
uveitis it can resolve and localize lesions and pathologies, and identify vasodilation and perivascular 265 
exudate (Chen et al., 2013; Chu et al., 2013). Standard clinical OCT has an axial resolution of less 266 
than 4 microns, which can produce images with near histological detail. Thickness is ascertained 267 
from OCT images by measuring the distance between two boundaries of choice (Fig 3). Before 268 
measurements can be taken, the layers must be defined. 269 

____> Fig 3 here 270 

Techniques for segmentation to define different retinal layers have progressed through manual, semi-271 
automated and fully automated protocols, with work on human data leading rodent OCT imaging. 272 
Both rule-based algorithms and learner-based approaches have been applied to the problem and new 273 
approaches are under active investigation.  Retinal thickness can be measured by OCT absolutely, 274 
using assumptions such as an average tissue refractive index (Gadjanski et al., 2011), or by fold 275 
change compared to pre-disease measurements (Li et al., 2017b). Both are in high agreement with 276 
histological measurements (Gadjanski et al., 2011; Chen et al., 2013; Chu et al., 2013; Berger et al., 277 
2014; Li et al., 2017b). Several schemes exist for displaying changes in thickness. One that is 278 
commonly used shows thickness at different distances from the optic nerve head (Supplementary Fig. 279 
1). 280 

Rule-based methods execute a pre-programmed set of instructions, designed with the expected 281 
properties of the image and the desired features in mind. Many image properties can be analyzed, 282 
including intensity variation, geometric contours and texture (Ishikawa et al., 2005; Mujat et al., 283 
2005; Mishra et al., 2009; Kajic et al., 2010; Gonzalez-Lopez et al., 2019). The number of segmented 284 
layers defined varies between four and nine, and depends on the approach, with the most successful 285 
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techniques to date being learner models (Garvin et al., 2009; Kajic et al., 2010; Kajic et al., 2012; 286 
Lang et al., 2013; Anantrasirichai et al., 2014; Venhuizen et al., 2017) 287 

OCT offers the potential of assessing layer deformation without the artefacts that can be introduced 288 
by tissue fixation, sectioning and staining (Spaide and Curcio, 2011). Mechanical deformation can 289 
also introduce ambiguous artifacts, with likeness to retinal detachments (Gadjanski et al., 2011), and 290 
congenital abnormalities in the retina may also confound the definition of anatomical normality 291 
(Mattapallil et al., 2012). The literature pertaining to automated quantitation of retinal structure is 292 
more extensive than that related to infiltrate, because retinal layer changes are associated with a wide 293 
variety of ocular diseases (Srinivasan et al., 2006; Fischer et al., 2009). The laminated reflectance 294 
profile of the retina’s architecture also lends itself to image segmentation and the measurement of 295 
quantitative indices such as layer thickness and geometric descriptors. Protocols for automatic layer 296 
segmentation developed for human studies have been tested in different mouse strains. These 297 
performed well when assessing the inner retinal layers, but were less successful in defining the 298 
murine RPE, whose location displaced distally into the sclera (Dysli et al., 2015). 299 

Longitudinal studies of retinal thickness have revealed details about the kinetics of disease 300 
progression, with respect to other important manifestations of pathology (Chen et al., 2013; Li et al., 301 
2017b). In the pre-peak to peak phase of disease, retinal thickness increases rapidly due to 302 
inflammatory oedema, correlating with inflammatory infiltrate, measured longitudinally by OCT and 303 
confirmed by histology (Gadjanski et al., 2011; Li et al., 2017b). In the post-peak resolution phase, 304 
the clearance of exudate reveals features on OCT with greater clarity, such as infiltrate, photoreceptor 305 
atrophy, retinal folds and choroiditis. (Chen et al., 2013). Photoreceptor damage persists beyond the 306 
peak phase of disease as retinal oedema is slower to resolve than inflammatory infiltrate. When the 307 
swelling does subside, the retina thins to below pre-disease levels because of photoreceptor loss. 308 
OCT confirms that neither infiltrate or retinal thickness returns to baseline in late disease or even 309 
after resolution is complete (Copland et al., 2008; Gadjanski et al., 2011; Chen et al., 2013). 310 
Therefore, quantitative directional changes and relative rates of change between retinal thickness and 311 
inflammatory infiltrate can provide an additional metric for disease activity.  312 

In severe uveitis, retinal layers are obscured by opacification of the vitreous and aqueous due to 313 
infiltrate and proteinaceous exudate (Chen et al., 2013) which presents a challenge for scoring 314 
systems, that must be robust to substantial signal variation and may need to incorporate metrics of 315 
opacity into the model as proxies of inflammation.  316 

5.6 Vasculature  317 

Important changes in the vasculature occur in uveitis, including ischemia, neovascularization and 318 
retinal/choroidal vasculitis (Dingerkus et al., 2019). In disease models these are assessed less 319 
commonly than structural changes, but as in humans they are often interrogated by angiography. 320 
Confocal scanning laser ophthalmoscopy (SLO) can be coupled to fundus fluorescein angiography 321 
(FFA) to quantify vessel diameter and leakage in EAU. When average vascular dilation was 322 
measured immediately prior to sacrifice and histology, major vessel diameter was well correlated 323 
with retina-choroid thickness and with clinical and histological scores. This indicated that 324 
inflammatory vasodilation of superficial vasculature was a novel measure of EAU severity (Li et al., 325 
2017b). Complementary to dye-based angiography are OCT based methodologies. Vascular dilation 326 
and perivascular exudate attributed to retinal vasculitis can be localized to specific retinal layers 327 
during the course of EAU (Chen et al., 2013; Chen and Caspi, 2019a) and OCT has been used for 328 
imaging vasculature disturbances, such as choroiditis and retinal vasculitis (Marchese et al., 2020). 329 

In review



  Running Title 

 
9 

Blood flow can be visualized and depth resolved (Alnawaiseh et al., 2016)  using OCT angiography 330 
(OCTA) and this has been used to assess retinal microvascular changes (Chu et al., 2016b; Kim et al., 331 
2016).  332 

Many methods of segmenting retinal blood vessels from fundus photographs have been published 333 
(Moccia et al., 2018). A much smaller number of approaches have been successfully devised using 334 
OCT images, which include the use of multimodal imaging (corresponding fundus photographs) and 335 
learner models (Hu et al., 2012; Rodrigues et al., 2013). In humans, segmentation of fine capillary 336 
networks has been achieved in OCTA enface images (Zhu et al., 2019) while in mice segmentation of 337 
retinal vasculature using OCTA has been reported for longitudinal monitoring of angiogenesis (Li et 338 
al., 2017a). Current advances applying deep learning to vessel segmentation continue to improve the 339 
performance of these methods and this has been helped by the public access to data sets (Ma et al., 340 
2021).  341 

5.7 Functional  342 

As EAU progresses, electroretinogram (ERG) amplitudes change. There is a dramatic reduction in 343 
function (a and b wave), that accompanies early disease (Chen and Caspi, 2019b), presenting before 344 
morphologic changes. These findings indicate that functional loss could be mediated by 345 
inflammation rather than just physical damage, and that retinal function is potentially a sensitive 346 
early indicator (Chen et al., 2013; Li et al., 2017b). However, photoreceptor damage continues while 347 
inflammation is receding and in the post-peak phase, ERG amplitudes are correlated with OCT 348 
measures of retinal thickness. As swelling diminishes, photoreceptor atrophy becomes apparent and 349 
results in an overall retinal thinning compared to baseline. Neither retinal thickness nor functionality 350 
ever fully recover (Chen et al., 2013; Chen and Caspi, 2019b).   351 

Taken together, multimodal quantitative measures can provide information on perceptually subtle, 352 
but biologically significant changes whose quantification would aid clinical grading and pre-clinical 353 
research. 354 

6 Examples of multimodal measurement 355 

A multimodal approach to assessing uveitis is outlined in Fig. 4. EAU was induced by the transfer of 356 
pathogenic autoantigen reactive T cells. Sequential imaging of all eyes was carried out by fundal 357 
photography and OCT. B-scans were segmented manually and measured by an observer blinded to 358 
treatment conditions. Measurements of retinal thickness were made at baseline from all eyes (n=11) 359 
and these were compared as a Z-score expressing the magnitude of change in thickness on day 13 360 
color coded as the number of standard deviations from baseline (Fig. 4D).  Fig. 4A-C shows images 361 
from a representative single eye at baseline and day 13. The retinal photographs (Fig. 4A) show that 362 
at day 13 there is an enlarged optic nerve, sheathing of the vessels due to cell infiltration (white 363 
arrow) and infiltrates in the tissue (black arrow). B-scans (Fig. 4B) through the optic nerve, were 364 
assembled from multiple averaged frames and are displayed with the accompanying 100 micron scale 365 
bars that were used to generate measurements of the retinal thickness following manual segmentation 366 
using ImageJ (Schneider et al., 2012). At day 13 it is easy to see objects in the vitreous around the 367 
optic nerve. The 3D image (Fig. 4C) is prepared from 512 sequential B scans, processed using code 368 
in MATLAB (Natick, Massachusetts: The MathWorks Inc) and ImageJ (Anantrasirichai et al., 2014) 369 
adapted for use with murine images and rendered using ImageJ (1.53 3D viewer plugin). These 370 
pictures give a better appreciation of the spatial distribution of the vitreal infiltrate and can be used to 371 
make a semi-quantitative estimate of the degree of vitreal infiltration. 372 
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____> Fig 4 here 373 

Following changes in disease scores through time, it is useful to display the aggregate data from the 374 
multiple images, and this has been used to produce a color-coded map of the retina, with changes 375 
normalized to baseline scans (usually on day 0) and scaled by Z-score. Retinal maps are also useful 376 
when comparing the pattern of pathological change between different disease models. For example, 377 
compare Fig. 4D, which shows that at day 13 the major impact of uveitis is found in the vitreous and 378 
the optic nerve with Fig. 5 which shows the does dependent effect of intra-vitreal instillation of 379 
paraquat, a model of oxidative stress, in C57BL/6 mice. This induces neuronal degeneration which 380 
varies with stain (Cingolani et al., 2006) and in this case particularly impacts the inner retina, seen as 381 
a negative Z-score increasing in magnitude with dose. But quantitative analysis also reveals that at 382 
higher concentrations of paraquat, this is accompanied by an expansion of the outer segments, due to 383 
inflammation. This finding, using multimodal analysis is in agreement with a previous report 384 
showing more pronounced TUNEL-positive cells in the inner retina than in the outer retina of 385 
C57BL/6 mice treated intravitreally with paraquat (Cingolani et al., 2006). 386 

____> Fig 5 here 387 

6.1 Opportunities for automation 388 

Machine learning has made an impact in human clinical care in recent years because of its ability to 389 
reach expert-level diagnosis. The automated analysis of ocular disease has led the way in carrying 390 
these methodologies into the clinic, but they have been less extensively utilized in disease models 391 
(Liu et al., 2019; Faes et al., 2020).  392 

Images are inherently data rich because in theory each pixel can be regarded as a separate input 393 
parameter (Faes et al., 2020). This offers opportunities for uncovering novel aspects of pathological 394 
processes but also challenges, especially in assembling well annotated data sets that are large enough 395 
to avoid overparameterization when they are used to train classification algorithms in a machine 396 
learning framework. Advances in predictive statistical methods may in time alleviate the need for 397 
such extensive input data. One helpful approach, applied in OCT, is decoupling the methods for 398 
segmentation from artificial intelligence driven disease classification (De Fauw et al., 2018). This 399 
moves practice towards device-independent representation of the disease process, which may aid in 400 
comparison between studies carried out by different investigators. 401 

Recently the field has advanced with the application of a deep learning model to analyze photographs 402 
of the retinas of mice with EAU. Using a data set of images that was extended by data augmentation, 403 
disease images were divided into three categories and by applying deep learning methods 404 
(convolutional neural networks) the overall performance assessed by area under the receiver 405 
operating characteristic curve (AUC) when the model was applied to an external dataset of 33 images 406 
was approximately 0.90 (Sun et al., 2020). 407 

Another area of opportunity in multi-modal ocular imaging is the fusion of information from 408 
different modalities such as fundal photography and OCT (Mitchell, 2010; Dogra et al., 2017). Image 409 
fusion aims to yield a more complete, accurate and efficient account of an object by combining 410 
different visualizations together. Integrating this methodology into the assessment of experimental 411 
clinical disease will inform our ability to distinguish between different states of tissue health (Fig. 1). 412 

7 Conclusion 413 
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Persistent ocular inflammation is a significant and challenging clinical entity that is associated with 414 
long term changes in the retina and serious sight threatening complications (Dick et al., 2016). 415 
Experimental models of non-infectious and infectious ocular inflammation have been widely and 416 
successfully deployed. But fundamental insights regarding how tissue homeostasis is perturbed and 417 
how it might be restored are still needed (Epps et al., 2018). Such concerns are important in a much 418 
broader context than uveitis. Restoring complex tissues, damaged by persistent inflammation, to 419 
normal physiological function will have wide application. Multimodal and quantitative imaging of 420 
the eye, in an experimental context, has potential to advance our understanding of the kinetics, cell 421 
biology, transcriptomic and proteomic architecture of how this multifactorial process is regulated. By 422 
providing non-invasive techniques to probe the underlaying nature of the tissue, there is an 423 
opportunity for a more precise and comprehensive discrimination between different states that can be 424 
used to stratify information gleaned from detailed examination of the transcriptome and microbiome, 425 
multiparameter flow cytometry and proteomics. 426 

 427 

8 Table 428 

Table 1. Scheme for scoring clinical ocular inflammation. 429 

Score Optic disc Retinal vessels Retinal tissue 

infiltration 

Structural damage 

1 Minimal 

inflammation 

Cuffing: 1–4 mild  1–4 small lesions or 

1 linear lesion 

Retinal lesions or retinal 

atrophy involving 1/4 to 

3/4 of retinal area 

2 Mild inflammation Cuffing: >4 mild or 

1–3 moderate  

5–10 small lesions 

or 2–3 linear 

lesions 

Panretinal atrophy with 

multiple small lesions 

(scars) or ≤3 linear lesions 

(scars) 

3 Moderate 

inflammation 

Cuffing: >3 

moderate 

>10 small lesions or 

>3 linear lesions 

Pan-retinal atrophy with 

>3 linear lesions or 

confluent lesions (scars) 

4 Severe 

inflammation 

Cuffing: >1 severe  Linear lesion 

confluent 

Retinal detachment with 

folding 
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5 Not visible (white-

out or extreme 

detachment) 

Not visible (white-

out or extreme 

detachment) 

Not visible (white-

out or extreme 

detachment) 

Not visible (white-out or 

extreme detachment) 

A blinded observer assigns scores to retinal photographs for changes that relate to inflammation of 430 
the optic disc, retinal vessels and retinal tissue and a score for structural damage. These scores can 431 
then be summed independently (score of 0-20) or given as a summary score of the average of all 432 
features (score of 0-5). (Xu et al., 2008; Copland et al., 2012; Boldison et al., 2014). 433 

 434 

9 Captions for Figures 435 

Figure 1 Tissue states in ocular inflammation.  436 
Healthy ocular tissue is ‘immune-privileged’ and under low-level immunosurveillance. Specific 437 
(ocular antigen driven) and non-specific (extra-ocular inflammation) stimuli disturb this homeostasis 438 
and increase interactions across the blood retinal barrier making the tissue more vulnerable to the 439 
development of disease. In uveitis following active immunization, this starts with the prodrome (Kerr 440 
et al., 2008), which can resolve back to the healthy state. When the prodrome progresses to clinical 441 
EAU in immunocompetent animals, there is an influx of cells to a maximum (peak) followed by a 442 
reduction in immune cell content, which does not return to base line. The post-peak (in EAU 443 
described as secondary regulation) is distinguished from the pre-peak by changes in the relative 444 
proportion of different lymphocyte populations (CD4 T regulatory cells, CD8 T resident memory 445 
cells). There is currently no evidence that disease proceeds directly from pre-peak to post-peak, nor 446 
that eyes that have reached peak disease ever return to the normal healthy state. 447 

Figure 2. Clinical score can be insensitive to underlying pathology.  448 
Mouse eyes imaged using Micron IV with OCT (Phoenix technology group, CA). Left (A&C) and 449 
right (B&D) eyes assessed by fundal photography (A&B) and OCT (C&D). Retinal photographs 450 
scored in a set of images by an observer blinded to the treatment groups, both received the same 451 
summary clinical score. Scale bar 100 µm. 452 

Figure 3: OCT of the normal mouse retina delineates layers and allows retinal dimensions to be 453 
quantified. Scale bars are 100 microns and illustrate differences in axial and lateral resolution. GCL 454 
ganglion cell layer; IPL inner plexiform layer; INL inner nuclear layer; OPL outer plexiform layer; 455 
ONL outer nuclear layer; ELM external limiting membrane; IS/OS inner and outer segments; RPE 456 
retinal pigment epithelium (Dysli et al., 2015). 457 

Figure 4: Multimodal analysis of EAU.  458 
Mouse eyes were imaged at day 0 and day 13 after the induction of EAU and one representative 459 
image of the same eye is shown (A-C). Clinical disease can be assessed by photography (A), 460 
measurements of retinal thickness and optic nerve diameter at three points from the temporal, nasal 461 
and optic nerve regions of the OCT B-scans (B), 3D-reconstuction of retinal infiltrate (C) and 462 
summary data of retinal scores from all groups (D). Summary scores are assembled from 463 
unsupervised quantitative assessment of vitreal involvement, manual segmentation and measurement 464 
of inner and outer layer thickness and optic nerve diameter transformed and represented as Z-scores. 465 
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Figure 5: Changes in retinal thickness in mouse eyes following intra-vitreal paraquat instillation were 466 
measured on day 10. Images were visualized by OCT, manually segmented, and measured at three 467 
points in the temporal, nasal, and optic nerve regions. Measurements are expressed as positive and 468 
negative Z-scores relative to a PBS injected control group. Changes in the inner and outer layers are 469 
decoupled. 470 
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