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Abstract: Fabry-Perot (FP) etalons are used as filters and sensors in a range of optical systems.
The reflected and transmitted fields associated with an FP etalon have traditionally been predicted
by the Airy function, which assumes a plane wave illumination. FP etalons are, however, often
illuminated by non-collimated beams, rendering the Airy function invalid. To address this
limitation, we describe the angular Airy function which calculates the reflected and transmitted
fields for arbitrary illumination beams, using angular spectrum decomposition. Combined with
realistic models of the experimental illumination beams and detection optics, we show that
the angular Airy function can accurately predict experimental wavelength resolved intensity
measurements. Based on the angular Airy function, we show that the fundamental operating
principle of an FP etalon is as an angular-spectral filter. Based on this interpretation we
explain the asymmetry, broadening and visibility reduction seen on wavelength resolved intensity
measurements from high Q-factor FP etalons illuminated with focused Gaussian beams.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A Fabry-Perot (FP) etalon is an optical cavity formed between two parallel mirrors [1]. FP etalons
are typically illuminated with a collimated beam and used as optical wavelength filters [2]. They
are also illuminated with non-collimated beams for applications such as non-diffracting beam
generation [3], temperature sensing [4], and ultrasound sensing [5–7]. An accurate model of
such applications could be used to understand the performance of such systems, the fundamental
limits and even to calculate the optimal FP etalon design. For example, using a model to compute
the optimal mirror reflectivities of an FP etalon for spatially resolved ultrasound sensing [8].

A few models have been applied to predict the transmitted/reflected field from FP etalons
illuminated with non-collimated beams. The simplest model is the Airy function, which describes
the FP etalon based on its mirror reflectivities and optical cavity thickness [9]. However, the Airy
function assumes plane wave illumination and therefore is not accurate for applications using
non-collimated beams. This non-validity is clear when analysing wavelength resolved intensity
measurements, typically called the Interferometer Transfer Function (ITF), from a high Q-factor
FP etalon illuminated with focused Gaussian beams [10]. The Airy function fails to predict the
asymmetry, broadening and reduced peak transmissivity observed in those situations.

A previously reported ITF model was experimentally validated by comparing experimental
and modelled ITFs measured from a high Q-factor FP etalon illuminated with a focused Gaussian
beam [11]. The excellent agreement between experimental and modelled data was achieved not
only through rigorous modelling of the FP etalon but also through an accurate description of the
illumination beam and the impact of the detection optics. The fields reflected and transmitted
by the FP etalon were calculated by treating the FP etalon as a multilayer dielectric structure.
Therefore, the model requires knowledge regarding the thickness and refractive index of all layers
forming the FP etalon, including the mirrors. Unfortunately, in most situations, only the mirror
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reflectivities and optical cavity thickness of an FP etalon are known accurately, making use of
this model difficult.

A different approach to simulating FP etalons illuminated with non-collimated beams is to
extend the Airy function to simulate arbitrary beams [12,13] creating, what we refer to as, the
angular Airy function. When compared against the dielectric multilayer model mentioned above,
the angular Airy function has the advantage of describing the FP etalon based on only its mirror
reflectivities and optical cavity thickness. In this work, we generalize the angular Airy function
to calculate both the reflected and transmitted fields from an FP etalon. We used it to simulate an
experimental FP etalon based optical system using a description of the illumination beam and
detection optics representative of our experiment. This allowed us to experimentally validate the
angular Airy function, for the first time, by comparing experimental and modelled ITFs. Finally,
by analysing the transmitted fields predicted by the angular Airy function we explain the optical
characteristics of an FP etalon and we link that explanation to features measured in the ITF.

2. Model

We begin by explaining how to calculate the fields reflected and transmitted by an FP etalon using
the angular Airy function, given a particular illumination beam. In practice, the illumination
beam can be calculated using models representing the illumination optics [11] or, more simply,
the beam can be assumed to a have particular profile, such as a Gaussian beam [13].

The FP etalon itself is a form of multiple beam interferometer where beams undergoing varying
numbers of round trips between the mirrors interfere with each other. When illuminated by a
plane wave, light after each round trip can be treated as a geometric series, allowing the total
reflected and transmitted light to be evaluated as an infinite sum. Equations for the reflected and
transmitted fields derived in this manner are referred to as the Airy function and are given as [9]:
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where R1 and R2 are the reflectivities of the first and second mirrors respectively, N is the
complex refractive index of the cavity, h the cavity thickness, θ the polar plane wave direction of
propagation and λ is the light wavelength in vacuum. The ITF for plane wave illumination is
predicted by the square modulus of A(θ) in Eq. (1).

A beam is generally thought as a field distribution in space. By applying a Fourier transform
to the field complex amplitude spatial distribution in a plane, a field can be represented as a
distribution of plane waves propagating with different directions and complex amplitudes, i.e.,
as an angular spectrum of plane waves [14]. As an example, for an Gaussian beam in the focal
plane, the angular spectrum is given as:
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where F is the 2D Fourier transform, k is the wave number in the FP cavity (2πN/λ), θ and ϕ are
the polar and azimuthal angles, respectively, that specify the plane wave component direction of
propagation in the FP cavity and are related to the spatial frequencies (kx, ky) by (k sin(θ) cos(ϕ),
k sin(θ) sin(ϕ)), 2ω0 is the full width at 1/e2 maximum of the Gaussian intensity profile, x and y
are the Cartesian coordinates in the plane where the field is defined.

By assuming the illumination beam in its angular spectrum form, the Airy function can
be used to computed how each illumination plane wave component is reflected/transmitted
by the FP etalon. By applying this concept to all illumination plane wave components, the
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reflected/transmitted angular spectrum can be calculated [12,13]. We refer to this approach as
the angular Airy function and is defined as:

Êfp(θ, ϕ) = Êi(θ, ϕ)A(θ). (3)

The reflected/transmitted field distribution in space can be calculated with an inverse
Fourier transform of the reflected/transmitted angular spectrum [14]. Having calculated the
reflected/transmitted field, an additional step is required to compute the ITF. This step models
the detection optics and is required to account for spatial and/or angular filtering that it might
performed. Two examples used to readout FP etalons are a detector of effectively infinite extent
[15] or detection with a single mode optical fibre [8], which can be modelled using Eqs. (16) and
(17) of [11], respectively.

The angular Airy function is a simplified approximation of the dielectric multilayer model. In
particular, (i) no phase change is experienced by light due to transmission by the mirrors, (ii)
the phase of light upon mirror reflection is assumed to remain constant or change by a π factor
dependent on light direction of propagation, and (iii) mirrors are assumed to be non-absorbing
[9]. As these assumptions mimic the optical behaviour of dielectric mirrors, the angular Airy
function is valid for modelling FP etalons with dielectric mirrors. This is confirmed by the
comparison between experimental and modelled ITFs visible in Fig. 1.

Fig. 1. Angular Airy function validation. 2ω0 is the full width at 1/e2 maximum of the
illumination Gaussian intensity profile and R the mirror reflectivities. Experimental data
taken from [11]. ITFs were measured from a 102 µm thick fused silica FP etalon. The
reflected and transmitted ITFs assume a single mode fibre and a detector with effectively
infinite extend, respectively. The experimental ITFs were shifted along the wavelength axis
to overlap the modelled data for visual comparison.

The angular Airy function does, however, have some limitations. It cannot simulate absorbing
mirrors and mirrors that induce light phase changes, such as metallic mirrors. Also, the angular
Airy function neglects the vectorial nature of light which is not appropriate for some applications
such as for numerical apertures exceeding ∼0.5 [16]. For both cases, a dielectric multilayer
model is valid [11].

3. Angular-spectral filter

The angular spectrum representation of optical beams in combination with the angular Airy
function provides a way of interpreting FP etalons that intuitively reveals the origins of features
such as ITF asymmetry, broadening and reduced visibility which arise when focused beams are
used. This interpretation is important because FP etalons have traditionally been interpreted as
spectral filters. However, plane wave direction of propagation and wavelength are ambiguous for
FP etalons and thus should be interpreted as angular-spectral filters [13].

To understand this, recall that for plane wave illumination, a high Q-factor FP etalon is reflective
throughout most of its spectral range and becomes transparent if the plane wave is in resonance
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inside the FP cavity. The filtering/resonance condition is achieved when the cavity optical path
length matches an integer number of wavelengths and is expressed as:

2nh cos(θ) = Zλ, (4)

where n is the real part of the cavity refractive index and Z an arbitrary integer. Equation (4)
shows that the FP etalon is only resonant/transparent for particular combinations of wavelength
and plane wave propagation direction, hence the term angular-spectral filter. Therefore, at any
wavelength, only a portion of a beam’s angular spectrum satisfies the filtering condition as visible
in Fig. 2(a). Since FP etalon optical performance is independent of the azimuthal angle of plane
wave propagation, the transmitted angular spectrum of a rotationally symmetric illumination
beam has a ring structure as visible in Fig. 2(b).

Fig. 2. (a) Computed transmitted angular spectrum assuming focused beam illumination at
various wavelengths sampled by the ITF. The angular spectrum direction of propagation axis
is flipped for visualization purposes. (b) Schematic showing the 2D representation of the
incident, reflected and transmitted angular spectra at 1596 nm. The simulations assumes an
air space etalon with cavity thickness of 10 µm and mirror reflectivities of 97 % illuminated
with a Gaussian beam with spot size of 10 µm.

The first consequence of the angular-spectral nature of FP etalon is the ITF visibility being
less than unity, where unity means the beam is fully transmitted. The second consequence
is the broadening of the ITF, because the spectrum of plane wave propagation angles results
in a spectrum of wavelengths at which resonance occurs. The third consequence is the ITF
asymmetry which occurs because, as the wavelength is reduced from the normal incidence
resonant wavelength, plane wave components with higher polar angles of propagation enter the
filtering condition. However, as the wavelength is increased from the normal incidence resonant
wavelength, there are no plane wave components in the beam’s angular spectrum which enter the
resonance condition.

Due to the wavelength and direction of propagation ambiguity, each wavelength sampled in
an ITF has associated with it a direction of plane wave propagation which is in resonance, as
illustrated in Fig. 3. Therefore, the transmitted intensity measured at each wavelength is related
also to the intensity of the illumination plane wave component propagating with the associated
resonant polar direction. Therefore, the ITF can be seen as a polar angular spectrum profiler.

A consequence of the ITF being an angular spectrum profiler is that the ITF broadens and has
its visibility reduced as the illumination spot size reduces. This is because as spot size reduces,
the width of the angular spectrum distribution increases, thus reducing the proportion of the
beam’s angular spectrum in resonance at any one wavelength. Furthermore, the broadening of
the spectrum of propagation directions of a Gaussian beam as focal spot size decreases leads to a
broader spectrum of resonant wavelengths, thus broadening the ITF.
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Fig. 3. ITF plotted as a function of wavelength and plane wave direction in resonance. The
plane wave directions showed are just for illustrative purposes.

Understanding the impact of the FP design variables (mirror reflectivities and optical cavity
thickness) on the optical response of FP etalons is critical for optimizing their design. Increasing
the mirror reflectivities or the optical cavity thickness leads to a narrower angular-spectral filtering
condition, as visible in the transmitted angular spectra of Fig. 4(a). This also means that a smaller
proportion of the beam is in resonance, at any given wavelength, leading to a lower visibility
ITF as in Fig. 4(b). This is particularly important for the design of FP etalon-based sensors. To
maximize the sensitivity, the angular-spectral filtering condition must be as narrow as possible
to maximise sensitivity to any induced change in the optical cavity path length. However, for
maximum sensitivity, the portion of the beam that is in resonance at a given wavelength must also
be maximized. With Gaussian beam illumination, these two criteria are unable to be achieved
simultaneously and therefore the FP design must compromise between both.

Fig. 4. Changes in the ITF and transmitted angular spectrum as the mirror reflectivity varies.
Gaussian beam illumination with beam waist 2ω0 of 10 µm incident upon an air space FP
etalon with cavity thickness of 10 µm is assumed.

Following the previous rationale, sensitivity is maximized when the angular spectrum of
the illumination beam propagates with a single polar direction. For this reason, Bessel beams,
which have both narrow spatial and polar angular distributions [17], can be used for localized
measurement while achieving ITF sensitivity equivalent to collimated beam illumination [18].

4. Conclusion

The angular Airy function was discussed as a model to calculate the fields reflected and transmitted
by an FP etalon, requiring knowledge of only the mirror reflectivities and optical cavity thickness.
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Coupled with models of detection optics the angular Airy function can be used to predict ITFs.
We have shown that ITFs predicted with the angular Airy function accurately match experimental
data, thus validating the angular Airy function. We have also used the angular Airy function to
show that high Q-factor FP etalons should be considered as angular-spectral filters instead of
purely spectral filters as they have typically been considered. This interpretation explains the
origin of the ITF asymmetry, broadening and visibility reduction previously reported [10].

The angular Airy function is computationally inexpensive and accurate, which makes it ideal
for optimizing the design of FP etalons. The angular Airy function was implemented and
integrated into Jolab [19], an optical modeling environment thus allowing simulation of complex
FP etalon based systems by combining models of the different components forming the system.
For example, FP etalons illuminated with an axicon generated Bessel beam [18,20] or imaging
FP etalon based sensors through multimode fibres [21]. The code used to compute the results
shown in this paper is freely available [22].
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