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Abstract

Urinary tract infections (UTIs) are a major source of morbidity, yet differentiating

UTI from other conditions and choosing the right treatment remains challenging.

Using case studies from English primary and secondary care, this thesis investigates

the potential use of electronic health records (EHR) — i.e., data recorded as part of

routine care — to aid the diagnosis and management of community-onset UTI.

I start by introducing sources of uncertainty in diagnosing UTI (Chapter 1) and

review how EHRs have previously been used to study UTIs (Chapter 2). In Chapter

3, I discuss EHR sources available to study UTIs in England. In Chapter 4, I explore

how EHRs from primary care can be used to guide antibiotic prescribing for UTI,

by evaluating harms of delaying treatment in key patient groups. In Chapters 5 and

6, I explore the use of EHR data as a diagnostic tool to guide antibiotic de-escalation

in patients with suspected UTI in the emergency department (ED).

Cases of community-onset UTI could be identified in both primary and

secondary care data but case definitions relied heavily on coarse diagnostic codes.

A lack of information on patients’ acute health status, clinical observations (e.g.,

urine dipstick tests), and reasons for antibiotic prescribing resulted in heterogeneous

study cohorts, which likely confounded estimated effects of antibiotic treatment in

primary care. In secondary care, early prediction of bacteriuria to guide antibiotic

prescribing decisions in the ED proved promising, but model performance varied

greatly by patient mix and variable definitions.

Better recording of clinical information and a combination of retrospective

EHR analysis with prospective cohorts and qualitative approaches will be required

to derive actionable insights on UTI. Results based solely on currently available

EHR data need to be interpreted carefully.
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Antibiotics are often used for patients that look like they might have a urinary

tract infection (UTI). Often antibiotics are right for these patients and help them

get better, but they only work if the patient really has a bacterial infection. If

they don’t, antibiotics are ineffective but may still cause side effects and promote

the emergence of antimicrobial resistance. Deciding who does and does not need

antibiotics is difficult, and current clinical rules or diagnostic tests frequently get

it wrong. Doctors therefore often opt to use antibiotics when in doubt to ensure

that their patients are as safe as possible. New strategies are needed to reduce the

frequent over-prescribing for UTI in both general practice and hospitals.

When patients make use of the healthcare system, an abundance of information

is generated. More and more of this information is captured within local and

national research databases in the form of structured electronic health records

(EHRs). Over the last two decades, EHRs have already been increasingly used

to describe the epidemiology of UTIs. As the breadth and depth of recorded

information increases, the same data may further be used directly to support doctors

in diagnosing and managing UTIs — e.g., by estimating the probability of a patient

having UTI and/or estimating the likely patient benefit of taking antibiotics. This

thesis critically assesses the feasibility of using data captured in EHRs to answer

these questions.

In doing so, this thesis provides context on how results of previous studies

that used EHRs to investigate UTIs may be interpreted. Findings of this thesis

have already been or will be disseminated at international conferences and in

peer-reviewed scientific journals. All publications arising from this thesis try to

present an honest view of the quality of evidence that may be derived from EHR
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data for a given research question, clearly discussing any biases with regards to the

way that data on UTIs is currently captured within EHRs. It contributes towards

a better understanding of the strengths and limitations of EHR data, establishing

a foundation for future EHR research that aims to improve the diagnosis and

management of community-onset UTIs in England.

Where clinical results of this thesis were judged promising, work is underway

to translate the findings into real-world clinical practice and apply them to improve

patient care in the English National Health Service. I have obtained seed funding

from the UCL-led Precision AMR funding initiative to externally validate the

clinical risk prediction model for bacteriuria developed in this thesis at University

College London Hospital. Embedded in a wider team of researchers, I am actively

engaging with clinicians and patients to use the findings of this thesis as a basis for

discussing how statistical models may be introduced into the healthcare system to

tackle the current over-use of antibiotics for suspected UTI.



Acknowledgements

I would like to express my sincere thanks to all those who made this thesis possible.

First, I am deeply thankful to Dr Laura Shallcross, who guided me since I arrived

at UCL, kindled my passion for research, and supported me in finding my way

back whenever that same passion led me down another rabbit hole. I am extremely

grateful for the trust you put in me and it was a genuine pleasure to work alongside

and learn from you. I further would like to thank Prof Nick Freemantle and Prof

Andrew Hayward, who helped me to always keep track of the bigger picture that

sometimes gets lost in the fray of a PhD.

During my time at the UCL Institute of Health Informatics, I had the

opportunity to work with and learn from many amazing colleagues. Chief among

those, I would like to thank: Nonie Alexander for countless pep talks over cups

of tea, Selina Patel for always providing a new perspective, Dr Anna Aryee

and Dr Arnoupe Jhass for incredible help (and patience) with interpreting my

clinical findings, and Dr Peter Dutey-Magni for always being there to spitball my

most random research ideas. I would also like to thank Dr Martin Gill and Dr

David McNulty at University Hospitals Birmingham NHS Foundation Trust, who

provided me with clinical and technical support to navigate the rich data at their

institution and without whom I’d been left with an uninterpretable mess.

Nothing I accomplished over the last years would have been possible without

the love and support of Anna Lena. Thank you for sticking with me through all the

ups and downs that make up a PhD. In this, she was joined by my parents, brother,

and friends, who bore with me whenever I wouldn’t shut up about my research and

who kept me sane despite my best efforts to the contrary.



Contents

1 Uncertainty in the diagnosis and management of UTIs 19

1.1 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Pathophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Clinical symptoms . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Microbiological culture of urine . . . . . . . . . . . . . . . 24

1.3.3 Urinalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.4 Polymerase chain reaction assays . . . . . . . . . . . . . . 30

1.4 Disease management . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.1 Choice and duration of antibiotic therapy . . . . . . . . . . 31

1.4.2 Need for immediate antibiotic treatment . . . . . . . . . . . 33

1.5 Clinical impact of reducing uncertainty in UTI . . . . . . . . . . . . 35

1.6 Aims of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Use of EHR data to guide diagnosis and management of suspected

community-onset UTI in adults: a scoping review 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Eligibility criteria . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Types of evidence sources . . . . . . . . . . . . . . . . . . 46

2.4.3 Search strategy . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.4 Selection of studies . . . . . . . . . . . . . . . . . . . . . . 47



Contents 8

2.4.5 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.6 Assessment of risk of bias and applicability . . . . . . . . . 48

2.4.7 Analysis of the evidence and presentation of results . . . . . 48

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Identification of EHR studies . . . . . . . . . . . . . . . . . 50

2.5.2 Study characteristics and key findings . . . . . . . . . . . . 51

2.5.3 Risk of bias and concerns about applicability . . . . . . . . 55

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.1 Strengths and limitations . . . . . . . . . . . . . . . . . . . 60

2.6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Recording of UTI in English EHR databases 64

3.1 Healthcare and medical data in England . . . . . . . . . . . . . . . 64

3.2 Primary care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Clinical Practice Research Datalink (CPRD) . . . . . . . . 66

3.2.2 Other sources of primary care data in England . . . . . . . . 73

3.3 Secondary care . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Hospital Episode Statistics (HES) . . . . . . . . . . . . . . 75

3.3.2 Queen Elizabeth Hospital Birmingham (QEHB) . . . . . . . 78

3.3.3 Other sources of secondary care data in England . . . . . . 81

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Can EHR data guide the management of UTI in primary care: a

case study using linked data from CPRD to evaluate the relationship

between prescribing and risk of adverse outcomes 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Data source and management . . . . . . . . . . . . . . . . 92

4.4.2 Ethical approval . . . . . . . . . . . . . . . . . . . . . . . 93



Contents 9

4.4.3 Patient population . . . . . . . . . . . . . . . . . . . . . . 94

4.4.4 Episodes of community-onset lower UTI . . . . . . . . . . 94

4.4.5 Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.6 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.7 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.8 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Associations with progression to severe UTI . . . . . . . . 107

4.5.2 Associations with other outcomes . . . . . . . . . . . . . . 107

4.5.3 Interactions with age . . . . . . . . . . . . . . . . . . . . . 110

4.5.4 Differences between treatment groups . . . . . . . . . . . . 113

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6.1 Clinical findings . . . . . . . . . . . . . . . . . . . . . . . 115

4.6.2 Methodological findings . . . . . . . . . . . . . . . . . . . 116

4.6.3 Strengths and limitations . . . . . . . . . . . . . . . . . . . 117

4.6.4 Comparison with existing literature . . . . . . . . . . . . . 120

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Using EHR data to predict bacteriuria in the ED: a case study using

data from QEHB 126

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Data source and management . . . . . . . . . . . . . . . . 132

5.4.2 Ethical approval . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.3 Patient population . . . . . . . . . . . . . . . . . . . . . . 133

5.4.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.5 Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.6 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Contents 10

5.5.1 Univariable associations . . . . . . . . . . . . . . . . . . . 150

5.5.2 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5.3 Internal validation . . . . . . . . . . . . . . . . . . . . . . 155

5.5.4 External validation . . . . . . . . . . . . . . . . . . . . . . 158

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6.1 Clinical findings . . . . . . . . . . . . . . . . . . . . . . . 161

5.6.2 Methodological findings . . . . . . . . . . . . . . . . . . . 163

5.6.3 Strengths and limitations . . . . . . . . . . . . . . . . . . . 166

5.6.4 Comparison with existing literature . . . . . . . . . . . . . 169

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6 Variability in model performance when predicting bacteriuria in the

ED: sensitivity analyses to inform the likely applicability of EHR

models in clinical practice at QEHB 177

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 Data source, patient population, and variables . . . . . . . . . . . . 181

6.4 Variations in model performance according to ED diagnosis . . . . 181

6.4.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 184

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5 Variations in model performance according to age and sex . . . . . 190

6.5.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 191

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.6 Ambiguity introduced by mixed growth . . . . . . . . . . . . . . . 193

6.6.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 197

6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.7 Comparison with clinicians’ performance . . . . . . . . . . . . . . 203

6.7.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 204



Contents 11

6.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7 Conclusions, limitations, and future research 213

7.1 Overview of key research findings . . . . . . . . . . . . . . . . . . 214

7.1.1 Identification of UTI cases in EHR data relies primarily on

coarse diagnostic codes . . . . . . . . . . . . . . . . . . . . 214

7.1.2 Findings on UTI obtained from EHR are highly dependent

on included patient case mix . . . . . . . . . . . . . . . . . 216

7.1.3 The context of diagnosing and managing UTI is often

insufficiently captured in EHR data . . . . . . . . . . . . . 218

7.2 Strengths and limitations of this thesis . . . . . . . . . . . . . . . . 219

7.3 Translating EHR research into clinical practice . . . . . . . . . . . 221

7.3.1 Technological considerations . . . . . . . . . . . . . . . . . 222

7.3.2 Barriers to implementing learning from this thesis into

clinical practice . . . . . . . . . . . . . . . . . . . . . . . . 223

7.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Appendices 227

A Review data extraction form 227

B Studies excluded during full-text review 229

C Risk of bias appraisal tools 236

C.1 Risk of bias in cohort studies of exposures . . . . . . . . . . . . . . 236

C.2 Risk of bias in risk prediction studies . . . . . . . . . . . . . . . . . 239

D Propensity score analysis and coarsened exact matching 244

E Comparison of pre-processing and imputation methods 251

E.1 Pre-processing steps . . . . . . . . . . . . . . . . . . . . . . . . . . 251



Contents 12

E.2 Imputation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 252

F Agreement between coded diagnoses and case notes in the ED 254

G Reporting guidelines 258

G.1 PRISMA-ScR checklist (Chapter 2) . . . . . . . . . . . . . . . . . 259

G.2 STROBE and RECORD checklists (Chapter 4) . . . . . . . . . . . 262

G.3 TRIPOD checklist (Chapter 5) . . . . . . . . . . . . . . . . . . . . 268

H Codelists 272

H.1 Primary care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

H.1.1 Urinary tract infection . . . . . . . . . . . . . . . . . . . . 272

H.1.2 Bloodstream infection . . . . . . . . . . . . . . . . . . . . 274

H.1.3 Charlson Comorbidity Index . . . . . . . . . . . . . . . . . 276

H.2 Secondary care . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

H.2.1 Urinary tract infection . . . . . . . . . . . . . . . . . . . . 276

H.2.2 Bloodstream infection . . . . . . . . . . . . . . . . . . . . 277

H.2.3 Lower respiratory tract infection . . . . . . . . . . . . . . . 278

H.2.4 Comorbidities . . . . . . . . . . . . . . . . . . . . . . . . . 280

H.2.5 Pregnancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

H.2.6 Charlson Comorbidity Index . . . . . . . . . . . . . . . . . 283

I Colophon 284



List of Figures

1.1 Probability of positive urine culture result in relation to key variables 26

1.2 Ideal antibiotic prescribing proportions in primary care . . . . . . . 33

2.1 Flow chart of reviewed studies and reasons for exclusion . . . . . . 49

2.2 Year of publication and number of included patients among full-text

articles assessed for eligibility . . . . . . . . . . . . . . . . . . . . 51

3.1 Age distribution of CPRD data compared to UK census data . . . . 67

4.1 Classification of UTI episodes in primary care. . . . . . . . . . . . 95

4.2 Flow chart of cohort selection for community-onset lower UTI in

primary care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Association of covariates with included complications . . . . . . . . 109

4.4 Relationship between age and marginal probability of progression

to severe UTI or all-cause mortality . . . . . . . . . . . . . . . . . 111

4.5 Distribution of propensity scores for delayed or withheld antibiotics 114

5.1 Flow chart of cohort selection for community-onset UTI in the ED

at QEHB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Yearly distribution of ED visits and quarterly proportion of positive

ED urine cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Top ten patterns of missingness in key variables for the prediction

of bacterial growth in ED urine cultures . . . . . . . . . . . . . . . 154

5.4 Receiver operating characteristic and precision-recall curves during

internal validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 Receiver operating characteristic and precision-recall curves during

external validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



List of Figures 14

5.6 Changes in the area under the receiver operating characteristic over

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.7 Calibration plots of raw and re-calibrated predictions . . . . . . . . 164

5.8 Selection of urine samples and opportunities for selection bias when

ascertaining bacterial growth in ED urine cultures . . . . . . . . . . 168

5.9 Distribution of bacteria and urinary white blood cell counts

compared to previous literature . . . . . . . . . . . . . . . . . . . . 172

6.1 Distribution of predicted probabilities of bacterial growth in urine

cultures by ED diagnosis . . . . . . . . . . . . . . . . . . . . . . . 182

6.2 Estimated logistic regression coefficients by ED diagnosis . . . . . 187

6.3 Calibration of logistic regression by age and sex . . . . . . . . . . . 194

6.4 Distribution of bacteria counts, epithelial cells, and urinary white

blood cell counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.5 Distribution of predicted probabilities stratified by ED urine culture

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.6 Distribution of UTI diagnoses and antibiotics in the ED . . . . . . . 205

D.1 L1 profile of raw and balanced data in Chapter 4 . . . . . . . . . . 250

F.1 Agreement between evidence of UTI recorded in case notes and

coded diagnosis in the ED . . . . . . . . . . . . . . . . . . . . . . 256



List of Tables

1.1 Commonly described symptoms of UTI . . . . . . . . . . . . . . . 23

1.2 Performance of urine dipstick results in predicting culture growth

in primary care . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Final search strategy applied to the Embase bibliographic database. . 47

2.2 Characteristics of studies included in the scoping review . . . . . . 52

2.3 Risks of bias and concerns about applicability of included studies . . 57

3.1 Frequency of commonly recorded Read codes indicative of possible

UTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Summary of information on UTI available in English EHR datasets . 83

4.1 Urinary symptoms and urine dipstick tests recorded in primary care 103

4.2 Characteristics of women consulting for community-onset lower

UTI in primary care. . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Association between delayed or withheld antibiotic prescribing for

community-onset lower UTI and progression to severe UTI . . . . . 108

4.4 Association between delayed or withheld antibiotic prescribing for

community-onset lower UTI and all included complications by age . 110

4.5 Association between delayed or withheld antibiotic prescribing for

community-onset lower UTI and any included complication after

propensity score analysis or coarsened exact matching. . . . . . . . 118

5.1 List of candidate predictors for the prediction of bacterial growth in

ED urine cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Characteristics and medical histories of patients with ED urine

cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



List of Tables 16

5.3 Recorded ED diagnoses of patients with ED urine cultures . . . . . 152

5.4 Urine flow cytometry results, vital signs, and blood biomarkers of

patients with ED urine cultures . . . . . . . . . . . . . . . . . . . . 153

5.5 Discriminative performance of the top ten candidate predictors

during internal validation . . . . . . . . . . . . . . . . . . . . . . . 156

5.6 Discriminative performance when using full and reduced predictor

sets during internal validation. . . . . . . . . . . . . . . . . . . . . 158

5.7 Calibration when using full and reduced predictor sets during

internal validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.8 Discriminatory performance when using full and reduced predictor

sets during external validation . . . . . . . . . . . . . . . . . . . . 159

6.1 Discriminative performance of logistic regression trained on the

entire patient population evaluated by ED diagnosis . . . . . . . . . 183

6.2 Discriminative performance of logistic regression trained separately

for each ED diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3 Discriminative performance of logistic regression trained on the

entire patient population evaluated by age and sex . . . . . . . . . . 191

6.4 Discriminative performance of logistic regression trained on UTI

patients evaluated by age and sex . . . . . . . . . . . . . . . . . . . 195

6.5 Proportion of positive growth and changes in discriminative

performance under different classifications of mixed growth during

internal validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.6 Proportion of positive growth and changes in discriminative

performance under different classifications of mixed growth during

external validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.7 Characteristics and medical histories of patients with ED urine

cultures that resulted in mixed growth . . . . . . . . . . . . . . . . 201

6.8 Comparison of discriminative model performance to clinical

judgement as defined by ED diagnosis of UTI and/or prescription

of systemic antibiotics in the ED . . . . . . . . . . . . . . . . . . . 207



List of Tables 17

6.9 Comparison of discriminative model performance to clinical

judgement as defined by ED diagnosis of UTI . . . . . . . . . . . . 207

A.1 Review data extraction form . . . . . . . . . . . . . . . . . . . . . 227

C.1 Adapted Newcastle - Ottowa Quality Assessment Scale . . . . . . . 237

C.2 Prediction model Risk of Bias Assessment Tool (PROBAST) . . . . 239

D.1 Standardised differences and χ2 distances after one-to-one

propensity score matching and coarsened exact matching. . . . . . . 245

D.2 Association between delayed or withheld antibiotic prescribing for

UTI and progression to severe UTI (after re-balancing) . . . . . . . 246

D.3 Association between delayed or withheld antibiotic prescribing for

UTI and death (after re-balancing) . . . . . . . . . . . . . . . . . . 247

D.4 Associations between delayed or withheld antibiotic prescribing for

UTI and hospitalisation for lower respiratory tract infection (after

re-balancing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

D.5 Association between delayed or withheld antibiotic prescribing

for UTI and hospitalisation for reasons unrelated to UTI (after

re-balancing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

E.1 Discriminative performance by choice of pre-processing . . . . . . 252

E.2 Discriminative performance by choice of imputation . . . . . . . . 253

F.1 Urinary symptoms recorded in ED case notes at QEHB . . . . . . . 256

G.1 PRISMA-ScR reporting checklist for Chapter 2 . . . . . . . . . . . 259

G.2 STROBE reporting checklist for Chapter 4 . . . . . . . . . . . . . . 262

G.3 RECORD reporting checklist for Chapter 4 . . . . . . . . . . . . . 265

G.4 TRIPOD reporting checklist for Chapter 5 . . . . . . . . . . . . . . 268

H.1 Read codes for lower UTI in primary care . . . . . . . . . . . . . . 272

H.2 Read codes for pyelonephritis in primary care . . . . . . . . . . . . 273

H.3 Read codes for recurrent UTI in primary care . . . . . . . . . . . . 274



List of Tables 18

H.4 Read codes for bloodstream infection in primary care . . . . . . . . 274

H.5 ICD-10 codes for lower UTI in hospital . . . . . . . . . . . . . . . 276

H.6 ICD-10 codes for pyelonephritis in hospital . . . . . . . . . . . . . 276

H.7 ECDS / bespoke codes for suspected UTI in the emergency

department . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

H.8 ICD-10 codes for bloodstream infection in hospital . . . . . . . . . 277

H.9 ICD-10 codes for lower respiratory tract infection in hospital . . . . 278

H.10 ICD-10 codes for renal disease in hospital . . . . . . . . . . . . . . 280

H.11 ICD-10 codes for urological disease in hospital . . . . . . . . . . . 280

H.12 ICD-10 codes for cancer in hospital . . . . . . . . . . . . . . . . . 281

H.13 ICD-10 codes for immunosuppression in hospital . . . . . . . . . . 283



Chapter 1

Uncertainty in the diagnosis and

management of UTIs

Abstract
Urinary tract infections (UTIs) affect an estimated 150 million individuals

worldwide every year, causing substantial morbidity and healthcare costs. Ideally,

doctors would be able to diagnose UTIs instantly and without ambiguity.

Antibiotics would be prescribed only when they are needed and when they are

effective. Unfortunately, it is difficult to differentiate patients with genuine UTI

from those with other conditions. Over-treatment of UTI in primary and secondary

care is common. This has a negative impact on patients by delaying their access

to effective treatment and unnecessarily exposing them to side-effects such as

antibiotic resistance, which result from inappropriate antibiotic therapy. In this

first chapter of my thesis, I describe the epidemiology of UTI and discuss the

uncertainties associated with correctly diagnosing and managing UTIs. I end the

chapter by introducing the aims and objectives of my thesis, which will explore how

routinely collected electronic health record (EHR) data in England may be used

across healthcare settings to reduce these uncertainties and improve the diagnosis

and management of community-onset UTI.

1.1 Epidemiology
While rough estimates suggest that 150 million individuals world-wide are affected

by urinary tract infections (UTIs) each year [1], precise numbers for individual

countries are hard to obtain. Differences in health systems, health seeking
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behaviour, data recording, and study designs make it difficult to estimate the burden

of disease [2, 3, 4]. Despite the uncertainties in the estimates, findings agree on

their relative importance. UTIs are generally considered one of the most common

infectious reasons for consultation in primary care in the United States (US) [2],

France [4], the Netherlands [5], and the United Kingdom (UK) [6]. UTIs feature

among the top ten reasons for Accidents & Emergency visits in the UK [7], and

account for an estimated 40% of healthcare-associated infections worldwide [1].

The incidence of UTI-related healthcare contacts has increased since the turn of the

century in both the US and the UK, especially among women and the elderly [8, 9].

Infections of the urinary tract are particularly frequent in women, with almost

40% of women reporting at least one UTI in their lifetime [3]. More than 10% of

female respondents in both the US and the UK indicated that they had experienced

symptoms of UTI in the previous year [3, 10]. Many of those women experienced

multiple recurrent UTIs1 during that time [3]. Infections in men, on the other hand,

are rare and usually linked to other risk factors — e.g., history of prostatitis or

catheter use [1]. The risk of experiencing UTI increases in both sexes above the

age of 65 years [12]. Other factors predisposing to (complicated) UTI include

pregnancy, comorbidities like diabetes, and underlying urological abnormalities [2].

Due to their frequency, UTIs not only represent a major source of morbidity

but also incur substantial healthcare costs. Like estimates of incidence, estimated

healthcare costs attributable to UTI are imprecise and vary from country to country

but UTIs were estimated to account for 6 billion dollars in direct healthcare costs

worldwide in 1994 [1].

1.2 Pathophysiology
Most UTIs are infections of the lower urinary tract — i.e., the urethra and bladder

— and are managed in primary care. Lower UTI may progress to more serious

infections by ascending to the kidneys (pyelonephritis) or causing a life-threatening

systemic inflammatory response (urosepsis). The latter almost always requires

1The European Association of Urology defines recurrent UTIs as the occurrence of ≥ 2 UTIs within
6 months or ≥ 3 UTIs within 12 months [11].
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urgent hospitalisation [13]. Most UTIs are caused by Escherichia coli bacteria,

followed by Klebsiella pneumoniae and Proteus Mirabilis [14]. The distribution

of causative pathogens is relatively stable across countries, although antibiotic

sensitivities may vary substantially [15]. Uncomplicated lower UTI in the UK are

in first instance treated with the oral antibiotics nitrofurantoin and trimethoprim

[13]. Pyelonephritis and urosepsis usually warrant more broad spectrum antibiotics

and may even require intravenous antibiotics (see Section 1.4.1 for a more detailed

discussion of recommended treatments) [16], although exact guidelines commonly

vary between hospital trusts.

Remark (Uncomplicated community-onset UTI).

UTIs may be classified as community-onset if the signs and symptoms of

infection first appear while the patient is at home — i.e., not currently

admitted to a healthcare facility such as a hospital or care home. A closely

related concept are community-acquired and hospital-acquired (nosocomial)

UTIs [2], although these terms make a stronger assumption about the

setting in which the infection was acquired (rather than the setting in which

symptoms first showed). While community-onset UTIs will therefore often

also be community-acquired, they may be hospital-acquired if the patient

was recently discharged from hospital or may be more generally considered

as healthcare associated if they are for example the likely consequence of a

recent surgery. UTIs may be considered catheter-associated if they occur in

the presence of an indwelling catheter.

UTIs may further be categorised as complicated. Complicated UTIs

describe infection in the presence of factors that increase the risk of bad

outcomes or infectious complication [2, 17]. Complicating factors may

include pregnancy, male gender, anatomical abnormalities of the urinary

tract, suppression of the immune system, or recent discharge from hospital.

Complicated UTIs often warrant their own treatment guidelines in order to

mitigate the increased risks of negative outcomes [17].
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1.3 Diagnosis
The gold standard definition of bacterial UTI is the presence of two or more urinary

symptoms (e.g., increased urinary frequency or dysuria; Table 1.1) as well as

microbiological confirmation of bacteria in the urine (called bacteriuria) [17]. In

practice, obtaining both can be difficult due to time pressures imposed by limited

resources [18] or the need to start treatment quickly [19].

Microbiological urine culture results, however, may take several days to return

[20]. No reliable rapid diagnostic test is currently available in routine practice.

In order to minimise patients’ need for re-consultation or risk of hospitalisation,

General Practitioners (GPs) therefore often rely on faster but less reliable evidence

from near-patient (dipstick) tests, allowing them to make decision quicker at the

cost of increased uncertainty [21, 22]. The difficulties of obtaining microbiological

confirmation in primary care are reflected in national guidelines, which do not

recommend routine urine cultures for lower UTI in the absence of complicating

factors such as male sex or pregnancy [13, 23]. Routine urine culture is more

commonly recommended in secondary care [24] but the delay until culture results

are available remains. In the meantime, the need to initiate treatment early is

exacerbated in hospital due to the usually sicker patient population. Hospital

doctors therefore also frequently rely on dipstick tests to guide initial prescribing

decisions [25]. On top of this, the increased severity of illness in patients presenting

to hospital may add further uncertainty to the diagnostic process by preventing

clinicians from asking for a reliable history of symptoms from the patient [26].

Much of the uncertainty described above can be traced back to an inability of

current diagnostic tests and criteria to provide a timely, accurate, and cost-effective

estimate of a patient’s likelihood of UTI. The following sections therefore review

the most common diagnostic tools used to diagnose UTI, and discuss their strengths

and limitations in quickly establishing a reliable diagnosis.

1.3.1 Clinical symptoms

A central step in diagnosing the presence of UTI is the examination of the

patient and the patient’s medical history. Clinical presentation of UTI often
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Table 1.1: Commonly described symptoms of UTI.

Category Symptom

Urinary symptoms dysuria, haematuria, pyuria, urinary urgency, urinary frequency,
cloudy urine, malodorous urine

Pain abdominal pain, suprapubic pain, flank pain, pelvic pain

Unspecific symptoms fever, confusion, altered mental status, functional decline

UTI, urinary tract infection.

Sources: Little et al. (2006), Schmiemann et al. (2010).

includes urinary symptoms such as painful or difficult urination (dysuria), waking

up repeatedly at night to urinate (nocturia), frequent or urgent need to urinate

during the day (frequency), blood in the urine (haematuria), cloudy urine, and

offensive-smelling (malodorous) urine (Table 1.1) [17, 23, 27]. Abdominal pain

or flank pain may also be signs of UTI, with the latter suggesting that UTI may

have ascended from the bladder into the kidneys [17, 28].

The presence of any single one of the above symptoms isn’t necessarily

specific to UTI. Symptoms such as abdominal pain can overlap with a range of

causes including other infections (e.g., gastroenteritis or appendicitis) as well as

non-infectious disorders such as urinary calculi [29]. More than one symptom

usually needs to be present to indicate a UTI. In a population of primary care

patients, Little et al. (2006) [27] reported that a simple clinical decision rule based

entirely on the presence of two or more of dysuria, nocturia, malodorous urine, or

cloudy urine can achieve a sensitivity of 65% and a specificity of 69% in predicting

presence of bacteriuria. Multiple urinary symptoms alone therefore already provide

some evidence of the presence or absence of UTI but large uncertainty remains.

In elderly patients in particular, non-specific signs and symptoms such as

confusion, altered mental status, or functional decline are widely considered

indicative of UTI [28], despite a lack of definitive evidence for association [32].

The sole presence of unspecific symptoms is problematic due to a wide range of

alternative causes and a high prevalence of asymptomatic bacteriuria in certain

patient populations [32]. The prevalence of asymptomatic bacteriuria in the general

population increases with age. While less than 5% of women below the age of
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Remark (Asymptomatic bacteriuria). Asymptomatic bacteriuria describes

the growth of uropathogens during culture of mid-stream urine in the absence

of urinary symptoms [30]. It is not yet fully understood why some patients

might experience symptoms while others do not, but antibiotic treatment of

asymptomatic bacteriuria is not usually recommended outside of pregnancy

[31]. Symptoms of UTI are therefore indispensable for the diagnosis and

management of UTIs.

50 years are routinely found to have asymptomatic bacteriuria, this proportion

increases to ∼20% among women aged 65 years or more [33]. Prevalence of

asymptomatic bacteriuria is generally lower in men but nevertheless affects ∼10%

of men above the age of 65 years [34, 35]. Finally, in patients aged 80 years or

more, up to 50% of women and 20% of men have been found to routinely exhibit

bacteriuria, although estimates vary by study [35]. Importantly, diagnostic tests for

UTI — including microbiological culture and urine dipstick tests discussed next —

are unable to distinguish between asymptomatic and symptomatic bacteriuria, and

do not necessarily indicate UTI in the absence of symptoms [36].

1.3.2 Microbiological culture of urine

The gold standard for diagnosing bacteriuria includes microbiological culture of

mid-stream urine [17]. Once incubated, urine cultures usually take between

24–48 hours to produce a result [20]. Classifications of culture results may vary

between laboratories. Most laboratories and clinical guidelines require ≥ 105

colony-forming units per millilitre (cfu/mL) to rule in a diagnosis of UTI [17].

However, others have suggested increasing thresholds to 106 cfu/mL [37], lowering

thresholds to 102 cfu/mL in the presence of symptoms or catheter use [11, 38],

or do not specify definitive thresholds at all [39]. Laboratory classifications

and guidelines may also differ for men and women, requiring for example two

consecutive urine samples to confirm asymptomatic bacteriuria in female patients

without urinary symptoms but only one culture-positive sample in male patients
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Remark (Mid-stream urine). During mid-stream urine sampling the first part

of the urine is excluded and sampling only starts after some urine has been

passed into the toilet. Mid-stream urine samples are meant to avoid sample

contamination by minimizing the risk of bacteria present on the skin, genitals,

or lower urethra entering the urine during sample collection. While the risk of

contamination is indeed reduced in mid-stream urine, a substantial proportion

of samples still show signs of contamination in clinical practice [41].

[11]. Prior antibiotic treatment might influence a samples propensity to grow

bacteria, either requiring longer incubation of the urine sample or altogether

preventing it from growing [20]. Even variations in healthcare processes — such as

a delay of a few hours in processing the urine — may influence the probability of

bacteria growing [40].

Despite the common use of mid-stream urine, sample contamination is

common, further complicating classification and interpretation of urine culture

results. According to a widely accepted definition by the College of American

Pathologists, a urine sample is considered contaminated if two or more pathogens

are isolated at ≥ 104 cfu/mL [42], commonly referred to as mixed growth. The

study authors note that it is difficult to define a single decision rule to identify

contaminated samples: "There are circumstances in which two organisms in

quantities ≥ 104 cfu/mL both contribute to a urinary tract infection, just as there

are instances in which a single organism found in quantities ≥ 105 cfu/mL is

a contaminant" [42]. The UK Standards for Microbiology Investigations (SMI)

therefore define contamination based on a combination of cfu/mL, number of

isolates, specimen type, urinary white blood cell (WBC) counts, presence of risk

factors like an indwelling catheter, and urinary symptoms [43]. Contaminated

samples add uncertainty because they mask the presence or absence of relevant

pathogens in the urinary tract. If a mixed culture was obtained despite a

clear indication, UK guidelines therefore recommend repeating the culture [43].

However, many patients will have been started on antibiotics and/or sent home at
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this point.

In addition to determining the presence or absence of bacteria in the urine

sample, microbiological cultures are the only commonly used diagnostic test that

also determines the antimicrobial sensitivities of the isolated pathogens and allows

targeted treatment based on the pathogen’s resistance pattern, although results will

usually only be available after empirical antibiotics have started.

1.3.3 Urinalysis

Urinalysis is the "analysis of urine, using physical, chemical and microscopical

tests, to determine the proportions of its normal constituents and to detect alcohol,

drugs, sugar, or other abnormal constituents" [45]. Urinalysis is recommended

for the confirmation of a range of urinary disorders, including infectious and

non-infectious urinary tract and renal disorders [46].

Figure 1.1: Probability of a positive urine culture result in relation to (a) urinary WBC
counts, (b) bacteria counts, (c) urinary epithelial cell counts, (d) urinary RBC counts, and
(e) age.

RBC, Red blood cell; WBC, white blood cell.

Figure source: Burton et al. (2019) [44] reused under Creative Commons Attribution 4.0 International License; image
caption was adapted from the original image caption.

http://creativecommons.org/licenses/by/4.0/
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1.3.3.1 Visual examination and flow cytometry

A central part of urinalysis is the visual inspection of the urine sample, optionally

with the help of a microscope. Visual inspection of the urine can determine its

colour and cloudiness. Microscopy further allows for the detection and approximate

quantification of WBCs, red blood cells (RBCs), epithelial cells, and bacteria [44,

47]. Presence of these particles in the urine has been found to be associated with

bacterial growth during urine culture (Figure 1.1). Other particles detectable via

urine microscopy include parasites, yeast cells, casts2, lipids, and crystals [46].

More recently, automated optical particle analysis via flow cytometry has been

used to estimate particle quantities in the laboratory [46]. During flow cytometry,

the sample is guided past one or more light sources, and the light scatter created

when the light bounces of particles is measured and analysed [48]. Automated

urinalysis systems have been found to perform as well or better than their manual

counterparts [47]. Due to their fast turn-around time, automated particle analyses

are increasingly used as screening tools in hospitals. Decision rules based on low

urinary WBC and bacteria counts may be used to filter out samples that are highly

unlikely to grow a priori. This process is sometimes termed reflex culture [49].

Urinalysis based on visual examination and flow cytometry is much quicker

than urine culture, but cannot definitively confirm or foreclose the presence of

colony-forming units. While a complete absence of bacteria determined via

urinalysis is a good indicator of the absence of bacteriuria, the presence of bacteria

or other particles does not necessarily imply the presence of colony-forming units

or actual culture growth [44, 50, 51]. Despite these limitations, urinalysis can be

a highly effective screening tool that can reduce the number unnecessarily cultured

urine samples by an estimated 40-50% [44] and — if appropriately fed back to

clinicians — might reduce unnecessary initiation of antibiotic therapy for patients

who are highly unlikely to have a positive culture.

2 Cylindrical structures produced in the upper renal tract.
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Remark (Viscosity and sampled quantity). Urine samples may not always be

sufficiently analysed visually due to a high viscosity, preventing the samples

from being passed through the flow cytometry machine [24]. Urine samples

may further be too small to allow for visual analysis. Other diagnostic tests

like urine dipsticks or urine cultures are less affected by these issues.

1.3.3.2 Dipstick test

Some substances present in the urine cannot be detected via microscopy but may

be detected using chemical reactions. In practice, these chemical reactions tend

to be measured using a urine dipstick test. A dipstick test consists of dipping a

thin paper strip with several allotted reagents into a urine sample. If the substance

corresponding to each reagent is present in sufficient quantities, that reagent will

change colour. Dipstick tests offer a quick and inexpensive alternative to both

microbiological culture of a urine sample and urine flow cytometry. Due to their

speed and the minimal requirements for equipment and labour, dipstick tests are

ubiquitously used as a first screening tool in both primary and secondary care [27].

Dipsticks commonly test for the presence of nitrites, leukocyte esterase, blood,

proteins, glucose, ketones, and bilirubin [52], among other urinary parameters like

acidity (pH) and concentration. Particularly nitrites and leukocyte esterase are

prominent indicators of UTI. Nitrites often signal a presence of gram negative

organisms in the urine — most notably E. coli — which produce nitrite as a

byproduct of anaerobic respiration [53]. The presence of nitrites has a high

estimated specificity (>90%) for subsequent growth of bacteria during urine culture

but low sensitivity (28%; Table 1.2) [27], although exact estimates vary by study

[52]. Leukocyte esterase is an enzyme produced by WBCs and indirectly indicates

the presence of WBCs in the urine. Since WBCs are cells produced by the immune

system to fight infection, a presence of WBCs in the urine provides some evidence

for UTI, although it might also signal other disorders that cause non-infective

inflammation of the urinary tract [52]. Contrary to nitrites, the presence of leukocyte

esterase has a relatively low estimated specificity (53%) but high sensitivity (85%;
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Table 1.2: Performance of dipstick results in predicting urine culture growth in a single
primary care study.

Bacterial growth
during urine culture

Yes No p-value

Total (col-%) 254 (100) 154 (100)

Dipstick results (col-%)
Nitrites 72 (28) 7 (9) <0.001
Leukocyte esterase 217 (85) 72 (47) <0.001
Blood 186 (73) 71 (46) <0.001
Proteins 119 (47) 47 (31) 0.643

Note: Column percentages do not add up to 100% since a urine sample might
contain more than one substance.

UTI, urinary tract infection.

Source: Little et al. (2006).

Table 1.2) [27]. A third commonly used marker of UTI is blood in the urine,

which has a specificity and sensitivity comparable to that of leukocyte esterase [27].

Combined into a clinical decision rule, these three markers have previously been

found to achieve a specificity of 70% and a sensitivity of 77% when predicting

urine culture growth in non-pregnant adult women who present with suspected

UTI in primary care and do not have a likely alternative diagnosis — e.g., vaginal

symptoms [27].

While helpful as an initial screening tool, dipstick results — just like results

obtained from urine microscopy or flow cytometry — cannot be used to reliably

diagnose UTI. In the above-cited primary care study, strictly applying the decision

rule would have misclassified a quarter of the study population, missing 23% of

true bacteriuria cases and wrongly labelling 30% of patients without bacteriuria as

suffering from UTI [27]. Despite these limitations, urine dipstick tests are widely

used in primary and secondary care — often as the primary diagnostic tool —

due to a lack of alternatives [21]. As a result, previous studies have repeatedly

reported an over- or misinterpretation of dipstick results [21, 22] and consequently

high levels of antibiotic treatment in the absence of (symptomatic) bacteriuria. This

is increasingly acknowledged in national guidelines [23] and quality schemes [54],

which particularly discourage dipstick-based diagnoses in the absence of symptoms
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and in the elderly (due to high prevalence of asymptomatic bacteriuria in these

patients).

1.3.4 Polymerase chain reaction assays

Polymerase chain reaction (PCR) assays are a relatively new addition to the

diagnostic arsenal for UTI. They are the most commonly used nucleic acid detection

method and are used to detect bacterial DNA in the urine. Due to their short

time-to-result, previous studies have investigated the use of PCR as a rapid

diagnostic test for E. coli bacteriuria in both children [55] and adults [56]. While

PCR tests are generally viewed as fast and reliable, the high cost per test currently

prohibits their use as a routine screening test [57]. As a result, PCR tests for urinary

pathogens are not in routine use in the NHS at the time of writing. Notably, PCR

results are solely based on the presence of bacterial DNA and are thus unable to

distinguish between viable bacteria and dead cells [58]. It is possible that a PCR

test indicates the presence of bacteria that have already been eliminated by the

patient’s immune system or prior antibiotic treatment, and which would not grow

in a standard microbiological culture. Like culture and unlike urinalysis, however,

PCR can determine species and guide the choice of antibiotic treatment [56].

Overall, the lack of affordable rapid and reliable diagnostic tests for bacterial

UTI undermines clinicians’ ability to distinguish patients who will benefit from

antibiotic treatment from those who will not, and risks delaying effective therapy.

1.4 Disease management
Diagnostic uncertainty directly impacts the management of UTI, forcing clinicians

to make prescribing decisions in the absence of a definitive diagnosis. Even if we

were to find good predictors of bacterial UTI, however, further uncertainty remains

as to which patient groups require immediate antibiotic treatment, which patients

may perhaps get better on their own, which drug to use, and how long to treat for.
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Remark (Empirical antibiotic prescribing). In view of the delay in

obtaining microbiological culture of urine, antibiotics are usually prescribed

empirically for suspected UTI, based on knowledge of the most likely

uropathogens in a specific patient based on factors such as their age,

gender, and underlying health conditions [13, 16]. However, an unusual

pathogen or unknown antimicrobial resistance may render the initial

antibiotic ineffective [59]. In order to minimize the risk of treatment failure,

prescribing guidelines are therefore often optimised towards local prevalence

of antimicrobial resistance, and hospitals usually provide hospital-specific

antibiotic prescribing guidelines.

1.4.1 Choice and duration of antibiotic therapy

National guidelines suggest short three-day courses of empirical oral narrow-spectrum

antibiotics — nitrofurantoin or trimethoprim — as first line treatment for lower

UTI [13]. Narrow-spectrum antibiotics are antibiotics that only act against

a limited number of species or bacteria, allowing them to directly target the

suspected pathogen without introducing unnecessary selection pressure on the host

microbiome [60]. For example, the active spectrum of nitrofurantoin is limited to

most uropathogens, with few known resistances [61]. Broad-spectrum antibiotics,

on the other hand, act against a range of causative agents, making them less likely

to fail during empirical treatment at the cost of increased cross-resistance in other,

non-targeted bacteria [60]. Broad-spectrum antibiotics therefore provide clinicians

with reassurances even if they misdiagnose the pathogen or source of infection [62].

Broad-spectrum antibiotics are not generally indicated for lower UTI, and should

only be used if initial treatment failed, if indicated by susceptibility profiles, or

if symptoms indicate more severe infection [13]. Oral broad-spectrum antibiotics

(cefalexin, co-amoxiclav, and ciprofloxacin) for seven to 14 days are recommended

as first line treatment for pyelonephritis [16]. Intravenous antibiotics are indicated

if oral antibiotics can’t be administered — e.g., due to vomiting — or if very severe
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UTI or urosepsis are suspected [16]. Specific guidelines may vary by region or

hospital based on local resistance profiles.

Remark (Delayed antibiotic prescribing). Instead of making a binary

decision to immediately prescribe antibiotics or to not prescribe antibiotics

at all, clinicians might instead opt to delay antibiotic prescribing [63]. When

delaying antibiotics, patients are handed a prescription but are asked to only

take the medication if symptoms do not abate or grow worse. Instead of a

direct prescription, patients might alternatively be provided with a postdated

prescription or an option to simply collect a prescription later from the

reception [64]. In any case, delayed antibiotic prescribing strategies aim to

reduce the unnecessary initiation of antibiotic therapy while simultaneously

making it easy to get an antibiotic quickly if symptoms persist.

In primary care, retrospective studies of English general practices indicated

reasonable — but not perfect — adherence to guidelines, with 70–80% of patients

treated according to the recommended first line treatment [6, 65]. However,

they also reported considerable use of broad-spectrum antibiotics. It is difficult

to ascertain what proportion of those patients had symptoms that were indeed

indicative of pyelonephritis [16], or whether doctors might have discounted the

long-term consequences posed by broad-spectrum antibiotics — i.e., antibiotic

resistance and increased risk of future treatment failure — and prioritised the

avoidance of infection-related adverse consequences [62]. Length of treatment was

also frequently found to exceed the recommended treatment duration of three days,

with >50% of courses being prescribed for five or seven days [66].

Data on antibiotic prescribing in relation to clinical indication are lacking in

secondary care in the UK, due to an ongoing lack of electronic prescribing in this

setting [67]. This makes it difficult to investigate the congruence of prescribing

for lower UTI in secondary care against local guidelines. In a single-centre study

of antibiotic prescribing in patients presenting to the emergency department (ED)
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Figure 1.2: Ideal antibiotic prescribing proportions (median and interquartile range) in
primary care for key infections, as elicited via expert consensus in a previous primary care
study.

Figure source: Smith et al. (2018) [68]. Copyright © 2018, Oxford University Press; reused under Crown Copyright; image
caption was adapted from the original image caption.

at Queen Elizabeth Hospital Birmingham, we previously found that 33.3% of

patients admitted for lower UTI received piperacillin / tazobactam, although local

guidelines recommend nitrofurantoin as first line treatment [24]. This relationship

was also seen in patients with suspected pyelonephritis or urosepsis, where 60–70%

of patients received empirical treatment with piperacillin / tazobactam. The

recommended first line treatment co-amoxiclav was prescribed in only ∼5% of

cases, indicating substantial deviation from guideline recommendations [24].

1.4.2 Need for immediate antibiotic treatment

While oral antibiotics are the recommended first-line treatment for UTI [13], the

reliance on antibiotics as the exclusive treatment for (lower) UTI is increasingly

challenged. A recent series of interviews with infectious disease experts revealed a

notable disagreement on recommended treatment strategies for a range of common

infectious conditions in primary care (Figure 1.2) [68]. When asked to estimate

the proportion of uncomplicated lower UTI episodes that truly require antibiotic

treatment, opinions ranged from 40% to 95% of cases. Indeed, increasing evidence
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from randomized controlled trials in young and otherwise healthy women suggests

that uncomplicated lower UTIs might resolve spontaneously in some of these

patients3 [69, 70, 71].

While many patients in this patient group clearly require antibiotic treatment

for UTI, these results suggest that it might be safe to delay or withhold antibiotic

treatment in some patients with suspected UTI. A prospective cohort study among

Danish women with uncomplicated UTI found that a third of patients would

consider delaying antibiotic treatment when asked by their primary care physician

[63]. After one week, 55% of the women who were willing to delay antibiotics

reported not having used antibiotics to treat their UTI, and none of the patients in

the study developed serious complications. The risk of minor complications was

comparable between patients that were willing to delay antibiotic treatment and

those that were treated according to standard care — i.e., who received immediate

antibiotics [63].

However, it remains currently unclear for which patient groups it is safe to

delay antibiotics. All studies discussed in this section suffered from relatively

small sample sizes. Serious complications were generally rare (≤ 2%) and most

studies were therefore under-powered to ascertain differences in risks between

treatment groups. The risk of developing a complication most likely differs based

on patient characteristics such as age and previous medical history [72]. In

order to ascertain the safety of different prescribing strategies definitively, rigorous

studies based on large numbers of high quality data are required. Unless they use

prospective randomization, these studies will need to carefully consider the risk

for confounding by indication [72], since the characteristics of patients who are

prescribed antibiotics immediately are likely to differ from those who receive a

delayed prescription.

3 These studies and their limitations are discussed in detail in Chapter 4.
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1.5 Clinical impact of reducing uncertainty in UTI
The inherent uncertainty in diagnosing and managing suspected UTI outlined above

has important implications for clinical care and patient outcomes. Reducing this

uncertainty has the potential to improve patient management by reducing the risk

of misdiagnosis, mitigating the emergence of antimicrobial resistance, enabling

conservative, prompt, and effective treatment of (drug-resistant) infection, and by

reducing side effects of antibiotics. Improved management of UTI could decrease

the number and length of hospital stays, reduce associated healthcare costs, and

decrease the number of complications of UTI.

Reducing misdiagnosis The difficulty to quickly and accurately diagnose UTI

means that many patients are over-diagnosed for UTI [24, 73]. Patients have

repeatedly been found to be unnecessarily treated with antibiotics for suspected

UTI that later could not be confirmed by microbiological culture, meaning that the

antibiotics most likely did not benefit the patient. An incorrect assumption of UTI

may further delay treatment for other diseases with similar presentation — like

sexually transmitted diseases [73] — as well as other infectious and non-infectious

diagnoses [24]. Reducing the uncertainty in diagnosing UTI can aid clinicians

in identifying the underlying cause of clinical symptoms and initiated appropriate

treatment early.

Mitigating antimicrobial resistance The overuse of antibiotics is an established

driver of antimicrobial resistance [74, 75]. Nine out of ten episodes of suspected

UTI are treated with antibiotics, making them a key driver of antibiotic prescribing

in both primary and secondary care [24, 76]. A substantial proportion of this

prescribing is thought to be unnecessary [24, 68]. Improved certainty of UTI

diagnosis could give doctors confidence to withhold antibiotics without fear of an

increase in adverse outcomes. Earlier confirmation of susceptibility profiles could

further optimise the choice of empirical antibiotics [59, 77], allowing clinicians to

prescribe the right antibiotic to the right patient and limiting the risk of treatment

failure in the presence of uncommon pathogens or drug resistance.
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Reducing antibiotic side effects Aside from an increased risk of antimicrobial

resistance, the frequent use of antibiotics has other unintended consequences for

patients. Common side effects of antibiotics include nausea, vomiting, diarrhoea,

bloating, indigestion, abdominal pain, or loss of appetite [78]. Allergies to

antibiotics are common with 5-15% of patients reporting a penicillin allergy [79].

While allergies are thought to be over-reported and tend to be mild if indeed

present, antibiotic use can lead to severe adverse outcomes like anaphylaxis or

Stevens-Johnson syndrome4 [79]. Furthermore, frequent antibiotic use puts patients

at risk of opportunistic infections like Clostridium difficile, particularly in the

elderly [80, 81]. Delaying or withholding antibiotics in those that are highly

unlikely to have bacterial UTI avoids putting patients at risk of experiencing these

side effects.

Shorter hospital stays and reduced healthcare costs Appropriate antibiotic

use has further been linked to a moderate reduction in the length of hospital stays

[82]. If used frequently, on the other hand, antibiotics have been associated with

an increased risk of future hospitalisations [83]. While this evidence is from

observational studies only — and thus at high risk of confounding by indication

— it is plausible that long-term use of antibiotics increases the risk of more

severe, drug-resistant infection that require hospitalisation. Diagnostic uncertainty

has been identified as a key reason for divergence from appropriate prescribing

behaviours recommended in national and local guidelines [62]. Clinicians might

feel more confident in following recommendations if diagnostic uncertainty and risk

of complications are reduced. A reduction in the number and length of hospital stays

accompanying increased guideline adherence may significantly reduce healthcare

costs associated with UTI [2, 4].

1.6 Aims of this thesis
In this thesis, I investigate the use of routinely collected medical data in form of

electronic health records (EHRs) to improve the diagnosis and management of

4 A rare skin disorder characterised by a severe blistering rash often requiring treatment in an
intensive care or burn unit [79].
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UTI in England. Using case studies from primary care and the ED, I examine the

availability of information on urinary symptoms, diagnosis of UTI, urine dipstick

tests, and microbiological culture results recorded in EHR data from each setting.

I then explore whether the available information allows for the identification of

episodes of community-onset UTI, which present the majority of UTI cases in these

settings. Finally, I assess whether these and other information routinely captured in

EHR databases allow to obtain valid findings on the diagnosis and management of

community-onset UTI from EHR data and to account for confounding factors that

may bias these results.

This thesis is structured as follows. In Chapter 2, I perform a scoping review

of studies that used EHR data to assess the diagnosis and management of UTIs. In

Chapter 3, I then describe several major English EHR databases and the information

captured within them. In Chapter 4, I present a retrospective observational database

study assessing the association between antibiotic prescribing for community-onset

lower UTI in English primary care and subsequent risk of complications. In

Chapter 5, I describe the creation of a risk prediction model for the presence of

bacterial growth in urine samples collected in the ED at Queen Elizabeth Hospital

Birmingham. In Chapter 6, I expand on these results and evaluate variations

in the estimated performance of this model when looking at clinically relevant

patient subgroups or when changing key definitions. In Chapter 7, I summarise

my findings, discuss the strengths and limitations of this thesis, comment on the

translation of EHR studies into clinical practice, and provide recommendations for

future EHR studies and data collection.

Chapter summary

• Microbiological culture of urine samples may take up to 48

hours, introducing a bottleneck for evidence-based diagnosis and

management of UTIs.

• Rapid diagnostic tests like urine dipsticks are commonly used to
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guide empirical prescribing decisions until culture results are available.

These tests have relatively poor predictive performance.

• As a result, previous studies have repeatedly reported over-diagnosis

and over-treatment of UTIs in clinical practice.

• Reducing the uncertainty inherent in the diagnosis and management

of UTIs may reduce unnecessary prescribing for UTI, and avoid

side effects of antibiotic treatment and emergence of antimicrobial

resistance.



Chapter 2

Use of EHR data to guide diagnosis and

management of suspected community-onset

UTI in adults: a scoping review

Abstract
Introduction: Chapter 1 described common sources of uncertainty that complicate

the diagnosis and management of urinary tract infections (UTIs). Analysis of

patient data routinely collected during each healthcare visit in the form of electronic

health records (EHRs) may provide an opportunity to support the diagnosis of UTI

and aid clinicians in choosing the optimal treatment in light of this uncertainty.

In this chapter, I undertake a scoping review to identify previous research studies

that have used EHR data to guide the diagnosis and management of suspected

community-onset UTI in primary or secondary care.

Background: Over the course of the last two decades, routine data have

increasingly been used to study the onset and course of disease. With the increasing

breadth and depth of EHR data sources, they may provide an opportunity to aid

doctors directly in confirming suspicion of UTI and choosing adequate treatments,

either by informing the development of comprehensive clinical guidelines or in

form of clinical decision support systems.

Methods: I performed a scoping review of peer-reviewed studies describing the

use of EHR data to estimate the risk of — or risk factors for — microbiologically

confirmed bacterial UTI and infectious complications in adult patients consulting

with suspected community-onset UTI in primary or secondary care. I identified
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retrospective observational studies that used data from routinely collected

EHRs through a systematic search of two bibliographic databases (Embase and

MEDLINE), including all studies published after 1974 in English language.

I summarised the characteristics of included studies and provided a narrative

synthesis. Risks of bias (ROBs) and applicability of studies to the review question

were appraised using an adapted Newcastle - Ottawa Quality Assessment Scale and

the Prediction model Risk of Bias Assessment Tool (PROBAST).

Results: I screened 4,334 records identified during the database search. After

adding one study identified via manual reference screening, eight studies were

included in the review (UK: 5 studies; US: 3 studies). Included studies primarily

investigated the use of EHR data in primary (5 studies) or primary/secondary

care (2 studies), with only one study being exclusively performed in secondary

care. Almost all studies (6/8) assessed the association between antibiotic

treatment choices and subsequent complications of UTI. The remaining two studies

attempted to develop risk prediction models to predict patients’ risk of developing

complications after consulting in primary care or the probability of microbiological

growth in urine samples for patients consulting in the emergency department.

Studies were generally judged at high ROB, most prominently due to non-random

treatment assignment and difficulties in identifying the intended target population

from EHR data.

Discussion: EHR data provide a valuable resource for research on suspected

community-onset UTI but few studies have been conducted to date, particularly

in secondary care. Increasingly detailed data collection may provide further

opportunities to use EHR data to investigate the diagnosis and management of

community-onset UTI, and help to overcome the ROBs identified in this review.

Particularly data on patients’ health status at consultation — paired with careful

definition of study cohorts and appropriate statistical methodology — may be able

to account for common biases and ensure more reliable results.
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2.1 Introduction
In Chapter 1, I described how uncertainty in the diagnosis of community-onset

urinary tract infections (UTIs) influences clinicians’ management of this infection

in primary and secondary care. I discussed the wide range of signs and symptoms

potentially attributable to UTI, how these overlap with other infectious and

non-infectious conditions, the potential consequences of delaying antibiotic

treatment, and how a lack of reliable rapid diagnostic tests for UTI forces doctors

to rely heavily on their clinical experience when treating patients with suspicion of

UTI.

A large number of research studies have investigated strategies to improve

the diagnosis and management of UTI. Clinical trials have compared different

choices and durations of antibiotic treatment for community-onset UTI [84, 85]

and a number of trials have investigated the safety and efficacy of withholding

antibiotics in low risk women with suspected UTI [69, 86]. However, these studies

are expensive, they often exclude important population sub-groups, and treatment

effects identified through trials do not always translate effectively into clinical

practice [87]. Alongside clinical trials, observational studies have evaluated the

use of novel diagnostic tests [88] or clinical scoring systems [27, 89] to aid the

diagnosis and management of UTI, yet few of those are used in routine practice.

Novel diagnostic tests like PCR are expensive [57] and need to show substantial

clinical benefit in order to justify those excess costs. Simple clinical scoring systems

on the other hand have shown limited performance in identifying UTIs [90], still

require clinicians to consider the risk of false negatives carefully [90], and may

quickly become complex and hard to apply without automated support.

Analysis of detailed electronic health record (EHR) data collected as part

of routine care may provide a novel opportunity to aid clinicians in reducing

uncertainty in the diagnosis and management of community-onset UTIs. The large

quantities of real-world data captured in structured EHRs may allow for better (and

potentially automated) risk stratification of patients for whom community-onset

UTI is suspected. For example, EHR data can be used to develop risk prediction
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models which stratify patients by risk of complications and thus guide antibiotic

treatment decisions.

In this chapter, I use a scoping review approach to examine how previous

studies have used EHR data to support the diagnosis and management of patients

presenting with suspected community-onset UTI in primary or secondary care. The

aim of this review is to provide context for the work that is presented in subsequent

chapters of my thesis. In contrast to a systematic review, this chapter does not

specifically assess the impact of a treatment or clinical practice, but instead attempts

to synthesis the basic characteristics of studies that have used EHR to guide UTI

care and discuss similarities or differences between them [91].

2.2 Background
Clinicians record data during each patient consultation as part of standard clinical

practice. With the rise of EHR systems and electronic prescribing in primary and

secondary care, this information has become increasingly accessible for research

and offers a valuable resource for medical research (I give an overview over the

different EHR systems available in English primary and secondary care in Chapter

3) [92]. Advantages of using routinely collected EHR data include the often large

numbers of patients covered within them, relatively fast and cheap access to the

data, and their depiction of real-world clinical practice.

An early use of EHR data in England has been the surveillance of infectious

diseases. As early as 1999, data from EHR sources were used to estimate

the incidence of common infections and patterns of antibiotic use in English

primary care [93, 94]. Over the past two decades, EHRs have thus been used

to investigate the epidemiology and management of UTI. Examples include their

use to investigate the effects of patient characteristics — e.g., diabetes mellitus —

on the incidence of UTI [95], to assess concordance of antibiotic prescribing for

UTI with local or national guidelines [9, 24, 65, 66, 96], and to establish local

or national patterns of (urological) pathogens and antibiotic susceptibilities [24,

97]. By depicting routine medical care, EHRs and EHR studies therefore allow
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policy makers and doctors to adapt guidelines to real-world clinical practice —

e.g., through adjusting recommended first and second line treatments to observed

resistance patterns [97].

As the digital maturity of healthcare providers grows, and the breadth

and depth of data available for each individual healthcare contact increases —

e.g., through increased linkage of data sources [98, 99] — tools and evidence

derived from EHR sources may be used to directly aid clinicians in diagnosing

and managing suspected UTI at the point of care. Information on clinical

presentation and outcomes from thousands of patients with suspected UTI may

be used to enable a targeted, "personalised" approach to the management of UTIs.

Unlike conventional clinical guidelines, which may be limited in their achievable

complexity, tools based on EHR data may simultaneously account for a large

number of patient factors and communicate their combined impact on an individual

patient [100]. Ready access to large cohorts of patients consulting for UTI further

allows researchers to assess even small effect sizes or investigate rare outcomes

linked to empirical treatment choices. Evidence derived this way may again inform

the development or adaption of clinical guidelines for UTI, or may provide the

basis for clinical decision support systems — either by simplifying them into

easy to handle clinical scores (if possible) or by directly integrating them into the

electronic patient management systems of healthcare providers.

The value of these models for clinical care, however, heavily depends on the

quality of data recorded in EHRs [92]. EHRs are primarily designed for clinical care

and are seldom collected with research in mind. Analysts are limited to those data

items that were judged relevant for delivery of care, and information not routinely

measured or recorded in standard care tends to be missing. As a result, careful

analysis and evaluation of EHR data are paramount to ensure that reliable findings

are derived from them. The following pages present a scoping review of studies

that used routinely collected EHR data to guide the diagnosis and management of

UTI and describe the approaches and findings of those studies. Being mindful of

the limitations of EHR research, this chapter also includes a detailed analysis of the
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various risks of bias encountered in those studies, and how they were or weren’t

accounted for in each study.

2.3 Aims and Objectives
To identify, summarise, and appraise published studies that used routinely collected

EHR data to estimate the risk of UTI-related outcomes in order to aid the diagnosis

and management of community-onset UTI at the point of care.

Objectives:

2.1 To identify peer-reviewed studies describing the use of EHR data to estimate

the risk of — or risk factors for — microbiologically confirmed bacterial UTI

or infectious complications of UTI in adult patients consulting primary or

secondary care with suspected community-onset UTI.

2.2 To assess the risk of bias (ROB) in identified studies, and identify potential

concerns about their direct applicability to the target population of patients

consulting with suspected community-onset UTI.

No review protocol was prospectively registered for this review.

2.4 Methods

2.4.1 Eligibility criteria

I followed the Population – Concept – Context framework recommended by the

Joanna Briggs Institute (JBI) to define the scope of this review [101].

2.4.1.1 Population

I included all studies relating to adult patients consulting for suspected

community-onset UTI in primary or secondary care. Studies exclusively

investigating UTIs in patients that warrant special care such as pregnant women,

immunosuppressed patients (e.g., due to neoplasms or autoimmune disease),

patients pre- or post-surgery, or in patients with trauma (e.g., spinal cord injury)
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were excluded from the review. Studies relating to healthcare-acquired infections,

catheter-associated infections, and recurrent UTIs were also excluded.

2.4.1.2 Concept

I reviewed all studies that used routinely collected EHR data (see Remark box below

for a definition of EHR for the purposes of this review) to generate evidence that

supports clinicians in diagnosing or managing suspected community-onset UTIs

during initial patient presentation. Studies were included if they used EHR data

to estimate the risk of microbiologically confirmed bacterial UTI or infectious

complications in patients consulting primary or secondary care for suspected UTI. I

excluded UTI focused studies that estimated only population incidence rates of UTI

over time, or studies that described antibiotic prescribing patterns and adherence

to local or national antibiotic prescribing guidelines. I also excluded studies that

utilised EHR data to evaluate local antimicrobial stewardship interventions for UTI

outside of standard clinical care. In order to be eligible, studies could only use

Remark (Electronic health records). EHRs were defined as a "longitudinal

collection of electronic health information about individual patients" [102],

including information on patient demographics, medical diagnoses, clinical

observations, laboratory tests, and prescriptions. For the purposes of this

thesis, eligible sources of EHR data were those that at a minimum contained

information on healthcare contacts (e.g., consultation or admission dates)

and clinical diagnoses. Notably, this requirement excluded stand-alone

computer-aided laboratory or pharmacy systems, unless they were linked

to aforementioned administrative and diagnostic information. In order to

be considered in this review, sources of EHR data were further required to

allow for the automated extraction of all relevant clinical information. This

excluded electronic patient management systems that electronically stored

documents like discharge letters but which needed to be reviewed manually

(e.g., by a clinician or a study nurse) in order to extract the necessary

information.
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data contained within the EHR, and this could not be supplemented by manual note

review.

2.4.1.3 Context

I included studies that described consultations in primary care or new hospital

visits for community-onset UTI. Studies that were limited to care home residents

or patients in whom suspicion of UTI only arose after they had been hospitalised

for non-UTI reasons were not considered to investigate community-onset UTI and

were therefore excluded.

2.4.2 Types of evidence sources

I included original quantitative retrospective observational studies published as

peer-reviewed papers, and systematic reviews of such studies. Qualitative studies

and studies that involved active collection of data outside of routine care (e.g.,

prospective observational studies or randomized controlled trials) were excluded

from the analysis, even if some of their data were collected through EHR systems.

Studies published only as conference abstracts or preprints were also excluded.

2.4.3 Search strategy

Two bibliographic databases (Embase and MEDLINE) were systematically

searched for articles published in English language between January 1st 1974

and December 10th 20201. No geographical restrictions were applied. Following

standard recommendations for scoping reviews issued by JBI, a three part literature

search was performed [101]. First, an initial search was performed in both Embase

and MEDLINE using a preliminary list of search terms. Titles, abstracts, and index

terms of a random sample of 50 studies identified during the initial search as well

as known relevant articles were reviewed, and the search strategy was adapted

accordingly. A second search using the updated search terms was performed (see

Table 2.1 for detailed results from Embase), and all retrieved studies were exported

into the web-based systematic review software DistillerSR (Evidence Partners,

1Articles were limited to English language for feasibility reasons. The year 1974 was the earliest
year available in the bibliographic database Embase and was judged the absolute lower limit for
any possible use of EHR data.
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Table 2.1: Final search strategy applied to the Embase bibliographic database.

# Search term Results

1 human/ 21,658,278

2 adult/ 7,487,346
3 aged/ 3,063,902
4 2 or 3 8,516,579

5 urinary tract infection/ 105,014

6 electronic health record/ 19,788
7 medical record/ 180,757
8 "medical record review"/ 133,353
9 record.ti,ab,kw. 199,693

10 records.ti,ab,kw. 423,827
11 6 or 7 or 8 or 9 or 10 745,617

12 1 and 4 and 5 and 11 3,753

Ottawa, Canada). Finally, the bibliography of all studies included in the review

were manually screened for any missed articles. The search was last updated using

this strategy on January 17th 2021.

2.4.4 Selection of studies

All records identified via the above described search strategy were automatically

screened for duplicates using the DistillerSR software. Suggested duplicates were

manually reviewed and removed if a duplicate entry was confirmed. The selection

of records for inclusion into the review was performed in multiple iterations. I first

screened the titles of all de-duplicated records. Next, I reviewed the abstracts of

all remaining records. Finally, I retrieved the full-text articles for all records left

after title and abstract review and compared them to the eligibility criteria. If an

eligibility criterion could not be definitively confirmed at any stage of the review,

the article was put through to the next review stage. Before each review step, I

piloted the format and layout of the screening forms using 25 randomly selected

studies.
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2.4.5 Data extraction

For each study included in the final review, I recorded the following information:

author(s), year of publication, countries, setting (primary care and/or secondary

care), number of patients, exposures, outcomes, covariates, statistical methodology,

and key findings (see Appendix A for the data extraction template).

2.4.6 Assessment of risk of bias and applicability

Each study included in the final review was assessed for its ROB and applicability

to the intended target population of this review based on widely used quality

assessment tools (see Appendix B for templates of each used tool). Cohort and

case control studies of exposure effects were assessed using a recent adaption of

the well-known Newcastle - Ottawa Quality Assessment Scale (NOS) proposed

by Guyatt and Busse [103]. The adapted NOS was used in place of the original

version since it includes an assessment of the quality of all predictors (and not

only the exposure) and explicitly distinguishes between ROB — i.e., risk to the

internal validity of the study — and applicability of the study results to the target

population [103]. Since risk prediction models pursue a very different aim than

the more traditionally epidemiological cohort and case control studies, the recently

developed Prediction model Risk of Bias Assessment Tool (PROBAST) [104] was

used to assess ROB and concerns about applicability in studies that developed or

evaluated clinical risk prediction models. The items of both the adapted NOS

and PROBAST were grouped according to the following categories: participants,

predictors, outcomes, and analysis. A separate rating was made for ROB and

applicability in each of those categories (analysis was appraised for ROB only).

2.4.7 Analysis of the evidence and presentation of results

A narrative description of all included studies was produced, summarising the study

characteristics, main design choices, and key findings. A numerical analysis of the

geographical distribution, healthcare settings, exposures, outcomes, and statistical

methodologies was performed. Study characteristics and ROB assessment for each

study were presented in tabular form. Year of publication and number of included
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Figure 2.1: Flow chart of reviewed studies and reasons for exclusion.

patients were presented graphically for all studies included in the full-text review.

All results were reported following the PRISMA Extension for Scoping Reviews

reporting guideline (see Appendix G) [105].
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2.5 Results
The search in Embase and MEDLINE resulted in 4,334 identified records (Embase:

3,753; MEDLINE: 581; Figure 2.1)2. One additional record was identified through

manual reference screening. After removing duplicates, I screened 3,887 titles

which resulted in 342 records for detailed screening based on title and abstract. Due

to the broad search criteria, a large proportion of the remaining records described

studies that used manual note review or non-EHR data (66 records), described other

kinds of infection or other types of UTI (95 records), or provided a descriptive

analysis of guideline adherence and patterns of care (78 records). A total of 66

articles were retrieved for full-text review, of which eight were included in the final

data extraction step and appraised for ROB and applicability to the intended target

population (Figure 2.1).

2.5.1 Identification of EHR studies

A primary challenge at each stage of the review was determining whether or not

a study used automatically collected, structured EHR data (included) or required

manual patient note review (excluded). Most reviewed full-text articles did not

include a clear description of the data source and frequently reported a not further

defined "retrospective review of medical records". Articles whose methodology

section suggested a probable manual note review were excluded during full-text

review. A total of 28 studies were excluded this way. These studies tended to

be published in or before 2015 (20 out of 28 excluded studies) and to include

less than 1,000 patients (24 out of 28 excluded studies; Figure 2.2 purple circles),

strengthening the conclusion that they did not describe the analysis of automatically

extracted EHR data. Studies that were judged to describe EHR research (Figure 2.2

2The much larger number of records identified within Embase compared to MEDLINE was
unexpected. In order to avoid any unintended exclusion of records in MEDLINE, I performed
additional searches in MEDLINE to assess the sensitivity to individual search terms. The largest
difference was observed for keywords relating to (electronic) medical records, which may be more
narrowly defined in MEDLINE. Of the final seven articles identified through database search, five
were found in both Embase and MEDLINE, one did not contain any reference to medial records
in MEDLINE and was thus only found in Embase, and one was not indexed in MEDLINE at all.
This suggests that while there was some difference between the records returned by Embase and
MEDLINE, most of these differences were due to studies unrelated to EHR research.
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Figure 2.2: Year of publication and number of included patients among 54/66 full-text
peer-reviewed articles assessed for eligibility. 12 studies which were eligible for full-text
review were excluded (and were omitted from this figure) because they were conference
abstracts (7 studies), could not be retrieved (3 studies), or were not in English language (2
studies).

yellow dots) were all published in or after 2013 and — with the exception of one

study — all included more than 10,000 patients. Several studies were similar in size

and scope to included studies but either included only microbiologically confirmed

(rather than suspected) cases of UTI (Figure 2.2 green squares) or were performed

in stand-alone laboratory or pharmacy datasets (Figure 2.2 green triangles).

2.5.2 Study characteristics and key findings

Of the eight studies included in the review, five were conducted in the UK and

three were conducted in the US (Table 2.2). All UK studies used the same primary

care database (the Clinical Practice Research Datalink [CPRD], see Chapter 3 for a

detailed description). US-based studies used national data from outpatient clinics of

the Veterans Affairs healthcare system (1 study; both primary and secondary care),

three local outpatient clinics (1 study; both primary and secondary care) or four

local emergency departments (ED) (1 study; secondary care only). Four studies

were limited to patients aged 65 years or more, and two studies included only men.

Six studies conducted a retrospective cohort study, estimating the effect of a single
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exposure after adjusting for confounding factors. Two studies attempted to predict

individual patient risks of bacterial growth in urine samples (1 study) or risk of

infectious complication (1 study).

2.5.2.1 Cohort studies of exposures

Most (6/8) included studies performed an inferential analysis of the effects of

different kinds of empirical antibiotic treatment on clinical outcomes. These studies

assessed the association between adverse outcomes of infection and treatment

choice including: type of antibiotic (2 studies) [108, 110]; duration of prescribed

antibiotics (3 studies) [106, 107, 111]; and delaying or withholding antibiotics (1

study) [112]. The considered outcomes were one or more of: re-consultation for

UTI3; recurrence of UTI; hospitalisation for infection-related complications; or

death. Outcomes were measured within 14 to 60 days after initial consultation

except recurrence of UTI, which was measured up to one year after consultation.

With the exception of one study [112], studies that assessed treatment choices

were limited to patients who received antibiotics during or soon after their index

consultation.

All studies that estimated effects of empirical antibiotic treatment used

multivariable logistic regression to estimate effect sizes of interest. Multivariable

Cox regression was used in addition to logistic regression by one study, although

without justification as to why logistic regression was used for one outcome

(bloodstream infection within 60 days) and Cox regression for the other (death

within 60 days) [112]. Three studies by the same group of authors further used

a multilevel modelling framework to account for correlation by primary care

practice and employed propensity score matching to adjust for differential treatment

assignment [108, 110, 111].

Studies assessing the duration of treatment for community-onset UTI in

primary care provided conflicting evidence, reporting that shorter courses of

treatment increase [111], decrease [107] or do not effect odds of re-consultation

for UTI [106]. The three studies included similar antibiotics, but studies that found
3Interpreted as an indicator of treatment failure.
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an increase or no change in the odds of re-consultation for UTI were limited to

male patients only [106, 111]. In the only study that also investigated the more

severe outcomes of hospitalisation and death, shorter courses of antibiotics in male

patients above the age of 65 years did not increase the risk of those outcomes [111].

In a further cohort study investigating the use of nitrofurantoin in male patients

aged ≥ 65 years who had renal impairment (defined via an estimated glomerular

filtration rate [eGFR] < 60 mL/minute/1.73m2) and consulted for community-onset

UTI in primary care, Ahmed et al. concluded that use of nitrofurantoin did

not lead to an increased risk of hospitalisation and was instead associated with

lower odds of re-consultation or death in men with eGFR of 45-59 and 30-44

mL/minute/1.73m2 respectively [108]. In a second cohort study, the same authors

compared nitrofurantoin to cefalexin, ciprofloxacin, or co-amoxiclav in both men

and women aged ≥ 65 years consulting primary care for community-onset UTI

[110]. They reported a slightly higher risk of re-consultation when being prescribed

nitrofurantoin instead of cefalexin, ciprofloxacin, or co-amoxiclav. However, they

also found increased odds of hospitalisation for sepsis when being prescribed

cefalexin or ciprofloxacin, and increased odds of death when being prescribed

cefalexin [110]. Finally, Gharbi et al. (2019) [112] suggested that delaying or

withholding antibiotics in older patients aged ≥ 65 years who consulted primary

care for community-onset UTI was associated with a 7–8-fold increase in the odds

of bloodstream infection by comparison with patients of similar age that received

immediate antibiotic treatment.

2.5.2.2 Risk prediction studies

Two studies did not assess the effects of a single exposure variable and instead

attempted to develop clinical risk prediction models to aid the diagnosis and

management of UTI. Mistry et al. (2020) [113] used routine English primary

care data from CPRD to predict the 30-day risk of infection-related hospitalisation

for all patients with an incident episode of (suspected) UTI and who did not

receive antibiotic treatment during their initial consultation. The authors included

almost 1,000,000 episodes of UTI. They modelled the risk of hospitalisation
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using multivariable Cox regression and adjusting for demography, comorbidities,

previous hospitalisations, previous prescriptions other than antibiotics, flu

vaccination status, and date of consultation. The model was externally validated

in data from Welsh primary care practices. The authors concluded that their

model achieved good, generalisable performance (area under the receiver operating

characteristic curve [AUROC]: 0.821), suggesting it might serve as a basis to

evaluate a patient’s risk of developing complications.

In the only included study that had access to urine culture results and used

data from four EDs in the US, Taylor et al. (2018) [109] used clinical observations

and medical history to predict bacterial growth of ≥ 104 colony forming units per

millilitre (cfu/mL) in urine samples from patients visiting the ED with suspected

UTI. Suspected UTI was defined as a recorded symptom or diagnosis comparable

with UTI, including both urinary symptoms as well as less specific symptoms such

as altered mental status, abdominal pain, or fever. They used multivariable logistic

regression and machine learning algorithms — including support vector machines,

random forests, extreme gradient boosting, and neural networks — to model factors

that influence a patient’s risk of bacterial growth [109]. Reporting favourable model

performance (AUROC: 0.904), they also concluded that their model might be used

by clinicians to guide early diagnosis of bacterial UTI.

2.5.3 Risk of bias and concerns about applicability

Most studies were judged at high or unclear ROB for at least one of the assessed

categories (Table 2.3). Included predictors and outcomes were generally considered

at low ROB. Predictors were primarily limited to variables that could be directly

derived from EHR records and which tend to be recorded well, including

demography, presence of chronic diseases, previous healthcare visits, and past

prescriptions. Two studies were judged at high ROB for the assessment of their

outcomes — re-consultation for and recurrence of UTI — since they were limited

to outpatient data only and failed to cover all possible healthcare settings in which

these outcome might occur [106, 107]. Two study were considered at unclear ROB

for how they defined their primary outcome. First, there were questions about the
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reliability of identifying the outcome of bloodstream infection in Gharbi et al. from

hospital discharge codes without microbiological culture results [112]. Second,

it remained unclear whether included predictors like laboratory flow cytometry

results in Taylor et al. may have unduly influenced which urine samples underwent

microbiological culture — and may thus have introduced selection bias in the

outcome [109].

Although predictors that were included in the analyses were usually well

measured, studies that aimed to estimate exposure effects frequently failed to

sufficiently account for differences between exposed and unexposed patients [106,

107, 112], introducing confounding by indication. For example, in Gharbi et al.

patients who did not receive immediate antibiotics during their initial consultation

in primary care tended to be notably older and were more likely to have recently

been to hospital or received antibiotic treatment, raising questions about the

comparability of the treatment groups [112]. Difficulties in ascertaining the clinical

rationale behind delaying or withholding antibiotics from EHR data might have

contributed to these difficulties (see Chapter 4 for a more detailed discussion of

this issue). Ahmed et al. used propensity score matching to account for similar

imbalances between treatment groups in their studies [108, 110, 111]. While

this might have plausibly accounted for the imbalances between patients who

received long versus short courses of treatment [108, 111], it remained less clear

whether this approach could also account for differences between patients who

received the standard first line therapy of nitrofurantoin as opposed to other, more

broad-spectrum antibiotics like cefalexin [110].

The analyses of included prediction modelling studies were also judged at high

risk of bias. Mistry et al. only assessed model performance via AUROC and ignored

the substantial class imbalance in their outcome [113]. This means that their model

would have an immense false positive or false negative rate when used in clinical

practice. Taylor et al. on the other hand did not perform adequate external validation

[109]. Instead, they evaluated their model on a simple hold-out set covering the

exact same patient population as their training set, which is not generally considered
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Table 2.3: ROB and concerns about applicability of included studies.

ROB Applicability

Participants Predictors Outcomes Analysis Participants Predictors Outcomes

[106] + + – – ? + +

[107] + + – – ? + +

[108] + + + + ? + +

[109] – + ? – – + +

[110] + + + ? ? + +

[111] + + + + ? + +

[112] + – ? – + + +

[113] – + + – – + +

+ indicates low ROB/low concern regarding applicability; – indicates high ROB/high concern regarding applicability; and ?
indicates unclear ROB/unclear concern regarding applicability. Studies [109] and [113] were assessed using the Prediction
model Risk of Bias Assessment Tool (PROBAST) [104]. All other studies were assessed using an adaption of the frequently
used Newcastle - Ottawa Quality Assessment Scale (NOS) proposed by Guyatt and Busse [103].

ROB, risk of bias.

appropriate external validation (see Chapter 5 for an in-depth discussion of this

issue) [114].

ROB in the selection of participants was generally judged low for all studies of

exposures (Table 2.3). However, there were unclear concerns about the applicability

of those study populations to the review question. Concerns related to the fact that

study population included in some of the studies might considerably differ from the

target population which is of greatest clinical relevance and in whom the research

would likely be applied in clinical practice. For example, several studies included

in the review limited the analysis to patients who received antibiotic treatment [106,

107, 108, 110, 111] but failed to compare patient characteristics among those who

did (included) and did not (excluded) receive treatment. While this might be less of

a concern for settings in which most patients have been shown to receive antibiotics

[108, 110, 111, 112], Drekonja et al. (2013) [106] reported that only 37.5% of

eligible patients with suspected UTI in their study were prescribed an antibiotic,

introducing a high risk of selection bias.

ROB in the selection of participants was also judged high for both studies

that developed risk prediction models. Mistry et al. trained their model — which
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aimed to predict risk of complication in all primary care patients consulting with

UTI — only in patients who did not receive immediate antibiotic treatment, thereby

implicitly assuming that they were also representative of patients who did receive

antibiotics for suspected UTI [113]. Taylor et al. trained their model in patients

with a requested urine culture and symptoms that were broadly comparable with

UTI but which are also seen in a range of other common conditions seen in the

ED. As they did not assess differences in model performance in patient subgroups

[109], it is possible that the strong predictive performance in this study was therefore

driven by a high proportion of individuals with no evidence — and very low a

priori probability — of UTI. While this may still be a valuable prediction target,

these patients are not representative of a population with clear suspicion of UTI

(see Chapters 5 and 6 for a more detailed discussion of this issue).

2.6 Discussion
In this chapter, I used a scoping review to identify, summarise, and evaluate

studies that used routinely collected EHR data to investigate the diagnosis and

management of suspected community-onset UTI. In the eight studies which met

the inclusion criteria, EHR data were primarily used to investigate the effects

of antibiotic treatment choices on preventing complications of infection. Two

studies further attempted to use EHR data to predict individual patient’s probability

of microbiologically confirmed UTI or subsequent risks of hospitalisation for

complications of UTI. Both areas of research were relatively recent, with the earliest

included study being published in 2013 and all remaining studies in or after 2017.

Almost all studies were performed in primary care.

The ROBs identified in this review related to common challenges in

retrospective observational studies. A lack of randomisation made it difficult for

included studies to ensure comparability between treatment groups. If patient

factors that aren’t reliably measured in EHR data strongly affect both treatment

assignment as well as the risk of experiencing the outcome, these analyses will be

at a high risk of confounding by indication [115]. It is likely that such confounding



2.6. Discussion 59

played a role in some of the studies identified by this scoping review. Clinicians

base their treatment decisions on a careful examination of the patient and the choice

of treatment usually carries information about the state of that patient — e.g.,

about the (perceived) disease severity [115]. The use of auxiliary information and

adequate methodology may allow to reduce such confounding. For example, in

all three studies by Ahmed et al. the authors used propensity score matching to

approximate randomisation. It remains unclear, however, whether the covariates

available from EHR data were sufficient to account for the most severe sources of

confounding — such as disease severity — which is not well recorded in structured

EHR data. Other included studies either did not have sufficient information about

patient characteristics to plausibly account for non-random treatment assignment

[106, 107] or did not sufficiently account for the stark difference between treatment

groups [112], and were consequently considered at high ROB.

Aside from non-random treatment assignment, this review revealed difficulties

in identifying patients with suspected UTI reliably from routine EHR data. Included

studies usually used diagnostic codes with records of antibiotic prescribing or

urinalysis to ascertain a suspected UTI. None of the included studies formally

evaluated these approaches, and it remains unclear how accurately they identify the

target population with suspected UTI in primary or secondary care. For example, if

inclusion criteria were too strict, they may have selectively excluded an important

subgroup of the target population. Studies that required patients to receive a certain

treatment such as antibiotic prescribing may bias their cohort to more severe UTI

that requires immediate treatment and exclude less severe cases. The extent of this

bias depends on how representative patients who receive treatment are of all patients

who consult with suspected community-onset UTI. While this issue may play a

lesser role in UK primary care — where the majority of patients receives antibiotics

[76] — it may have biased estimates in Drekonja et al. where the requirement

to receive immediate antibiotics excluded almost two-thirds of all eligible patients

[106]. Too broad a definition, on the other hand, may lead to a very heterogeneous

patient population and similarly cast doubt on the applicability of findings. This
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was primarily seen in Taylor et al. who included patients with symptoms that are

compatible with UTI, but also with a range of other infectious and non-infectious

conditions. The authors did not investigate how well their model performed in

patients with clear symptoms of UTI and whether individual patient groups may

have driven the reported model performance.

2.6.1 Strengths and limitations

This chapter provides a systematic search of published literature using standard

scoping review methodology in two major bibliographic databases. Closely

following guidelines on conducting [101] and reporting [105] scoping reviews,

I was able to identify previous studies in a reproducible manner and highlight

approaches and pitfalls common to studies using EHR data in order to investigate

community-onset UTIs.

Since the main aim of this review was to inform the later chapters of this

thesis, its scope was defined in a very targeted manner. Included studies were

limited to research that used routinely collected EHR data to estimate the risk of

UTI-related outcomes to aid the diagnosis and management of community-onset

UTI at the point of care. For one, this excluded studies that used prospectively

collected data — including randomised controlled trials as well as prospective

cohort studies — or manual case note reviews, even when retrospective. Findings

of this review therefore cannot be interpreted as a comprehensive summary of

studies assessing the diagnosis and treatment of suspected community-onset UTI

but instead represent a summary of the ways that routinely collected EHR data

have been used as one (novel) approach to study UTI. Included studies were further

limited to those that had access to administrative information (e.g., admission times)

and clinical diagnoses. These are the types of systems that would usually be

available to doctors at the point of care, and will be used in the remainder of this

thesis. As a result, studies that aimed to assess suspected UTI using pharmacy or

laboratory data only were excluded. Only peer-reviewed articles were included,

which may have missed very recent literature presented at conferences or published

on preprint servers. Finally, due to time constraints I undertook this review by
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myself. Ideally, a second reviewer would have independently reviewed titles and

abstracts to mitigate any subjectivity in the application of inclusion criteria [101].

2.6.2 Conclusion

While the analysis of routinely collected EHR data holds great potential to guide

the diagnosis and management of suspected community-onset UTI, this scoping

review has shown that such analyses need to be conducted carefully and interpreted

with caution. I was able to identify several sources of bias in previously published

EHR studies investigating community-onset UTIs, owing to the observational,

retrospective, and routine nature of the data. These biases potentially limit the

applicability of some of the study findings to real-world clinical practice, although

the precise extent of bias remains unclear. After describing the breadth and depth

of data available in English EHR data sources in Chapter 3, the remainder of this

thesis therefore develops two case studies that investigate if and how prudent study

design and careful statistical methodology may account for the biases described in

this review.

The majority of included studies were conducted in primary care. In the first

case study in Chapter 4, I thus assess the association between delayed or withheld

antibiotic prescribing in primary care and complications of infection in adult women

consulting with suspected community-onset UTI. I use data from the same English

primary care database (CPRD; see Chapter 3) that was used in five out of the

eight included studies. Mindful of the difficulties of identifying community-onset

UTI from EHR data described in this review, I utilise linkage to secondary care

data (HES; see Chapter 3) to ensure that I only include actual community-onset

infections. I further investigate the extent of any imbalance between treatment

groups, as reported by some of the reviewed studies. I apply statistical balancing

methods (matching and inverse probability of treatment weighting) to balance

the characteristics of patients who did and did not receive immediate antibiotic

prescriptions. Finally, I use these balanced cohorts to (re-)estimate the association

between delayed or withheld antibiotic prescribing for community-onset UTI and

complications of infection as well as additional adverse outcomes not directly
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related to UTI. The latter was used to assess the success of the balancing methods

in accounting for confounding in the data. If balancing were indeed successful in

approximating a randomised patient population, we would not expect to find any

association with adverse outcomes that are not usually a consequence of UTI.

There was only one study in this review that used routinely collected data to

study community-onset UTI at presentation in secondary care. This study used data

from four EDs operated by a single US healthcare provider to predict bacteriuria in

patients with suspected UTI. In my second case study described in Chapters 5 and 6,

I use a bespoke EHR dataset from Queen Elisabeth Hospital Birmingham to develop

a similar risk prediction model for bacteriuria in English patients that presented with

suspected community-onset UTI in the ED. Addressing the concerns identified in

this review, I carefully assess the presence of patient heterogeneity and spurious

associations in the study population, and evaluate their impact on the reliability and

performance of my model. I further evaluate the performance of the model over

time and compared to clinicians’ judgement, obtaining an estimate of the expected

stability and reliability of model predictions if the model were to be used in English

clinical practice.

Chapter summary

• Detailed EHR data collected as part of routine care may provide an

opportunity to identify patients at low risk of UTI or UTI-related

complications, allowing clinicians to avoid antibiotic treatment in this

group altogether or stop antibiotics early.

• While many studies have used EHR data to establish the incidence of

infection or assess guideline adherence, few studies have used EHR

data to estimate risk factors to guide the diagnosis and management of

suspected community-onset UTI at the point of care.

• Among those studies that did estimate risks, almost all were judged to

be at high risk of bias, owing to inadequate methods and/or a difficulty
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to ascertain important confounding factors from EHR data.

• Data captured in EHR databases are not collected for research. Careful

study design and interpretation is therefore necessary to guarantee

results that are meaningful for clinical practice.



Chapter 3

Recording of UTI in English EHR databases

Abstract
In the previous chapter, I reviewed literature using routinely collected electronic

health record (EHR) data to create evidence that may guide the treatment of

community-onset urinary tract infection (UTI) at the point of care. I discussed

how EHR data may provide a novel approach to reduce the substantial uncertainty

inherent to diagnosing and managing UTI.

In this chapter, I give an overview of key EHR databases that can be used to

investigate UTIs in English primary and secondary care. I describe the content

and limitations of these datasets in order to lay the foundation for the research

studies presented in Chapters 4-6. While providing an overview of the wider data

availability in England, this chapter pays particular attention to the Clinical Practice

Research Datalink (CPRD) — a UK-wide primary care dataset used in five out of

the eight studies reviewed in Chapter 2 — and bespoke emergency department data

collected from the EHR system at Queen Elizabeth Hospital Birmingham. Both

datasets are later analysed in Chapters 4-6. I end the chapter by summarising the

depth, breadth, and reliability of UTI data in the covered data sources and briefly

discuss what an ideal EHR dataset for research of UTI may look like.

3.1 Healthcare and medical data in England
The National Health Service (NHS) has been providing free healthcare for English

residents at the point of care since 1948 [116]. Services are mainly funded

through a tax-based system. Fees might be levied for prescriptions, dental services,

and opticians. Patients can request an exemption from prescription charges, and
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approximately 90% of drugs are dispensed to patients whose fees have been waived

[116].

Provision of services is divided into primary and secondary/tertiary care. The

former is mostly performed by General Practitioners (GPs) in local practices, with

an average of four to six GPs per practice [116]. Each patient is registered with

a single primary practice of their choosing. GPs act as the first point of contact

for patients, and as gatekeepers for specialist care. If judged necessary, GPs refer

patients to hospital for specialised treatment that cannot be provided in primary

care. Notable exceptions include emergency care or sexual health, which can be

attended immediately without referral [116].

Health care policy for England is the responsibility of the central government

[117], with the Department of Health and Social Care defining a national

health strategy. NHS England, an independent governing body, is charged with

implementing this strategy. Where sensible, it does so itself on a national level

[118]. In the early 2000’s a substantial part of the decision making was devolved to

local and regional authorities. As of 2014, there were 211 Clinical Commissioning

Groups (CCGs) who managed two thirds of the NHS’ annual budget [119]. Services

commissioned by CCGs include most secondary care services and parts of local

primary care. Besides NHS England and local CCGs, the Department of Health

funds a number of additional arm’s length bodies. These focus on specialised

aims such as promoting public health (Public Health England [PHE]), compiling

evidence-based guidance (National Institute for Health and Care Excellence

[NICE]), and regulating health service quality (Care Quality Commission [CQC])

[118].

Data generated in the English health system is governed by NHS Digital, a

non-governmental public organisation [120]. As part of this role, it collects medical

datasets itself and acts as a trusted third party to link patient data across externally

or internally curated healthcare datasets.
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3.2 Primary care
Primary care is the first point of contact with the healthcare system for most patients

in England [116]. As a result, most uncomplicated UTIs are first seen in primary

care [3]. The following pages describe several major databases used to conduct

large-scale population health research in English primary care, and discuss their

strengths and limitations for research on the diagnosis and management of UTI. This

list does not aim to be exhaustive, but rather introduces data sources that have been

used previously (see particularly Chapter 2) as well as data sources that provide a

similar breadth and depth and may thus be used as an alternative.

3.2.1 Clinical Practice Research Datalink (CPRD)

The Clinical Practice Research Datalink (CPRD) is a database of primary care

health records spanning the entire United Kingdom (UK)1. Data are collected

directly from the GP patient management software Vision and more recently EMIS

[121, 122]. Data collected via Vision is available as CPRD GOLD [121], whereas

data collected via EMIS is called CPRD Aurum [122]. Aurum was designed to be

similar to GOLD, but some differences exist due to underlying differences in Vision

and EMIS. Many conclusions about GOLD nevertheless also hold for Aurum, and

the two databases may be pooled to increase sample sizes. As Aurum has only

recently been made available, all primary care analysis presented in this thesis is

based on GOLD data only and the following description of CPRD will consequently

focus exclusively on GOLD. In this chapter as well as the rest of this thesis, the term

CPRD will be used to refer to CPRD GOLD [121] and all analyses presented in this

thesis used CPRD GOLD linkage set 15.

Active data collection in CPRD dates back as far as the 1990s. In 2013, CPRD

included data from more than eleven million patients from 674 practices, 4.4 million

of which were active (∼7% of the UK population) [121]. Patients in CPRD have

been shown to be broadly representative of the UK population in terms of age, sex,

ethnicity, and body mass index (Figure 3.1 and [121, 123, 124]). Patients enter the

database when they register with a participating GP practice and stop providing data

1 England, Wales, Scotland, and Northern Ireland.
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Figure 3.1: Age distribution in a random sample of one million patients from CPRD
primary care data compared with UK census data in 2011. Top panel: men. Lower panel:
women. All patients were of acceptable research quality as ascertained by CPRD.

CPRD, Clinical Practice Research Datalink.

Figure source: Herrett et al. (2015). Copyright © 2015, Oxford University Press; reused under Creative Commons
Attribution 4.0 International License; image caption was adapted from the original image caption.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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when they transfer out, die, or if the practice withdraws from CPRD. The average

active follow-up time is 5.1 years [121], although information on diagnoses may be

available from historic records and can date back before electronic data collection.

Data in CPRD are stored using pseudonymised patient and practice identifiers.

To prevent re-identification, no directly identifiable information such as name or

address are available. However, CPRD includes a patient’s gender, year of birth,

and ethnicity (as recorded by the clinician). The month of birth is added for patients

less than 16 years old to provide additional granularity [125]. A postcode-based

social deprivation score (Index of Multiple Deprivation 2015 or Townsend score)

allows to account for a patient’s approximate socio-economic status [126].

Patients who for any reason do not want to share their information can

opt out of CPRD through their GP. No reasons need to be given to opt out,

and patients continue to receive the same level of care as before. Any data

collected on patients who opted out is removed from CPRD, even if some of it

was collected before the opt-out. Since 2018, opt-outs can be performed online

(https://your-data-matters.service.nhs.uk).

3.2.1.1 Available clinical data items

Diagnoses The medical diagnoses and symptoms available within CPRD were

recorded by GPs as part of routine care and are stored together with a corresponding

date and consultation identifier. While a more detailed summary of the consultation

is captured in free-text format — which is not generally available for research [127]

— clinicians are asked to enter the most important clinical information in form of

Read codes, a medical terminology used in UK primary care. Read codes entered

by the GP are a primary source of information on clinical activity in CPRD. The

terminology used in CPRD is Read v2 [128]. In total, there are about 110,000 Read

codes available, but more than 50% of recorded diagnoses are covered by the most

common 1,000 codes (estimated via the CALIBER read code browser2). Medical
2 The Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Health
Records (CALIBER) is a data resource hosted at the UCL Institute of Health Informatics that links
CPRD with several other routine data sources or patient cohorts to enable translational research on
cardiovascular disease [129].
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concepts can often be recorded via multiple broadly interchangeable Read codes,

allowing for different levels of granularity. This flexibility comes at the cost of a

high number of redundant codes.

Remark (SNOMED-CT in English primary care). In April 2018, the NHS

started to retire Read codes in favour of the Systematized Nomenclature

of Medicine Clinical Terms (SNOMED-CT) [130], which solved several

legacy issues of Read [131] and enabled greater compatibility of coding

with secondary care and international databases. Given the lag in data

collection, however, it will take time until these codes enter the data, and

no SNOMED-CT codes were used in this thesis. Judging from experiences

with previous changes of clinical terminology in other countries, changes of

coding behaviour might be expected as a result and will need to be considered

in future analyses [132].

Prescriptions Unlike diagnoses, almost all primary care prescribing is

automatically captured in CPRD and does not rely on explicit coding by the

GP [121]. Prescriptions given to a patient are directly generated by the practice

management software. The primary exception are prescriptions made out-of-hours

or during home visits, which must be entered manually and may therefore

be missing [133]. Data on prescriptions include the date of prescribing, the

consultation during which the prescription was made, the prescribed substance,

formulation and strength. Additional information on the dosing schedule might

be available if the prescribing GP filled in the relevant field during the prescribing

process. Drugs are classified via the British National Formulary. For antibiotics,

roughly 80% of all prescriptions contain dosage information (as estimated from the

data used in this thesis). Although prescriptions are captured automatically, CPRD

does not explicitly record the reasons for prescribing. If required, the prescribing

indication may be derived from related diagnosis codes based on custom rules and

algorithms. Options to infer indications include utilizing a temporal relationship
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between medication and diagnoses — e.g., on the same day —, linking codes

with the same consultation identifier, or carrying previous indications forward

[6]. Which method is used depends on the drug under investigation, the medical

condition studied, and the specific research question.

Clinical observations and laboratory tests Data on vital signs and clinical

measurements like height, weight, or blood pressure are potentially available in

CPRD. Requests for tests are recorded and results can be obtained if they have

been added to the patient record via electronic links to the laboratory [121]. Like

medical diagnoses, both measurements and lab tests are identified via Read codes.

Depending on the test, different result values are stored. Most commonly, results

include the date, value and measurement unit. Additional information may include

reference ranges and test-specific qualifiers. Whether a measurement is available in

CPRD depends on how often it is performed in primary care and whether it tends to

be recorded in structured fields rather than free text.

3.2.1.2 Linkage to other EHR databases

On its own, CPRD mainly covers treatment in primary care. Information on hospital

admissions and mortality — although potentially available — is limited. When

patients are treated in hospital, information on the hospital stay is derived from

discharge letters and only recorded if entered into the system by practice staff. Thus,

information on hospital stays may be entered late, may be incomplete, or may not

be entered at all [134]. GPs also record if and when a patient died. However, when

compared to external data, recording of a patient’s death is usually delayed and

exact time of death can’t be established from CPRD alone [135].

To obtain more accurate information, CPRD offers the possibility to link

patient records to external databases. The most important among these are

Hospital Episode Statistics (HES) for information on hospital stays and the Office

for National Statistics (ONS) for mortality and census information. A detailed

description of secondary care datasets can be found later in this chapter (see Section

3.3). Further available linkages include among others the Hospital Treatment

Insights database [136], the Myocardial Ischaemia National Audit Project [129],
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Table 3.1: Frequency of commonly recorded Read codes indicative of possible UTI

Absolute and relative frequency of commonly recorded Read codes in CPRD indicative of a
diagnosis of possible UTI.

Rank Read code Description Frequency % cum-%

1 K15..00 Cystitis 1,344,447 23.7 23.7
2 K190z00 Urinary tract infection, site not specified

NOS
1,339,843 23.7 47.4

3 K190.00 Urinary tract infection, site not specified 1,176,556 20.8 68.2
4 1J4..00 Suspected UTI 1,087,845 19.2 87.4
5 1AG..00 Recurrent urinary tract infections 157,952 2.8 90.2
6 K190311 Recurrent UTI 68,239 1.2 91.4
7 K150.00 Acute cystitis 66,900 1.2 92.6
8 14D4.00 H/O: recurrent cystitis 61,918 1.1 93.7
9 K101.00 Acute pyelonephritis 48,276 0.9 94.5

10 K190.11 Recurrent urinary tract infection 43,875 0.8 95.3

All numbers were obtained via the CALIBER Read code browser [129].

CALIBER, Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Health Records; CPRD,
Clinical Practice Research Datalink; cum-%, cumulative percentage; H/O, history of; NOS, not otherwise specified; UTI,
urinary tract infection.

the Cancer Registration Data [137], and the Mental Health Dataset [122]. Separate

approval must be sought to access these sources. CPRD also allows linkage to local

datasets where necessary and appropriate [121].

The use of linked datasets is tightly regulated and only approved if it is essential

to the research question at hand, since increasing the number of linked datasets

raises the possibility for deductive disclosure of patients’ identity. When linkage is

approved, only immediately relevant data fields are made available. A justification

is required for each field used. Linkage between different datasets is limited to

patients and practices that have agreed to linkage. This is the case for ∼75% of

practices that contributed data to CPRD in England and for ∼58% across the UK

[121].

3.2.1.3 Recording of UTI

Which information is routinely captured in English primary care and the way

clinical information is recorded within CPRD has important implications for

retrospective research of UTI. Urine cultures are not routinely indicated in primary

care for patients with suspected UTI, unless they have a history of recurrent or drug

resistant infections [13]. As a result, microbiological confirmation of UTI isn’t
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usually available and identification of UTI in CPRD relies primarily on clinical

coding. This introduces several issues. Clinical coding of UTI is usually coarse and

may include patients with a wide range of clinical symptoms and disease severity.

For example, the Read codes Urinary tract infection, site not specified NOS and

Urinary tract infection, site not specified together account for almost half of all

recorded UTI codes in CPRD (2,516,399; 44.4%; Table 3.1). Part of this ambiguity

certainly stems from the uncertainty regarding diagnosis in primary care in the

absence of reliable rapid tests (see Chapter 1 for a more detailed discussion of

this issue). However, sparsity of coded clinical information also reflects the fact

that CPRD data are not recorded with research in mind. Little is known about the

patients current health status or detailed presenting complaint. Clinical symptoms

have been reported to be rarely recorded [112], as are results from diagnostic tools

such as urine dipstick tests [65]. While this information may be found in free-text

in the GP’s notes, these notes are not usually available to researchers [127].

In addition to difficulties defining and identifying patients with UTI,

prescribing records only capture intended prescribing in primary care. The absence

of a prescribing record in CPRD does not guarantee that the patient did not receive a

drug, as they may have received treatment from an out of hours GP. If a patient was

given drugs in secondary care, those will not have been recorded in CPRD either,

unless patients were required to continue the medication following discharge from

hospital [121]. Vice versa, an existing record in CPRD does not necessarily indicate

that an antibiotic was subsequently dispensed to the patient, and much less that it

was taken as intended [138]. Importantly for analysing treatment decisions for

UTI, CPRD also does not reliably identify delayed prescribing (see Section 1.4.1

for a definition of delayed prescribing). Although a code for delayed prescribing

exists within the Read terminology, it has been reported to be under-used and thus

unreliable when trying to identify delayed prescribing strategies within primary

care databases [139].

Finally, previous studies noted a discrepancy between diagnosis codes for UTI

and antibiotic prescribing records in CPRD. While prescribing records are for the
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most part captured automatically and are therefore likely to be reliable, the use of

diagnosis codes describing the reason for prescribing is at the GP’s discretion. As

a result, almost half of all prescriptions of nitrofurantoin — an antibiotic which is

only indicated for the treatment of lower UTI — does not have an accompanying

diagnosis of UTI [6], suggesting that analyses based on diagnostic codes alone miss

a considerable proportion of UTI cases in primary care. A possible reason for this

observation could be that due to its unambiguous indication, GPs do not feel the

need to redundantly record an indication [6], confining all documentation of the

reason for nitrofurantoin prescribing to free-text notes.

Issues related to the recording of UTI in English primary care — and in CPRD

in particular — are discussed in more detail in Chapter 4 in relation to a study

of the association between delayed or withheld antibiotics for community-onset

lower UTI in primary care and subsequent risk of infectious complication and/or

hospitalisation.

3.2.2 Other sources of primary care data in England

3.2.2.1 THIN, QResearch, and ResearchOne

The Health Improvement Network (THIN), QResearch, and ResearchOne are

alternative English primary care databases that provide individual-level records

similar in scope and size to CPRD. These databases mainly differ in the exact

number of included practices and the practice management software they are based

on [140]. THIN was built on Vision — the same software underlying CPRD

GOLD — and resembles it in structure and coverage [141]. A proportion of the

practices contributing to CPRD GOLD are also available within THIN and data for

these practices should be equivalent in the two databases. QResearch collects data

from practices that run EMIS software [140], which more recently has also been

added to CPRD via its Aurum database (see Section 3.2.1 earlier) [122]. Finally,

the ResearchOne database contains data from practices using SystmOne software

[142]. Due to their inherent similarities and embedding in the same primary care

environment, theses databases share all major strengths and limitations with CPRD

with regards to research on UTI, or primary healthcare more generally. Data from
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more than one vendor/database may be pooled to increase the sample sizes or

obtain independent samples for external validation [138, 143]. Most results and

conclusions discussed in this thesis for CPRD therefore directly apply to THIN,

QResearch, and ResearchOne.

3.2.2.2 Discover and KID

In addition to nation-wide databases created in collaboration with specific software

vendors, local and regional medical data warehouses have been built by local CCGs

over the last couple of years. Two examples for such initiatives are Discover

in North West London [140] and the Kent Integrated Dataset (KID) in Kent

and Medway [144]. These initiatives were originally created with the aim of

commissioning and service evaluation but have recently been extended to enable

research [140]. Although smaller in size than their nation-wide counterparts —

and thus likely less generalisable — these local datasets are more comprehensively

linked to additional local data including secondary care from local acute trusts,

community health services, social services, and mental health [140, 144]. Since

many of the limitations for UTI research discussed in the context of CPRD are due

to the way clinical information is recorded in structured EHR data and free text isn’t

available in these local databases either [144], limitations of these data resources for

the research on UTI are expected to be similar to CPRD.

3.2.2.3 PHE Fingertips and OpenPrescribing

All data sources discussed so far contain sensitive, individual-level data. Access

to these datasets is therefore restricted, and associated with substantial costs and

administrative burdens, including ethical approval and secure data storage. For

simple descriptive studies that do not require linkage of prescriptions and diagnoses

at an individual patient level, alternative data sources exist to avoid added costs.

When analysing antibiotic usage in England, PHE’s Fingertips database [145] and

the OpenPrescribing project run by University of Oxford [146] warrant special

mention. Both databases are publicly available and are accessible free of charge.

Fingertips was developed by PHE and provides summary information on all

primary care practices with a list size of at least 800 patients participating in
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the Quality and Outcomes Framework [145]. Data are available by year and

for predefined indicators, including antimicrobial resistance. While Fingertips

represents a valuable resource for the comparison of practice performance on

predefined indicators, its value for research on UTI is limited. The only available

indicator related to UTI is the ratio of trimethoprim to nitrofurantoin prescribing,

which is an indicator for the adherence to national prescribing guidance [147].

OpenPrescribing is an interface to raw prescribing data published monthly

by NHS Digital [146]. As with PHE Fingertips, data are aggregated at the

practice level. OpenPrescribing contains more detailed information on primary care

prescribing, as it is not limited to indicators but covers all issued prescriptions.

It does not contain any other demographic or clinical information on patients.

Name, size, location, and related CCG are available for all practices. Since

prescribing cannot be linked back to clinical diagnoses, however, the usefulness

of OpenPrescribing for research on UTI is limited to the comparison of prescribing

volumes of antibiotics (almost) exclusively used for the treatment of UTI — i.e.,

trimethoprim and nitrofurantoin [147].

3.3 Secondary care
Secondary care in the UK provides specialised care (e.g., elective operations) that

can’t be offered by a GP, and is usually based in hospital. Secondary care further

includes urgent or emergency services for acute conditions such as severe infection

or sepsis. For the purposes of this thesis, the term secondary care also included

highly specialised tertiary care.

3.3.1 Hospital Episode Statistics (HES)

Hospital Episode Statistics (HES) is the largest secondary care database in England.

Hospital discharge information are submitted monthly by each trust to the central

Secondary User Service (SUS) data warehouse, cleaned, and annually extracted

as HES after a final update and approval by each trust [148]. Since 2004, SUS

data has also been linked to reimbursement as part of the Payment by Results
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programme [148]. HES covers all NHS CCGs in England3 and provides data on

hospital admissions dating back to 1989, outpatient appointments from 2003/04,

and emergency department (ED) visits since 2007/08 [148]. These different types

of hospital activity are separated into distinct but linkable databases. HES Admitted

Patient Care (HES APC) data covers all inpatient activity and is structured into

finished consultant episodes (FCEs), which are defined as the time spent under

the care of one consultant at a particular hospital [148]. Moving wards might or

might not start a new episode, depending on whether the patient’s main clinician

changes or not. All episodes that make up a single hospital stay are combined within

so-called hospital spells [148]. A spell combines one or more consecutive FCEs.

HES Outpatient records cover patients that were referred to hospital but who were

not assigned a bed and do not stay overnight. HES Accident & Emergency (A&E)

records, on the other hand, relate to a single visit to the ED, which may or may not

be followed by an admission to hospital4. Patients in each of these databases are

identified by a pseudonomysed patient identifier called a HESID, which is uniquely

generated for each data extract provided to researchers in order to minimise any risk

of cross-referencing between unrelated extracts. Additional information on adult

critical care and maternity episodes is available on reasonable request [148].

3.3.1.1 Available clinical data items

Diagnoses HES contains up to 20 diagnoses per FCE [148] or outpatient

visit [149]. Recorded diagnoses might change between FCEs that are part of

a single hospital spell, reflecting changes in the patient’s status, test results and

investigations. Diagnoses are encoded using the 10th revision of the International

Statistical Classification of Diseases and Related Health Problems (ICD-10). Per

FCE or outpatient visit, there is one primary diagnosis which represents the main

reason for treatment [148]. All remaining codes are secondary health conditions

relevant to the FCE — e.g., diabetes if diabetes wasn’t the main reason for

admission. The order of secondary codes has no inherent meaning. Unlike for

3 Excluding private hospitals.
4 An admission following an ED visit would not be part of HES A&E but is instead covered by HES
APC.
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example in CPRD (see Section 3.2.1), where diagnoses are usually recorded by a GP

or nurse [121], diagnoses in HES are retrospectively recorded by accredited clinical

coding personnel based on written discharge summaries provided by the treating

physician [148]. In addition to diagnoses codes, HES also contains information on

procedures performed while in hospital. Procedures are encoded using the Office of

Population Censuses and Surveys’ Classification of Surgical Operations 4th revision

(OPCS-4) and up to 24 procedures can be entered into the system [148, 149]. HES

A&E data uses its own, small set of 39 diagnosis codes together with codes on

investigations and treatments performed while the patient was in A&E [150].

Remark (SNOMED-CT in English secondary care). Like primary care,

hospitals in England have been required to use SNOMED-CT by April 2020

[130]. Their use is limited to document direct patient care, whereas ICD-10

and OPCS-4 codes will continue to be used for national reporting including

HES.

Prescriptions, clinical observations and laboratory tests Unlike the primary

care databases covered earlier, HES is not directly extracted from patient

management systems but is instead based on simplified data submitted for high-level

service evaluation and reimbursement [148]. It therefore neither contains electronic

prescribing information5 nor information on laboratory tests or vital signs.

3.3.1.2 Linkage to other EHR databases

HES data from APC, Outpatients, and A&E provided as part of a single extract

may be linked using the HESID provided alongside the extract [148]. HES data is

further routinely linked to the primary care databases described earlier as well as to

census data from ONS. Additional linkage to other databases like the National Joint

Registry, the UK Renal Registry and cohort studies such as Whitehall II has been

previously performed and may be available to researchers upon reasonable request

[64]. Besides existing linkage, HES can be custom linked to further data sources
5 Electronic prescribing is largely unavailable in NHS trusts, with a report by the Nuffield Trust from
2016 stating that it had only been commissioned in 12% of trusts [67].
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using NHS Digital’s trusted third-party bespoke linkage service.

3.3.1.3 Recording of UTI

Due to the lack of prescribing and laboratory data in HES, the identification of

UTI cases in HES exclusively rests upon coded diagnoses. While secondary

diagnoses and procedures allow for the identification of underlying comorbidities

and conditions predisposing to UTI, no information is available about the acute

health state of the patient. Microbiological confirmation of UTI is not available

in HES, nor is any information on treatment choice. Due to the coarse nature of

HES A&E diagnosis codes, ED visits for UTI cannot be distinguished from other

urological conditions [150].

Issues arising from this paucity of information on the reason for admission

and treatment in secondary care are discussed in more detail in Chapter 4 in

relation to a study of the association between delayed or withheld antibiotics for

community-onset lower UTI in primary care and subsequent risk of infectious

complication and/or hospitalisation.

3.3.2 Queen Elizabeth Hospital Birmingham (QEHB)

There is currently no national secondary care EHR resource that includes detailed

information on diagnoses, prescriptions and laboratory data. A continuing paucity

of electronic prescribing systems and lack of IT system integration prevents the

collection of this data on a national scale [67]. However, more detailed data

for research on secondary care may be obtained from individual, digitally-mature

hospital trusts like Queen Elizabeth Hospital Birmingham (QEHB) — although at

the loss of national generalisability.

QEHB is a large tertiary teaching hospital located in central Birmingham in

the English Midlands. It was re-opened in 2010 to replace a previous hospital of

the same name. Healthcare activities were moved to the new hospital complex

starting in June 2010 and the transfer was finished in November 2011. The complete

restructuring of hospital infrastructure allowed the hospital to also invest in new

technologies. As a result, University Hospitals Birmingham NHS Foundation
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Trust — which includes QEHB — was later chosen as one of twelve centres of

digital excellence within NHS England [151]. Comprehensive electronic patient

management systems at QEHB capture high-quality clinical data including patient

demographics, diagnoses, prescribing, clinical observations, examinations, and

laboratory results starting from 2010/11 [152].

Unlike the data available in HES, which is collected for reimbursement and

reporting reasons [148], data stored in QEHB’s patient management systems is

stored primarily to aid patient management. Clinical data are recorded digitally by

healthcare personnel to inform clinical decision making. As far as this information

is entered in a structured format — and not as free-text information — it may

allow to approximate the information available to clinicians and other healthcare

professionals at the time of decision making and create models that can better

support the diagnosis and management of UTI in secondary care.

3.3.2.1 Available clinical data items

Diagnoses QEHB separately records (suspected) diagnoses made in the ED and

discharge diagnoses for admitted patients. Up to October 2011, ED diagnoses

were captured in QEHB’s ED patient management system using UK national A&E

diagnosis codes — the same set of 39 codes used in HES A&E [150]. These

codes were replaced with a more detailed set of 462 local, bespoke codes in

November 2012, and recording was changed again to conform with the recording

standard used in the UK Emergency Care Data Set (ECDS) in December 2017.

ECDS codes include 762 possible diagnoses that are mapped to a condensed set

of SNOMED-CT codes [153]. Discharge diagnoses and procedures for patients

admitted to QEHB are recorded using ICD-10 and OPCS-4. The data structure

for discharge diagnoses and procedures resembles that employed by HES, with

diagnoses and procedures grouped by finished consultant episodes. Each episode

has one recorded primary diagnosis and up to 23 secondary diagnoses. Episodes

could have up to 24 recorded procedures. The first 20 diagnoses and 24 procedures

are reported for reimbursement to HES, and should be identical for the subset of
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HES records pertaining to QEHB6.

Prescriptions Data at QEHB includes electronic prescribing records and

medication administration records stored within the hospital’s Prescribing

Information and Communications System (PICS). Available information includes

the medications’ name and substance, date and time of prescribing, formula (e.g.

tablet or injection), route of administration (e.g. oral or intravenous), frequency of

administration (e.g. once a day or three times a day), and dosage. For medications

administered in hospital, the system further records the date and time of each

administration.

Investigations and laboratory tests PICS also records the results of clinical

observations and investigations, including vital signs like heart rate, respiratory

rate, systolic blood pressure, body temperature, oxygen saturation, AVPU score7 as

well as blood measurements such as white blood cell counts, red blood cell counts,

C-reactive protein, creatinine, bilirubin, and alkaline phosphatase. While generally

available within the dataset, availability of these variables may differ by ward. For

example, the ED at QEHB has not always been fully electronically integrated with

PICS and data on some measurements therefore might not be available for patients

seen in the ED.

Microbiology Data at QEHB further includes patient-linked laboratory data on all

flow cytometry and microbiological cultures performed at the in-house laboratory.

Available information includes sample type, time of collection, time of receipt in the

laboratory, time the results were available to the clinician, performed tests, cultured

isolates, and sensitivity to individual antibiotics.

3.3.2.2 Linkage to other EHR databases

Patient data from QEHB may be linked to national HES records and ONS death

records provided appropriate ethical approval is sought. These additional data may

allow to track a patient’s medical care outside of QEHB, providing a more reliable

and comprehensive picture of his or her medical history.
6 This is difficult to ascertain, however, since individual hospitals are not identifiable within HES.
7 The AVPU score is a measure of consciousness in which patients are rate as either alert (A),
responsive to voice (V), responsive to pain (P), or unconscious (U).
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3.3.2.3 Recording of UTI

The higher depth and breadth of data recorded at QEHB allows for a potentially

more reliable identification of UTI diagnoses and management decisions taken as

a result of such diagnoses. Patients with (suspected) UTI consulting the ED at

QEHB may be identified using suspected ED diagnosis, requests for and results of

urine culture, as well as prescription and administration of antibiotics. Although

neither free-text nor a full list of presenting complaints in the ED is accessible,

ED diagnoses and urine culture results may be used to define clinically-confirmed

bacterial UTI (see Section 1.3 for a detailed discussion on the diagnosis of UTI,

and Chapter 5 for definition of UTI at QEHB). Supplementary information on

vital signs and blood parameters measured on arrival in the ED — if widely

available — may further allow to infer the patient’s approximate health status on

arrival. Prescription records may be used to infer empirical treatment regimes in

the ED. If the patient was admitted to hospital as a result of their visit to the

ED, discharge diagnoses may be used to confirm UTI as the primary reason for

admission to hospital, or investigate discrepancies between suspected diagnoses

in the ED, microbiological evidence, and final diagnoses listed on the discharge

summaries [24]. Prescribing and administration records may further be used to

define ongoing antibiotic treatment and assess changes in treatment in response to

culture results — e.g., a step down to narrow spectrum antibiotics.

3.3.3 Other sources of secondary care data in England

3.3.3.1 Hospital Treatment Insights

The HES database described earlier does not include information on drug use in

hospital. This prevents it from being used for research on antibiotic use in secondary

care, or indeed most pharmacoepidemiological studies. However, since HES may

be linked to other databases, data can be added that is missing within HES itself.

Hospital Treatment Insights (HTI) is one such linkage, combining HES data for a

subset of 43 out of 153 English hospital trusts with dispensing information from

their hospital pharmacies [136]. Due to the way that drug dispensing is captured
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in pharmacy records, though, care needs to be taken when using HTI. Pharmacy

records only contain a linkable patient identifier if a drug was specifically requested

for a named patient. If a drug was dispensed to a ward in bulk to be used on demand,

on the other hand, pharmacies do not retain information on the patient and these

records are therefore notably missing in HTI. I previously showed that this severely

affects the recording of antibiotics in HTI [136], limiting its usability for research

on UTI.

3.3.3.2 Discover and KID

Both the Discover dataset in North West London [140] as well as the KID in Kent

and Medway [144] discussed earlier in Section 3.2 also capture information on

secondary care visits. Both datasets obtain secondary care information from SUS,

and available data items are therefore highly comparable to those derived from HES.

3.3.3.3 PHE Fingertips

In addition to data on GP practices, PHE Fingertips also captures summary

indicators of antibiotic prescribing and antimicrobial resistance for English acute

hospital trusts. Available indicators for UTI include the percentage of antibiotic

prescriptions for lower UTI in older people meeting NICE and PHE guidance and

the percentage of E. coli blood specimens susceptible to gentamicin, ciprofloxacin,

piperacillin / tazobactam, cephalosporins, and carbapenems [145].

3.4 Conclusion
Several EHR data sources are available to investigate the diagnosis and management

of UTIs in English primary and secondary care. Most allow for the identification

of individual patients presenting with (suspected) UTI and — depending on the

database — may further allow to establish the presence of diagnostic criteria (e.g.,

recorded symptoms and/or urine culture), ascertain the use of antibiotic treatment,

or monitor subsequent complications of infection. Linkage between datasets —

e.g., by linking primary and secondary care data from CPRD and HES — may

further enhance the information captured in any single data source, providing

a more comprehensive and perhaps less biased picture of UTI. However, none
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Table 3.2: Summary of information on the diagnosis and management of UTI available in
major English EHR datasets.

Dataset Setting Scope Diagnoses Treatment

SYM DIAG UA UC PRSC RSN

CPRD Primary National ∼ + – – + –
THIN Primary National ∼ + – – + –
QResearch Primary National ∼ + – – + –
ResearchOne Primary National ∼ + – – + –
OpenPrescribing Primary National – – – – + –

Discover Prim./Sec. Local ∼ + – – + –
KID Prim./Sec. Local ∼ + – – + –
PHE Fingertips Prim./Sec. National – – – ∼ ∼ –

HES Secondary National – + – – – –
QEHB Secondary Local ∼ + ∼ + + –
HTI Secondary National – + – – ∼ –

+ indicates that information is generally available within the dataset, ∼ indicates that information is partially available in the
dataset, – indicates that information is not available in the dataset. Please note that this table represents a simplified summary
of the available data. For example, CPRD sometimes contains information on urinary symptoms or urine cultures. However,
these data have been shown to be seldom recorded and were thus considered not available. Please refer to the detailed
descriptions of each dataset for a detailed account of available data items.

CPRD, Clinical Practice Research Datalink; DIAG, Diagnoses; EHR, Electronic health records; HES, Hospital Episode
Statistics; HTI, Hospital Treatment Insights; KID, Kent Integrated Dataset; PHE, Public Health England; PRSC, Prescribing;
QEHB, Queen Elizabeth Hospital Birmingham; RSN, Reason for prescribing (or non-prescribing); SYM, Symptoms; THIN,
The Health Improvement Network; UA, Urinalysis; UC, Urine culture; UTI, urinary tract infection.

of the sources discussed in this chapter are perfect. They often miss detailed

information on the patients’ health status and likelihood of true bacterial UTI

at initial consultation, and make it difficult to reconstruct the rationale behind

treatment choices (Table 3.2). As discussed in Chapter 2, capturing this information

is crucial in order to be able to reliably account for diagnostic uncertainty and

differential treatment assignment.

Following this reasoning, an ideal UTI dataset would enable to capture all

information available to the treating physician(s). This involves a comprehensive

documentation of all observed clinical information and diagnostic reasoning,

including presence or absence of urinary symptoms, the results of any performed

diagnostic tests, and an indicator for the (perceived) severity of disease. In addition,

an ideal dataset would capture the treatment decisions in detail. It would not

only record the type and quantity of all received antibiotics but also document any

reasons for deviation from standard practice — e.g., prescribing broad-spectrum
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instead of narrow-spectrum antibiotics, or opting to treat with delayed antibiotics.

It would provide the same detail of information for all past instances of UTI as well

as across both primary and secondary care. Finally, an ideal dataset would allow

to track the progression of disease from the onset of symptoms (as reported by the

patient) until the infection resolves, including adverse outcomes such as treatment

failure, recurrence of infection, progression to pyelonephritis or sepsis, and death.

It would clearly allow to link these outcomes to the initial infection — e.g., by

distinguishing urosepsis from sepsis with other infectious origin [133].

Having reviewed previous studies using EHR data to investigate UTIs

(Chapter 2) and the breadth and depth of available EHR data sources in England

(this chapter), the following Chapters 4-6 examine how real-world data from

CPRD-HES-ONS and QEHB can be used to answer concrete research questions on

the diagnosis and management of UTIs.

Chapter summary

• Several nation-wide pseudonomised primary care databases exist in

England and the rest of the UK, which collect medical information

directly from the patient management software of participating

practices.

• Identification of UTI in English primary care databases relies primarily

on diagnosis codes entered manually by the physician, whereas other

key information such as urinary symptoms, diagnostic tests, or urine

cultures are either not performed or not well recorded.

• Prescriptions are automatically captured in most of primary care but

the decision process leading to the prescriptions is not.

• Nation-wide recording of secondary care data is currently limited to

diagnosis and procedures, and no prescribing information is captured

due to a continuing lack of wide-spread electronic prescribing.
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• Information collected at local, digitally mature hospital sites offers

a more detailed picture of care processes, and includes data on

prescriptions, observations, laboratory tests, and microbiology that

may allow for a better classification of cases.



Chapter 4

Can EHR data guide the management of

UTI in primary care: a case study using

linked data from CPRD to evaluate the

relationship between prescribing and risk of

adverse outcomes

Abstract
Introduction: Previously, I discussed how uncertainty in the diagnosis of

community-onset urinary tract infection (UTI) influences how clinicians manage

this infection, and how routinely-collected electronic health records (EHRs) have

been used to aid clinicians in their decision making. In this chapter, I explore the

use of primary care data from the Clinical Practice Research Datalink (CPRD) to

support the management of uncomplicated, community-onset UTIs in women.

Background: A key question in the management of community-onset UTI is

whether it is safe to delay issuing an antibiotic prescription and see if symptoms

resolve without treatment. This approach is widely used for patients with

respiratory tract infection, but evidence to support the use of this approach for

UTI based on randomised controlled trials is conflicting. The aim of this study was

to explore whether analysis of primary care EHRs can support this evidence base

and inform decisions around the safety of delaying or withholding antibiotics for

community-onset lower UTI in adult women of different age-groups.
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Methods: I undertook a retrospective cohort study of the association between

delayed or withheld antibiotics and adverse outcomes within 30 days — including

progression to severe UTI (pyelonephritis, sepsis, hospitalisation for UTI), death,

and hospitalisation for reasons unrelated to UTI — in adult women who consulted

for community-onset lower UTI in primary care between 2007 and 2015. I

used English data from CPRD linked to Hospital Episode Statistics (HES) and

census data. Delayed or withheld prescribing was defined as the absence of

antibiotic prescribing on the day of initial consultation for UTI. I estimated the

associations between delayed or withheld prescribing and adverse outcomes for

different age groups — accounting for patient characteristics including demography,

comorbidities, and medical history. I assessed the impact of residual confounding

using propensity score analysis (PSA) and coarsened exact matching (CEM).

Results: I observed 650,416 episodes of community-onset UTI among 1.9 million

women providing 8.4 million patient-years at risk, of which 589,063 (90.6%) were

treated with antibiotics immediately. Progression to severe UTI and death within 30

days was seen in 7,947 (1.2%) and 2,320 (0.4%) episodes respectively. Delaying

or withholding antibiotics was associated with increased odds of progressing to

severe UTI (adjusted odds ratio [aOR] 1.61, 95% confidence interval [95% CI]

1.51–1.72, p-value < 0.001) and dying (aOR 1.45, 95% CI 1.29–1.62, p-value

< 0.001). However, it was also associated with higher risk of hospitalisation for

reasons unrelated to UTI, and patients with delayed or withheld antibiotics were

more likely to have had recorded risk factors pre-disposing to adverse outcomes.

Results remained unchanged when applying PSA or CEM.

Discussion: Patients with delayed or withheld antibiotics in this study were at

an estimated higher risk of infectious complications and death. Difficulties in

ascertaining severity of infection and reasons for delaying or withholding antibiotics

cast doubt on the validity of the obtained estimates. Better recording of (urinary)

symptoms at initial presentation, vital signs and other markers of severity of disease,

and a decision to delay prescribing are required to fully understand and analyse

delayed prescribing strategies in EHR data.



4.1. Introduction 88

4.1 Introduction
General Practitioners (GP) in England on average have eleven minutes to spend

on a patient during a routine consultation [154]. In those eleven minutes, they

need to enquire about the presenting complaint, make clinical observations and

measurements, derive a likely diagnosis, and make a treatment decision. This time

pressure in primary care — combined with limited resources — may impact patient

management, affording GPs less time to perform thorough anamnesis and clinical

investigations [18]. In the context of urinary tract infection (UTI), lack of resources

and time are exacerbated by the absence of fast, cheap, and unambiguous diagnostic

tests (see Section 1.3 for a detailed discussion). Faced with time pressures and

limited information, GPs need to make decisions about whether the patient requires

antibiotic treatment, and whether this should be initiated immediately or whether it

is worth delaying to see if the patient improves without antibiotics. The decision

must balance the risk of adverse outcomes associated with delaying antibiotic

treatment for genuine bacterial infection (e.g., progression to pyelonephritis or

sepsis) versus the adverse consequences of unnecessary antibiotic treatment for the

individual (e.g., antibiotic side effects or future drug treatment failure) and the wider

population (e.g., increased antimicrobial resistance).

Chapter 2 discussed how large-scale electronic health records (EHRs) coupled

with appropriate statistical analysis may support GPs in making these decisions. By

pooling information across a wide range of patients, EHR data may provide robust

and reliable evidence on which GPs may base their empirical decision making.

How well evidence derived from EHRs can support GPs, however, depends on

the depth and breadth of information captured within primary care. In Chapter

3, I concluded that some of the information central to the investigation of UTIs —

such as urinary symptoms, urinalysis results, urine culture results, and reasons for

or against a decision to prescribe antibiotics — are mostly missing from English

primary care datasets. It remains unclear to what extent this sparsity has affected

previous studies reviewed in Chapter 2 and whether the information that is captured

routinely is sufficient to avoid biased results. In order to investigate this question,
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in this chapter I use linked data from the Clinical Practice Research Datalink to

quantify the risk of delaying or withholding antibiotic treatment in adult women

consulting with suspected community-onset lower UTI. I critically assess whether

the available data allows for the reliable estimation of those risks, and how my

results inform the way currently available EHR data can and cannot be used to

guide GP decision making for the treatment of community-onset lower UTI.

4.2 Background
Frequent antibiotic use is a major driver of emerging antimicrobial resistance [75],

and the reduction of unnecessary antibiotic prescribing has become a national

priority [97]. More than 90% of patients consulting with uncomplicated lower UTI

in English primary care are prescribed antibiotic treatment [76]. Given the potential

impact on antimicrobial resistance, reliance on antibiotics as a universal treatment

for lower UTI has therefore recently been questioned [68]. Several randomized

controlled trials suggested that it might be safe and feasible to delay antibiotic

prescribing for young, non-pregnant women (see Section 1.4.1 for a definition of

delayed antibiotic prescribing) [63, 69, 70, 71, 155]. However, this conclusion

was contradicted by two recent trials which reported an increased incidence of

pyelonephritis among women whose lower UTI was treated with painkillers instead

of antibiotics [156, 157]. The true increase in the risk of infectious complications

due to delayed prescribing remains uncertain. Sample sizes in previous studies

were relatively small — the maximum number of patients per study was 1,000 and

most had less than 400 — and pyelonephritis continued to be a rare outcome even

in patients who were not treated with antibiotics, with less than 7 (<4%) cases of

pyelonephritis in any single study.

Evidence for the safety of delaying antibiotic prescribing for uncomplicated

lower UTI in elderly patients (≥ 65 years of age) is even sparser. Although

some of the above mentioned trials included women up to the age of 90 years

[63, 69, 70], the majority of included patients was younger and no age-stratified

risks of infectious complications were reported. This lack of evidence was recently
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addressed by Gharbi et al. (2019) [112] who published a retrospective observational

study based on large-scale EHR data that assessed the relationship between delaying

antibiotic prescribing for suspected UTI and risk of bloodstream infection or death

within 60 days in elderly patients (both men and women). They used data on more

than 300,000 UTI episodes from the Clinical Practice Research Datalink (CPRD)

between 2008 and 2015. The large sample size provided sufficient statistical power

to investigate even rare outcomes. They observed 1,539 (0.5%) cases of sepsis and

6,193 (2.0%) deaths within their study population and estimated that delaying or

withholding antibiotics increased patients’ odds of sepsis 7–8-fold [112]. If true,

these results would raise serious doubts about the safety of delaying antibiotics

in elderly patient populations. However, baseline characteristics of patients with

and without antibiotic prescribing differed considerably in this study, and several

clinicians and researchers have expressed concerns that the results may be affected

by confounded by indication [72].

Against the backdrop of emerging antimicrobial resistance, strategies like

delayed antibiotic prescribing have become more popular in managing respiratory

infections. Importantly, the safety of delayed antibiotic prescribing in respiratory

infections was confirmed in a large systematic review [158]. Similarly clear

evidence for the use of delayed prescribing in UTIs is lacking and remains

controversial. The conflicting evidence on the safety of delayed antibiotic

prescribing for lower UTI may deter GPs from considering it as a treatment

option in primary care, potentially missing an opportunity to reduce a driver of

antimicrobial resistance. Conducting a sufficiently large randomised controlled

trial would be costly and time-consuming, however, and is thus unlikely to happen

soon. Gharbi et al. demonstrated that EHR databases — with their large, nationally

representative patient populations — may provide a fast and cheap alternative to

generate evidence in the absence of randomised controlled trials, although at the

risk of bias and misleading results due to an inherent lack of randomisation.

The analysis presented in this chapter therefore utilises a nationally

representative database of primary care records to revisit the evidence for a link
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between delaying or withholding antibiotic prescribing in women consulting for

community-onset lower UTI in primary care and an increased risk of infectious

complications. Using a careful definition of community-onset lower UTI, I

estimated the protective effect of immediate antibiotic prescribing and assessed

whether conclusions change when considering different age groups. I applied

inverse probability weighting and matching strategies to account for previously

observed differences in patients who do and do not receive immediate antibiotic

prescribing [112], attempting to minimise the effect of confounding by indication

on the obtained results. I end the chapter by discussing whether the applied

methodology is likely to have mitigated important sources of bias in the analysis

and allowed me to obtain reliable estimates of the safety of delaying antibiotic

treatment for community-onset lower UTI in primary care.

4.3 Aims and Objectives
To investigate the utility of EHR data in generating reliable estimates of the risk

of infectious complications associated with delaying or withholding antibiotics in

adult women presenting with community-onset lower UTI in English primary care.

Objectives:

4.1 To identify episodes of community-onset lower UTI in a large routinely

collected primary care database.

4.2 To estimate the relative odds of progressing to severe UTI or dying in adult

women treated with systemic antibiotics during an initial consultation for

community-onset lower UTI in primary care, compared to those that did not

receive antibiotic prescribing during their initial consultation.

4.3 To investigate variations in the estimated protective effect of antibiotic

prescribing by patient age at initial consultation.

4.4 To perform secondary analyses of the relationship between immediate

antibiotic treatment and hospitalisation for lower respiratory tract infection
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(LRTI) or hospitalisation due to other causes.

4.5 To use inverse probability weighting and matching procedures to evaluate the

presence of — and account for — observed confounding factors associated

with a decision to prescribe, delay or withhold antibiotics during a patient’s

initial consultation.

4.4 Methods
Study design: Retrospective observational cohort study.

Study setting: 674 English primary care practices.

4.4.1 Data source and management

Data for this chapter was extracted from retrospective electronic primary care

records available in the CPRD database [121]. For more information on CPRD

and the information collected within CPRD, please refer to Chapter 3 where CPRD

is introduced in detail. Briefly, CPRD is a large, routinely collected database with

information on patient consultations from participating primary care practices. Data

for this chapter was taken from the English subset of CPRD practices (75% of

English practices, 58% of all UK practices) which had a valid link to secondary care

(Hospital Episode Statistics [HES]) and census data (Office for National Statistics

[ONS]). Data from HES included both data from admitted patients as well as

information from emergency department (ED) visits.

Raw pseudonomysed patient data from CPRD was extracted by Dr Kenan

Direk and transferred into a dedicated environment within the UCL Data Safe

Haven. All further data processing and analyses were performed by me within this

secure environment. Due to the large number of patients included in the extract,

I imported the raw data into a relational SQL database set up specifically for

this purpose. Patient cohorts within the raw data were identified using codelists

published previously [112] and refined in close collaboration with Dr Laura

Shallcross and Dr Anna Aryee (see Appendix H for a list of included codes).

Additional raw secondary care data from HES and census data from ONS were
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extracted by NHS Digital after I provided them with a list of pseudonomysed patient

identifiers for all included patients. Episodes in the subset of HES linked to CPRD

were extracted by NHS Digital and transferred to the UCL Data Safe Haven, where

they were stored in the same database as the previously described CPRD records. I

included all ICD-10 diagnoses and OPCS-4 procedures in the extract that related to

infection — including UTI and alternative diagnoses such as lower respiratory tract

infection — and/or adverse outcomes of infection (see Appendix H), as well as any

records available for these patients within HES A&E.

Remark (UCL Data Safe Haven). The UCL Data Safe Haven is an ISO

27001 — an international standard for information security management —

certified research environment that provides secure storage of, access to, and

analysis of patient data. All analyses in this thesis were performed within

this Data Safe Haven.

I linked data from primary care, secondary care and census using a common

patient identifier. I identified the patient cohort for the analysis described in this

Chapter from the SQL database using the R programming language [159] and

included information on patient demographics, consultation dates, and medical

diagnoses. All data was converted into a single matrix containing one row per UTI

episode.

4.4.2 Ethical approval

CPRD requires researchers to obtain ethical approval from the Independent

Scientific Advisory Council (ISAC; https://www.cprd.com/ISAC/), an independent

review panel appointed by the Medicines and Healthcare products Regulatory

Agency (MHRA). A separate ISAC protocol must be completed for each intended

study, specifying the study background, cohort definition, sample size calculations,

analysis plan and code lists. Changes made to the protocol after approval must be

submitted as amendments to the protocol.

I obtained access to the CPRD linked to HES and census data as part of the
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Preserving Antibiotics through Safe Stewardship (PASS) programme grant. I wrote

the first draft of the ISAC protocol (protocol Nr. 17 048), which was revised

and edited by my supervisors (Dr Laura Shallcross and Prof Andrew Hayward).

The protocol with the title The use and protective effect of antibiotics against

complications of infection in patients in primary care: a cohort study using linked

data from CPRD, HES, and ONS was approved on May 19th 2017.

4.4.3 Patient population

All female patients in CPRD were included in the analysis if they had been

registered with a participating practice between April 1st 2007 and March 31st 2015.

Patients were only included if their records were up-to-standard as defined by CPRD

[121]. Patients entered the study population on the latest of the following dates:

one year of continuous registration, the practice’s up-to-standard date, the date the

patient turned 18 years, or April 1st 2007. Patients exited the cohort at their date

of death or 30 days before the earliest of: date the patient left the practice, or 31st

March 2015. Start and end dates chosen for this analysis correspond to the NHS

financial year, which starts in April and ends in March of each year.

The analyses reported in this chapter formed part of a wider range of analyses

undertaken as part of the Preserving Antibiotics through Safe Stewardship (PASS)

project, which included the investigation of patterns of antibiotic prescribing to

inform the "co-design [of] antimicrobial stewardship interventions across healthcare

settings, by integrating data-science, evidence-synthesis, behavioural-science and

user-centred design" [160].

4.4.4 Episodes of community-onset lower UTI

In order to mimic the conditions analysed in earlier randomised controlled trials as

closely as possible, the primary unit of observation for this analysis were episodes

of new community-onset lower UTI in adult women [63, 69, 70, 71, 155, 156, 157].

4.4.4.1 Defining UTI episodes

In order to define the start date of each UTI episode, I identified all primary care

consultations from CPRD or hospital admissions from HES that were associated
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Figure 4.1: Classification of UTI episodes for two scenarios of a patient with three records
of UTI, which are identical except for the timing of the second UTI code. In both panels the
first UTI code marks the start of a new UTI episode (first episode). The second UTI code
occurs within 30 days and is therefore considered to be part of the first episode. The third
UTI code occurs more than 30 days after the start of the first episode and is classified as:
A) a new episode because the last evidence of UTI was recorded more than 30 days earlier;
B) an ongoing episode that is excluded from the analysis because the last evidence of UTI
— i.e., the second UTI code — was recorded less than 30 days before and may therefore
represent an ongoing episode of infection.

UTI, urinary tract infection.

This graphic was created as part of this thesis and published in: Shallcross et al. (2020) [133]; reused under Creative
Commons Attribution 4.0 International License; image caption was adapted from the published image caption.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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with a relevant diagnosis code. UTI was defined using a previously published

codelist which included codes for both lower UTI and pyelonephritis (see Appendix

H for a list of all included codes). Events in CPRD were identified using Read

codes, the standard medical terminology used in English primary care until April

2020. Events in HES were identified using 10th revision of the International

Statistical Classification of Diseases and Related Health Problems (ICD-10) codes.

The resulting data were a list of recorded UTI events for each patient — including

both primary care consultations and hospitalisations — each of which considered

the possible start of a UTI episode. All UTI events in a patient’s history were

sorted chronologically and the earliest observed event was set as the start date of

that patient’s first UTI episode1, irrespective of whether it originated in primary or

secondary care. I then looked at each subsequent UTI event in order. If the second

event was recorded within 30 days of the current episode’s start date, the event was

considered to be part of the same episode of care (Figure 4.1 A). For example, we

could imagine a patient whose symptoms did not resolve after an initial consultation

(episode start) and who attended for a follow-up consultation two weeks after the

initial visit. This follow-up visit should not be considered the start of a new episode,

as it is a result of the original infection and thus part of the same episode. On the

other hand, if the second event in a patient’s history was recorded more than 30

days after the most recent episode start, I assumed the code was the beginning of

a new episode and compared all subsequent codes to the new episode start. After

considering all codes of a single patient, each code had been mapped to exactly one

episode.

A wash-out window of 30 days was chosen for the definition of UTI episodes

to force enough time between consecutive episodes without unduly excluding truly

distinct episodes. Even when using a 30-day wash-out window, situations may

arise in which the initial episode had resolved but another infection was acquired

within the wash-out period (Figure 4.1 B). For example, a patient might have had

1 Note the difference between events and episodes. A UTI event is each Read code or ICD-10 code
for UTI linked to a consultation in CPRD or hospital admission in HES. A UTI episode is the period
of time for which a patient was considered to suffer from the same, continuous infection.
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a recorded UTI event on day one (episode start) and two more UTI events on days

28 and 40. Applying the above classification rule, we would assign the event on

day 28 to the first episode and treat the event on day 40 as the start of a second

episode. However, it is unclear whether the event on day 28 truly belonged to the

first episode, or whether in fact it was already the start of the second episode2. To

guard against such scenarios, I further required truly new episodes to have no other

UTI code within 30 days prior to the episode start date. All episodes that did not

fulfil this requirement were considered ongoing episodes and were excluded from

the analysis (Figure 4.1 B).

4.4.4.2 Defining community-onset lower UTI

Each identified episode was classified as describing a lower UTI or pyelonephritis,

depending on the diagnostic code recorded at episode start. If both lower UTI and

pyelonephritis codes were entered at the initial encounter, the episode was classified

as pyelonephritis. Episodes were also classified into UTIs initially treated in the

community — i.e., the first record of the episode was found in primary care records

— and UTIs originating in hospital — i.e., the first record of the episode was found

in hospital records. Episodes for which there was a record of UTI in both primary

and secondary care on the day the episode started were considered to have been

treated in hospital. To ensure that I was only including uncomplicated lower UTIs

originating in the community, I then discarded all episodes that were classified as

upper UTI or that were treated in hospital. I further excluded episodes in which the

patient attended the ED after seeing his or her GP, was referred to specialist care,

or died on the same day as the episode start. Episodes were also excluded if the

linked HES record showed that the patient was an inpatient in hospital on the date

that their UTI episode was recorded as having supposedly started in primary care.3

2 Note that the second event is closer in time to the third event than to first.
3 The exact reason for why this might occur in the dataset is unclear. A possible explanation
is that GPs retrospectively entered information from hospital discharge letters into their practice
management systems and backdated them to the day when the patient was seen in hospital.
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4.4.4.3 Urinary symptoms and dipstick results

For each episode of community-onset lower UTI, all recorded information on

urinary symptoms and urine dipstick tests on the day of initial consultation and

within 30 days prior to initial consultation were extracted from the database.

Urinary symptoms were categorised into dysuria, haematuria, incontinence, urinary

urgency, abnormal appearance of urine, malodorous urine, and difficulty urinating

(see Appendix H for a list of Read codes associated with each condition). For

dipstick tests, recorded use of the test as well as recorded positive results for

leukocyte esterase (+ to +++), nitrites (positive, negative), and blood (+ to +++)

were similarly identified using Read codes.

4.4.5 Exposure

The main exposure of interest was delayed or withheld treatment with systemic

antibiotics, defined as the absence of a prescription recorded on the same day

as the episode start date — i.e., the date of primary care consultation for lower

UTI. Systemic antibiotics were defined as a prescribing record for any oral or

intravenous drug included in the British National Formulary chapter 5.1, excluding

anti-tuberculosis (5.1.9.) and anti-leprotic drugs (5.1.10). This definition was

chosen in concordance with recent literature to capture all systemic antibiotic

prescribing while excluding other forms of antibiotics such as inhalers, eye drops,

and creams unrelated to bacterial UTIs [6, 161]. Based on the presence or

absence of a prescribing record for systemic antibiotics on the day of episode

start, I classified patients into two groups: patients who had a record of antibiotic

prescribing on the same day as their episode start date (immediate prescribing) and

patients who did not have a record of antibiotic prescribing when their episode

started (delayed or withheld prescribing). Since delayed prescribing is not well

recorded in CPRD [139], no additional attempt was made to identify delayed

prescribing using Read codes, or to distinguish between delayed and withheld

prescriptions.



4.4. Methods 99

4.4.6 Outcome

The primary outcome of interest was progression to severe UTI defined as either

a recorded diagnosis of pyelonephritis or bloodstream infection in primary care

or a hospitalisation related to UTI — including lower UTI, pyelonephritis, and

bloodstream infection — within 30 days of the episode start. Secondary outcomes

included all-cause mortality defined as any death recorded by ONS, hospitalisation

for LRTI, and hospitalisation due to reasons other than UTI, LRTI or sepsis. The

latter two outcomes were included as control conditions to assess association with

outcomes not directly related to UTI. All secondary outcomes were also ascertained

within 30 days of episode start. Sepsis was identified using ICD-10 diagnosis

codes only, as no microbiological outcomes were available. For the purposes of

this analysis, the terms bloodstream infection, bacteriuria, sepsis, severe sepsis, and

septic shock were used interchangeably. Coding granularity did not allow me to

distinguish between these more nuanced medical terminologies. Sepsis was also

not limited to urosepsis but instead included sepsis of any origin, again due to a

lack of precision in diagnostic coding. All diagnosis codes used to identify the

above outcomes can be found in Appendix H.

4.4.7 Covariates

The risk of progressing to more severe disease after consulting for community-onset

lower UTI in primary care is potentially confounded by patient characteristics that

are associated with both the likelihood of being prescribed an antibiotic and an a

priori risk of severe infection or infectious complication. I adjusted for the following

risk factors in my analysis: age at study entry, quintile of socio-economic status

(Index of Multiple Deprivation [IMD] 2015), practice region (South of England,

London, East of England and Midlands, North of England and Yorkshire), Charlson

Comorbidity Index (CCI) [162], and smoking status (non-smoker, ex-smoker,

current smoker). To account for short-term effects due to general ill-health, recent

illness, lack of social support, or exposure to hospital environments, I additionally

adjusted for recent hospital stays (discharge from hospital 30 days prior to index

visit, number of admissions within one year prior to index visit, and total number
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of nights spent in hospital within one year prior to index visit), recent ED visits

(visit 30 days prior to index visit, number of visits within one year prior to index

visit), and prescription of systemic antibiotics in primary care within 30 days prior

to index visit. In an attempt to capture factors that influenced the choice of antibiotic

or the probability of a prescription not being recorded, I further considered whether

the index consultation was a home visit — which do not allow for automatic capture

of antibiotic prescribing and might therefore be wrongly classified as a consultation

without immediate antibiotic prescribing [138] — and if the episode represented

an episode of recurrent UTI. Recurrent UTIs were defined as an explicit code

for recurrent UTI, a prescription of nitrofurantoin or trimethoprim for 28 days

or more spanning the episode start date (prophylactic treatment), or two or more

consultations for UTI in the 12 months prior to episode start [11]. All variables

were ascertained on the date of episode start. CCI and smoking status were

calculated using the patients’ entire medical history in primary care up to episode

start date. Patients without a recorded smoking code were considered non-smokers.

Patients whose latest record indicated a non-smoker but who had a previous

record of smoking were reclassified as ex-smokers. All numerical variables were

included linearly into the analysis, unless explicitly specified otherwise. Covariates

were chosen based on previous literature [72, 112], clinical plausibility, and data

availability. Notably, no explicitly recorded information was available on the

severity of infection or the patient’s general health status at the time of consultation.

Due to the way variables were derived from the data, no (explicitly) missing data

could arise in the analysis presented in this chapter (see Section 5.4.6.2 for a more

detailed discussion of missing data in EHRs and ways to account for it).

4.4.8 Statistical analysis

I analysed the association between delayed or withheld antibiotic treatment and

subsequent adverse outcomes within 30 days of consultation in primary care

using univariable and multivariable regression models. Crude odds ratios (OR)

and adjusted odds ratios (aOR) were calculated using generalised estimating

equations (GEEs) with a logit link. An exchangeable correlation structure was
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chosen to account for correlations between multiple episodes of the same patient.

Huber-White robust sandwich estimators were used to derive consistent — although

conservative — 95% confidence intervals (95% CI) [163]. The multivariable

analysis adjusted for all covariates irrespective of observed strength of univariable

association. To provide an alternative, more interpretable estimate of the clinical

impact of any observed association between delayed or withheld antibiotics and all

included outcomes, I calculated the number needed to be exposed to harm (NNEH)

[164]. 95% CIs for the NNEH were obtained by running the same analysis in 200

bootstrapped samples.

Remark (Number needed to be exposed to harm). In this study, the NNEH

represents the expected number of people in whom treatment needs to be

delayed or withheld in order to observe one additional outcome. The

NNEH is calculated by taking the inverse of the average risk difference in

the unexposed patient population, that is those with immediate antibiotic

treatmenta. The NNEH is closely related to the more commonly known

number needed to treat (NNT). The NNEH and the NNT are in fact identical

if the distribution of covariates in the exposed and unexposed groups are

equal, but will differ depending on the covariate patterns if they are not [164].

a Note that in this analysis people with immediate antibiotic are considered unexposed, since
they are not exposed to delayed or withheld antibiotic prescribing strategies. This differs
from most other studies where exposure is defined by receiving medication.

I also investigated the impact of age on the estimated effect of antibiotic

treatment. I did so in two ways. First, I stratified the analysis by age, repeating

the analysis in patients aged <65 years and ≥65 years. Second, I included an

interaction term between age and treatment status in the full cohort. I considered

multiple functional forms of age including linear, quadratic and cubic effects as well

as natural cubic splines with one knot (at 65 years) or two knots (at 50 and 85 years).

The final form was chosen via the Quasi-likelihood under the Independence Model

Criterion (QIC), a quasi-likelihood adaption of the Akaike Information Criterion

(AIC) [165].
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Remark (L1 measure). Imbalance in covariates is commonly assessed

by calculating the univariate mean differences. However, mean balance

on single variables does not guarantee balanced multivariate distributions

between treatment groups. Iacus, King & Porro (2011) [166] therefore

proposed a multivariate measure of imbalance L1, which measures the

distance between multivariate histograms using the L1 norm. Matching and

weighting methods can thereby be compared in how well they reduced not

only univariate imbalance but multivariate differences between treatment

groups. On the downside, the value of L1 depends on an arbitrary choice

of bins, which may influence the exact value of L1 obtained for different

balancing methods [166]. Multiple choices of bins should therefore be

compared when L1 is used to compare balancing methods.

Sensitivity to residual confounding was investigated using propensity score

(PS) analysis in combination with either matching or inverse probability of

treatment weighting (IPTW) [167]. Each patient’s probability of being prescribed

an antibiotic was calculated using a logistic regression analysis on all covariates

included in the main analysis. The common support between exposed and

unexposed patients was assessed graphically. Covariate imbalance between

treatment groups was jointly analysed before and after each matching/IPTW

strategy via univariate mean standard differences and the multivariate L1 imbalance

measure [166]. Matching on propensity scores, however, has recently been

criticised by King et al. (2019) [168]. They reported that balance in the joint

distribution of covariates (as opposed to univariate mean differences in each single

variable) may actually deteriorate after PS matching. They traced the reasons for

this paradox to the fact that matching is performed on a scalar (the PS π) rather than

the full covariate matrix X . While equality in X implies equality in π , the reverse

is not true and two patients with the same PS π may have very different covariates

X . Acknowledging this criticism, I also reran the matched analysis using coarsened

exact matching (CEM) and compared the results to PS matching [168]. For CEM,
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Table 4.1: Number and proportion of urinary symptoms and urine dipstick tests recorded
on the day of or within 30 days prior to UTI episode start in primary care.

On the day
of episode start

Within 30 days prior
to episode start

Total number of episodes (%) 650,416 (100) 650,416 (100)

Number of urinary symptoms (%)
No symptom 637,168 (98.0) 621,022 (95.5)
One symptom 10,282 (1.6) 25,748 (4.0)
Two symptoms 2,501 (0.4) 3,097 (0.5)
Three or more symptoms 465 (<0.1) 549 (<0.1)

Urinary symptoms (%)
Dysuria 7,882 (1.2) 15,938 (2.5)
Urinary frequency 5,560 (0.9) 10,393 (1.6)
Haematuria 935 (0.1) 2,278 (0.4)
Abnormal appearance of urine 804 (0.1) 985 (0.2)
Urinary urgency 797 (0.1) 1,692 (0.3)
Incontinence 509 (<0.1) 1,742 (0.3)
Malodorous urine 200 (<0.1) 369 (<0.1)
Difficulty urinating 51 (<0.1) 265 (<0.1)

Urine dipstick test (%)
Dipstick recorded 80,294 (12.3) 106,328 (16.3)
Positive leukocyte esterase 2,621 (0.4) 3,507 (0.5)
Positive nitrites 2,411 (0.4) 2,896 (0.4)
Positive blood 1,931 (0.3) 2,495 (0.4)

UTI, urinary tract infection.

age was coarsened into decades and all other variables were grouped into equal

sized bins on a square root scale (i.e. 0, 1, 2-4, 5-8, ...).

All results were reported following the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) statement [169] and the

REporting of studies Conducted using Observational Routinely-collected Data

(RECORD) [170] — which extends STROBE for electronic health records research

(see Appendix G).

4.5 Results
Between 2007 and 2015, 1.9 million adult women were registered with a GP

practice and met the study inclusion criteria, contributing 8.4 million patient-years

at risk (Figure 4.2). Included women had an average duration of follow-up of 4.5

years. Out of these, 331,901 (17.7%) patients had one or more recorded episodes
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Figure 4.2: Flow chart of cohort selection for community-onset lower UTI in primary care.
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Table 4.2: Characteristics of women consulting for community-onset lower UTI in primary
care.

Overall Immediate
antibiotic prescribing p-value1

Yes No

Total (row-%) 650,416 (100) 589,063 (90.6) 61,353 ( 9.4)

Age (SD) 55.6 (21.2) 55.5 (21.1) 55.9 (22.5) <0.001
IMD quintiles (%)

Q1 (least deprived) 151,666 (23.3) 137,528 (23.3) 14138 (23.0) <0.001
Q2 148,242 (22.8) 134,208 (22.8) 14,034 (22.9)
Q3 136,657 (21.0) 124,059 (21.1) 12,598 (20.5)
Q4 115,919 (17.8) 105,221 (17.9) 10,698 (17.4)
Q5 (most deprived) 97,932 (15.1) 88,047 (14.9) 9,885 (16.1)

Region (%)
South 255,515 (39.3) 231,709 (39.3) 23,806 (38.8) 0.003
London 72,719 (11.2) 65,706 (11.2) 7,013 (11.4)
East and Midlands 181,915 (28.0) 164,478 (27.9) 17,437 (28.4)
North and Yorkshire 140,267 (21.6) 127,170 (21.6) 13,097 (21.3)

CCI (SD) 1.01 (1.55) 1.00 (1.54) 1.10 (1.63) <0.001
Smoking status (%)

Non-smoker 398,436 (61.3) 360,284 (61.2) 38,152 (62.2) <0.001
Ex-smoker 146,659 (22.5) 132,768 (22.5) 13,891 (22.6)
Smoker 105,321 (16.2) 96,011 (16.3) 9,310 (15.2)

Financial year (%)
2007 86,906 (13.4) 78,834 (13.4) 8,072 (13.2) <0.001
2008 82,479 (12.7) 74,573 (12.7) 7,906 (12.9)
2009 86,980 (13.4) 78,540 (13.3) 8,440 (13.8)
2010 88,113 (13.5) 79,555 (13.5) 8,558 (13.9)
2011 85,397 (13.1) 77,261 (13.1) 8,136 (13.3)
2012 84,951 (13.1) 77,192 (13.1) 7,759 (12.6)
2013 77,221 (11.9) 70,198 (11.9) 7,023 (11.4)
2014 58,369 ( 9.0) 52,910 ( 9.0) 5,459 ( 8.9)

Recurrent UTI (%) 110,216 (16.9) 95,632 (16.2) 14,584 (23.8) <0.001

Recent antibiotic2 (%) 98,317 (15.1) 82,494 (14.0) 15,823 (25.8) <0.001
Index event was home visit (%) 11,354 ( 1.7) 8,396 ( 1.4) 2,958 ( 4.8) <0.001
Hospital stays

Recent hospitalisation3 (%) 31,378 ( 4.8) 27,646 ( 4.7) 3,732 ( 6.1) <0.001
Number of stays2 (SD) 0.19 (0.66) 0.19 (0.65) 0.26 (0.78) <0.001
Number of nights2 (SD) 1.8 (9.2) 1.7 (8.9) 2.5 (11.2) <0.001

ED visits
Recent visit3 (%) 21,345 ( 3.3) 17,723 ( 3.0) 3,622 ( 5.9) <0.001
Number of visits (SD) 0.38 (1.12) 0.37 (1.09) 0.50 (1.34) <0.001

Outcomes2 (%)
Progression to severe UTI 7,947 ( 1.2) 6,586 ( 1.1) 1,361 ( 2.2) <0.001
Death 2,320 ( 0.4) 1,895 ( 0.3) 425 ( 0.7) <0.001
Hospitalisation (LRTI) 773 ( 0.1) 647 ( 0.1) 126 ( 0.2) <0.001
Hospitalisation (Other) 12,146 ( 1.9) 10,303 ( 1.7) 1,843 ( 3.0) <0.001

1 Calculated via Kruskal-Wallis Rank Sum Test (continuous variables) and χ2 test (categorical variables).
2 Within 12 months prior to episode start. 3 Within 30 days prior to episode start.

CCI, Charlson Comorbidity Index; ED, emergency department; IMD, Index of Multiple Deprivation; LRTI, lower respiratory
tract infection; SD, standard deviation; UTI, urinary tract infection.
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of lower UTI in primary care during their follow-up. The total number of observed

episodes was 650,416, amounting to 78.0 (95% CI 77.7–78.3) episodes per 1,000

patient-years at risk. Women who had at least one episode of lower UTI contracted

on average two UTIs during follow-up. Only 2% of episodes had a urinary symptom

recorded in addition to a diagnosis on the day of episode start (Table 4.1), and 4.5%

had a urinary symptom recorded on that day or within 30 days prior to episode

start. Urine dipstick tests were more frequently recorded, with 12.3% of episodes

having a recorded dipstick test on the day of episode start. However, a positive result

for leukocyte esterase, nitrites, or blood was recorded for less than one percent of

episodes (Table 4.1).

The average age at the start of a lower UTI episode was 56 years (Table

4.2). The study population had lower levels of social deprivation than the general

population. Nine out of ten patients were prescribed an antibiotic immediately.

Age and socioeconomic status were broadly comparable between women who

were immediately treated with antibiotics and those with delayed or withheld

antibiotics, although statistical tests nevertheless indicated a significant difference

due to the large sample size. Treatment groups also varied only marginally

on geographical regions, comorbidity scores and smoking status, suggesting

relatively little influence of demography and long-term patient factors on short-term

prescribing decisions. Patients who did not receive immediate treatment did,

however, differ on their recent medical history. They were more likely to have

recently attended the ED (5.9% versus 3.0% in patients treated immediately with

antibiotics, p-value < 0.001) or to have been admitted to hospital (6.1% versus

4.7%, p-value < 0.001) in the month before their UTI episode. They were 1.5-times

as likely to be classified as presenting with recurrent UTI (23.8% versus 16.2%,

p-value < 0.001), twice as likely to have been prescribed systemic antibiotics in the

30 days prior to episode start (25.8% versus 14.0%, p-value < 0.001) and more then

three times as likely to have their UTI diagnosed during a home visit (4.8% versus

1.4%, p-value < 0.001).
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4.5.1 Associations with progression to severe UTI

Patients in whom antibiotics were delayed or withheld were more likely to progress

to severe UTI — i.e., pyelonephritis, bloodstream infection, or hospitalisation

for UTI — within 30 days of episode start (2.2% versus 1.1%; OR 1.97, 95%

CI 1.85–2.09, p-value <0.001; Tables 4.2 & 4.3). After adjusting for all other

covariates, delaying or withholding antibiotics continued to be associated with an

increased likelihood of progressing to severe UTI (aOR 1.61, 95% CI 1.51–1.71,

p-value < 0.001). The corresponding NNEH was estimated at 150 (95% CI

132–179), meaning that antibiotics would have needed to be withheld or delayed

in 150 additional patients in order to observe one more progression to severe UTI.

Several covariates were associated with an increased risk of progressing to

severe UTI (Table 4.3). Increased odds were estimated for older patients (aOR

1.11 per each 5 years, 95% CI 1.10–1.11, p-value <0.001), patients with higher

scores of CCI (aOR 1.12, 95% CI 1.11–1.13, p-value <0.001), patients who smoked

(aOR 1.18, 95% CI 1.09–1.26, p-value <0.001), episodes that were labelled as a

recurrent episode of UTI (aOR 1.20, 95% CI 1.14–1.27, p-value <0.001), episodes

following antibiotic prescribing (aOR 1.32, 95% CI 1.25–1.39, p-value <0.001),

episodes that were a home visit (aOR 2.35, 95% CI 2.15–2.57, p-value <0.001),

episodes following a recent hospital stay (aOR 1.46, 95% CI 1.34–1.59, p-value

<0.001) and episodes following a recent ED visit (aOR 1.36, 95% CI 1.22–1.51).

The odds of developing severe UTI were further associated with the number and

length of hospital stays in the previous 12 months and marginally increased over

the study period. Reduced risks of progressing to severe UTI were observed for

smokers in the univariate analyses, likely due to unadjusted confounding.

4.5.2 Associations with other outcomes

Delaying or withholding antibiotics was associated with all other adverse outcome

considered in this study (Figure 4.3). Delayed or withheld antibiotics increased the

estimated odds of death within 30 days by aOR 1.45 (95% 1.29–1.62, p-value <

0.001). It was also associated with an observed increase in outcomes not directly

related to UTI. Patients whose antibiotic treatment was delayed or withheld had
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Table 4.3: Univariable and multivariable associations between delayed or withheld
antibiotic prescribing for community-onset lower UTI and progression to severe UTI within
30 days, adjusting for covariates using generalised estimating equations and Huber-White
sandwich estimators.

Univariable analysis Multivariable analysis

OR (95%-CI) p-value aOR (95%-CI) p-value

Delayed or withheld antibiotics 1.97 (1.85–2.09) <0.001 1.61 (1.51–1.72) <0.001

Age (per 5 years) 1.17 (1.16–1.18) <0.001 1.11 (1.10–1.11) <0.001

IMD quintiles
Q1 1 1
Q2 1.21 (1.13–1.30) <0.001 1.16 (1.08–1.25) <0.001
Q3 1.26 (1.17–1.35) <0.001 1.18 (1.10–1.27) <0.001
Q4 1.18 (1.10–1.28) <0.001 1.16 (1.07–1.25) <0.001
Q5 1.27 (1.18–1.37) <0.001 1.22 (1.13–1.33) <0.001

Region
South 1 1
London 1.09 (1.01–1.18) 0.029 1.13 (1.04–1.22) 0.003
Midlands and East 1.14 (1.08–1.21) <0.001 1.12 (1.06–1.18) <0.001
North and Yorkshire 1.10 (1.04–1.17) 0.002 1.04 (0.97–1.11) 0.246

Financial year
2007 0.75 (0.69–0.83) <0.001 0.79 (0.72–0.87) <0.001
2008 0.88 (0.80–0.96) 0.004 0.91 (0.83–0.99) 0.034
2009 0.95 (0.87–1.03) 0.226 0.96 (0.88–1.05) 0.385
2010 1 1
2011 0.96 (0.88–1.05) 0.361 0.95 (0.87–1.04) 0.243
2012 1.07 (0.98–1.16) 0.117 1.06 (0.97–1.15) 0.194
2013 1.05 (0.96–1.14) 0.317 1.03 (0.94–1.12) 0.552
2014 1.14 (1.04–1.25) 0.004 1.12 (1.02–1.22) 0.021

CCI 1.31 (1.29–1.32) <0.001 1.12 (1.11–1.13) <0.001
Smoking status

Non-smoker 1 1
Ex-smoker 1.11 (1.05–1.18) <0.001 0.98 (0.92–1.03) 0.385
Smoker 0.82 (0.77–0.88) <0.001 1.18 (1.09–1.26) <0.001

Recurrent UTI 1.69 (1.61–1.79) <0.001 1.20 (1.14–1.27) <0.001

Recent antibiotic1 1.87 (1.78–1.97) <0.001 1.32 (1.25–1.39) <0.001
Index event was home visit 5.69 (5.23–6.19) <0.001 2.35 (2.15–2.57) <0.001
Hospital stays

Recent hospitalisation1 2.65 (2.46–2.85) <0.001 1.46 (1.34–1.59) <0.001
Number of stays (per 5)2 8.03 (6.98–9.25) <0.001 2.59 (2.13–3.15) <0.001
Number of nights (per 7)2 1.15 (1.14–1.16) <0.001 1.05 (1.04–1.06) <0.001

ED visits
Recent visit1 2.50 (2.29–2.73) <0.001 1.36 (1.22–1.51) <0.001
Number of visits (per 5)2 2.14 (2.03–2.26)3 <0.001 1.06 (0.92–1.20) 0.427

1 Within 30 days prior to episode start. 2 Within 12 months prior to episode start. 3 Due to extremely skewed nature of
this variable, GEE analysis did not converge for the number of ED visits during univariable analysis. Results presented here
were obtained via standard GLM, which did converge, as did multivariable analysis.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; CCI, Charlson Comorbidity Index; ED, emergency department;
GEE, generalised estimating equations; GLM, generalised linear model; IMD, Index of Multiple Deprivation; OR, odds ratio;
UTI, urinary tract infection.
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Figure 4.3: Association of covariates with included complications, estimated via GEE.

CCI, Charlson Comorbidity Index; ED, emergency department; GEE, generalised estimating equations; UTI, urinary tract
infection.
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Table 4.4: Multivariable associations between delayed or withheld antibiotic prescribing
for community-onset lower UTI and any included complication within 30 days, stratifying
by or interacting with age and adjusted for all other covariates.

Patient subgroup Progression to
severe UTI Death Hospitalisation

(LRTI)
Hospitalisation

(Other)

Stratification
<65 years 1.50 (1.35–1.67) 2.16 (1.44–3.22) 1.72 (1.08–2.73) 1.38 (1.27–1.51)
≥65 years 1.66 (1.54–1.79) 1.50 (1.34–1.68) 1.35 (1.09–1.67) 1.49 (1.40–1.60)

Interactions1

25 years 1.35 (1.15–1.59) 1.97 (0.71–5.43) 2.99 (1.53–5.85) 1.35 (1.19–1.54)
45 years 1.72 (1.56–1.89) 2.35 (1.49–3.71) 2.24 (1.44–3.49) 1.51 (1.39–1.63)
65 years 1.85 (1.68–2.04) 2.23 (1.79–2.78) 1.68 (1.31–2.15) 1.55 (1.42–1.68)
85 years 1.56 (1.45–1.68) 1.50 (1.33–1.69) 1.26 (1.02–1.56) 1.40 (1.30–1.50)

1 In the interaction models a continuous interaction term between age (covariate) and antibiotic prescribing (exposure) was
included in the model. Effect sizes are reported for four ages (25 years, 45 years, 65 years, 85 years) that roughly span the
range of observed patient ages.

LRTI, lower respiratory tract infection; UTI, urinary tract infection.

both increased odds of hospitalisation for LRTI (aOR 1.38, 95% CI 1.13–1.69,

p-value < 0.001) and hospitalisation for other causes unrelated to UTI (aOR 1.46,

95% CI 1.38–1.54, p-value < 0.001). The estimated effects of other covariates

was broadly comparable between outcomes, with the notable exception of age and

recurrent UTI (Figure 4.3). Age was more strongly associated with the odds of

death or hospitalisation for LRTI. Recurrent UTI, on the other hand, was positively

associated with the risk of progressing to severe UTI but appeared "protective" for

all other outcomes. Variables relating to recent hospitalisations or ED visits were

particular important to the odds of being hospitalised for any reason other than UTI,

LRTI or bloodstream infection.

4.5.3 Interactions with age

The association between delayed or withheld antibiotics and progression to severe

UTI depended on age (Figure 4.4). An interaction between age and delayed or

withheld antibiotics4 suggested that the effect of delaying or withholding antibiotics

peaked between the age of 35 years and 75 years. The relative odds of progressing

to severe UTI when delaying or withholding antibiotics was estimated to be aOR

4 Corresponding to an analysis in which only prescribing status is interacted with age on a continuous
scale, resulting in a coefficients for prescribing that gradually changes with age. Coefficients of
other covariates are shared among all patients.
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Figure 4.4: Relationship between age and marginal probability of progression to severe
UTI or all-cause mortality, by treatment status.

UTI, urinary tract infection.
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1.85 (95% CI 1.68–2.04) at the age of 65 years compared to aOR 1.35 (95% CI

1.15–1.59) at the age of 25 years and aOR 1.56 (95% CI 1.45–1.68) at the age of 85

years. The QIC favoured a model with prescribing-age interaction over a simpler

model without interactions (∆QIC -10.6). Due to the peak around 65 years, stratified

analysis5 in patients aged <65 years and ≥65 years suggested little difference in the

estimated effect of delaying or withholding antibiotic prescribing (aOR 1.50, 95%

CI 1.35–1.67 in patients <65 years versus aOR 1.66, 95% CI 1.54–1.79 in patients

≥65 years; Table 4.4). Owing to the increased incidence of progression to severe

UTI with increased age, the NNEH was estimated to be 92 (95% CI 81–109) in

patients aged ≥65 compared to 243 (213–290) in patients aged <65 years.

The estimated odds of death showed a similar relationship with age (∆QIC

-14.2). The relative odds of death was largest in patients aged 35 to 75 years (aOR

2.35, 95% CI 1.49–3.71 at the age of 45 years and aOR 2.23, 95% CI 1.79–2.78

at the age of 65 years; Table 4.4). Unlike progression to severe UTI or death, odds

of hospitalisation for LRTI appeared to linearly decrease with age. The odds of

hospitalisation for reasons other than UTI, LRTI and bloodstream infection showed

little trend with age. In either case a simple model without age interactions was

preferred by the QIC (∆QIC -1.4 and ∆QIC -0.8 respectively).

Remark: (Model choice). Included patients could contribute more than

one UTI episode to the analysis. This may introduce correlation between

observations, as observations coming from the same patient will tend to be

more similar to each other than to episodes from another patient [171]. This

violates the independence assumption of generalised linear models (GLMs),

potentially leading to too narrow confidence intervals and incorrect inference.

I used GEEs with an exchangeable correlation structure to account for

violations of the independence assumption. GEEs are a semi-parametric

modelling technique that relies only on the first two moments and —

5 Corresponding to an analysis in which each covariate is interacted with an indicator variable
I(age ≥ 65), resulting in two sets of coefficients, one for patients below the age threshold and
one for patients above.
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under mild regularity conditions — provide consistent estimates of the

average effects in the patient population [172]. Generalised linear mixed

models (GLMMs) are a popular alternative model class that can similarly

account for correlated clusters in the data. GLMMs are a fully parametric

method that estimates one or more random effects for each cluster that

capture cluster-specific information not accounted for by the covariates [171].

Whereas GEEs marginalise over the entire patient population and estimate

the average change in the mean population response with one unit increase,

GLMMs estimate the average change in an individual patient’s response

given the patient’s characteristics. However, interpretation converges with

decreasing correlation [172].

GEEs were chosen over GLMMs mainly for practical reasons. The large

number of small clusters (60% of patients had only one episode, 90% of

patients had 4 or fewer episodes) made it hard to fit GLMMs and accurately

estimate random effects for each patient. This is reflected in the results from

the primary GEE model, which estimated a correlation coefficient α of 0.019

(95% CI: -0.045–0.082) and confidence bounds on the coefficients that were

virtually indistinguishable from a standard GLM fit, suggesting that there is

little correlation between the multiple observations from a single patient or at

the very least that the data is insufficient to detect the correlation accurately.

4.5.4 Differences between treatment groups

The estimated probability of not receiving antibiotics immediately ranged from 5%

to 80%, with most patients belonging to three groups / modes centered around 7%,

13% and 17% (Figure 4.5). The common support — i.e. the overlap and shape —

of the propensity score distribution was comparable between the treatment groups

across most of the observed values but scores tended to be slightly higher among

the not immediately prescribed. The original sample had an estimated median L1

covariate imbalance of 0.391. Although 1-nearest neighbour matching reduced
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Figure 4.5: Distribution of PS for delayed or withheld antibiotics estimated via logistic
regression on all covariates, by observed treatment status.

PS, propensity scores.

univariate mean standard differences in the cohort, it did not reduce imbalance in

the joint distribution of covariates as measured by L1. IPTW on PS improved

multivariate imbalance to L1 0.318 (Table 4.5 and Appendix D). CEM similarly

reduced imbalance with an L1 of 0.313. However, although CEM retained 70.4%

of all samples, it only retained 43.8% (3,481 / 7,947) of patients who progressed

to severe UTI. PS matching, on the other hand, retained only 18.9% of patients but

28.2% (2,244 / 7,947) of those progressing to severe UTI, and IPTW on PS — by

design — retained all patients.

Estimated effect sizes after re-balancing remained comparable to those

obtained in the main analysis (Table 4.5 and Appendix D). The largest estimates

were obtained using CEM, which resulted in an estimated association between

withheld or delayed antibiotics prescribing and progression to severe UTI of

aOR 1.87 (95% 1.72–2.04). Yet, estimated associations with all other outcomes

— including hospitalisation for reasons unrelated to UTI, LRTI or bloodstream

infection — remained similarly high after re-balancing, suggesting that underlying

unobserved confounding remained.
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4.6 Discussion

4.6.1 Clinical findings

In this analysis of a large English primary care database, I found that one

out of every five adult women had at least one community-onset lower UTI

recorded during follow-up, demonstrating the substantial burden of disease caused

by lower UTIs in women. The vast majority of those patients (>90%) were

immediately prescribed systemic antibiotics to treat their UTI episode. The

incidence of infectious complications in the 30 days following initial consultation

was rare in both patients with immediate prescribing and in those with delayed or

withheld antibiotics. However, delaying or withholding antibiotics was associated

with a 1.6-fold increase in the odds of progressing to severe UTI — defined

as pyelonephritis, sepsis, or hospitalisation for UTI. Delaying or withholding

antibiotics was further found to be associated with a 1.5-fold increase in the odds

of death over the same time period. The estimated adverse effects varied by

age, but delayed or withheld prescribing was associated with increased risks of

complications across all age groups.

While these results suggest that it might not be safe to withhold or delay

antibiotics in an unselected group of women consulting for community-onset lower

UTI in primary care, analysis of secondary outcomes also found an association

between delayed or withheld prescribing and the risk of being hospitalised for

LRTI or for other reasons unrelated to UTI. We would not generally expect these

risks to be influenced by prescribing decisions for uncomplicated UTI. These

findings might therefore point towards the role of other underlying differences

between treatment groups that may have caused the observed associations between

prescribing decision and adverse outcomes. Patients for whom antibiotics were

delayed or withheld were more likely to have presented with recurrent UTI, to have

a history of recent hospital visits and/or antibiotic exposure, and to have required

a home visit by the GP. With the exception of recurrent UTI, these same factors

were also associated with an increased risk of all outcomes considered — both

UTI related and others. Rather than representing a purposeful decision to delay
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or withhold antibiotic treatment, the lack of a prescribing record during the initial

consultation for UTI may instead have signalled underlying differences in patient

characteristics and disease severity. For example, patients who recently attended the

hospital might already be taking antibiotics, which may be the reason why they did

not receive a prescription at presentation in primary care. Similarly, a home visit by

the GP — e.g., because the patient is too sick to leave the house — does not allow

for automatic capture of prescribing and makes it less likely that all prescribing

decisions are recorded faithfully [72]. As a result, the observed increased risk of

adverse outcomes may have been driven by circumstances that influenced treatment

rather than the presence or absence of treatment itself.

4.6.2 Methodological findings

Evidence from randomised controlled trials discussed earlier has been conflicting

regarding the safety of delaying or withholding antibiotics for women with

community-onset lower UTI, with some authors reporting no (significant) increase

in the risk of subsequent pyelonephritis [63, 69, 70, 71, 155] whereas others do

[156, 157]. The small sample sizes were generally insufficient to capture the

rare progression to pyelonephritis with good certainty, and patient populations

across trials were mostly limited to women younger than 65 years old. In this

analysis of real-world clinical practice, I was able to identify a large cohort of adult

women of all ages presenting with community-onset lower UTI, which may allow to

provide further evidence for or against the safety of delaying antibiotic prescribing

for community-onset lower UTI. However, case definitions of UTI in this study

exclusively relied on recorded diagnosis codes. Little information was available on

urinary symptoms, urine dipstick results, and overall perceived severity of disease

(see Section 4.6.3 for a detailed discussion of this issue). Consequently, there was a

mismatch between the information on which the doctor based his or her prescribing

decision, and the information that was retrospectively available to reconstruct and

analyse this decision. In particular, a failure to account for underlying disease

severity tends to result in underestimated treatment effects in observational studies

through confounding by indication [115], which may in turn have overestimated
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the safety of delaying antibiotics of UTI.

Results remained largely unchanged after balancing the treatment groups on

observed covariates using PS analysis or CEM. While this might be seen as

adding additional credibility to the results, balancing the treatment groups also

did not impact the estimated associations between delayed or withheld antibiotic

prescribing for community-onset lower UTI and adverse outcomes not directly

related to UTI. We may therefore conclude that the information available within the

EHR database is insufficient to account and adjust for the non-random treatment

assignment (or recording of treatment). A reason for this apparent failure to

adjust for important confounders may be due the exclusive availability of long-

or mid-term risk factors such as comorbidities and recent hospitalisations. If

prescribing or recording of prescribing were mostly driven by short-term factors

pertaining to the index consultation itself, confounding factors would have been

largely unobserved and neither balancing technique would have been able to

account for those factors. This makes it difficult to appraise the reliability and

importance of the obtained results, and suggests that improved data collection

and/or an integration of qualitative and quantitative research methods will be needed

to answer questions about the safety of delaying or withholding antibiotics for

suspected UTI.

4.6.3 Strengths and limitations

A major strength of this study is its large sample size of more than 600,000 episodes

of community-onset lower UTI in a representative patient population of ∼2 million

adult women consulting in English primary care. This sample size allowed me to

precisely estimate associations with relatively rare outcomes such as progression

to severe UTI (1.2%), death (0.4%) and hospitalisation for LRTI (0.1%) within

30 days after consulting for lower UTI in primary care. The routine nature of the

data guaranteed that the patients were representative of the wider patient population.

Additional linked data from hospital and national census records allowed to exclude

healthcare-acquired UTIs and to comprehensively identify complications following

initial consultation in primary care. The latter mitigated likely under-reporting of
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Table 4.5: Multivariate imbalance (L1) and multivariable associations (adjusted odds
ratios and 95% confidence intervals) between delayed or withheld antibiotic prescribing for
community-onset lower UTI and any included complication within 30 days, after adjusting
for confounding using PS or CEM.

Propensity score
analysis Coarsened

exact matching1

Matching IPTW

Retained patients (%) 122,706 (18.9) 650,416 (100.0) 458,049 (70.4)
Covariate imbalance (L1) 0.423 0.318 0.312

Outcomes (aOR, 95% CI)
Progression to severe UTI 1.57 (1.44–1.71) 1.69 (1.58–1.80) 1.87 (1.72–2.04)
Death 1.31 (1.13–1.53) 1.57 (1.39–1.76) 1.44 (1.20–1.73)
Hospitalisation (LRTI) 1.34 (1.02–1.76) 1.55 (1.26–1.90) 1.59 (1.18–2.14)
Hospitalisation (Other) 1.39 (1.29–1.50) 1.49 (1.41–1.58) 1.58 (1.46–1.70)

1 ED visit in the prior 30 days and number of hospitalisations in the prior year where excluded as covariates in the CEM
analysis due to small remaining numbers after matching.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; CEM, coarsened exact matching; IPTW, inverse probability of
treatment weighting; LRTI, lower respiratory tract infection; PS, propensity score; UTI, urinary tract infection.

hospital activity in primary care records. The analysis further contains a large range

of sensitivity analyses that helped to judge the robustness of the results and identify

limitations stemming from the nature of EHR data.

While a large enough sample was certainly necessary to detect the treatment

effects of interest, the validity of the estimates obtained in this analysis depends on

the successful identification of the date of initial consultation for UTI, the presence

of antibiotic prescribing on the day of initial consultation in primary care, and the

occurrence of infectious complications as a result of the initial consultation for

lower UTI. Valid derivation of these quantities from routine patient records demands

complete and correct recording of relevant information in the database [173]. Data

obtained from CPRD is observational and retrospective, and collected with routine

patient care rather than academic research in mind. The recording of information is

governed by national guidelines, clinical need, and time pressures [121]. The data

used in this study would be at substantial risk of confounding if clinical (coding)

practices resulted in systematic differences in cohort selection (e.g. differences in

the date of lower UTI), treatment assignment (e.g. differences in the propensity to

prescribing systemic antibiotic), or outcomes (e.g. a priori differences in the odds
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of pyelonephritis within 30 days of initial consultation).

Diagnosis of UTI in this study was based on the presence of one or more

relevant diagnosis codes in the patient’s medical records. Diagnoses are entered

by the treating GP and generally represented suspected rather than confirmed

UTI. As discussed in Chapter 1, a full clinical confirmation of UTI is based on

a combination of microbiological culture of urine and the presence of urinary

symptoms [17]. Since urine cultures are not routinely indicated in English primary

care in the absence of additional risk factor [13], culture results were not normally

available — neither in CPRD nor to the treating GP during or after the initial

consultation. Treatment of suspected UTI is therefore for the most part empirical

and unconfirmed. Recorded diagnoses of UTI in primary care were relatively broad,

with information on urinary symptoms or urine dipsticks at presentation available

only in a small subset of patients. UTI episodes included in this study might

have included a wide variety of disease severities, ranging from mild UTIs and

asymptomatic bacteriuria to more serious infections. Each of these might have been

indiscriminately recorded as "urinary tract infection". In some extreme cases, this

might have even include pyelonephritis, blurring the line between index event and

outcomes. Besides potential heterogeneity in UTI severity, it is also likely that I

missed a notable portion of new or recurrent UTIs. A recent study of antibiotic

usage in primary care found that up to 40% of nitrofurantoin prescriptions —

which are solely indicated for the treatment of lower UTIs — had no recorded

reason for prescribing [6]. The extent and impact of either of these issues on

the current analysis remains uncertain. The availability of admitted patients and

ED data from hospitals allowed for the identification of episodes that originated in

hospital, that required immediate hospitalisation, or that represented retrospective

entries of discharge information. While this certainly helped to reduce some of

the heterogeneity in UTI severity, it is plausible or even likely that important

heterogeneity remained.

Treatment status for each episode of UTI was based on the presence or

absence of a prescription for systemic antibiotics on the day of episode start.
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Prescriptions in English primary care are issued electronically and are automatically

captured within CPRD [121]. While antibiotic prescriptions are thus generally

well recorded, delayed prescribing has been found to be recorded poorly [139].

A low rate of observed delayed prescribing might be due to a lack of recording,

it might reflect an infrequent use of delayed antibiotics in general practice [3],

or a combination of both. Even in cases where antibiotics were prescribed for

immediate use, the patient might have decided not to file the prescription, not take

the antibiotic as instructed, or not take the antibiotic at all. The analysis presented

in this chapter assumed that each patient who was prescribed an antibiotic used

it as prescribed. If a large proportion of our treatment group failed to take the

antibiotics immediately, this might have reduced the association between delayed

or withheld antibiotics and infectious complications of UTI. A second — potentially

opposing — source of bias in the assignment of treatment status stems from

selective under-recording of antibiotic prescribing. Adding home visits to the model

for example single-handedly reduced the estimated crude effect of not prescribing

antibiotics on progression to severe UTI from OR 1.97 (95% CI 1.85–2.09) to a

partially adjusted OR of 1.76 (95% CI 1.65–1.87) — more than half-way to its fully

adjusted aOR of 1.61 (95% CI 1.51–1.72). Although confidence intervals were

overlapping for all of these estimates, the substantial drop in point estimates likely

reflected the fact that prescriptions were less likely to be recorded electronically

during or after a home visit, as has been noted elsewhere [72]. Since they are home

bound, patients who require home visits are almost certainly less healthy than their

mobile counterparts. This puts them at an a priori higher risk of adverse outcomes

irrespective of whether or not they were prescribed an antibiotic. While I was able to

adjust for episodes that represented home visits, I likely missed other circumstances

that affect both the prescribing decision and baseline risk of complication in a

similar way.

4.6.4 Comparison with existing literature

Delaying or withholding antibiotics in this study was found to be associated with

an increased observed risk of progressing to severe UTI, which is in line with
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findings from recent randomized controlled trials [156, 157]. The findings were

also compatible with evidence from earlier trials that generally found increased but

statistically non-significant risks of pyelonephritis in women who did not receive

immediate antibiotics [63, 69, 70, 71]. While the direction of the estimated

effects generally agreed, effect sizes estimated here from routine data were much

smaller than those estimated in trials. In trials that observed at least one case of

pyelonephritis during follow-up, estimated effects ranged from OR 2.98 to OR

15.34. It is unclear why the data reported here would lead to smaller effect sizes but

unrecorded use of antibiotics in the delayed/withheld group and a failure to account

for disease severity may be possible explanations. Notably, the largest estimated

increases in risk were all observed in trials that compared the use of antibiotics

to non-steroidal anti-inflammatory drugs (NSAIDs) [71, 156, 157], whereas trials

that compared antibiotics to placebo generally reported smaller increases [69].

The NSAID groups in all of those trials also had a much higher incidence of

pyelonephritis (2.0%-4.5%) than the placebo arm of the only placebo-controlled

study of comparable size (0.4%) [174]. While these differences may be partially

explained by better follow-up in the NSAID trials, a recent systematic review

suggested that the observed difference might also be due to NSAIDs themselves,

which have been associated with worse outcomes in other infections [86]. I was

unable to estimate any possible impact of NSAIDs on the results presented here,

since prescriptions for NSAIDs were not available in the originally requested data.

In the only directly comparable study performed using EHR data (see Chapter

2), Gharbi et al. (2019) recently report a 7–8-fold increase in the odds of

bloodstream infection when delaying or withholding antibiotics in patients aged 65

years or more. Their results were based on very similar observational data from

CPRD. My results suggested a much lower increase in the odds progressing to

severe UTI of aOR 1.66 (95% CI 1.54–1.79) in patients aged ≥65. It remains

unclear what caused the above described differences in findings but the approach

presented here differs from that employed by Gharbi et al. in several important

ways. First, in line with the above described trials, I limited my analysis to
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women — who represent the majority of uncomplicated lower UTI in primary

care [65] — and chose a broader outcome of progression to severe UTI. Second,

I used more stringent inclusion criteria that utilised hospital information to exclude

episodes originating in secondary care. Third, I adjusted for a number of additional

variables, of which home visits was the most important. Fourth, I used a shorter

follow-up period of 30 days instead of the 60 days used by Gharbi et al., which

more accurately reflects the usual length of UTI episodes [71, 157] and the period of

increased risk of adverse outcome thereafter. Finally, I treated delayed prescribing

and withheld prescribing as a single group, acknowledging the fact that delayed

prescribing is poorly recorded in CPRD [139].

A PS analysis similar to that presented in this chapter was also employed

by Ahmed et al. to account for non-random treatment choice when investigating

the association between prescribe duration of antibiotic prescribing [111] or type

of antibiotic [108, 110] and infectious complications (see Chapter 2). While the

authors reported balance on all measured covariates after PS matching, my findings

in this chapter may suggest that this matching may not have been able to balance the

treatment groups on important factors that may have influenced treatment choice.

4.7 Conclusion
In the analysis presented in this chapter, I assessed if routinely collected EHR

data can be used to guide management of community-onset lower UTI in primary

care by estimating the safety of delaying or withholding antibiotic treatment

during the index consultation. I was able to identify a large cohort of women

presenting with lower UTI. Careful linkage to hospital records enabled me to

create a stricter definition of community-onset UTI than those previously used.

However, detailed clinical information — such as urinary symptoms or vital

signs — to ascertain the presence and severity of UTI were not well recorded,

and neither were the reasons for delaying or withholding prescribing. Instead,

delayed or withheld prescribing needed to be inferred indirectly from the presence

or absence of prescribing records, which resulted in considerable differences in
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patient characteristics between treatment groups. The evidence found in this

chapter against the safety of delaying or withholding antibiotic treatment in a

subpopulation of women presenting with lower UTI in primary care therefore needs

to be interpreted cautiously. Associations between a (presumed) decision to delay

or withhold antibiotics and adverse outcomes were not only found for outcomes

linked to UTI (progression to severe UTI or death) but also for other outcomes

not usually related to UTI (hospitalisation for LRTI or other non-UTI reasons),

suggesting a more complex relationship with the exposure. Applying popular

methods to balance treatment groups led to similar estimates for all outcomes,

suggesting that they were unable to account sufficiently for likely confounding

due to factors which are difficult to capture in and infer from routinely collected

primary care EHR data (see Chapter 3). These results also cast doubt on the

success of similar balancing methods applied in some of the earlier studies reviewed

in Chapter 2, although confounding by indication may have been less severe for

exposures such as duration of treatment. Improved data recording for UTI in

primary care records and complementary research using prospective data collection

or qualitative methods will be necessary to better understand the various reasons

for not prescribing antibiotics for community-onset lower UTI in primary care, and

any selective biases arising from it. Some of these data items are already recorded

in secondary care datasets (see Chapter 3). Chapters 5 and 6 will therefore use

one such dataset from Queen Elizabeth Hospital Birmingham to assess the utility

of better data recording to identify and predict microbiologically confirmed UTI in

the ED.

Chapter summary

• Careful use of data from primary and secondary care can identify cases

of community-onset lower UTI from diagnosis codes but additional

information on urinary symptoms and dipstick test results will need to

be collected to confirm and validate those cases.
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• Delayed or withheld antibiotic prescribing could only be inferred

indirectly, and there were considerable differences between treatment

groups with high-risk patients counter-intuitively being more likely to

not be prescribed antibiotics.

• Attempting to account for confounding using PS or CEM led to similar

results, suggesting that important confounding factors could not be

identified from EHR data.

• More information on the patient’s acute health status and on the reasons

for prescribing or non-prescribing are necessary to reliably estimate the

risks and benefits associated with delaying antibiotic prescribing for

lower UTI in primary care.

My role in the work presented in this chapter

I wrote the first draft of the study protocol, which was revised and edited by two

of my supervisors (Dr Laura Shallcross and Prof Andrew Hayward). I designed the

study described in this chapter with input from my supervisors and undertook all

the statistical analysis with guidance from Prof Nick Freemantle. Raw primary care

data for this study was extracted from the CPRD research database by Dr Kenan

Direk and raw data from HES and ONS was provided by NHS Digital (see Chapter

3). I performed all further data linkage, pre-processing, and analyses within the

UCL Data Safe Haven. I performed all analyses presented in this chapter. Computer

code for the data extraction, cohort definition, and main analysis was reviewed and

validated by Dr Ruth Blackburn. I interpreted all findings with help from Dr Laura

Shallcross, Prof Irwin Nazareth, Prof Nick Freemantle, and Prof Andrew Hayward.

I wrote the chapter with feedback from Dr Laura Shallcross, Prof Nick Freemantle,

and Prof Andrew Hayward.
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Software and code used in this chapter

All analysis in this chapter was performed using R (v3.6.2) and RStudio (v1.2.5033)

on Windows 10. Data processing was performed using the tidyverse (1.3.0)

and data.table (1.12.8) packages. All model building was performed using

base R and the geepack (0.1.0) package. All code is publicly available at

https://github.com/prockenschaub/phd_code.

Publications resulting from this chapter

Shallcross L, Rockenschaub P, Blackburn R, Nazareth I, Freemantle N & Hayward

A. Antibiotic prescribing for lower UTI in elderly patients in primary care and risk

of bloodstream infection: A cohort study using electronic health records in England.

PLoS Med. 2020;17:e1003336

https://github.com/prockenschaub/phd_code


Chapter 5

Using EHR data to predict bacteriuria in the

ED: a case study using data from QEHB

Abstract
Introduction: In the previous chapter, I attempted to estimate the association

between antibiotic prescribing for urinary tract infections (UTIs) in primary care

and risk of infectious complications. My findings were limited by a large risk

of unobserved confounding due to a lack information on key variables. Some

of the information that was crucially missing in Chapter 4, however, is more

commonly recorded in secondary care. In this chapter, I therefore investigate the

use of secondary care data from a large English teaching hospital to develop a

risk prediction model for microbiological growth in urine samples collected in the

emergency department (ED).

Background: UTIs are a leading cause of emergency visits, yet correctly

diagnosing UTI in the ED remains difficult. The lack of reliable rapid diagnostic

tests is exacerbated by a sicker patient population and pressure on ED clinicians

to make rapid treatment decisions. Risk prediction models based on a patient’s

medical history and data routinely stored in the electronic health record (EHR)

might provide an opportunity to predict the presence of bacteria in the patient’s urine

hours before urine culture results are available, providing diagnostic information to

inform targeted antibiotic prescribing.

Methods: Adult patients visiting the ED at Queen Elizabeth Hospital Birmingham

between 2011 and 2019 and who had a urine sample sent for microbiological culture

within 24 hours of arrival were identified from local EHR systems. I extracted
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information on patient demographics, comorbidities, clinical observations, blood

tests, urine flow cytometry, and previous healthcare activity. The probability of

bacterial growth ≥ 104 colony-forming units per millilitre was predicted using

a range of linear and tree-based prediction algorithms, additionally comparing

pre-processing and missing data imputation methods. Models were trained and

internally validated using data from 2011 to 2017 with 3-times repeated 10-fold

cross-validation. Model predictions were re-calibrated and externally validated on

temporally independent test data from 2018/19.

Results: Overall, 12,680 visits were included in the analysis, of which 4,677

(36.9%) showed positive culture growth. An extreme gradient boosting tree model

achieved the highest area under the receiver operating characteristic of .814 (95%

confidence interval .793—.835). Most predictive power was based on urine flow

cytometry measurements, particularly bacteria and urinary white blood cell counts.

More flexible pre-processing or imputation methods did not meaningfully improve

model performance. Raw predicted probabilities exhibited sub-optimal calibration

and underestimated risk of bacterial growth in 2018/19, whereas re-calibration of

probabilities led to better but slightly too extreme predicted probabilities.

Discussion: The observed predictive performance implied scope to use risk

prediction models to aid diagnosis of UTI in the ED. The results agreed with

previous studies on the importance of urine flow cytometry tests to predict bacterial

growth in urine cultures, almost to the exclusion of any other included clinical

information. However, the performance observed in this chapter was considerably

lower than that reported in previously published studies, suggesting possible

differences in variable definitions or patient case mix. These differences are further

explored in Chapter 6.

5.1 Introduction
In Chapter 4, I investigated the association between antibiotic prescribing decisions

for lower urinary tract infection (UTI) in primary care and subsequent risk of

adverse outcomes. I found that the interpretability of the results was limited by
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a high risk of residual confounding, even after accounting for several common risk

factors. In particular, information on disease severity was not recorded reliably in

primary care records. This was complicated by the fact that urine samples were not

usually submitted for microbiological culture in primary care, forcing me to rely on

clinical coding to define the study cohort. These limitations are therefore a direct

consequence of how data are routinely measured and recorded in primary care.

Electronic health record (EHR) systems in secondary care potentially capture

some of the information that was crucially missing from the primary care records.

Urine cultures and cell counts are much more frequently performed due to the

easier access to laboratories, and physiological parameters such as vital signs

and blood biomarkers are often measured in the emergency department (ED),

potentially providing a means to assess disease severity at and during admission.

The availability of these measurements may allow us to go beyond the analyses

presented in Chapter 4 and make it feasible to use EHR data to support diagnostic

decisions for UTI. Yet, the scoping review in Chapter 2 revealed that there have

been very few studies to date that investigated the diagnosis and management of

community-onset UTI in EHR data from secondary care, whether in England or

elsewhere. One possible explanation for this is the fragmentation of hospital patient

management systems and continuing lack of wide-spread electronic prescribing in

hospital [67]. Over the last decade some English hospitals like Queen Elizabeth

Hospital Birmingham (QEHB), however, have become increasingly digitally mature

and now provide access to rich longitudinal hospital data [152].

In this chapter, I assess whether data routinely collected at QEHB contains

sufficient information to support better diagnostic decisions for suspected UTI by

developing statistical models that predict the presence of bacteria in the urine (called

bacteriuria) at or shortly after arrival in the ED. Earlier access to this information

could help clinicians to refine empirical prescribing decisions1. There are two

ways in which this could work: 1) in low risk patients, doctors may wait for the

model result before initiating antibiotics and 2) in all other patients, doctors may

1Culture based diagnosis of bacteriuria takes 24-48 hours, see Chapter 1.
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use the model to revise their empirical prescribing decisions once model results

are available. As there is no consensus on the best predictive modelling strategy, I

evaluated the impact of a range of algorithmic choices and pre-processing steps and

compared their performance to previously developed models [51, 109] and clinical

decision rules [27, 89].

5.2 Background
UTIs are a leading cause of preventable emergency hospital admissions, accounting

for 14.2% of all avoidable emergencies [175]. Despite their frequency, it can be

difficult to reliably diagnose UTIs in the ED. Sources of diagnostic uncertainty

include variations in clinical presentation, lack of reliable rapid diagnostic tests, and

a need to initiate treatment early. These issues were already discussed in detail in

Chapter 1 but are further exacerbated by the nature of ED medicine. First, patients

tend to be sicker on arrival and may often require rapid decision making. Second,

when traditional symptoms of UTI (e.g., dysuria, urinary frequency and urgency)

are present, previous studies found them to be less reliable predictors of UTI in ED

populations [73] than they are in primary care populations [27]. The predictive

power of rapid diagnostic tests like urine dipsticks was also found to be lower

in ED patient populations [73]. Possible reasons for this reduced performance in

ED patients include spectrum bias — i.e., differences in test performance due to

a differences in the clinical manifestation of UTI between primary or secondary

care [176] — or an increased use of dipstick tests to screen ED patients with

ambiguous symptoms [177]. Finally, on top of less reliable diagnostic information,

ED clinicians usually do not have access to a patient’s medical history outside of

hospital [178] and are therefore more reliant on patient anamnesis, which can prove

challenging if patients are confused or otherwise unresponsive. As a result, previous

studies have repeatedly reported over-diagnosis and over-treatment of UTI in the ED

[24, 73]. Furthermore, once treatment has been initiated patients regularly continue

on antibiotics even after culture results indicated little evidence of UTI [24].

Possible reasons for these conservative prescribing decisions include the above
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described large diagnostic uncertainty and an ensuing fear of delaying antibiotic

treatment for severe infections [179]. Clinicians need to balance these risks against

the adverse consequences associated with unnecessary antibiotic prescribing, which

include antibiotic resistance and treatment side-effects (see Section 1.5).

With increasing availability of EHRs, attention has focused on whether data

contained within these records may be used to support earlier, more informed

prescribing decisions through the use of risk prediction models. Early and reliable

prediction of UTI may affirm clinicians in their diagnosis, while providing them

with additional certainty to withhold immediate treatment in low-risk patients with

little evidence of infection. This strategy could potentially reduce the number of

patients who are treated with antibiotics unnecessarily. An ideal model would

predict a patient’s probability of clinically confirmed UTI — i.e., bacteriuria

in the presence of relevant urinary symptoms [17]. While bacteriuria can be

measured objectively using microbiological culture results, urinary symptoms

are unfortunately not well recorded in structured ED data [24]. This makes it

challenging to derive a reliable ground-truth of clinically confirmed UTI. Barring

improvements in the recording of urinary symptoms, bacteriuria is therefore

arguably the most sensible target for such a prediction model, although at the risk

of overly emphasising the importance of culture growth2.

Chapter 2 demonstrated that few studies have looked into using routinely

collected EHR data to guide diagnosis of UTI in the ED. In the only study that was

eligible for inclusion in the review, Taylor et al. (2018) [109] used machine learning

models to predict bacteriuria in 80,000 patients with UTI symptoms consulting at

the ED of several US hospitals. They compared model predictions to clinicians

empirical prescribing decisions and diagnosis at discharge based on ICD-10

codes. The authors reported that their final model significantly outperformed

clinical judgement as measured by discharge diagnoses and/or antibiotic treatment

initiation, increasing specificity of diagnosis by up to 33 percentage points.

However, they did not externally validate the likely future performance of their

2Since asymptomatic bacteriuria — i.e., bacteriuria in the absence of symptoms — does not usually
require treatment [13].
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model, and there is no evidence that it was translated into real-world clinical

practice. It is therefore difficult to judge whether the model could be used in

English secondary care, and whether its use as a tool to inform antibiotic prescribing

decisions in clinical practice would indeed lead to improved patient care.

To assess whether a similar model could be applied in English hospitals,

the analysis presented in this chapter develops models to predict bacteriuria in

English ED patients who had a urine sample sent for microbiological culture,

and evaluates their predictive performance in a temporally independent test set.

I used high-quality hospital records from QEHB — one of the NHS’s centres

of digital excellence [151] — to train the models. Since there is no single

agreed-upon strategy to risk prediction modelling in health care, various approaches

to pre-processing, missing data imputation, and modelling were used. Each

approach was internally validated using repeated cross-validation to obtain unbiased

estimates of expected future performance. The best performing models were then

externally validated in temporally independent data from the same hospital, and any

differences between expected and observed performance are discussed.

5.3 Aims and Objectives
To use EHR data from a large English tertiary teaching hospital to predict

probability of bacterial growth in urine samples among individuals with suspected

community-onset UTI in the ED.

Objectives:

5.1 To develop models that predict bacterial growth in urine samples collected

during ED visits based on clinical information recorded in the patient’s

medical history and during their stay in the ED.

5.2 To compare changes in the estimated model performances due to the use of

different pre-processing steps, imputation methods, and model architectures.

5.3 To evaluate the likely future performance of these models in a temporally

independent test set.
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A protocol for the analysis presented in this chapter was prospectively published in

Rockenschaub et al. (2020) [180].

5.4 Methods
Study design: Retrospective observational cohort study.

Study setting: One English tertiary teaching hospital.

5.4.1 Data source and management

This chapter used a custom dataset extracted from QEHB, one of the largest

teaching hospitals in England and an early-adopter of electronic record keeping

with detailed records dating to 2010 [180]. Data available at QEHB is described in

detail in Section 3.3.2.

I identified data items relevant to the diagnosis and management of UTI at

QEHB in close collaboration with Dr Laura Shallcross and Dr David McNulty.

Data for all patients with a ED diagnosis of UTI, a blood or urine sample submitted

for microbiological culture within 48 hours of arrival in hospital, or a discharge

diagnosis of UTI were extracted from QEHB’s patient management systems into

text files by Dr David McNulty (see Appendix H for a list of diagnosis codes).

Local patient identifiers were replaced with pseudonomysed patient identifiers at

QEHB. After pseudonomysation, the data was securely transferred to the UCL

Data Safe Haven, where I imported the text files into the R programming language

[159], linked all provided information via pseudonomysed patient identifiers, and

transformed the data into a tabular format suitable for analysis. A detailed definition

of the resulting analysis cohort and inclusion criteria as well as the methods

employed to deal with missing data is provided in Chapter 5.

5.4.2 Ethical approval

Access to data related to the diagnosis and management of UTI at QEHB

was approved by the Health Research Authority (HRA, reference number

17/HRA/3427). No further ethical approvals were required due to the retrospective

and pseudonomysed nature of the data, which was collected as part of routine care.
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The request for approval was drafted and submitted by Dr Laura Shallcross.

5.4.3 Patient population

I included pseudonomysed patient information on all adult patients who attended

the ED at QEHB between November 1st 2011 and March 31st 20193 and who

had a urine sample sent for microbiological testing within 24 hours of arrival

(Figure 5.1). I excluded patients without a valid record of age or sex, patients

aged <18 years, pregnant women (defined as the presence of a 10th revision of

the International Statistical Classification of Diseases and Related Health Problems

[ICD-10] code related to pregnancy or a pregnancy test recorded within ±9 months

of arrival; Appendix H), and patients whose earliest urine sample was taken more

than 24 hours after their recorded arrival in the ED. A window of 24 hours was

chosen to account for delays in delivering samples to the microbiological laboratory,

particularly overnight. Following a similar rationale as that presented in Chapter 4,

samples from patients with a UTI diagnosis at QEHB within 30 days prior to arrival

in the ED were excluded in order to limit samples to likely community-onset UTI.

Samples recorded at 12am midnight of the same day as an ED visit were treated

as if they were recorded during that visit. All other samples taken before arrival

in the ED were excluded from the analysis to restrict the analysis to only those

samples that were likely taken in the ED. I further excluded samples for which

the recorded collection date was after the date that the sample was received in the

laboratory — indicating a likely data entry error — and samples for which the

recorded collection date was more than 72 hours before the date that the sample

was received in the laboratory — potentially relating to the re-analysis of a historic

sample. Finally, samples in-between two immediately consecutive ED visits —

where it was unclear during which visit the sample was collected — were also

excluded from the analysis. Fewer than one percent of all urine samples were

excluded this way (Figure 5.1).

3 In November 2011, electronic recording of ED diagnosis at QEHB was switched to a more granular
set of diagnosis codes that allowed for the identification of suspected UTI; see Section 3.3.2.
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Remark (Recorded sample times at midnight). Upon inspection, a

disproportional number of samples had a recorded time of 12am. Since

laboratories at QEHB are closed overnight, it is likely that records supposedly

recorded at 12am represent samples with missing information on the sample

time rather than a peak of sampling frequency at midnight. To account for

these inaccuracies in sampling time, samples recorded at 12am of the same

day as an ED visit were treated as if they were recorded during that visit.

Patients were allowed to contribute more than one visit to the study population.

For readability, I will continue to refer to visits as "patients" as if they were unique,

although some visits may relate to the same person. The impact of any potential

correlation between visits of the same patients was assessed (see Section 5.5.4).

5.4.4 Outcome

The primary outcome was predominant bacterial growth in the ED urine sample.

Samples were considered positive if they grew a predominant pathogen ≥104

colony-forming units per millilitre (cfu/mL) during microbiological culture. This

label was used as the prediction target for all algorithms discussed in this chapter.

Instead of one or two predominant organisms, urine culture may also show

growth of several different organisms at once (so-called mixed growth; see Section

1.3.2). Rather than evidence for infection, mixed growth is widely regarded as

contamination of the urine sample [42]. Following standard procedure at QEHB,

mixed growth without a predominant organism was therefore considered negative,

except where Escherichia Coli was explicitly reported.

Urine samples at QEHB were analysed in accordance with UK standard

laboratory procedures (UK Standards for Microbiology Investigations: SMI

B41, Investigation of Urine [43]). Following additional local standard operating

procedures meant to reduce the number of cultured urines that have a very low prior

probability of growing organisms, not all urine samples sent for microbiological

analysis were eventually tested. Thresholds based on urinary white blood cell
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Figure 5.1: Flow chart of cohort selection for community-onset UTI in the ED at QEHB.

ED, emergency department; QEHB, Queen Elizabeth Hospital Birmingham; UTI, urinary tract infection.
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counts (WBC) and bacteria counts obtained via urine flow cytometry4 were used

at QEHB to decide which samples were ultimately cultured and which weren’t.

At the start of the study period, this meant that only samples with a urinary WBC

count >40/µL or bacterial counts >4000/µL were cultured. From October 2015

on-wards, these limits were raised to urinary WBC count >80/µL or bacterial

counts >8000/µL. No urine counts could be obtained for samples of less than 4mL

or which were too viscous to pass through the instrument. These samples were

always cultured [180]. Samples whose urine flow cytometry results that did not

exceed the above thresholds — and thus were not cultured — were excluded from

the analysis. Approximately 40.8% of all eligible urine samples collected within

the study period were excluded this way (38.5% before and 43.5% after October

2015).

In order to ensure that I did not miss bloodstream infections originating from a

urinary source, urine samples were also considered positive if they showed bacterial

growth < 104 cfu/mL but the same pathogen was grown from a blood sample taken

from the same patient within 24 hours of arrival. This additional criteria affected <5

(<0.1%) samples.

Remark (Defining positive culture growth). Chapter 1 briefly touched on the

choice of thresholds to define significant bacterial growth in urine cultures.

Suggested ideal cut-offs in the literature range from 102–106 cfu/mL [37,

38]. Data from QEHB distinguished 103–104, 104–105, and ≥ 105 cfu/mL.

A threshold of ≥ 104 cfu/mL was chosen in this analysis because it covered

the majority of observed samples and allowed for a direct comparison with

results reported previously [51, 89, 109].

4 See Chapter 1 for a detailed description of urine flow cytometry and its role in detecting bacteriuria
in hospital.
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Table 5.1: List of candidate predictors for the prediction of bacterial growth in ED urine
cultures.

Category Variables

Demography Age, Sex, Ethnicity

Clinical presentation Suspected diagnosis (as recorded by the ED clinician)

Vital signs Body temperature, Respiratory rate, Heart rate, O2 saturation (via
pulse oximetry), Systolic blood pressure, AVPUa, SEWS

Urine flow cytometry Bacteria, WBC, RBC, Epithelial cells, Small round cells, Casts,
Crystals, Conductivity

Blood tests WBC, Platelets, CRP, Creatinine, ALP, Bilirubin

Comorbidity CCI, Cancerb, Immunosuppressiona,b, Renal diseasec, Urological
diseasec, Renal or urological surgeryc

Previous urine cultureb Culture submitted, Culture positive, Culture resistanta

Previous antibiotic
exposureb

Prescription of systemic antibiotics

Previous healthcare
activityb

Number of hospitalisations for UTI, Number of hospitalisations for
any cause, Number of ED visits for UTI, Number of ED visits for
any cause

Time of consultation Month, Day of year, Day of week, Time of day
a Dropped prior to analysis due to small numbers (< 5% of patients). b Within 1 year prior to arrival.
c Within 5 years prior to arrival. Codelists used to define variables in this table can be found in Appendix H.

ALP, Alkaline Phosphatase; CCI, Charlson Comorbidity Index; CRP, C-reactive protein; ED, emergency department; RBC,
Red blood cells; SEWS, Standardised early warning score; UTI, urinary tract infection; WBC, White blood cells.

5.4.5 Predictors

Potential candidate predictors were selected based on clinical expertise, previous

literature [17, 51, 89, 109], and availability of data within the EHR system (Table

5.1). Relevant information on the patient’s health status at arrival in the ED included

vital signs (heart rate, respiratory rate, temperature, oxygen saturation, systolic

blood pressure, AVPU scale, standardised early warning score [SEWS]), blood tests

(white blood cells [WBC], platelets, C-reactive protein [CRP], creatinine, alkaline

phosphatase [ALP], bilirubin), and urine flow cytometry (WBC, red blood cells

[RBC], epithelial cells, small round cells5, bacteria, casts, crystals, conductivity).

For each patient, all measurements recorded while the patient was in the ED were

included in the analysis. If more than one value was recorded for a variable, the

mean value was included. ED clinicians also recorded one or more suspected

5 Renal tubular cells and transitional epithelial cells [181].
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diagnoses based on clinical judgement6.

General patient characteristics and information on patients’ medical histories

were further derived from the local hospital records. Available demographic

information included age at arrival (in decades), gender, and ethnicity (Asian,

Black, White, Other). Medical histories were derived using varying look-back

windows. Due to the long-term nature of the included conditions, the Charlson

Comorbidity Index (CCI) was calculated using all ICD-10 codes in the patient’s

medical history at QEHB (see Appendix H for a detailed list of all included codes).

Presence of underlying renal/urological conditions or surgery was ascertained

using ICD-10 diagnostic codes and OPCS-4 procedure codes within five years

before the ED visit. Finally, the following medical histories were obtained using

data for the one-year period immediately prior to the visit: recorded diagnosis

of cancer or immunosuppression (ICD-10 codes), number of ED visits and/or

inpatient admissions overall and for UTI, previous urine cultures and urine culture

results performed at QEHB, and prior oral or intravenous prescription of systemic

antibiotics at QEHB (see Section 4.4.5 for a detailed definition of systemic

antibiotics). In addition to patient characteristics, predictors related to the date and

time of arrival (month, day of the year, day of the week, time of day) were included

as candidate predictors.

Throughout the study period, results from urine dipstick tests that were

performed in the ED were only recorded as free-text and were thus unavailable.

Furthermore, data on socio-economic status (Index of Multiple Deprivation 2015)

was only available for inpatients, and was therefore excluded since all models

included both patients admitted to hospital and patients that were discharged

directly from the ED. Although the data used in this study could in theory be linked

to national HES data, the strict confines of the ethical approval did not allow for such

a linkage. Consequently, the medical history available in this analysis was entirely

based on visits to QEHB. Data relevant to UTI were gathered across multiple

systems covering the ED, inpatient wards, e-prescribing, and laboratories (see

6 Suspected diagnoses in the ED were recorded using proprietary codes until November 2017 and
Emergency Care Data Set (ECDS) codes thereafter; see Section 3.3.2.
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Section 3.3.2 for a detailed description of data management and ethical approval).

5.4.6 Statistical analysis

5.4.6.1 Feature engineering

All candidate predictors were included in the primary model building. In order

to avoid undue influence of very large or small predictor values, all continuous

predictors were capped at the 1st and 99th percentile. For each model, three different

transformations were considered for continuous predictors: identity/untransformed,

log transformed (after adding an offset of one to make all values strictly larger

than zero), and Yeo-Johnson transformation (a family of power transformations

that transforms the variable to more closely resemble a normal distribution).

Transformations were applied to improve linearity in the relationship between

outcome and each predictor in the considered linear models. Categorical

predictors were encoded either in full-rank or via one-hot encoding, depending

on requirements of each model class. Where predictors were highly correlated —

i.e., had correlation coefficient > 0.9 using Spearman’s rank correlation [180] —

Remark (Variable encoding). Categorical variables may be encoded as

full rank — also called dummy encoding — or via one hot encoding.

In full rank encoding a variable with k categories is represented by an

intercept (the reference category) and k − 1 binary indicator variables for

the remaining categories. Effect sizes are estimated relative to the reference

category, ensuring identifiability of the model when using standard regression

techniques. This contrasts to one-hot encoding popular in the machine

learning community. In one-hot encoding, each categorical variable is

represented by k indicator variables, one for each category. No intercept or

reference class is used. In the absence of inherently meaningful reference

classes, one-hot encoding has been observed to result in slightly better

performance for models that can deal with collinearity of predictors [182]

and was thus preferred when possible.
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one of the correlated variables was removed prior to the analysis based on clinical

judgement. Similarly, variables that were measured in less than 5% of patients were

excluded prior to the analysis (Table 5.1). In addition to a model using all candidate

predictors, a parsimonious set of predictors was specified a priori using only the

following variables previously identified in the literature as central to the prediction

of bacterial growth in urine cultures: age, sex, history of positive urine culture, and

all available urine flow cytometry results [109].

5.4.6.2 Missing data

EHR data is primarily recorded with patient management in mind. Information

is only recorded if measuring and recording the information in the EHR system

was deemed necessary by the healthcare personnel in charge of patient care.

Missing data is therefore ubiquitous when using EHR data for research. Negative

information — i.e., information on the absence of an event — is seldom recorded

explicitly, making it difficult to distinguish failure to record a disease from a genuine

absence of disease. For example, a record of renal disease in a patient’s medical

history explicitly implies that a diagnosis has previously been made. Absence of

renal disease, on the other hand, is usually implicitly signaled by an absence of

diagnosis codes. As a consequence, I was unable to distinguish between cases in

which a patient truly did not have a disease, and cases where the patient did suffer

from the disease but the disease was not recorded, either because it hasn’t been

diagnosed yet or because the diagnoses was not captured in EHR records. For

variables that describe the presence or absence of an event — i.e., those related to

comorbidity diagnoses and past healthcare activity — I therefore assumed that an

absence of a record meant that the event did not take place.

Missingness could be ascertained, however, in clinical information relating

to general patient characteristics and clinical observations — i.e., demographic

information, urine flow cytometry results, vital signs, and blood tests. For example,

a missing record of heart rate can be unambiguously interpreted7. I graphed

7The reason for missingness, however, still remains uncertain. Data may be missing if measurements
aren’t routinely indicated for certain patient groups, if measurements are at the discretion of the
clinician, or if measurements aren’t always recorded after they are measured.



5.4. Methods 141

the patterns of missingness for variables in which missingness could be clearly

identified and imputed likely values using several common imputation methods.

These methods differed in their computational complexity but also statistical

capability of faithfully reflecting the uncertainty caused by missing data. They

may therefore differ in their impact on model performance. The following four

imputation methods were applied to assess their impact on model performance:

Mean imputation and missing indicators For mean imputation each missing

numerical value was replaced by the mean observed value in the training set. For

categorical variables, missing values were assigned to a "missing" category. To

allow the models to distinguish between patients with observed values and patients

for whom the value was imputed with the mean, the models were additionally

supplied with dummy variables that indicated the presence (0) or absence (1) of

the value in the original, unimputed data.

k-nearest neighbours For k-nearest neighbours (KNN) imputation, each patient

was matched with k patients most similar to him or her. Similarity between

observations was estimated using Gower’s distance, which is able to handle both

continuous and categorical predictors [183]. Once the k neighbours were identified

for a patient, his or her missing numerical values were imputed with the mean value

among the k neighbours and categorical values were imputed with the mode. A

value of k = 5 was chosen for this analysis.

k-means clustering Following the approach adopted by Taylor et al. (2018)

[109], imputation via k-means clustering was performed by fitting a univariate

unsupervised k-means clustering algorithm to each numeric variable. Each

numerical variable was then categorised by replacing its value with the group it was

assigned to during clustering, converting all variables into categorical variables.

Missing values were assigned to a "missing" category. A value of k = 5 was chosen

for this analysis.

Multiple imputation All previous imputation methods produce only a single

imputation for each missing value. The prediction model would treat those values
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as if they were actually observed8, ignoring the inherent uncertainty involved

in the imputation process [184]. Multiple imputation addresses this issue and

imputes each missing value with M random draws from an imputation model —

e.g. linear regression or predictive mean matching — resulting in M imputed

datasets. A separate prediction model was then fit to each imputed dataset, and

the M predictions averaged across datasets. By considering multiple plausible

imputations, multiple imputation actively accounts for the uncertainty surrounding

the imputation process. Imputation was performed using the multivariate

imputation by chained equations (MICE) algorithm with predictive mean matching

(continuous variables), logistic regression (binary variables), and multinomial

regression (categorical variables) [184, 185]. Five datasets were imputed, and

the algorithm was run for 10 iterations to achieve approximate convergence. All

variables were assumed to be missing at random, meaning that the probability of

a value being missing depended only on the values of observed covariates. An

example of this missingness mechanism would be if creatinine were less frequently

measured in younger, otherwise healthy patients, and the probability of it being

measured only depended on age and comorbidities (which are covariates in the

data)9. Following standard recommendations, the outcome was included as a

predictor in the imputation models [186]. Since the outcome won’t be available

during model deployment — i.e., in real-time on the hospital ward — a second set

of datasets was imputed without the outcome and used during model evaluation.

This ensured that the evaluation faithfully reflected the eventual intended use of the

model [180, 187].

5.4.6.3 Modelling

In order to compare the performance of different algorithms for the prediction

of bacterial growth in urine samples, I fitted the following linear and tree-based

8 This is not strictly true for imputation with missing indicators. However, although this might allow
models to fit a different mean to observations with and without observed values, it still does not
adequately reflect the additional uncertainty introduced by imputation.

9Whether this assumption holds for all included predictors is uncertain. Given the large number
of covariates included in the model, I am able to account for many factors that may govern the
measurement of variables but it remains likely that some unmeasured factors remain.
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Remark (Hyperparameters). The term hyperparameter describes model

parameters which are not directly optimised by the training algorithm.

For example, while an elastic net algorithm finds the optimal coefficients

β (parameters) given a mixture proportion α and a penalty weight C

(hyperparameters), it cannot directly detect the best values for α and C

using training data alone. If all we know is the loss on the training dataset,

no regularisation would always appear better and we would be compelled

to choose C = 0 each time. Hyperparameters are therefore commonly

optimised using training-test splits, which allow to compare the performance

of different hyperparameters on a test set that was left out during training.

model classes: standard logistic regression (LR), logistic regression with fractional

polynomials (LR-FP), elastic net (E-NET), random forest (RF), and extreme

gradient boosting trees (XGB). Support Vector Machines (SVM) with linear

and radial basis function kernels were also considered but abandoned due to

computational restrictions within the UCL Data Safe Haven. For LR-FP, up to four

degrees of freedom (equivalent to two polynomial terms) were considered [188].

The best fitting fractional polynomials were chosen using the Akaike Information

Criterion (AIC). For E-NET, RF, and XGB, 30 hyperparameter combinations were

fit and the best performing combination was chosen for each model class. All

hyperparameters were randomly sampled from each model’s parameter space [189].

Remark (Estimating model performance under class imbalance). The area

under the receiver operating characteristic curve (AUROC) or c-statistic

measures how well a model is able to differentiate between patients with and

without the outcome of interest. The AUROC quantifies this separation in a

very intuitive way: when randomly choosing one patient with and one patient

without the outcome, the AUROC is the probability that the patient with the

outcome will be assigned a higher risk score [190]. A model that assigns risk

scores at random will therefore have a score close to 0.5, whereas a model that
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is able to perfectly classify each patient will have a score of one. Since the

AUROC compares sensitivity and specificity across all possible classification

thresholds, it is insensitive to changes in the prevalence of the outcome. In

the presence of class imbalance — for example when the negative outcome

is much more common in the study population than the positive outcome

— this can lead to situations where the achieved positive predictive value

is extremely low despite seemingly good results in terms of AUROC. The

area under the precision-recall curve (AUPRC) has been proposed as a more

reliable performance measure in the presence of imbalance. Instead of

specificity, the AUPRC compares sensitivity (or recall) at each threshold to

the positive predictive value (also called precision). The AUPRC does not

have a fixed lower baseline at 0.5 but instead has a lower bound equal to the

prevalence of the outcome [190]. For example, if 30 out of 100 of patients

experienced the outcome, the expected AUPRC is 0.3 for a model that assigns

risk scores at random. If 80 out of 100 patients in the sample had the outcome,

the expected AUPRC would be 0.8 for the same random model, thus naturally

accounting for the prevalence of the outcome.

5.4.6.4 Model validation

The ability of each model to distinguish positive and negative urine samples (model

discrimination) was evaluated using AUROC, AUPRC, specificity, and negative

predictive value (NPV). Specificity and NPV were evaluated at an a priori sensitivity

of 95%, which I considered the minimal sensitivity acceptable to rule-out bacterial

growth in urine samples in clinical practice [180]. In addition to discriminatory

power, each model was evaluated with regards to its calibration. Model calibration

was assessed via calibration plots as well as by calculating the calibration intercept,

calibration slope, and the Hosmer-Lemeshow H-statistic.

In order to obtain realistic and reliable estimates of future model performance,

internal validation using repeated k-fold cross-validation was performed. Additional
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external validation was performed based on temporally independent data. Data

collected before January 1st 2018 was used as training data, and the remaining data

was set aside as a temporally independent test set. The test set was further split

into a calibration set (all visits between January 1st and March 31st 2018) and an

evaluation set (after March 31st 2018). Resampling was performed entirely on the

training set and final models were re-calibrated using the calibration set prior to

evaluation on the evaluation set.

Remark (Model calibration). Although less commonly reported than

measures of model discrimination, model calibration is an important measure

of model performance that describes how reliably a model can predict

absolute risks. That is, if a model predicts a risk of 20% for given patient,

the long-term probability of experiencing the outcome for patients like this

patient should be 20%. If predicted risk and observed probabilities agree, a

model can be said to be well calibrated. Model calibration is usually assessed

by comparing predicted risks to the observed proportion of positive outcomes

among patients with similar predicted risks. Researchers have further

proposed a hierarchy of model calibration, ranging from weak calibration

(predictions are correct on average) to strong calibration (predictions are

correct for every covariate pattern) [191].

Internal validation I performed 3-times repeated 10-fold cross-validation

to internally validate each model. During each repetition, the training set was

randomly split into ten mutually exclusive folds. Models were trained on the

combined data from nine folds (including pre-processing steps and missing data

imputation) and the fitted model was evaluated on the tenth fold. Since the tenth

fold was withheld during training, the model hadn’t previously seen any of the

data it was evaluated on, providing an unbiased estimate of model performance

in future data10. This process was done ten times — leaving out each fold once

10Assuming that the future data originates from the same data generating process as the data used for
training. Changes in the data generating process may occur for example if new clinical guidelines
are introduced that change the relationships between predictors and the outcome in future data.
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Remark (Resampling). Numerous studies have shown that evaluating a

predictive model on the same data that it was trained on results in overly

optimistic performance estimates [193]. By naively choosing the model

that performs best on the training data, one likely ends up with an overfit

model. Splitting the data once into a training set and a test set (split-sample

analysis) accounts for some of these issues but the results heavily depend

on which samples were included in the training and test sets. More

reliable results can be obtained by resampling the data several times and

averaging the model results across resamples. Two types of resampling are

commonly recommended in practice: cross-validation and bootstrap. For

cross-validation, the data is split into k folds and the model is alternatingly

fit on the combined data from k− 1 folds and evaluated on the kth left-out

fold [194]. In bootstrap, the data is repeatedly and randomly resampled

with replacement, and model performance is calculated as the estimated

performance in those samples not included in the current resample or as a

weighted average of the performance in the original data, the resampled data,

and those samples not included in the resample [194].

— resulting in ten models and ten estimates of model performance for each model

class and hyperparameter combination. To ensure stable estimates, I repeated this

process three times, choosing ten new folds for each repetition and resulting in a

total of 30 estimates for each model class and hyperparameter combination. Model

performance was then summarised by the mean and standard deviation of the

estimated performances across folds and repeats. Averaged observed differences

in model performances were tested for statistical significance using Bayesian

generalised linear mixed models estimated via Markov Chain Monte Carlo sampling

with four chains of 2,000 warm-up iterations and 2,000 sampling iterations [192].
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Remark (Optimism-adjusted bootstrap). Which resampling method is most

appropriate for internal validation is an ongoing debate, with some authors

advocating for the use of optimism-adjusted bootstrap over cross-validation

[195, 196]. The bootstrap has the advantage of building models on resamples

of the same size as the training data, and has been shown to be the preferred

method for logistic regression models [193]. However, optimism-adjusted

bootstrap does not fully hold out data and partially re-uses the training data to

estimate performance. When applied to the problem presented in this chapter,

both gradient boosting trees and random forests showed extremely inflated

results of AUROCs >0.990 and inappropriately tight confidence limits when

estimating performance via optimism-adjusted bootstrap. A similar issue

has actually been hinted at in the seminal paper on bootstrap validation

[197], and more recently in a prominent machine learning textbook [194]

and in unpublished sources [198]. Bootstrap can lead to inflated performance

estimates in situations where model flexibility or a large number of predictors

relative to sample size (n ≈ p) allow the model to overfit the data, allowing

the model to exploit the missing separation of training and test sets. For this

reason, all validation presented here was performed using cross-validation.

External validation Model discrimination and calibration of the best performing

models were evaluated on a single temporally independent test set11 — i.e., all

ED visits after March 31st 2018. Since internal validation results in as many fitted

model instances as there are resamples, a final model was fitted for each model

class by applying the best hyperparameter combination identified during internal

validation to the entire training data. Approximate 95% confidence intervals were

obtained by bootstrapping the test data 1,000 times and using the 2.5% and 97.5%

percentiles. Model calibration was assessed twice, once using the raw predictions
11 Nested-cross validation is sometimes considered preferable to single-split external validation

when there is no qualitative difference between the training and test set [114]. The reason for this
is closely linked to the argument against singe-split validation described earlier, since estimated
external performance again heavily depends on the (often random) choice of test set. Nested-cross
validation was not appropriate as a replacement for the external validation performed here, which
attempted to evaluate the models resilience to potential changes in the patient case mix over time.
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of each model and once after re-calibrating the raw predictions using Platt scaling

on the calibration set — i.e., all ED visits between January 1st and March 31st 2018.

During Platt scaling, a univariable logistic regression model is trained using only the

raw model predictions as inputs [199], thus shifting and scaling the raw predictions

to better correspond to the probabilities observed in the calibration set. While Platt

scaling changes calibration, it does not change the ranks of the prediction, leaving

AUROC and AUPRC unchanged [199].

All results were reported following the strengthening the Transparent Reporting of

a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)

statement (see Appendix G) [200].

5.5 Results
Between November 2011 and March 2019, 795,752 ED visits were recorded at

QEHB (Figure 5.1). Out of those, 23,128 (2.9%) visits from 18,353 unique patients

had a urine sample submitted for microbiological analysis. After excluding visits

with contradictory admission dates, missing data on age or gender, visits from

patients aged <18 or >105 years, visits by pregnant women, visits from patients who

were diagnosed with UTI in hospital in the previous 30 days, and visits for which

samples were sent for microbiological analysis but not cultured (predominantly due

to low flow cytometry counts; Figure 5.1), 12,680 ED visits with urine culture

results were included in the analysis. Of these visits, 10,352 (81.6%) visits were

recorded before January 1st 2018 (training set), 479 (3.8%) visits were recorded

between January 1st and March 31st 2018 (calibration set), and 1,538 (12.1%) visits

were recorded on or after March 31st 2018 (test set)12.

The absolute number of included ED visits with a urine sample showed

a clear pattern, with numbers increasing until 2014 before slightly declining in

2015 and levelling out afterwards (Figure 5.2 A). The drop in included visits was

both due a decline in the number visits for which a urine sample was sent for

12 An additional 311 (2.5%) visits after March 31st 2018 were excluded from the test set because an
earlier visit by the same patient was already included in the training or calibration set.



5.5. Results 149

Figure 5.2: A) Yearly distribution of ED visits with a urine sample sent for microbiological
culture (blue lines), and number of ED visits for which the urine sample was ultimately
cultured (grey bars). Although visits before November 2011 are presented here to show an
overall trend, they were not included in the main analysis since ED diagnosis were not yet
recorded for these visits. B) Quarterly proportion of cultured urine samples that showed
predominant bacterial growth (black dots) and linear trend (blue lines) before and after the
change in urinalysis thresholds in October 2015.

ED, emergency department.
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microbiological analysis as well as a drop in the proportion of requested samples

that were ultimately cultured, coinciding with changes in the laboratory procedures

that raised the urine flow cytometry threshold necessary to culture a sample (see

Section 5.4.4). The effects of this change could also be seen in the quarterly

proportion of culture-positive urine samples, which fluctuated around 33% before

the procedure change and — with the exception of one outlying quarter in 2016 —

increased thereafter up to an average of approximately 44% in 2018 (Figure 5.2 B).

Roughly half (51.9%) of all included visits were patients above the age of 65

years and two-thirds (66.0%) were women (Table 5.2). Three out of four (73.0%)

patients were white, with a minority of Asian (13.2%) and Black (4.4%) patients.

23.8% and 17.9% of patients had a CCI of 1–2 and ≥3 respectively, and a history of

renal (21.6%) or urological (28.5%) disease was common. Strikingly, almost half

of all included patients had a previous hospital visit (47.8%) and/or urine sample

(48.9%) recorded at QEHB in the year prior to their ED visit. Slightly more than

one third of urine samples came from patients who had been diagnosed with a

UTI syndrome in the ED (lower UTI, pyelonephritis, and urosepsis; Table 5.3).

Samples from patients without an explicit ED diagnosis of UTI syndrome but a

record of symptoms that may be compatible with this diagnosis — including urinary

symptoms (dysuria, haematuria, urinary retention, and problems related to urine

catheters), abdominal pain, and a record of "altered mental status" — accounted for

another 13.7%. All remaining samples either came from patients with a primary

diagnosis of non-urinary infection (13.4%) or non-infectious conditions (26.9%).

Out of all cultured ED samples, 4,677 (36.9%) grew bacteria. The most commonly

grown organism was E. Coli (3,504; 73.3%), followed by Klebsiella pneumoniae

(378; 7.9%) and Proteus mirabilis (209; 4.4%).

5.5.1 Univariable associations

Bacterial growth was more commonly found in urine samples from older patients

(40.2% of samples from patients aged ≥ 65 years versus 33.3% of samples from

patients age <65) and women (39.0% of samples from women versus 32.9%

of samples from male patients). Other characteristics that were associated with
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Table 5.2: Characteristics and medical histories of patients with ED urine cultures.

Overall Bacterial growth p-value1

Yes No

Total number of visits (%) 12,680 (100.0) 4,677 (36.9) 8,003 (64.1)

≥65 years2 6,584 (51.9) 2,645 (40.2) 3,939 (59.8) <0.001

Female2 (%) 8,368 (66.0) 3,260 (39.0) 5,108 (61.0) <0.001

Ethnicity (%)
White 9,256 (73.0) 3,496 (37.8) 5,760 (62.2) <0.001
Asian 1,671 (13.2) 555 (33.2) 1,116 (66.8)
Black 5,52 ( 4.4) 175 (31.7) 377 (68.3)
Mixed or other 526 ( 4.1) 183 (34.8) 343 (65.2)
Not recorded 675( 5.3) 268 (39.7) 407 (60.3)

CCI (%)
0 7,386 (58.2) 2,686 (36.4) 4,700 (63.6) 0.295
1-2 3,023 (23.8) 1,126 (37.2) 1,897 (62.8)
≥3 2,271 (17.9) 865 (38.1) 1,406 (61.9)

Individual comorbidities (%)2

Cancer 915 ( 7.2) 322 (35.2) 593 (64.8) 0.286
Underlying renal condition 2,733 (21.6) 1,011 (37.0) 1,722 (63.0) 0.913
Underlying urological condition 3,614 (28.5) 1,333 (36.9) 2,281 (63.1) 1.000
Renal or urological surgery 2,484 (19.6) 838 (33.7) 1,646 (66.3) <0.001

Hospital activity in prior year (%)2

Any hospitalisation 6,067 (47.8) 2,259 (37.2) 3,808 (62.8) 0.446
Urine sample taken 6,195 (48.9) 2,251 (36.3) 3,944 (63.7) 0.217
Urine sample positive 3,062 (24.1) 1,355 (44.3) 1707 (55.7) <0.001
Antibiotics in hospital 3,194 (25.2) 1,149 (36.0) 2,045 (64.0) 0.225

1 Obtained via χ2 tests.
2 These were binary yes/no variables. For legibility, only positive/yes categories are shown. p-values represent comparisons
with the negative/no category.

Note: Percentages in the overall column represent column-%, whereas percentages in the bacterial growth columns represent
row-%.

CCI, Charlson Comorbidity Index.

an increased probability of bacterial growth were white ethnicity and a positive

urine culture within one year prior to consultation (Table 5.2). Previous renal

or urological surgery was associated with a slightly lower probability of bacterial

growth.

Urine samples from patients who had been diagnosed with a UTI syndrome

in the ED had the highest probability of bacterial growth, ranging from 40-50%.

Samples from patients with recorded symptoms that may be compatible with this

diagnosis had variable probability of bacterial growth. The proportion of samples
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Table 5.3: Recorded ED diagnoses of patients with ED urine cultures.

Overall Bacterial growth p-value1

Yes No

UTI diagnosis (%)
Lower UTI 3,720 (29.3) 1,721 (46.3) 1,999 (53.7) <0.001
Pyelonephritis 686 ( 5.4) 340 (49.6) 346 (50.4) <0.001
Urosepsis 592 ( 4.7) 229 (38.7) 363 (61.3) 0.376

Symptoms attributable to UTI (%)
Urinary symptoms 645 ( 5.1) 179 (27.8) 466 (72.2) <0.001
Altered mental status 570 ( 4.5) 206 (36.1) 364 (63.9) 0.739
Abdominal pain 522 ( 4.1) 91 (17.4) 431 (82.6) <0.001

Other infections (%)
Sepsis (other) 539 ( 4.3) 166 (30.8) 373 (69.2) 0.003
LRTI 568 ( 4.5) 175 (30.8) 393 (69.2) 0.002
Other infection 577 ( 4.6) 154 (26.7) 423 (73.3) <0.001

Other diagnoses (%)
Genitourinary problem 344 ( 2.7) 94 (27.3) 250 (72.7) <0.001
Other reason 3,070 (24.2) 1,055 (34.4) 2,015 (65.6) 0.001

Not recorded 847 ( 6.7) 267 (31.5) 580 (68.5) 0.001
1 Obtained via χ2 tests, testing each diagnosis against a joint category made up of all other diagnoses. Note: Percentages
in the overall column represent column-%, whereas percentages in the bacterial growth columns represent row-%. A visit
may further be associated with more than one ED diagnosis. If more than one diagnosis was recorded, the visit was assigned
in a hierarchical fashion, preferring codes that were more likely to be the reason for ordering a urine culture. For example, if
a visit had both a recorded diagnosis of urinary symptoms and substance abuse, the visit was labelled as relating to urinary
symptoms. Only 406 (2.6%) of visits had diagnoses falling into more than 1 category, and for 267 (65.8%) of those the
discarded diagnosis fell into "other reasons".

LRTI, lower respiratory tract infection; UTI, urinary tract infection.

with bacterial growth was notably lower for patients with only urinary symptoms

(27.8%) or abdominal pain (17.4%), whereas it was comparable to the overall

average in patients with altered mental status (36.1%). All remaining samples had

probabilities of bacterial growth ranging from 26-35%.

In terms of physiological measurements, urine samples that later grew bacteria

mainly differed in their flow cytometry results and CRP counts (Table 5.4).

Unsurprisingly, they had much higher urinary counts of bacteria (median 13.5, IQR

5.2–33.3 versus median 5.5, IQR 1.0–14.3; 103/µL) and WBC (median 540, IQR

163–1,880 versus median 249, IQR 96–820; /µL) at urine flow cytometry. The

number of RBC and epithelial cells in the urine, on the other hand, was generally

lower in samples that grew bacteria. Among blood markers, CRP showed an

association with bacterial growth (median 32, IQR 7–98 versus median 24, IQR

6–89) while WBC counts in the blood displayed only little association (median 10.9,
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Table 5.4: Urine flow cytometry results, vital signs, and blood biomarkers of patients with
ED urine cultures. Values were summarised using the median and IQR.

Overall Bacterial growth p-value1

Yes No

Urine flow cytometry (median/IQR)
Bacteria 8.1 (2.3–21.3) 13.5 (5.2–33.3) 5.5 (1.0–14.3) <0.001
Epithelial cells 21 (6–54) 14 (5–40) 25 (9–62) <0.001
RBC 35 (13–132) 32 (12–104) 37 (14–158) <0.001
WBC 328 (111–1191) 540 (163–1881) 249 (96–821) <0.001

Vital signs (median/IQR)
Heart rate 85 (74–97) 85 (73–96) 85 (74–98) 0.563
Respiratory rate 18 (17–19) 18 (17–19) 18 (16–19) 0.627
Temperature (C) 36.6 (36.1–37.1) 36.6 (36.2–37.2) 36.6 (36.1–37.1) 0.248
Systolic BP 125 (111–144) 125 (111–146) 124 (111–143) 0.291
O2 saturation 96.8 (95.1–98.0) 96.6 (95.1–98.0) 96.9 (95.1–98.0) 0.147

Blood biomarkers (median/IQR)
WBC 10.8 (8.0–14.5) 10.9 (8.2–14.6) 10.7 (7.9–14.5) 0.088
CRP 27 (6–93) 32 (7–98) 24 (6–89) <0.001
Platelets 231 (182–292) 227 (180–284) 233 (183–296) 0.001
Creatinine 84 (66. 118) 83 (65–115) 84 (66–120) 0.045
Bilirubin 9 (6–14) 9 (6–14) 9 (6–14) 0.140
ALP 88 (69–117) 88 (69–117) 88 (69–119) 0.897

1 Obtained via non-parametric Kruskal-Wallis rank sum tests.

ALP, Alkaline phosphatase; BP, blood pressure; CRP, C-reactive protein; IQR, interquartile range; RBC, red blood cells;
WBC, white blood cells.

IQR 8.2–14.6 versus median 10.7, IQR 7.9–14.5). Platelet and creatinine counts

showed a slightly negative relationship with bacterial growth. Bilirubin and ALP

did not show any association with positive urine cultures. Vital signs recorded in the

ED also showed little association with bacterial growth, although these results have

to be interpreted with caution due to the large proportion of missing information in

these variables (Figure 5.3).

5.5.2 Missing data

The majority of patients (11,318 out of 12,680, 89%) exhibited one of ten patterns

of missingness in key predictor variables from urine flow cytometry, vital signs,

and blood biomarkers (Figure 5.3). Only 526 (4.1%) patients had fully observed

data across all those domains. Predictor values tended to be missing in groups. For

example, urine flow cytometry results (blue) were either always present together

or missing together, as were vital signs (green). The overall missingness of urine
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Figure 5.3: Top ten patterns of missingness in key variables for the prediction of bacterial
growth in ED urine cultures. Rows represent patterns of missingness, with coloured tiles
indicating predictors that were measured and white tiles indicating predictors that were
missing. The number and cumulative proportion of visits with each distinct missingness
pattern is shown in the left row margin. The univariable — i.e., column-wise — proportion
of missingness in each predictor is displayed at the bottom.

BAC, bacteria; EPC, epithelial cells; RBC, red blood cells; WBC, white blood cells; HR, heart rate; RR, respiratory rate;
TMP, temperature; SBP, systolic blood pressure; O2, O2 saturation; CRP, C-reactive protein; PLT, platelets; CRE, creatinine;
BIL, bilirubin; ALP, alkaline phosphatase.

flow cytometry was relative low with 85% of patients having an observed record

of urinary bacterial, epithelial cell, RBC and WBC count. If urine flow cytometry

results were missing, this was mainly due to viscosity that prevented the sample

to be run through the machine or due to a particularly small urine sample size. In

contrast, only 9% of patients had vital signs recorded during their ED visit. Rather

than the absence of measurement, the low proportion of vital signs likely reflects an

underlying difference in the IT systems used during ED visit and inpatient stays13.

Blood markers obtained in the laboratory (yellow) were available in about half of the

cohort but were not always recorded together. Blood WBC and platelet counts were

the most common measurements requested (56% of patients), and were usually

measured together. Bilirubin and ALP results were similarly correlated but only

13 Patients who had vital signs recorded were more likely to be admitted to hospital then those
without vital signs (83.6% versus 60.9%), suggesting that vital signs are entered or omitted from
the system non-randomly and confounded by disease severity.
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measured in 49% of patients. Creatinine was measured in 55%, and CRP was the

least commonly requested test at 46%.

Due to the way categorical variables were defined in this study, only two could

by definition contain missing data: ethnicity and ED diagnosis. Both showed low

levels of missingness (5.3% and 6.7% respectively). It is likely that other categorical

variables such as urinary comorbidities also contained missing information but due

to the nature of how diagnoses were recorded, I was unable to distinguish them from

truly absent information (see Section 5.4.6.2).

5.5.3 Internal validation

5.5.3.1 Discriminative performance

Seven out of the ten most predictive variables (as judged by their univariable

discriminative performance) were derived from urine flow cytometry results.

Bacteria counts in the urine alone achieved an AUROC of .631 (95% CI .625–.636)

using LR with mean imputation and .662 (95% CI .657–.667) using XGB without

imputation (Table 5.5). XGB was also able to make better use of urinary WBC,

achieving an AUROC of .608 (95% CI .602–.614). The only urine flow cytometry

parameter that did not feature among the top 20 variables was presence of urine

crystals, which showed no predictive power (XGB rank 37; AUROC .503, 95%

CI .497–.510). Among non-urinary predictors, suspected ED diagnosis was ranked

highest at positions two (LR) and three (XGB) with the an AUROC of .603 in either

case. Casts in the urine, age, small round cells in the urine, and missing urine

flow cytometry achieved AUROCs around .550 each. All other variables provided

univariate AUROCs of <.550. No blood markers including CRP (XGB rank 15;

AUROC .518, 95% CI .512–0.524) and WBC (XGB rank 28; AUROC .508, 95%

CI .502–.513), were among the ten most informative variables in either model. The

only missing indicators that had some predictive power were those related to urine

flow cytometry, suggesting little informative missingness in the remaining variables.

The best performing multivariable model was an XGB model including all

predictors, which achieved an AUROC of .808 (95% CI .802–.814) and an AUPRC

of .678 (95% CI .670–.687; Table 5.6 and Figure 5.4). At a pre-defined sensitivity



5.5. Results 156

Table 5.5: Univariable discriminative performance of the top ten candidate predictors when
predicting bacterial growth during internal validation.

LR XGB

Variable AUROC (95% CI) Variable AUROC (95% CI)

UA bacteria .631 (.625–.636) UA bacteria .662 (.657–.667)
ED diagnosis .603 (.598–.608) UA WBC .608 (.602–.614)
UA epithelial cells .585 (.577–.593) ED diagnosis .603 (.598–.609)
UA WBC .581 (.575–.587) UA epithelial cells .580 (.573–.588)
UA casts .561 (.556–.566) UA casts .560 (.555–.565)
UA small round cells .555 (.549–.562) UA small round cells .559 (.552–.565)
UA RBC .549 (.543–.556) Age .548 (.542–.553)
Age .548 (.542–.553) Missing flow cytometry .546 (.539–.554)
Missing flow cytometry .546 (.539–.554) UA RBC .543 (.535–.550)
Previous bacteriuria .539 (.534–.545) Previous bacteriuria .539 (.534–.545)

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; CI, confidence interval; ED,
emergency department; LR, logistic regression; RBC, red blood cells; WBC, white blood cells; UA, urinary (flow cytometry);
XGB, extreme gradient boosting trees.

of 95%, the model achieved a specificity of 34.4% (95% CI 32.6–36.2) and had an

NPV of 92.4% (95% CI 92.0–92.8). This model performed statistically significantly

better than all other models when compared by AUROC (all p-values < 0.005)

except a random forest using all predictors (p-value = 0.082), which was the

second-best performing model with an AUROC of .805 (95% CI: .799–.811). Log

transformation of laboratory and urine flow cytometry predictors in combination

with mean imputation were preferred during pre-processing and imputation (see

Appendix E). There was only a moderate differences in discriminative performance

between models including all predictors and models that relied on a reduced set of

predictors — i.e., age, sex, record of a culture-positive urine sample in the previous

12 months, and all urinalysis parameters. An XGB model using only these eleven

variables achieved an estimated AUROC of .795 (95% CI .789–.801), surpassing

the performance of all linear models irrespective of whether they used a full or

reduced set of predictors (Table 5.6).

5.5.3.2 Calibration

Calibration intercepts suggested a moderately but systematically overestimated risk

of bacterial growth when using RF with all predictors and an underestimated risk

when using RF with the reduced set of predictors (Table 5.7). XGB showed good
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Figure 5.4: (A) Receiver operating characteristic and (B) precision-recall curves of LR and
XGB models when predicting bacterial growth using all available predictors. Grey lines
represent curves of re-samples during internal validation. Coloured lines represent curves
from external validation on the test set. Dashed lines represent the expected performance of
a random classifier.

LR, logistic regression; XGB, extreme gradient boosting trees.
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Table 5.6: Multivariable discriminative performance when using full and reduced predictor
sets to predict bacterial growth during internal validation.

AUROC
(95% CI)

AUPRC
(95% CI)

Specificity1

(95% CI)
NPV1

(95% CI)

All candidate predictors
XGB .808 (.802–.814) .678 (.670–.687) 34.4 (32.6–36.2) 92.4 (92.0–92.8)
RF .805 (.799–.811) .677 (.667–.687) 35.1 (33.3–36.8) 92.5 (92.1–92.9)
E-NET .791 (.784–.797) .651 (.642–.661) 30.5 (28.8–32.2) 91.5 (91.0–92.0)
LR .788 (.782–.793) .651 (.642–.661) 28.9 (27.7–30.2) 91.1 (90.7–91.6)
LR-FP .782 (.776–.788) .646 (.637–.656) 29.1 (27.5–30.7) 91.1 (90.5–91.6)

Reduced set of predictors
XGB .795 (.789–.801) .666 (.658–.674) 34.6 (32.9–36.3) 92.4 (92.0–92.8)
E-NET .777 (.770–.783) .635 (.625–.645) 29.8 (28.3–31.4) 91.2 (90.7–91.7)
LR .776 (.769–.783) .635 (.625–.646) 29.3 (27.7–30.9) 91.1 (90.5–91.6)
LR-FP .770 (.763–.777) .630 (.620–.640) 27.8 (26.2–29.4) 90.5 (89.9–91.1)
RF .767 (.761–.774) .650 (.641–.660) 12.4 (11.5–13.3) 77.6 (76.0–79.2)

1 At a preset sensitivity of 95%. Note: All models presented in this table used log-transformation and mean imputation.
Performance metrics represent average performance from 3-times 10-fold cross-validation.

95% CI, 95% confidence interval; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating
characteristic; E-NET, elastic net; LR, logistic regression; LR-FP, logistic regression with fractional polynomials; NPV,
negative predictive value; RF, random forest; XGB, extreme gradient boosting trees.

calibration according to the calibration intercept. No calibration intercepts were

calculated for regression-based models (LR, LR-FP, and E-NET) during internal

validation, since they are always expected to result in a value close to zero14.

Estimated calibration slopes suggested underfitting for both XGB models, both

E-NET models, and an RF using all predictors. LR using all predictors, LR-FP

using all predictors, and RF using the reduced set of predictors on the other hand

showed evidence of overfitting. The calculated H-L H-statistics suggested moderate

miscalibration except for RF using the reduced set of predictors, which showed

severe miscalibration (p-value <0.001).

5.5.4 External validation

Model performance on independent test data from April 1st 2018 to March 31st

2019 was slightly higher than estimated during internal validation (Table 5.8 and

14 The calibration intercept quantifies the difference between the mean predicted risk and the mean
estimated risk. If evaluated in the same sample that the model was trained in, these will be
numerically zero for regression models. During internal validation, the values will randomly vary
around zero but the average risk prediction is still expected to be equal to the average risk [201,
202].
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Table 5.7: Calibration when using full and reduced predictor sets to predict bacterial growth
during internal validation.

Calibration H-L H-statistic

intercept slope statistic p-value

All candidate predictors

XGB 0.00 (-0.02–0.03) 1.26 (1.21–1.31) 18.4 (15.2–21.6) 0.018
RF -0.04 (-0.06– -0.01) 1.28 (1.22–1.34) 20.6 (17.0–24.3) 0.008
E-NET - 1.07 (1.03–1.12) 20.8 (17.7–24.0) 0.008
LR - 0.96 (0.92–1.00) 18.0 (15.4–20.6) 0.021
LR-FP - 0.95 (0.90–1.00) 14.9 (11.7–18.1) 0.061

Reduced set of predictors

XGB 0.00 (-0.02–0.03) 1.11 (1.07–1.15) 12.0 (9.2–14.9) 0.151
E-NET - 1.09 (1.05–1.14) 23.2 (19.5–26.8) 0.003
LR - 0.99 (0.95–1.04) 21.4 (17.3–25.4) 0.006
LR-FP - 0.99 (0.94–1.03) 15.2 (12.4–18.0) 0.055
RF 0.04 (0.02–0.07) 0.94 (0.89–0.99) 105.4 (86.3–124.5) <0.001

Note: All models presented in this table used log-transformation and mean imputation. Performance metrics represent average
performance from 3-times 10-fold cross-validation.

95% CI, 95% confidence interval; E-NET, elastic net; H-L, Hosmer-Lemeshow; LR, logistic regression; LR-FP, logistic
regression with fractional polynomials; RF, random forest; XGB, extreme gradient boosting trees.

Table 5.8: Discriminatory performance when using full and reduced predictor sets to
predict bacterial growth during external validation.

AUROC
(95% CI)

AUPRC
(95% CI)

Specificity1

(95% CI)
NPV1

(95% CI)

All candidate predictors
XGB .815 (.794–.836) .760 (.725–.795) 35.2 (30.5–41.8) 89.9 (87.8–91.5)
RF .807 (.785–.828) .740 (.702–.780) 35.2 (28.2–40.7) 89.9 (87.1–91.3)
E-NET .799 (.775–.821) .729 (.689–.764) 28.8 (24.7–36.5) 87.9 (85.4–90.2)
LR .795 (.772–.817) .727 (.689–.767) 28.8 (24.4–34.4) 87.9 (85.3–89.7)
LR-FP .788 (.766–.809) .711 (.673–.751) 32.7 (26.7–38.2) 89.2 (86.5–90.8)

Reduced set of predictors
XGB .807 (.782–.828) .738 (.699–.775) 34.0 (30.7–39.4) 89.6 (87.9–90.9)
E-NET .789 (.766–.811) .712 (.671–.751) 32.0 (259–35.3) 85.4 (83.4–89.3)
LR .790 (.765–.811) .715 (.675–.754) 31.9 (26.0–35.2) 85.9 (83.4–89.2)
LR-FP .785 (.761–.807) .706 (.665–.746) 33.6 (28.8–40.4) 89.5 (85.7–90.2)
RF .761 (.736–.785) .723 (.685–.758) 26.6 (23.4–29.5) 71.8 (66.8–76.7)

1 At a preset sensitivity of 95%. Note: All models presented in this table used log-transformation and mean imputation.
Performance metrics represent performance of the best hyperparameter combination during internal validation, trained on all
training data and evaluated in the test set. 95% confidence intervals are based on percentiles of 1,000 bootstrapped samples.

95% CI, 95% confidence interval; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating
characteristic; E-NET, elastic net; LR, logistic regression; LR-FP, logistic regression with fractional polynomials; NPV,
negative predictive value; RF, random forest; XGB, extreme gradient boosting trees.
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Figure 5.5). In line with internal validation, the best performance was achieved by

an XGB model using all candidate predictors (AUROC .815, 95% CI .794–.836).

The only model that did not outperform the performance estimated during internal

validation was a RF using the reduced set of predictors (AUROC .761, 95%

.736–.785 versus AUROC .767, 95% CI .761–.774 during internal validation).

Performance remained comparable if only the first visit of each patient in the test

set was used (results not shown). Incremental learning and evaluation of models

suggested that internal validation results were not a reliable estimate of future model

performance (Figure 5.6). While XGB models generally remained preferable to

simpler LR, confidence intervals from internal validation were only able to capture

the next-year performance in approximately two out of every six years. Estimated

internal validation estimates peaked as early as 2014/15 for both LR and XGB

models. External validation estimates exhibited a V-shape and where lowest when

evaluated in 2015 —coinciding with the change in laboratory procedure described

in Section 5.4.4.

Remark (Incremental learning). During incremental learning and evaluation

all internal validation steps described for the main analysis were repeated

for each year using only data available before that year. The best model

chosen during internal validation was then externally evaluated on data from

the current year. For example, for the year 2013 in the plot the expected

performance (green) was estimated using internal validation with data from

November 2011 to December 2012, and an external model performance

(purple) was then evaluated on data from 2013. While the main result of

interest is the performance of the model in 2018/19, incremental learning

can help us understand how indicative external validation is of likely future

performance.

Raw model predictions of all models tended to underestimate the probability

of bacterial growth, particularly for estimated probabilities of 25–75% (see Figure

5.7 A for calibration curves of LR and XGB models). Corresponding calibration
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intercepts ranged from 0.303 (RF using all predictors) to 0.561 (LR-FP using the

reduced set of predictors). Re-calibration via Platt scaling on data from January to

March 2018 resulted in better calibration of estimated probabilities but re-calibrated

probabilities ended up slightly over-estimating the probability of bacterial growth

for samples with high estimated probabilities. Calibration slopes on re-calibrated

probabilities therefore suggested overfitting for all models, ranging from 0.744

(LR-FP using all predictors) to 0.957 (RF using the reduced set of predictors).

5.6 Discussion

5.6.1 Clinical findings

In this chapter, I demonstrated the use of routinely collected EHR data to develop a

model that predicts bacteriuria in patients who attend the ED. I used a large sample

of more than 10,000 ED visits at QEHB over a period of almost eight years to train

and evaluate the model. Patients included to train the model were more commonly

female (although less so than in the primary care analysis presented in Chapter

4) and frequently had a recent history of hospital activity or underlying renal and

urological disease. In this patient group, slightly more than a third of urine samples

grew a predominant organism during microbiological culture. The best-performing

model developed in this chapter — an XGB model using all available variables

— was able to predict samples that would later show predominant growth with

an AUROC of .815 (95% CI .794–.836) when evaluated on temporally independent

test data from 2018/19. This was similar to the AUROC of .808 (95% CI .802–.814)

estimated using internal validation during model training. The observed predictive

performance implies scope for this approach to be used in clinical practice. Most

of the predictive power was based on a small number of predictors — particularly

those pertaining to urine flow cytometry. A reduced model based solely on age, sex,

history of positive urine culture, and urine flow cytometry measurements performed

almost as well as the full model that used all available predictors (AUROC: .807,

95% CI .782–.828). Although bacterial count and WBC measured during urine

flow cytometry were already used at QEHB as a decision rule to preclude culture
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Figure 5.5: (A) Receiver operating characteristic and (B) precision-recall curves of each
considered model class when predicting bacterial growth using all predictors during external
validation.

E-NET, elastic net; LR, logistic regression; LR-FP, logistic regression with fractional polynomials; RF, random forest; XGB,
extreme gradient boosting trees.
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Figure 5.6: [Changes in the estimated AUROC of LR and XGB over time when predicting
bacterial growth using incremental learning on all predictors. For each year, data up to that
year was used to train the model. Green dots and lines represent estimated performance
from internal validation of the training data up to that year. Purple diamonds represent the
estimated performance from external validation using data from that year.

AUROC, area under the receiver operating characteristic; LR, logistic regression; XGB, extreme gradient boosting trees.

of urine samples with extremely low probability of growth, the good predictive

power of these measurements even in urines that cleared that threshold suggests

that the value of these measurements to support prescribing decisions for UTI in

clinical practice may currently be underestimated. If the models were used to rule

out bacterial growth with a target sensitivity of 95%, the best-performing model

would have been able to correctly flag ∼35% of samples without bacterial growth

early and achieve an NPV of ∼90%.

5.6.2 Methodological findings

Although the observed predictive performance implied scope for this approach to

be used in clinical practice, model performance was found to vary notably over

the eight year study period. Particularly around a period of laboratory procedure
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Figure 5.7: Calibration plots of (A) raw and (B) re-calibrated predictions of LR and XGB
when predicting bacterial growth using all predictors. Calibration plots were estimated
using LOESS regression and gray areas represent 95% confidence intervals. Rug plots at
the top and bottom of each graph show the distribution of positive and negative outcomes
respectively.

LOESS, locally estimated scatterplot smoothing; LR, logistic regression; XGB, extreme gradient boosting trees.
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changes in 2015, externally evaluated model performance dropped several points of

AUROC below the performance suggested by the corresponding internal validation.

Reasons for this drop in performance likely relate to the concomitant changes in

local practice in relation to clinical diagnoses, laboratory procedures, testing for

UTI, and data availability. Model performance increased again towards the end of

the study period when models were able to adjust to the new data distributions,

equalling or exceeding predicted performance after 2017. Nevertheless, models

needed to be re-calibrated in order to maintain acceptable calibration on the

temporally external test data from 2018/19. This suggests that — if deployed in

clinical practice at QEHB or another hospital — models likely would need to be

re-calibrated periodically to assure valid interpretation of model predictions as a

probability of bacteriuria.

Except for changes over time, model performance was reasonably robust to

the choice of statistical model, pre-processing strategy, and imputation method.

Surprisingly, multiple imputation performed considerably worse than simpler

alternatives, likely due to the structured way in which data was missing, which

might be an indicator that the data was unlikely to be missing at random. Many

clinical measurements were missing in almost all patients and/or were missing in

groups (e.g. vital signs), and available clinical information may not have been

sufficient to account for this missingness. Although data resolution was improved

compared to the primary care analysis presented in Chapter 4, important clinical

information was therefore still missing. The analysis presented in this chapter

demonstrated the promises of predictive modelling in hospital but also highlighted

the limitations of EHR data even at digitally mature sites like QEHB. Manual note

review in a pilot study preceding this analysis suggested that much of the absent

information would already be recorded in the doctors’ free-text notes but are not

reflected in the structured EHR data usually available to researchers (see Appendix

F and Shallcross et al. (2020) [24] for a more detailed discussion on this). The

implications of missing these key bits of information are discussed below as part of

the limitations of this study.
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Finally, all information used in this study was obtained retrospectively.

Relevant data items were identified one-by-one by a health informatician at QEHB

and manually extracted. A large part of the work presented in this chapter was

therefore related to combining and cleaning data from several hospital IT systems.

If the model were to be used in real-time in the ED, an automated data processing

pipeline will be required and continued maintenance necessary to adapt this pipeline

to changes in the hospital’s IT structure over time. Furthermore, while many IT

systems back up data in data warehouses like the one used in this study overnight,

live data feeds that allow predictions in real-time are not always routinely supported

and may require bespoke software engineering. Substantial technical know-how

and resources are therefore required on site to enable the deployment of clinical

decision making tools, limiting their spread in often financially strained healthcare

settings with highly fragmented IT systems [203].

5.6.3 Strengths and limitations

To the best of my knowledge, this is the first study using EHR data to predict

bacteriuria in ED populations in England. A major strength of this analysis is

the use of a large sample of high-quality EHR data from the ED of a major

teaching hospital. QEHB has a long history of electronic record keeping in English

secondary care [152], allowing me to use records collected over a period of multiple

years to build a robust model and assess its likely future performance. The use of

extensive sensitivity analyses and validation designs ensured the robustness of the

primary findings to modelling assumptions.

Like the primary care data used in Chapter 4, the data used in this analysis were

recorded as part of routine care rather than with research in mind. Despite its status

as a digital leader among English hospitals [151], QEHB did not routinely collect or

store data on several key variables relevant to the diagnosis and management of UTI.

Perhaps most importantly, prior antibiotic prescribing outside of hospital was not

available in the data and antibiotic prescribing during an ED visit was also missing

for most of the study period [24]. Urine samples are collected before antibiotics are

initiated in the ED, but prior antibiotic treatment that was initiated in the community
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may have nevertheless prevented or retarded the growth of microorganisms during

culture. The inability to account for recent antibiotic treatment may therefore have

decreased the models’ power to predict bacteriuria [20], and some of these patients

may still require antibiotic treatment for partially treated infections. Data was also

notably missing on urine dipstick testing. Dipstick results are commonly used to

support the diagnosis of UTI in the ED and have previously been shown to have at

least some power in ruling UTI in or out [27, 89]. While cell counts from urine flow

cytometry might be viewed as a partial substitute for dipstick results, their absence

might have reduced the models performance by omitting key information available

to clinicians but not the model. Dipstick results may have influenced clinicians’

decision to send urine samples for culture, thus resulting in a pre-selected sample.

Absence of dipstick results prevented me from investigating the extent of this issue

in my sample, and any impact that it might have on my findings. Finally, vital signs

were rarely recorded and almost exclusively confined to patients who were later

admitted to hospital. It is unclear whether this was due to procedural differences

between patients who do and do not get admitted to hospital, or due to patient

severity. In either case, the fact that vital signs were recorded during an ED visit

was likely a marker of the patient’s state, potentially biasing models that were to

use all predictors (including vital signs) in a future setting in which vital signs are

more routinely measured and input into the model.

How and when urines were sent for culture at QEHB further limited the

reliability and generalisability of the findings. For unknown reasons, a substantial

proportion of urine samples included in this analysis were submitted for culture

in the absence of any recorded suspicion of UTI (Figure 5.8 A). A prediction

of urine culture growth should only guide treatment in the presence of clear

symptoms to avoid over-treatment of asymptomatic bacteriuria [31, 32]. How often

cultures are requested without symptoms will therefore strongly influence the future

performance of the model in clinical practice. This proportion likely depends on

local hospital guidelines and best practices, and will vary by hospital. On the other

hand, the cohort used in this analysis excluded patients visiting the ED at QEHB
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Figure 5.8: Selection of urine samples and opportunities for selection bias when
ascertaining bacterial growth in ED urine cultures at QEHB: (A) urine cultures requested
for patients without a coded suspicion of UTI, (B) urine cultures not requested for patients
with a coded suspicion of UTI, (C) urine samples not cultured due to local standard
operating procedure based on UFC measurements, and (D) mixed urine cultures treated
as contamination by default.

UFC, urine flow cytometry; QEHB, Queen Elizabeth Hospital Birmingham; UTI, urinary tract infection; WBC, white blood
cell.

with urinary symptoms but who did not have a urine sample sent for culture (Figure

5.8 B). A substantial number of patients was excluded this way, as more than 60%

of all patients with an explicitly recorded suspicion of UTI in the ED did not have

a urine sample sent for culture. Whether or not a urine sample is submitted is

decided by the clinician. Patients with suspected UTI who were included in this

analysis might therefore present a subpopulation with an a priori greater probability

of (complicated) UTI, such as patients with underlying renal disease or recurrent

UTI. The eventual culture of urine samples — and whether they could be included

in this analysis — further depended on locally set thresholds based on bacteria

and urinary WBC counts (Figure 5.8 C; see Section 5.4.4). Flow cytometry values

observed in this study were thus unlikely to be representative of all urines submitted

for culture. Instead, they were positively biased since only samples above a certain
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value were cultured. As these thresholds depended entirely on local guidelines —

which changed during the study period — model performance might not generalise

well to hospitals with different thresholds or no threshold at all (see comparison

with results by Müller et al. [51] in the next section). Finally, following standard

clinical practice, mixed growth was not considered significant growth and treated as

contamination of the urine sample (Figure 5.8 D) [42]. Urines with mixed growth

might have contained bacteria before the contamination but I was unable to estimate

the possible extent of this issue. Since bacteria count was the most important

predictor of bacteriuria, it is further likely that samples with mixed growth were

commonly misclassified by the model (see Chapter 6 for a detailed discussion of

this issue).

5.6.4 Comparison with existing literature

Taylor et al. (2018) [109] recently applied machine learning methods to predict

bacterial growth in 80,000 ED patients with UTI symptoms consulting at several US

hospitals (see Chapter 2 for a summary of the study). Their best model was an XGB

model that achieved an AUROC of .904 (95% CI .898–.910). At a pre-set sensitivity

of 95%, the model had a specificity of 50% and an approximate NPV of 97%.

The reported performance was thus significantly higher than that reported here, but

similarly relied on a small number of key variables. Re-analysis performed by me

using code and data published by the authors alongside their publication showed

that a LR using urinary WBC and bacteria counts alone would have achieved an

AUROC of .839 (95% CI .832–.847), close to the published top performance using

a more complicated algorithm and all 211 variables available to the authors. Adding

the urine dipstick parameters leukocyte esterase, nitrites, and haematuria further

increased the achievable LR performance to AUROC .862 (95% CI .855–.869). The

model published by Taylor et al. therefore similarly relied on information related to

urinalysis results, and it is not immediately clear why the performance estimated in

my analysis is significantly lower even when comparing variables available in both

datasets — i.e., urinary WBC and bacteria counts. Three important differences exist

between the data used by Taylor et al. and that used in this analysis.
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First, the number of patients available to Taylor et al. was more than six

times larger, possibly enabling the model to fit the data in more detail. It is

unlikely, though, that sample size alone accounted for the observed differences in

performance. In the incremental learning setting presented earlier, the performance

of my models levelled out in 2014 with as little as 3,000 patients. A LR model

trained only on a random subset of the data used by Taylor et al. of similar size to

the data used in this chapter achieved a performance that was virtually identical to

the performance of a model trained on all patients, confirming the limited impact of

sample size.

Second, the relative frequency with which urine cultures were requested in

the ED was much larger in their sample (25.6%) than at QEHB (2.9%), raising

questions about the comparability of included patient populations. While the

propensity to culture might genuinely be higher in the US than it is in England,

data published elsewhere from the same hospital trust found a considerably lower

culture rate of 15.2% for approximately the same time period [204]. The US Center

for Disease Control and Prevention (CDC) estimated an even lower US nation-wide

urine culture rate of 8.1% [205] for 2016. Two further single-center studies from

the US [206] and Canada [207] provided estimates that ranged from 2.3% to 6.0%,

which was comparable to the numbers observed in this chapter. This suggests that

the data used by Taylor et al. might have been subject to selection bias, or — if

urine cultures were indeed requested for one out of four patients attending the ED

— at least was not representative of other hospitals in England or the US.

Finally, the higher proportion of patients who had a urine culture requested

in the sample used by Taylor et al. had implications for the overall proportion of

culture-positive samples. At QEHB, 37.2% of cultures ended up positive, which

increased to >40% after 2017. In comparison, Taylor et al. reported only 22.7%

of samples positive. The difference in the prevalence of bacteriuria may be due

to a higher proportion of unnecessary cultures in their patient population, or a less

stringent urine flow cytometry threshold for culture than that applied at QEHB.

In a much smaller study of 613 patients obtained from laboratory data in
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Switzerland, Müller et al. (2018) [51] reported similar performance to that reported

by Taylor et al. when predicting bacterial growth based on urine flow cytometry

results alone. Using LR, the authors reported an estimated performance of AUROC

.930 (95% CI .900–.940) when predicting bacterial growth in a single train-test

split. A comparison of the data used in this chapter and data published by Müller

et al. provides a compelling explanation for the observed difference in model

performance. Samples that were a priori dismissed by the laboratory at QEHB due

to low bacteria and urinary WBC counts during urine flow cytometry (Figure 5.9

A; yellow area) were cultured in Switzerland (Figure 5.9 B). These samples were

highly unlikely to grow bacteria, representing easy wins for a predictive algorithm.

As a result, the algorithm developed by Müller et al. would have significantly worse

performance when transferred to patients at QEHB.

In the only other study I am aware of that attempted to predict bacteriuria in

ED patients, Wigton et al. (1985) [89] three decades earlier used prospectively

collected data to train a discriminant analysis and achieved an AUROC of .780.

Their simplified decision rule was based on the presence or absence of five clinical

variables: history of UTI, back pain, urinary WBC > 15 per high-power field (HPF),

urinary RBC > 5 per HPF, and more than a few observed bacteria. The rule had a

specificity of 44% and an NPV of 80% at approximately 93% sensitivity. Little et

al. (2006) [27] several years later developed a similar decision rule for primary care

that achieved an AUROC of .785 using rounded coefficients from logistic regression

on dipstick results — i.e., leukocyte esterase, nitrites, and haematuria. Importantly,

both studies used prospectively collected data and limited their analysis to female

patients with suspected UTI, usually due to dysuria, urinary urgency, or frequency.

As a result, the proportion of positive cultures was considerably larger than that

observed here or by Taylor et al. and Müller et al., with > 60% of samples positive

in both studies.

None of the secondary care studies discussed above have been externally

validated at another hospital. Wigton et al. evaluated their model on a temporally

independent set of patients from the same hospital [89], whereas Taylor et al. and
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Figure 5.9: Distribution of bacteria and urinary WBC counts by bacterial growth in the (A)
test set at QEHB compared to (B) samples analysed and published by Müller et al. (2018)
[51].

QEHB, Queen Elizabeth Hospital Birmingham; WBC, white blood cell.
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Müller et al. only tested their model on a single random hold-out set covering the

same time frame as their training data [51, 109]. Nevertheless, all three studies as

well as the primary care analysis by Little et al. agreed with the results presented

here on the importance of a small number of urine flow cytometry and urine dipstick

results in predicting likely urine culture growth. While dipstick results are available

to clinicians, urine flow cytometry results do not usually get reported back to

clinicians in real time and may be an opportunity to provide additional information

to clinicians.

5.7 Conclusion
The analysis presented in this chapter suggests that both traditional statistical risk

prediction models as well as machine learning may prove useful in diagnosing

UTIs in the ED. These models exclusively used data available in the hospital’s

EHR system and may be directly integrated into electronic patient management

systems to provide real-time prediction of a patient’s risk of bacteriuria. In low-risk

patients, antibiotic prescribing decisions may be delayed until results from such a

model are available — most likely as soon as urine flow cytometry was performed.

In patients at a higher risk of infectious complication, on the other hand, antibiotics

may be initiated as usual and model predictions may later be used to revise empirical

prescribing decisions.

While the model showed promising performance in predicting bacteriuria,

comparisons to previous research and over time suggested considerable variations

in model performance that may be expected if the model is deployed in real-world

clinical practice. Possible explanations for these variations include differences

in clinical practice or included patient populations. For example, the models

developed in this chapter may work well in some patients like those consulting

with clear urinary symptoms of UTI but may fail to identify presence or absence of

bacteriuria in other patient groups. The model performance presented in this chapter

and previously published studies only represent an average performance across

all included patients, and does not allow to assess differential model performance
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in key patient groups. Yet such differences may have important implication for

the use of the model in clinical practice, where the model is likely to encounter

differences to the environment it was trained in. Chapter 6 will therefore investigate

the robustness of model performance to changes in patient or variable definitions.

In order to provide an estimate of possible patient benefit that may be expected

from using the model in clinical practice, Chapter 6 further critically compares the

observed model performance to proxies of clinical decision making. The results

will provide a better understanding of how and when the model works in clinical

practice, helping future researchers and clinicians to use the model correctly [208].

Chapter summary

• Local data from the ED of a digitally mature hospital provided

more granular data than primary care to identify and study UTI, yet

important data items like urine dipsticks or previous antibiotic use in

the community were still missing.

• A risk prediction model using only eleven variables (age, sex, history

of positive urine culture, and urine flow cytometry results) achieved an

AUROC that was very close to the top performance of a model using

all 44 available variables, suggesting that most variables had little value

in predicting bacterial growth once key variables were accounted for.

• If the model were to be used in clinical practice, robust data processing

pipelines will be required within the hospital’s IT infrastructure to

provide cleaned variables to the model in real-time.

• Even then, observed performance changed over the study period and

was lowest in 2015, when changes in laboratory procedures led to

changes in the distribution of the data. Model performance thus needs

to be monitored regularly during deployment to identify any future

deterioration in performance.
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• Meaningful comparison of model performance to previous published

literature was difficult with notable differences in reported

performances despite the use of similar predictors. Re-analysis

of some published data suggested that these differences might be

due to variations in outcome definitions and underlying patient

populations.

My role in the work presented in this chapter

The study presented in this chapter was conceived by Dr Laura Shallcross and

Professor Andrew Hayward. The research application was submitted to the Health

Research Authority (HRA) for ethical approval by Dr Laura Shallcross. The first

study protocol was drafted by Dr Laura Shallcross, Dr Milena Falcaro, Dr Martin

Gill, and Prof Nick Freemantle. The study protocol was substantially edited and

finalised by me with input from Dr Laura Shallcross, Dr Martin Gill, Dr David

McNulty, Ms Orlagh Carroll, and Prof Nick Freemantle. Raw hospital data for

this study was extracted from Queen Elizabeth Hospital Birmingham by Dr David

McNulty and provided to me unaltered. All further data linkage and pre-processing

was performed by me within the UCL Data Safe Haven. I performed all analyses

presented in this chapter. All findings were interpreted by me and Dr Laura

Shallcross. I wrote this chapter, with feedback from Dr Laura Shallcross, Prof Nick

Freemantle, and Prof Andrew Hayward.

Software and code used in this chapter

All analyses in this chapter were performed using R (v3.6.2) and RStudio

(v1.2.5033) on Windows 10. Data processing was performed using the tidyverse

(1.3.0) and data.table (1.12.8) packages. All model building was performed using

packages from the tidymodels (0.1.0) ecosystem, including rsample (0.0.5), recipes

(0.1.9), parsnip (0.0.5), tune (0.0.1), yardstick (0.0.5), and tidyposterior (0.0.2).

The models themselves were fit using the implementations provided in mfp (1.5.2),

glmnet (3.0-2), randomForest (4.6-14), and xgboost (0.90.0.2). All code is publicly
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available at https://github.com/prockenschaub/phd_code.

Publications resulting from this chapter
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Chapter 6

Variability in model performance when

predicting bacteriuria in the ED: sensitivity

analyses to inform the likely applicability of

EHR models in clinical practice at QEHB

Abstract
Introduction: In the previous chapter, I used EHR data to develop a model which

aimed to guide antibiotic prescribing decisions in the emergency department (ED)

by predicting the presence/absence of bacteriuria. Although predictive performance

in the whole cohort was promising, it is critical to understand how the model might

perform in different population subsets, to understand whether it could be of clinical

value to decision-making. Few risk prediction models are evaluated in this way and

this partly explains why few models are adopted in clinical practice. In this chapter,

I evaluate the use of my ED models in different target populations, focusing on

factors that influence the presentation and natural history of UTI.

Background: Patients who have a urine sample sent for microbiological culture in

the ED are likely to represent a heterogeneous group. While the models developed

in Chapter 5 might work well in some of those patients, they might struggle to

reliably predict bacterial growth in others. Understanding when the models work

and how their performance compares to clinicians is important to judge their likely

usefulness in clinical practice. The greatest clinical value of this model would be

in ruling out bacterial UTI in low risk patients who have been treated empirically
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with antibiotics for suspected UTI but actually have a different condition. To this

end, I test my model in patients with and without ED diagnosed UTI, and by age

and sex. I further explore the impact of changing the definition of bacteriuria

by excluding/including samples classified as mixed growth, and compare model

performances to proxies of clinicians’ judgement.

Methods: Performance (area under the receiver operating characteristic [AUROC],

specificity, and negative predictive value [NPV]) of a logistic regression (LR)

model was estimated in key sub-populations (age, sex, and ED diagnosis) visiting

the ED at Queen Elizabeth Hospital Birmingham (QEHB). I further investigated

the robustness of results to definitions of bacteriuria — i.e., considering mixed

growth samples as negative or positive growth, or excluding them from the

analysis altogether. Finally, model performance was compared to proxies of

clinical judgement based on ED diagnoses and antibiotic prescribing, or discharge

diagnoses (admitted patients only).

Results: Compared to overall performance reported in Chapter 5, the model

performed significantly worse in patients with an ED diagnosis of UTI, men, and

older patients. The classification of mixed growth had a substantial influence

on model performance, with AUROCs ranging from .790 (95% CI .767–.815;

negative) to .888 (95% CI .870–.905; excluded). Prediction models consistently

outperformed proxies of clinical judgement, but the validity of those proxies

remained questionable.

Discussion: The results highlight the difficulties of retrospectively analysing UTI

in the ED. In order to fully exploit the potential of electronic health records (EHR)

for the diagnosis of UTI in the ED, careful intervention design and evaluation at

several hospitals with different EHR systems, guidelines, and patient populations

will be required.

6.1 Introduction
In Chapter 5, I developed and evaluated a statistical model to predict the risk of

bacterial growth in urine samples collected in the emergency department (ED). The
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results demonstrated that — in principle — we can predict bacteriuria in the ED

with reasonable accuracy, suggesting scope to use these models to support clinicians

in the diagnosis of suspected urinary tract infection (UTI). However, differences in

model performance over time and compared to previous literature indicated that the

developed models may not always be able to achieve the estimated performance

when deployed in real-world clinical practice.

Apparent discrepancies between estimated and real-world performance may

stem from the fact that estimates presented in Chapter 5 described an average

model performance across a retrospective, broadly defined patient population. The

study cohort included a wide range of patients who had a urine sample submitted

for microbiological culture in the ED at Queen Elizabeth Hospital Birmingham

(QEHB), many of whom had a sample cultured despite having no or only very vague

evidence of UTI recorded in the electronic health record (EHR) system. Based on

EHR data these individuals were unlikely to benefit from antibiotic treatment, but

there may be good reasons why these patients were treated with antibiotics which

are not evident from EHRs alone. A similar heterogeneity in patient populations

was described in previous literature that developed similar risk prediction models

for bacteriuria [51, 109]. This has important implications for how study findings

need to be interpreted. Both the clinical need for as well as the ability to predict

bacteriuria may vary considerably in such heterogeneous populations, and the

average achievable model performance is likely to be poor measure of the model’s

ultimate value to clinical decision making. For example, patients who showed no

clear indication of UTI in the ED may have had a very low probability of bacteriuria

anyway. While models therefore might find it easier to rule out bacteriuria in

those patients, the clinical benefit of predicting — or refuting — bacteriuria in this

group may be questionable. There is therefore a discrepancy between developing

and evaluating a retrospective predictive model, and creating a model that is truly

meaningful for real-world clinical practice and decision making.

In this chapter, I expand on the results presented so far and explore in more

detail how robust the estimated model performance presented in Chapter 5 is to
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changes in patient mix and variable definitions. The analyses presented here aim to

provide insight into whether the created models are likely to provide clinical benefit

when deployed in practice. The chapter is divided into four subsections that each

address a distinct question about the developed models’ applicability to clinical

care. First, I assess the performance of the model in patients with different recorded

ED diagnoses and investigate variations in the estimated performance when looking

at patients with and without recorded suspicion of UTI (Section 6.4). Second, I

compare the performance of the model in age and sex stratified populations, which

often warrant very different clinical management (Section 6.5). Third, I evaluate

the impact of using different definitions of bacteriuria which include or exclude

mixed growth during culture (which is usually regarded as contamination but may

be treated with antibiotics; Section 6.6). Finally, I compare the estimated model

performance to recorded UTI diagnoses and/or antibiotic prescribing as proxies of

clinicians’ ability to predict the likelihood of bacteriuria (Section 6.7).

6.2 Aims and Objectives
To evaluate the predictive performance of the model in specific patient subgroups

and according to different variable definitions, in order to explore the feasibility of

using the model to inform antibiotic prescribing decisions for suspected UTI.

Objectives:

6.1 To investigate the performance of the model to guide antibiotic prescribing

decisions for patients with and without a recorded UTI diagnosis in the ED.

6.2 To investigate the performance of the model to guide antibiotic prescribing

decisions by age and sex.

6.3 To investigate the impact on predictive performance of changing the definition

of bacteriuria to include/exclude samples categorised as mixed growth.

6.4 To compare observed model performance to proxies of clinicians’ ability to

predict bacteriuria, overall and by admission status.



6.3. Data source, patient population, and variables 181

6.3 Data source, patient population, and variables
The data and patient cohort used in this chapter is identical to that described in

Chapter 5. As before, the analyses included all non-pregnant adult patients who

attended the ED at QEHB between November 1st 2011 and March 31st 2019, who

had a urine sample sent for microbiological culture during their ED visit, and who

had a valid record of age and sex. In line with the analysis in Chapter 5, patients who

attended before January 1st 2018 were used as the training set, patients who attended

between January 1st 2018 and March 31st 2018 were used as a calibration set,

and all later samples were used as a temporally independent test set. All analyses

presented in this chapter used subsets of this full patient cohort for model building

and/or testing. Model performance was evaluated on the test set where possible but

resorted to internal validation were necessary due to relatively small sample sizes

in the subgroups. Definitions for each subgroup are given in the respective analyses

sections below.

For simplicity and computational convenience, all models presented in this

chapter were limited to logistic regression (LR) on the reduced predictor set (see

Chapter 5 for a detailed definition), unless explicitly stated otherwise. In short,

this means that models were built using only data on age, sex, history of positive

urine culture, and urine flow cytometry parameters. The primary outcome remained

urine culture growth of ≥104 colony-forming units per millilitre (cfu/mL). Model

building was performed as described in Section 5.4 using log transformation of

continuous variables and mean imputation with missingness indicators.

6.4 Variations in model performance according to

ED diagnosis

Dataset: ED patient cohort from Chapter 5

Evaluation: Internal and partial external validation (due to small sample sizes)

Patients who attend the ED and undergo urine sampling have a wide range of

presenting complaints which may be associated with their likelihood of bacteriuria
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Figure 6.1: Distribution of the probability of bacterial growth in urine cultures predicted
via LR in the entire training set, by ED diagnosis.

ED, emergency department; LR, logistic regression.

and whether a urinary pathogen (predominant growth) or a contaminant (mixed

growth) is identified during urine culture. Patient presentation in the ED is recorded

within structured EHR data using diagnostic codes. More detailed information may

be available in document scans or free text but these aren’t routinely available

to researchers (see Appendix F for a comparison of coded ED diagnosis and

free-text data). While codes are not a perfect substitute for a detailed description

of symptoms, they do capture information on what the treating clinician thought

important — and are thus a proxy for performed clinical investigations interpreted

in the context of the clinician’s experience. Probability of bacterial growth in
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Table 6.1: Multivariable discriminative performance of a LR model using the reduced set
of predictors and trained on the entire patient population when using it to predict bacterial
growth by ED diagnosis during internal validation.

AUROC
(95% CI)

Specificity
(95% CI)

NPV
(95% CI) P1

All patients .776 (.769–.783) 29.3 (27.7–30.9) 91.1 (90.5–91.6)

UTI diagnosis .731 (.721–.740) 22.5 (21.7–23.3) 87.5 (85.9–89.0) <0.001
Lower UTI .736 (.726–.747) 23.0 (22.0–23.9) 87.3 (85.4–89.2) 0.003
Pyelonephritis .746 (.721–.771) 24.5 (21.9–27.1) 85.9 (80.5–91.2) 0.018
Urosepsis .705 (.685–.726) 19.2 (17.1–21.3) 91.5 (88.3–94.6) <0.001

Symptoms attributable to
UTI

.769 (.754–.784) 29.5 (27.6–31.3) 91.5 (89.7–93.2) 0.314

Urinary symptoms .663 (.639–.687) 21.4 (19.2–23.7) 85.5 (81.6–89.4) <0.001
Abdominal pain .790 (.753–.827) 35.6 (32.8–38.4) 92.5 (90.0–95.0) 0.837
Altered mental status .810 (.793–.828) 32.0 (28.8–35.2) 95.5 (93.3–97.7) 0.992

Other infections .802 (.787–.818) 31.9 (30.0–33.7) 94.0 (92.9–95.0) 0.966
Sepsis (other) .816 (.786–.845) 28.8 (25.7–31.9) 98.8 (97.5–100) 0.996
LRTI .757 (.730–.783) 29.1 (26.2–32.1) 93.4 (90.8–96.1) 0.091
Other infection .831 (.807–.856) 36.4 (32.7–40.0) 91.1 (88.6–9.35) >0.999

Other diagnoses .809 (.801–.818) 31.8 (30.5–33.1) 94.5 (93.6–95.5) 0.988
Genitourinary problem .817 (.784–.851) 37.9 (34.6–41.1) 95.6 (92.9–98.2) 0.998
Other reason .808 (.798–.817) 31.2 (29.8–32.7) 94.5 (93.5–95.5) 0.987

1 Proportion of posterior samples in which the AUROC in the subgroup was larger than the AUROC in the entire patient
population. Obtained by fitting a Bayesian GLMM to the AUROC estimated within each re-sample [192].
Note: The approximate Wald confidence intervals led to the confidence interval for Sepsis (other) to exceed one. To guarantee
a sensible interpretation, the interval was capped at one.

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; ED, emergency department;
GLMM, generalised linear mixed model; LRTI, lower respiratory tract infection; NPV, negative predictive value; UTI, urinary
tract infection.

Chapter 5 was found to differ considerably by ED diagnosis (Table 5.3), ranging

from as low as 17.4% in patients with abdominal pain to as high as 49.6% in

patients with suspected pyelonephritis. Suspected ED diagnosis further had the third

best performance of any single variable to distinguish samples with and without

confirmed growth during microbiological culture (Table 5.5), asserting that the

diagnosis captures some of the clinician’s prior knowledge as to which patients

might be at risk of bacteriuria.

Understanding when the model works — i.e., in which patients — and how

and why a model might work better or worse for some ED diagnoses (e.g., due to

differences in the relationships between key predictors and outcome in patients with

and without suspicion of UTI) is important to judge whether the model can be used
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Table 6.2: Multivariable discriminative performance of a LR model using the reduced set
of predictors and trained separately for each ED diagnosis, when using it to predict bacterial
growth during internal validation.

AUROC
(95% CI)

Specificity
(95% CI)

NPV
(95% CI) P1

UTI diagnosis .733 (.723–.742) 25.9 (24.8–27.1) 85.7 (85.0–86.4) 0.553
Lower UTI .735 (.724–.747) 27.2 (25.7–28.7) 85.7 (84.7–86.6) 0.469
Pyelonephritis .731 (.709–.753) 24.5 (20.4–28.6) 73.8 (68.8–78.8) 0.169
Urosepsis .715 (.691–.739) 24.3 (19.9–28.8) 79.5 (75.3–83.7) 0.740

Symptoms attributable to
UTI

.765 (.748–.782) 23.9 (19.4–28.4) 88.7 (86.0–91.5) 0.403

Urinary symptoms .659 (.629–.689) 18.5 (10.7–26.2) 67.5 (56.5–78.4) 0.390
Abdominal pain .769 (.725–.812) 35.5 (26.2–44.8) 88.7 (85.4–92.0) 0.088
Altered mental status .798 (.779–.817) 31.1 (24.2–38.1) 80.2 (71.8–88.5) 0.219

Other infections .799 (.781–.817) 30.5 (24.9–36.1) 91.0 (89.0–92.9) 0.419
Sepsis (other) .783 (.741–.824) 37.8 (28.0–47.6) 75.8 (64.3–87.4) 0.018
LRTI .724 (.694–.753) 22.7 (16.5–28.9) 79.2 (72.4–86.0) 0.017
Other infection .827 (.801–.852) 38.7 (31.8–45.6) 88.8 (82.6–94.9) 0.383

Other diagnoses .814 (.807–.821) 34.7 (31.8–37.6) 92.7 (92.0–93.3) 0.616
Genitourinary problem .785 (.748–.822) 38.4 (29.3–47.6) 79.0 (71.6–86.4) 0.023
Other reason .812 (.805–.819) 34.3 (31.4–37.2) 92.3 (91.6–93.0) 0.601

1 Proportion of posterior samples in which the AUROC of the model trained only on data from the subgroups (this table) was
larger than the AUROC of a model trained on the entire patient population (Table 6.1). Obtained by fitting a Bayesian GLMM
to the AUROC estimated within each re-sample [192].

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; ED, emergency department;
GLMM, generalised linear mixed model; LRTI, lower respiratory tract infection; NPV, negative predictive value; UTI, urinary
tract infection.

in clinical practice [208]. This knowledge may help to anticipate how the model

will perform in key populations of interest, and how this performance might change

when used at other healthcare sites with different patient case mix [209]. This

section therefore estimates differences in model performance and effect sizes when

developing and/or evaluating the model in patients with different ED diagnoses1.

6.4.1 Statistical analysis

A LR model using the reduced set of predictors was fitted to the entire training

set (global model), and the distribution of predicted probabilities in the training set

1Note that ED diagnoses had already been included as a candidate predictor in models in Chapter
5. This, however, does not fully account for performance differences. Even after including ED
diagnoses as predictor, models may perform better in patients with certain diagnoses than in patients
with others — for example if a condition makes it less likely that sufficient urine for urine flow
cytometry can be sampled. In this case, the model would have less information for patients with
this diagnosis and will consequently struggle to predict bacteriuria in those patients.
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were plotted by ED diagnosis. The area under the receiver operating characteristic

(AUROC), specificity, and negative predictive value (NPV)2 were then calculated

using internal validation as described in Section 5.4.6.4. Separate estimates of

AUROC, specificity, and NPV were calculated for each ED diagnosis by applying

the global model to only those patients in the hold-out sets that had the respective

diagnosis. Specificity and NPV were evaluated at the threshold that achieved

95% sensitivity in the entire patient cohort. Differences in the estimated AUROC

when evaluating the model on the entire cohort as opposed to each sub-population

were assessed using Bayesian generalised linear mixed models (GLMMs) [192].

Performance was also evaluated on the external test set but due to small numbers

only a comparison of explicitly recorded suspicion of UTI (combining urinary

symptoms, lower UTI, pyelonephritis, and urosepsis) versus all other diagnoses was

performed.

Next, local LR models were fitted for each ED diagnosis separately using

only patients with that particular diagnosis. AUROC, specificity, and NPV were

re-calculated for all local models and compared to the performance estimated for the

same patient group when predicted via the global model. Specificity and NPV were

now evaluated at the threshold that achieved 95% sensitivity in the sub-population.

The AUROC achieved by each local models was compared to the performance of

the global model using Bayesian GLMMs [192].

Finally, effect sizes of the fitted coefficients of all local models were compared

graphically to look for ED diagnoses with a notably different relationship between

predictors and the outcome. Bayesian GLMMs were used to gradually relax

assumptions of fixed coefficients across sub-populations in the global model by

adding a random effect for ED diagnosis. Three alternative global models were

fitted to the entire training data: a model with only fixed effects, a model with

intercepts that varied by ED diagnosis but fixed slopes, and a model with intercepts

and slopes that varied by ED diagnosis. Model fit of the alternative global models

2 No area under the precision-recall curve (AUPRC) was calculated due to differences in the
prevalence of bacteriuria between patient groups.
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was compared using the Widely Applicable Information Criterion (WAIC)3 [212].

All Bayesian GLMMs were fitted using MCMC sampling with 4 chains of 2,000

warm-up iterations and 2,000 sampling iterations

6.4.2 Results

The distribution of predicted probabilities of bacterial growth in the training set

differed notably between ED diagnoses. Samples in patients without a recorded

suspicion of UTI were more often — and more often correctly — assigned a

low probability of bacterial growth (Figure 6.1). Samples with an explicitly

recorded suspicion of UTI, on the other hand, had both a relatively large share

of samples with high estimated probability and no bacterial growth as well as low

estimated probability despite bacterial growth. This observation was reflected in

the estimated performances when stratified by ED diagnosis (Table 6.1). Patients

with a suspicion of UTI or urinary symptoms had a statistically significant lower

estimated performance than other subgroups. The lowest performance during

internal validation was observed in patients with UTI symptoms only (AUROC

.663, 95% CI .639–.687) followed by those with suspected urosepsis (AUROC .705,

95% CI .685–.726). The performance in patients without ED diagnoses relating

to UTI or urinary symptoms was similar to or above that estimated for the entire

cohort (AUROC .776, 95% CI .769—.783). Estimated model performance did not

meaningfully improve by fitting a separate model for each ED diagnosis (Table

6.2), and even reduced for patients with suspected lower respiratory tract infection

(LRTI) and patients with other suspected genitourinary problems — potentially due

to too small sample sizes in those patient groups. A notably smaller difference was

observed when evaluating the model on the external test set, resulting in AUROC

.780 (95% CI .748–.816) for patients with a UTI diagnosis or urinary symptom and

AUROC .799 (95% CI .767–.828) for all other patients. Clinical coding changed in

2017 (see Section 3.3.2 for a detailed discussion) and ED diagnoses did not contain

3WAIC was used to compare Bayesian models in favour of the more traditional Deviance
Information Criterion (DIC) because the latter is based on a point estimate [210] and thus not
fully Bayesian. This may lead to awkward situations in which the DIC may produce a negative
estimate of the effective number of model parameters. WAIC avoids these situations by using the
entire posterior distribution [211].
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Figure 6.2: Estimated coefficients of an LR model trained separately on patients with each
ED diagnosis. Boxes depict the effect of a single predictor (e.g., age above 65 years)
estimated via multivariable analysis using only patients with the ED diagnosis listed on the
y-axis (e.g. lower UTI). ED diagnosis are grouped by colour into explicit UTI diagnoses,
diagnoses attributable to UTI, infectious diagnoses other than UTI, and non-infectious
diagnoses.

ED, emergency department; LR, logistic regression; UTI, urinary tract infection.
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any patients with urosepsis or abdominal pain after the change, as these codes

did not exist in the updated terminology. This suggests that the meaning of ED

diagnoses might have shifted over time, perhaps explaining some of the difference

in results when looking at internal versus external validation.

Despite the differences in observed performance across ED diagnoses, there

was only moderate evidence for variations in the relationship between predictors

and the outcome (Figure 6.2). Notably, higher age tended to reduce the chance

of bacterial growth in patients with a lower UTI diagnosis, whereas it increased

the chance in patients with suspicion of sepsis or other, non-infectious diagnoses.

A history of positive urine culture similarly increased the probability of bacterial

growth in patients with altered mental status or other, non-infectious diagnoses.

Presence of small round cells increased the probability of growth in patients

with suspected lower UTI, while decreasing probability in patients with suspected

urosepsis. When relaxing assumptions about fixed coefficient effects across all ED

diagnoses, a model with varying intercepts and slopes was preferred on the basis of

WAIC. The estimated deterioration in WAIC was ∆ WAICintercept = 45.1 (standard

error 10.9) for a model with varying intercepts and ∆WAIC f ixed = 128.9 (standard

error 17.3) for a model with only fixed effects. However, model performance only

marginally improved from .790 (95% CI .769–.811, Table 5.8) to .796 (95% CI

.776–817) when a model with varying intercepts and slopes was applied to the

external test set.

6.4.3 Discussion

6.4.3.1 Clinical findings

Evaluating model performance by ED diagnosis showed that the model performed

significantly worse in patients with a recorded suspicion of UTI or urinary

symptoms. There are several possible explanations for these findings. A large

proportion of patients with non-UTI diagnoses may never have been at risk of UTI

and may have had a urine sample sent in the absence of any urinary symptoms

[207]. Patients with recorded suspicion of UTI may further have been more likely

to have had antibiotics prior to arrival in hospital. For example, some patients who
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consulted for UTI in the ED might have first consulted their General Practitioner

and already received initial treatment in the community, thwarting bacterial growth

(see Chapters 2 and 5 for a detailed discussion of the possible effect of prior

antibiotic treatment on urine culture growth). If ED clinicians were more likely

to label patients who were previously diagnosed with UTI in the community as

"having UTI", the corresponding higher prevalence of prior antibiotic treatment

in the community might render the prediction of bacteriuria more difficult in this

patient group. Surprisingly, the model performed worst in patients with urinary

symptoms alone. This might have been due to the inclusion of patients with

catheter problems in this subgroup. Samples from patients with catheters might

differ fundamentally from those from other patients with suspected UTI4. A model

trained on patients with and without catheters might therefore not be appropriate in

patients with catheters, or predicting bacterial growth in catheter urine might be a

more difficult prediction task. Patients with a diagnosis of urinary symptoms also

contained a high proportion of patients with missing urine flow cytometry values,

leading to a notable peak of the predicted probabilities around ∼0.2 (Figure 6.1).

As discussed in Section 4.4.6, urine flow cytometry values could not be obtained if

the urine sample was either too viscous or if the quantity of urine wasn’t sufficient.

The most commonly recorded urinary symptom was urinary retention, which may

have made it less likely that sufficient urine could be collected for those patients.

6.4.3.2 Methodological findings

Examination of the predicted probabilities suggested that the observed reduced

performance in patients with suspicion of UTI may be driven by the fact that fewer

patients in that group had a low predicted probability of bacterial growth. Patients

without suspicion of UTI, on the other hand, commonly showed a clear cluster of

patients with low probabilities (Figure 6.1). These patients would have few bacteria

or urinary white blood cells (WBCs) found during urine flow cytometry, making it

very unlikely that the sample would show predominant bacterial growth. This has

important implications for the apparent model performance. AUROC — the main

4For example, they warrant their own national guidelines [213].
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metric used in this analysis — represents the probability that a patient whose urine

sample eventually exhibits bacterial growth will be assigned a higher score by the

model than a patient whose urine sample did not grow bacteria (see Section 5.4.6.3).

The inclusion of "easy targets" that had a very low probability may therefore

artificially boost the estimated model performance. While the model struggles to

distinguish bacterial growth from no growth in a group of patients with suspicion

of UTI (a primary patient group of interest), it does so more successfully when

applied to all patients. In the latter case, the model is also rewarded for correctly

distinguishing bacterial growth in pairs of patient where one has a suspicion of UTI

while the other does not. This may be an easier task but one that is unlikely to be of

clinical relevance.

Surprisingly, estimated strengths and directions of model coefficients were

comparable between ED diagnoses and fitting separate models to each group did

not improve performance. This suggests that the differences in performance were

not due to different predictor-outcome relationships. Instead, differences are more

likely to be due to differences in covariates between ED diagnoses or due to

unmeasured predictors not currently identifiable from EHR data.

6.5 Variations in model performance according to

age and sex

Dataset: ED patient cohort from Chapter 5

Evaluation: Internal and external validation

Expected model performance might not only depend on suspected diagnosis in

the ED, but may also be influenced by a patient’s age and sex. In particular,

the prevalence of asymptomatic bacteriuria may vary significantly between

these patient groups, with possible implications for model performance and

interpretation. Prevalence of asymptomatic bacteriuria was previously found to

increase with age, and to be more prevalent in women (see Chapter 1). It is

unclear how an increased prevalence of asymptomatic bacteriuria — or other patient
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Table 6.3: Multivariable discriminative performance of a LR model trained on the entire
patient population when using it to predict bacterial growth by age and sex during internal
validation.

AUROC
(95% CI)

Specificity
(95% CI)

NPV
(95% CI) P1

Sex
Male .733 (.719–.748) 33.0 (31.3–34.7) 90.0 (88.5–91.5) <0.001
Female .797 (.787–.807) 26.3 (25.5–27.2) 92.7 (91.6–93.7) >0.999

Age
< 65 years .791 (.781–.801) 30.5 (29.6–31.4) 92.3 (91.1–93.5) 0.998
≥ 65 years .760 (.751–.770) 27.1 (25.9–28.2) 90.8 (89.4–92.1) 0.003

1 Proportion of posterior samples in which the AUROC in the subgroup was larger than the AUROC in the entire patient
population. Obtained by fitting a Bayesian GLMM to the AUROC estimated within each re-sample [192].

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; GLMM, generalised linear mixed
model; LRTI, lower respiratory tract infection; NPV, negative predictive value.

characteristics linked to age and sex — may influence the capability of the model

developed in Chapter 5 to predict bacterial growth in ED urine samples. This

section therefore investigates differences in model performance when applying the

model to samples collected from men and women and from patients aged <65 years

and ≥65 years.

6.5.1 Statistical analysis

Similar to Section 6.4, a LR model using the reduced set of predictors was

fitted to the full dataset and evaluated in subgroups defined by age (< 65 years,

≥ 65 years) and sex. Evaluation was performed via both internal and external

validation. Discriminatory performance was assessed via AUROC, specificity,

and NPV, and differences in AUROC were tested via Bayesian GLMMs [192].

Since the previous analysis showed a difference in performance for patients

with suspected UTI (combining urinary symptoms, lower UTI, pyelonephritis,

urosepsis), the stratification by age and sex was repeated in the subset of patients

with suspected UTI. Model calibration was assessed graphically in each subgroup

using calibration plots. As model probabilities showed some miscalibration in

Chapter 5, probabilities were re-calibrated before plotting using Platt scaling (see

Section 5.4.6.4).
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6.5.2 Results

Performance was statistically significantly better in women (AUROC .797, 95% CI

.787–.807) compared to men (AUROC .733, 95% CI .719–.748) and in patients

under the age of 65 years (AUROC .791, 95% CI .781–.801) compared to

those above the age of 65 years (AUROC .760, 95% CI .751–.770; Table 6.3).

Performance further improved minimally when evaluation was limited to women

under the age of 65 years (AUROC .798, 95% CI .787–.809). The observed changes

in model performance were similar when limiting the analysis to only patients

with a recorded suspicion of UTI (Table 6.4). The model consistently performed

worst in male patients regardless of age or suspected UTI diagnosis. Differences

in AUROC were further exacerbated during external validation (AUROC .824,

95% .798–.848 in women; and AUROC .822, 95% .790–.853 in patients <65

years). Despite considerably lower performance in terms of AUROC, the model

achieved higher specificity in men (Tables 6.3 and 6.4) and in older patients with

suspected UTI (Table 6.4). Model calibration remained reasonable in women,

but the model showed considerable miscalibration in men even after re-calibration

(Figure 6.3). Especially in men aged <65 years, the model severely underestimated

the probability of bacterial growth during urine culture.

6.5.3 Discussion

6.5.3.1 Clinical findings

Stratification of model predictions by age and sex showed a better discriminatory

performance in patients <65 years, and better discriminatory performance and

calibration in women, irrespective of ED diagnosis. Observed differences in

performance did not corresponded directly with previously estimated prevalence

of asymptomatic bacteriuria [33, 34, 35]. While performance was lower in elderly

patients, which are more likely to have asymptomatic bacteriuria, performance was

also lower in men, which are less likely to have asymptomatic bacteriuria (see

Chapter 1). This suggests other underlying factors that impact performance in

patients with different age and sex. UTIs in men are usually rare and — if they
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occur — are considered as a complicated UTI by default [17], warranting separate

guidance [13]. Men have previously been reported to have different aetiology than

women [214], which was also observed in the data used here. While four out of

five isolated pathogens (81.5%) in women were Escherichia coli, they made up only

about half (54.8%) of all isolates in men included in this analysis. A potential reason

for this discrepancy may be an increased prevalence of catheter use in included

male patients, but the available data did not contain enough detail to ascertain the

presence of a catheter at arrival.

6.5.3.2 Methodological findings

The observed differences in performance suggest that men and women might

require separate prediction models when used in clinical practice, as prediction of

bacterial growth was generally easier and more reliable in women both in terms of

model discrimination and calibration. Age, on the other hand, was a less important

factor. Performance for example hardly changed when comparing the predictions

in all women to predictions in younger women only. Age was unevenly distributed

between the sexes — with only 44% of women aged ≥65 years compared to 69%

of men. The observed variation by age could therefore be partially explained by

an underlying correlation with sex, suggesting that a stratification by sex may be

sufficient to ensure adequate performance in clinical practice. Finally, differences

in performances by age and sex widened when looking only at data from 2018/19.

This suggests that the increased performance observed during external validation in

Chapter 5 may have been driven primarily by an increased performance in younger

patients and women in those years.

6.6 Ambiguity introduced by mixed growth

Dataset: ED patient cohort from Chapter 5

Evaluation: Internal and external validation

Following common clinical practice in England [43] and at QEHB, samples with

mixed growth in the absence of a predominant isolate were considered negative —
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Figure 6.3: Calibration of LR model predictions when predicting bacterial growth by age
and sex.

ED, emergency department; LR, logistic regression.

i.e., equivalent to no growth. Treating mixed growth as no growth is justified by

the observation that mixed growth often does not represent bacteria in the patient’s

urine but instead indicates contamination of the urine during sampling (see Section

1.3.2 for a more detailed discussion) [42]. However, this view has been occasionally

challenged. A study from Israel found that 30% of patients hospitalised with

urosepsis had mixed growth in their urine samples. In 50% of those cases, an

isolate in the mixed growth could be matched with bacteria grown from blood

samples taken from the same patient, or mixed growth remained present in multiple

sequential urine cultures of that patient [215]. Another study found that E. coli may
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Table 6.4: Multivariable discriminative performance of a LR model trained on UTI patients
when using it to predict bacterial growth by age and sex during internal validation.

AUROC
(95% CI)

Specificity
(95% CI)

NPV
(95% CI) Prob1

Sex
Male .702 (.682–.722) 30.8 (28.8–32.8) 86.5 (84.1–88.9) <0.001
Female .744 (.729–.759) 19.0 (17.4–20.6) 88.1 (85.7–90.4) 0.965

Age
< 65 years .747 (.731–.763) 19.8 (18.3–21.3) 89.5 (86.8–92.1) 0.983
≥ 65 years .716 (.701–.731) 28.0 (26.5–29.4) 85.8 (83.8–87.8) 0.029

1 Proportion of posterior samples in which the AUROC in the subgroup was larger than the AUROC in the entire patient
population. Obtained by fitting a Bayesian GLMM to the AUROC estimated within each re-sample [192].

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; GLMM, generalised linear mixed
model; LRTI, lower respiratory tract infection; NPV, negative predictive value.

potentially be more invasive in the presence of other pathogens [216], and a study

comparing microbiological culture and 16S rRNA metagenomic sequencing on

mid-stream urine from symptomatic patients and asymptomatic controls found that

mixed growth of symptomatic patients more often contained Enterobacteriaceae,

which are uropathogens. Caution is therefore warranted when overly relying on

the assumption that mixed growth always equals no growth. Unless the urine

sample is repeated, we do not obtain a definitive result for a patient whose initial

sample showed mixed growth. Instead, the underlying sample is simply labelled

as negative and could have either contained or not contained pathogens before any

contamination happened, or may not have been contaminated at all.

Mixed growth was common in the cohort used in this analysis, accounting

for 23.5% of all samples and 37.4% of negative samples. Due to its frequency,

mixed growth might have had a large impact on model training and evaluation.

Just like urine sampled from a patient with true bacteriuria, samples which later

show mixed growth will most likely have had high bacteria counts during urine

flow cytometry. While these bacteria might have entered the urine through imperfect

sampling, urine flow cytometry cannot distinguish between bacteria that was present

in the patient’s urinary tract prior to sampling and bacteria that entered the urine

for example from the skin. This might be problematic, since bacteria counts were

the most powerful predictor of culture growth (see Table 5.5). Prediction models
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may therefore struggle to separate predominant growth (which were labelled as

positive) from mixed growth (which were considered negative in Chapter 5). By

universally classifying mixed growth as no growth, the inclusion of mixed growths

in the negative population might therefore have confounded the predictive models

and biased the estimated relationship between bacteriuria counts during urine flow

cytometry and probability of culture growth.

This section assesses the distribution of predicted probabilities in samples with

predominant growth, mixed growth, and no growth, and investigates differences in

the estimated model performance if mixed growth is excluded from the analysis or

considered positive growth.

Remark: (Discriminatory performance in multinomial settings). Metrics

of discriminatory performance quantify how well model predictions can

separate one outcome category from another. When the outcome is binary,

this comparison is well defined. For example, the AUROC in a binary

problem measures the probability that a randomly chosen patient with the

outcome is assigned a higher score than a randomly chosen patient without

the outcome [190]. How performance should be quantified in multinomial

problems is less clear-cut and performance might depend on which outcome

categories are compared. While some outcome categories might be well

separated, others might not be. One might use a one-vs-all comparison — i.e.,

a separate AUROC is calculated for each category, estimating how well that

category is separated from a single category made up of all other categories.

However, this results in as many performance metrics as there are categories.

If a single metric is desired, it may be calculated as a simple average or

a weighted average of all one-vs-all comparisons. Alternatively, Hand and

Till (2001) [217] proposed a natural extension of the AUROC that directly

calculates the average probability that a patient with outcome i is assigned a

higher score for i than a patient from another outcome j.
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Table 6.5: Proportion of urine samples classified as positive bacterial growth and changes in
discriminative performance of a LR model under different classifications of mixed growth
during internal validation.

Classification
of mixed growth

All patients ED diagnosis of UTI

% positive AUROC (95% CI) % positive AUROC (95% CI)

Considered negative1 35.1 .776 (.769–.783) 42.1 .731 (.721–.740)
Excluded 46.1 .870 (.864–.875) 55.9 .836 (.828–.843)
Considered positive 58.9 .842 (.838–.847) 66.8 .823 (.815–.830)

1 This definition was used in the main analysis in Chapter 5.

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; ED, emergency
department; LR, logistic regression; UTI, urinary tract infection.

6.6.1 Statistical analysis

The distribution of the two primary urine flow cytometry parameters — bacteria

and urinary WBC counts — was stratified by culture result (predominant growth,

mixed growth, no growth) and compared graphically via box plots. The distribution

of probabilities predicted by a LR model using the reduced set of predictors fitted

on all training data was further compared via histograms stratified by culture result.

Separate LR models were fitted using two alternative classifications of mixed

growth. First, mixed growth was excluded entirely from the analysis and the

model was fitted only on samples with predominant growth or no growth. Second,

mixed growth was reclassified as positive growth, thus predicting samples with

any growth (predominant or mixed) versus samples with no growth. Model

performance was estimated via AUROC in both internal and external validation,

and the entire procedure was repeated using only patients with an ED diagnosis of

UTI (combining urinary symptoms, lower UTI, pyelonephritis, and urosepsis).

The possibility of estimating mixed growth separately from predominant

growth and no growth was investigated using multinomial logistic regression.

Instead of fitting one set of coefficients, separate coefficients were fitted for

predicting predominant growth and mixed growth, with no growth as the reference

category. Model performance was evaluated using binary one-vs-all AUROC as

well as multinomial adaptions of AUROC (simple average, weighted average, and

the Hand-Till method [217]) in both internal and external validation sets.
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Figure 6.4: Distribution of bacteria counts, epithelial cells, and urinary WBC, stratified by
urine culture results.

WBC, white blood cell counts.
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Figure 6.5: Distribution of predicted probability of bacterial growth in urine samples
predicted by LR, stratified by ED urine culture results.

LR, logistic regression.

6.6.2 Results

The distribution of both bacteria counts and urinary WBC counts in mixed growth

samples lay between those of samples with predominant growth and samples with

no growth, although they were more similar to the former (Figure 6.4). A similar

pattern could be observed for model predictions (Figure 6.5). While the mode

of the predicted probabilities of mixed growth samples was close to the mode of

samples without growth, predictions were skewed to the right and almost half of

all samples with mixed growth had a predicted probability of 0.4 or higher. This

was not observed in samples without growth, for which a probability of ≥ 0.4 was

observed in only around 9% of samples.

The difficulty of correctly assigning mixed growth was also reflected in

model performances. While a LR model that considered mixed growth to be

negative achieved an AUROC of .790 (95% CI .767–.815) in the external test

set, performance increased to AUROC .888 (95% CI .870—.905) when excluding
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Table 6.6: Proportion of urine samples classified as positive bacterial growth and changes in
discriminative performance of a LR model under different classifications of mixed growth
during external validation.

Classification
of mixed growth

All patients ED diagnosis of UTI

% positive AUROC (95% CI) % positive AUROC (95% CI)

Considered negative1 44.1 .790 (.767–.815) 50.6 .769 (.734–.802)
Excluded 54.4 .888 (.870–.905) 61.8 .858 (.825–.886)
Considered positive 63.1 .866 (.847–.885) 68.7 .846 (.817–.875)

1 This definition was used in the main analysis in Chapter 5.

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic; ED, emergency
department; LR, logistic regression; UTI, urinary tract infection.

mixed growth altogether and AUROC .866 (95% CI .847-–.885) when considering

it positive growth (Table 6.6). Results using only patients with an ED diagnosis of

UTI (Table 6.6) and from internal validation were highly comparable (Table 6.5).

Although mixed growth was associated with patient characteristics and

medical history (Table 6.7), a multinomial regression model using the reduced

predictor set had difficulties distinguishing mixed growth from predominant growth

or no growth. While the predominant growth and no growth were well separated

with one-vs-all AUROCs of .798 (95% .776–.819) and .861 (95% .843–.878),

the model only achieved an AUROC of .629 (95% CI .594–.666) when trying

to distinguish mixed growth from no mixed growth — i.e., a combined class of

predominant growth and no growth. Similar results were found when using all

predictors instead of just the reduced set of predictors. The one-vs-all AUROCs

of the multinomial regression where therefore close to the results obtained by

considering mixed growth as either positive or negative in binary logistic regression

(Tables 6.5 and 6.6), with some but not much extra information gained from

separately estimating mixed growth. The relatively bad performance when trying

to identify mixed growth samples was reflected differently in the summary AUROC

measures. With .749, the Hand-Till method yielded the lowest summary AUROC,

emphasising the low performance that would be obtained by comparing mixed

growth with either predominant or no growth. The simple macro average was higher

at .762, since now only one of the three comparisons considers mixed growth on
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Table 6.7: Characteristics and medical histories of patients with ED urine cultures that
resulted in mixed growth.

Overall Bacterial growth p-value1

No or
predominant Mixed

Total number of visits (%) 12,680 (100.0) 9,742 (76.8) 2,938 (23.2)

Age ≥65 years (%) 6,584 (51.9) 4,635 (70.4) 1,949 (29.6) <0.001

Female (%)2 8,368 (66.0) 6,694 (80.0) 1,674 (20.0) <0.001

Ethnicity (%)
White 9,256 (73.0) 6,959 (75.2) 2,297 (24.8) <0.001
Asian 1,671 (13.2) 1,367 (81.8) 304 (18.2)
Black 552 (4.4) 421 (76.3) 131 (23.7)
Mixed or other 526 (4.1) 443 (84.2) 83 (15.8)
Unknown 675 (5.3) 552 (81.8) 123 (18.2)

CCI (%)
0 7,386 (58.2) 6,050 (81.9) 1,336 (18.1) <0.001
1-2 3,023 (23.8) 2,186 (72.3) 837 (27.7)
≥3 2,271 (17.9) 1,506 (66.3) 765 (33.7)

Individual comorbidities (%)2

Cancer 915 (7.2) 658 (71.9) 257 (28.1) <0.001
Underlying renal condition 2,733 (66.4) 1,815 (66.4) 918 (33.6) <0.001
Underlying urological condition 3,614 (28.5) 2,347 (64.9) 1,267 (35.1) <0.001
Renal or urological surgery 2,484 (19.6) 1,543 (62.1) 941 (37.9) <0.001

Hospital activity in prior year (%)2

Any hospitalisation 6,067 (47.8) 4,319 (71.2) 1,748 (28.8) <0.001
Urine sample taken 6,195 (48.9) 4,364 (70.4) 1,831 (29.6) <0.001
Urine sample positive 3,062 (24.1) 2,137 (69.8) 925 (30.2) <0.001
Antibiotics in hospital 3,194 (25.2) 2,131 (66.7) 1,063 (33.3) <0.001

1 Obtained via χ2 tests. 2 These were binary yes/no variables. For legibility, only the positive (yes) category is shown.
p-values represent comparisons with the negative/no category. Note: Percentages in the overall column represent column-%,
whereas percentages in the bacterial growth columns represent row-%.

CCI, Charlson Comorbidity Index.

its own. Finally, the highest AUROC was estimated by weighted macro averaging,

whose AUROC of .789 reflects the relatively higher frequency of predominant or

no growth in the dataset.

6.6.3 Discussion

6.6.3.1 Clinical findings

Due to the frequency of mixed growth in my sample, the proportion of

culture-positive samples varied considerably depending on whether mixed growth

was considered positive, negative, or was excluded. The findings presented here are
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in line with results reported by Müller et al. (2018) [51]. Using a LR model based

on flow cytometry measurements, they report an AUROC of .660 (95% .610–.700)

when trying to predict mixed growth from non-mixed growth, compared to the

performance of AUROC .629 (95% CI .594–.666) found here. They concluded that

standard urine flow cytometry results do not reliably identify mixed growth.

The inspected model probabilities might further suggest that the mixed growth

group might have contained both samples that should be considered positive —

i.e., genuine polymicrobial growth — as well as samples that should be considered

negative due to contamination. Other authors have argued that strict microbiological

protocols might miss important bacteriuria [215, 218], and urine flow cytometry

measurements together with predictive models such as the one presented here might

be used to distinguish between them. Future research may determine the prevalence

and importance of true polymicrobial growth and whether the distribution of model

predictions observed here indeed reflects a mixture of contaminated samples and

genuine polymicrobial growth (see Chapter 7 for further discussion).

6.6.3.2 Methodological findings

Given that urine flow cytometry results of mixed growth looked very similar to

those of predominant growth and no prediction model could reliably identify mixed

growth, it remains unclear how mixed growth should be labelled when the model

would be used in clinical practice. While Taylor et al. (2018) [109] considered

mixed growth as contamination in line with standard clinical practice , Müller et

al. considered them as positive growth. In the absence of further information

that can reliably predict mixed growth, classification of mixed growth becomes a

trade off between apparent sensitivity and specificity, since samples with mixed

growth were frequently misclassified either way. The most meaningful performance

measure may therefore be the one that excludes mixed growth altogether. While

this technically only estimates the model performance in an unrealistic situation

in which no mixed growth — and thus no sample contamination or genuine

polymicrobial growth — exists, it avoids arbitrarily classifying mixed growth and

provides a (sensitive) upper boundary on achievable performance. If used, however,
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it is important to acknowledge that such a model will nevertheless frequently

misclassify mixed growth, further emphasising the importance of additional UTI

symptoms to diagnose suspected bacterial UTI.

In order to predict mixed growth early and allow for the collection of a second

— hopefully uncontaminated — sample, advances in laboratory technology may

provide additional information that may allow for more reliable prediction. For

example, future routine inclusion of advanced urine flow cytometry measurements

like laser flow cytometry have been suggested as a potential way to identify mixed

growth early [219] and could be used to extend the model developed in Chapter 5.

6.7 Comparison with clinicians’ performance

Dataset: ED patient cohort from Chapter 5

Evaluation: External validation only

All evaluations so far have assessed the model’s ability to identify patients at

risk of bacteriuria in comparison to a "random" model without information. The

value of such an evaluation to judge a model’s usability in clinical practice is

limited, however. An attempt at a more meaningful evaluation of clinical model

performance may instead judge the model against the real-world diagnostic abilities

of clinicians, assessing whether the model can separate patients as well or better

than is currently the case in routine care. Ideally, this comparison is performed

prospectively in a randomized controlled trial, but running a trial is expensive and

time-consuming [220]. As a result, many evaluations of clinical risk prediction

models are performed retrospectively on routinely collected data or large cohorts.

Defining a valid and meaningful comparison on retrospective data, however, can

prove challenging. Inferring clinical reasoning from routine data is limited by

incomplete and coarse data recording. We could see in Chapter 4 and Appendix F

that information on clinician’s decision making is often limited to broad diagnosis

codes and prescribing records, without further detail on the diagnostic process

or rationale for prescribing. It is therefore difficult to unambiguously categorise
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clinician behaviour from EHR data.

In the only study that I am aware of that attempted to retrospectively compare

model performance in predicting bacteriuria to the performance of clinicians in the

same healthcare setting, Taylor et al. used ED diagnoses and empirical antibiotic

prescribing in the ED as proxies for clinical judgement [109]. In the last section

of this chapter, I therefore apply similar criteria to data from QEHB and critically

assess the evidence that can be derived from such comparison.

6.7.1 Statistical analysis

Clinician’s "prediction" of bacteriuria was approximated using diagnostic codes

and antibiotic prescribing in the ED, constructing two proxies of clinical judgement

with different sensitivities and specificities. A sensitive estimate was defined

using either presence of an ED diagnosis of UTI (lower UTI, pyelonephritis,

urosepsis)5 and/or a prescription of systemic antibiotics included in QEHB’s 2018

prescribing guidelines for UTI (amoxicillin, cefalexin, cefuroxime, ciprofloxacin,

co-amoxiclav, ertapenem, gentamicin, nitrofurantoin, trimethoprim, vancomycin)

or sepsis (ceftriaxone, ciprofloxacin, co-amoxiclav, gentamicin, meropenem,

piperacillin / tazobactam, vancomycin) in the absence of a recorded diagnosis of

another infection. A more specific estimate of clinical judgement was based solely

on the presence of an ED diagnosis of UTI. For patients who were admitted to

hospital as a result of their ED visit, recorded 10th revision of the International

Statistical Classification of Diseases and Related Health Problems (ICD-10)

diagnoses of UTI on discharge from hospital (either as primary diagnosis only

or at any position) were used as a third proxy of clinical judgement6. See Appendix

H for a detailed list of all codes used.

Accuracy, sensitivity, and specificity of each estimate of clinical judgement

were calculated in patients consulting after March 31st 2018 (test set). No AUROC

was estimated, since the definitions of clinical judgement did only provide binary

5 Note that for this analysis, a record of urinary symptoms was not considered to be an ED diagnosis
of UTI.

6 No ICD-10 discharge codes are recorded for patients who are directly discharged from the ED, see
Section 3.3.2 for a more detailed discussion.
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Figure 6.6: Distribution of UTI diagnoses and antibiotics in the ED for A) patients
discharged directly from the ED and B) patients admitted to hospital.

ED, emergency department; UTI, urinary tract infection.

predictions. Predictions of a LR model using the reduced set of predictors were

pre-set to the same sensitivity (in the case of ED diagnosis of UTI and/or antibiotic

prescription) or specificity (in the case of ED diagnosis of UTI alone) as achieved by

the above proxies of clinical judgement, and the performance on the other, non-fixed

metrics was compared. The 2.5% and 97.5% percentiles of 1,000 bootstrapped

resamples were used to calculate approximate 95% CIs for each metric. The same

analysis was performed separately in patients who were admitted to hospital after

their ED visit and in patients who were discharged directly from the ED.

6.7.2 Results

Out of the 1,538 visits in the test set, 1,013 (65.9%) resulted in an admission to

hospital and 525 (34.1%) were discharged directly from the ED (Figure 6.6 A and

B). An ED diagnosis of UTI was more common among discharged patients (59.4%

versus 32.6% of patients admitted to hospital). In both groups, approximately 85%

of patients with an ED diagnosis of UTI were prescribed an antibiotic for UTI in

the ED. Since patients without a diagnosis of UTI included patients with other

suspected infections and recommended antibiotics overlapped, the proportion of

antibiotic prescribing was still high in this patient group. Antibiotic prescribing was
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less common in patients discharged from the ED without a UTI diagnosis (26.3%

versus 41.0% of patients admitted to hospital).

A LR model using the reduced set of predictors universally outperformed

clinical judgement as estimated by ED diagnosis of UTI and/or prescription of

antibiotics (Table 6.8) or ED diagnosis of UTI alone (Table 6.9). At the same or

higher sensitivity as ED diagnosis of UTI and/or prescription of systemic antibiotic

in the ED (60.8, 95% CI 57.3–64.3), the LR model achieved a specificity of 83.4

(95% CI 81.0—85.9; Table 6.8). In comparison, ED diagnosis of UTI and/or

prescription of systemic antibiotic only achieved an estimated specificity of 51.0

(95% CI 47.8—54.3). When fixed at the same or higher specificity as ED diagnosis

of UTI alone (63.7, 95% CI 60.5—66.7; Table 6.9), the LR model achieved a

sensitivity of 79.5 (95% CI 76.6—82.5) compared to that sensitivity of 48.2 (95%

CI 44.3—52.1) when relying on an ED diagnosis of UTI. Results were comparable

in admitted and discharged patients, although estimates became less precise due to

diminished sample sizes (Tables 6.8 and 6.9).

Clinical performance as estimated by recorded ICD-10 code on discharge

(admitted patients only) was similar to the performance of ED diagnosis in admitted

patients. Using diagnosis of UTI at any position among a patient’s discharge

diagnoses achieved a sensitivity of 37.6 (95% CI 34.1–41.3) and a specificity of 74.0

(95% CI 71.1–76.9; table not shown). Limiting the diagnosis to primary diagnoses

— i.e., the recorded reason for admission — decreased sensitivity to 27.0 (95% CI

23.5–30.5) but increased specificity to 83.1 (95% CI 80.7–85.6).

6.7.3 Discussion

6.7.3.1 Clinical findings

When estimating clinicians’ performance of predicting a patient’s risk of bacteriuria

using diagnosis codes of UTI and/or prescriptions of systemic antibiotics, a simple

LR model based on age, sex, history of positive urine culture, and urine flow

cytometry measurements consistently outperformed clinicians. The comparison

of clinician and model performance shown here closely mirrors the approach

taken by Taylor et al. [109]. In line with their results, I find a consistently
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Table 6.8: Comparison of discriminative model performance to clinical judgement as
defined by ED diagnosis of UTI and/or prescription of systemic antibiotics in the ED.

Decision rule Accuracy
(95% CI)

Sensitivity
(95% CI)1

Specificity
(95% CI)

All patients
UTI diagnosis or antibiotics 55.3 (52.9–57.8) 60.8 (57.3–64.4) 51.0 (47.8–54.3)
LR (reduced predictor set) 73.4 (71.3–75.5) 60.8 (57.3–64.3) 83.4 (81.0–85.9)

Admitted patients
UTI diagnosis or antibiotics 54.6 (51.4–57.4) 51.3 (46.8–55.7) 57.0 (52.5–61.0)
LR (reduced predictor set) 72.0 (69.3–74.7) 51.3 (47.0–56.2) 87.2 (84.5–89.9)

Discharged patients
UTI diagnosis or antibiotics 56.8 (52.4–60.8) 77.1 (72.2–82.5) 38.4 (32.5–44.4)
LR (reduced predictor set) 70.9 (67.0–74.5) 78.7 (73.9–84.0) 63.8 (57.9–69.1)

1 LR sensitivity was fixed at the same sensitivity as that achieved by UTI diagnosis or antibiotic prescribing. Due to the relative
small sample size actually observed sensitivity might differ slightly from that achieved by UTI diagnosis or antibiotics. In
these cases, the closest sensitivity higher than that achieved by UTI diagnosis or antibiotics was chosen.

CI, confidence interval; LR, logistic regression; UTI, urinary tract infection.

Table 6.9: Comparison of discriminative model performance to clinical judgement as
defined by ED diagnosis of UTI.

Decision rule Accuracy
(95% CI)

Sensitivity
(95% CI)1

Specificity
(95% CI)

All patients
UTI diagnosis 56.9 (54.3–59.3) 48.2 (44.3–52.1) 63.7 (60.5–66.7)
LR (reduced predictor set) 70.9 (68.7–73.1) 79.5 (76.6–82.5) 64.1 (61.2–67.2)

Admitted patients
UTI diagnosis 57.2 (54.3–60.0) 37.5 (32.9–42.0) 71.6 (67.7–75.2)
LR (reduced predictor set) 73.3 (70.8–76.1) 75.3 (71.5–79.1) 71.9 (68.4–75.5)

Discharged patients
UTI diagnosis 56.4 (52.2–60.6) 66.7 (60.6–72.4) 47.1 (41.8–53.0)
LR (reduced predictor set) 66.5 (62.3–70.5) 87.6 (83.2–91.4) 47.5 (41.8–53.4)

1 LR specificity was fixed at the same specificity as that achieved by UTI diagnosis. Due to the relative small sample size
actually observed specificity might differ slightly from that achieved by UTI diagnosis. In these cases, the closest specificity
higher than that achieved by UTI diagnosis was chosen.

CI, confidence interval; LR, logistic regression; UTI, urinary tract infection.
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higher performance of the prediction model in classifying bacterial growth in urine

samples. They concluded that the implementation of their model in clinical practice

has the potential to "reduce the number of false positives and false negatives for

UTI diagnosis" [109]. The validity of this claim, however, depends on two factors:

the extent to which bacteriuria is indicative of clinically confirmed UTI in the

patient cohort and the extent to which these proxies for clinical judgement can be

interpreted as predictions of bacteriuria — or whether they represent a summary of

wider clinical judgement and context. The patient cohort used in this study included

patients regardless of presenting complaints, and bacteriuria alone should therefore

not be interpreted as evidence of UTI in this cohort [17]. While Taylor et al.

only included "symptoms potentially attributable to a UTI", these symptoms were

defined broadly. For example, less than 20% of their cohort had recorded urinary

symptoms while the vast majority of patients was included due to vague symptoms

such as abdominal pain, fatigue, or fever. This was also the case in data from

QEHB. These symptoms may or may not be indicative of UTI even if the patient

has bacteriuria [31, 32]. Consequently, it is unclear whether urine samples which

were categorised as false negatives — i.e., samples that showed bacterial growth

during culture but had no diagnosis of UTI or systemic antibiotic prescribing — did

indeed fulfil the clinical criteria for UTI, or whether they were mostly asymptomatic

and thus did not require treatment for UTI despite bacterial growth. Similarly,

diagnosing UTI in patients without microbiologically confirmed bacteriuria (false

positives) and treating them with antibiotics might still be the correct course of

action in the presence of clear urinary symptoms strongly indicative of UTI [56],

particularly if patients received prior antibiotic treatment in the community that

might have retarded microbiological growth during incubation [20]. The apparent

conclusion reached in this chapter and earlier by Taylor et al. may therefore have

been exaggerated by an imprecise definition of clinic judgement. Rather than

showing the superiority of prediction models over clinicians’ performance, these

results instead primarily highlight the difficulties of reliably defining the presence

of UTI from routine EHR data.
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6.7.3.2 Methodological findings

A tendency to overstate the amount and quality of evidence for increased clinical

performance of (machine learning based) risk prediction models has also been

noted elsewhere [220]. This remains in stark contrast to the number of models

successfully translated into clinical practice [100]. Instead of overstating model

performance during retrospective evaluation, conclusions should appropriately

reflect the level of evidence that can be created from retrospective data and

statements should be tempered accordingly. Ultimately, performance of any model

will have to be judged based on prospective clinical outcomes [221]. For example,

the use of a model for the prediction of bacteriuria may be considered advantageous

— and acceptable for clinical use — if it not only correctly identifies bacteriuria

early but also reduces antibiotic prescribing without leading to an increase in

complications of infection. While retrospective evaluation may or may not give

some evidence as to how the performance of the model might compare to that of

clinicians, this has to be done and interpreted cautiously. Prospective evaluation

will be required unless clinical reasoning can be unambiguously inferred from the

EHR records.

6.8 Conclusion
In the detailed sensitivity analyses performed in this chapter, I was able to show that

apparent model performances may vary widely according to the patient populations

and variable definitions used in model training and evaluation. The performance

of risk prediction models developed in Chapter 5 was lower for patients with

recorded suspicion of UTI as well as in older patients and men. When judged

solely on retrospectively estimated performance, the model might therefore be

deemed acceptable for clinical practice in some patient groups while unsuitable

for others. Mixed culture growth presented a particular challenge for models

predicting the risk of bacteriuria. Stratified reporting of estimated performance

is therefore desirable, although stratification even on a single variable like ED

diagnosis may already significantly reduced the available sample size, potentially
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leading to unstable models and/or evaluations. This exemplifies a previously noted

difficulty in comparing performances between published retrospective prediction

modelling studies [100]. If UTI cases can’t be identified with certainty and clinical

coding depends on local hospital and laboratory guidelines, superficially similar

cohorts might contain very different case mixes. Even identical models may show

very different performance in these circumstances, rendering the comparison of

simple performance summaries like an AUROC for the entire patient population

meaningless. Better quantitative and qualitative methods will be required to

understand and communicate differences between patient cohorts derived from

EHR systems at different hospitals or even different countries.

A lack of detail in structured EHR diagnoses further made it difficult to fully

reconstruct clinical decision making for the purpose of model validation, preventing

reliable comparison of model performance to standard care. Whereas the statistical

models were evaluated exactly on the information that was available to them

during training, clinicians’ decision making was ascribed after the fact based on

incomplete information. Decisions that might appear sub-optimal retrospectively

given only the incomplete information captured in EHR data might instead have

been considered appropriate had I access to the same information as the clinician

in the ED. By stripping away contextual information not recorded in the EHR data

used here and in Chapter 5 — e.g., information on previous antibiotic use in the

community enquired during anamnesis but not recorded in structured data fields —

any comparison was inevitably skewed against clinicians. It is therefore difficult to

judge the likely improvement in performance — if any — that may be achieved by

deploying the model in clinical practice. Prospective evaluation alongside clinical

care will be necessary to understand if and how the models developed here may

indeed provide clinical benefit to patients.
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Chapter summary

• Patients who have an ED urine sample submitted for culture at QEHB

represent a heterogeneous population, with important implications for

model performance and applicability.

• An inability to unambiguously define patients with suspected UTI in

the ED raises questions about how model performance in EHR studies

should be reported, and how inevitable variation in patient mix can be

accounted for and clearly communicated during publication.

• Reconstructing clinical decision making for UTI from EHR data

remains difficult, and comparisons of clinician and model performance

based on routinely collected EHR data should be interpreted cautiously.

Prospective evaluation will be necessary to compare performances with

reasonable certainty.

My role in the work presented in this chapter

The analysis presented in this chapter was conceived by me. The research

application for the wider project was submitted to the Health Research Authority

(HRA) for ethical approval by Dr Laura Shallcross. Raw hospital data for this

study was extracted from Queen Elizabeth Hospital Birmingham by Dr David

McNulty and processed by me as described in Chapter 5. I performed all analyses

presented in this chapter. All findings were interpreted by me. I wrote this chapter,

with feedback from Dr Laura Shallcross, Prof Nick Freemantle, and Prof Andrew

Hayward.

Software and code used in this chapter

All analyses in this chapter were performed using R (v3.6.2) and RStudio

(v1.2.5033) on Windows 10. Data processing was performed using the tidyverse

(1.3.0) and data.table (1.12.8) packages. All model building was performed using

packages from the tidymodels (0.1.0) ecosystem, including rsample (0.0.5), recipes

(0.1.9), parsnip (0.0.5), tune (0.0.1), yardstick (0.0.5), and tidyposterior (0.0.2). All
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code is publicly available at https://github.com/prockenschaub/phd_code.

Publications resulting from this chapter

No publications have resulted from this chapter yet.

https://github.com/prockenschaub/phd_code


Chapter 7

Conclusions, limitations, and future research

Abstract
In this chapter, I summarise the main findings of this thesis and discuss their

implications for patient care in England. I highlight the major strengths and

limitations of my approach and outline areas in need of further research.

Using data from major national and local electronic health record (EHR)

databases in England, I demonstrated that previous studies assessing the diagnosis

and management of UTI using EHR data may have been at high risk of bias. This

bias mainly originated from a difficulty to identify patients with (suspected) UTI

from EHR data, and to retrospectively infer the rationale behind clinical decisions

such as diagnostic testing and antibiotic prescribing. I showed that estimated

treatment effects and prediction performances were sensitive to variable definitions

and heterogeneity in the included patient population, making it often difficult to

interpret the obtained findings.

This thesis analysed several research databases — including data from over

600 primary care practices and one of England’s leading digital hospital — and

performed comprehensive sensitivity analyses to assess the reliability of findings

on the diagnosis and management of UTI obtained from EHR data. Findings were

primarily limited by the exclusive use of routinely collected data. Incentive schemes

that promote more detailed recording of UTI or easier access to free-text notes may

be required to reliably identify patients with UTI from EHR data. While several

large national databases already exist for primary care, similar infrastructure will be

required in secondary care to generalise findings beyond a small number of digitally
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advanced hospitals. A combination of retrospective and prospective analysis as

well as qualitative research may be necessary to fully understand the diagnosis and

management of UTI, and to design systems and interventions that can meaningfully

support clinicians in routine practice.

Future research should include a review of case notes to fully understand

clinical coding for UTI, retrospective and prospective evaluation of predictive

models at multiple sites, and the use of recent innovations like metagenomic

sequencing to assess the reliability of microbiological culture as the gold standard

for UTI diagnosis.

7.1 Overview of key research findings

7.1.1 Identification of UTI cases in EHR data relies primarily on

coarse diagnostic codes

Whether EHR data can be effectively used to support the diagnosis and management

of disease is contingent on the ability to identify cases of the disease reliably [222].

As discussed in Chapter 1, clinical diagnosis of UTI is complex. This complexity

is mirrored in retrospective EHR data. A range of clinical information may be used

to identify (probable) cases of UTI in EHRs, including recorded symptoms and

diagnoses, diagnostic tests (urine dipsticks and urine flow cytometry), antibiotic

prescribing, and microbiological culture. In this thesis, I showed that the

identification of cases of UTI in major EHR databases relied primarily on diagnostic

codes captured in structured data fields (Chapters 2, 4, and 6).

While these codes in principle allow to differentiate between lower UTI,

pyelonephritis, and urosepsis, little additional information was available to assess

the overlap between these clinical infectious syndromes, or the severity of infection.

Data on specific urinary symptoms was rarely recorded in structured fields in

primary care (Chapter 4), and was limited even at digitally mature hospital sites

(Chapters 5 and 6). The additional lack of urine dipstick test results meant that

I was unable to distinguish between patients with genuine urinary symptoms and

patients in whom suspicion of UTI might have been driven by a positive dipstick
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result in the absence of symptoms. Culture results were overwhelmingly missing in

primary care databases, since routine culture of urine is not routinely recommended

in this setting in the absence of known risk factors [13]. While cultures were more

commonly available in secondary care — allowing me to confirm the presence of

bacteriuria — they were also found to be frequently performed in patients without a

recorded symptom or suspicion of UTI, questioning their usability to identify cases

of symptomatic UTI.

The predominant use of diagnostic codes to identify UTI in EHR databases

has implications for the reliability of the obtained results. In primary care, a

previous study suggested that definitions based solely on diagnostic codes may miss

a large proportion of patients in primary care who were prescribed antibiotics for

UTI but do not have a corresponding diagnosis recorded [6]. As a result, a large

proportion of patients who did suffer from UTI may have been missed in Chapter

4, introducing risk of bias if these patients systematically differed from those with

a recorded diagnosis of UTI. In data captured in the emergency department (ED)

— where diagnostic codes until recently were limited to national codes or bespoke

local terminologies (Chapter 3) — diagnostic coding was similarly imprecise, with

little information on urinary symptoms recorded in the structured EHR data. As

a result, the patient population in Chapter 5 included all patients who had a urine

sample submitted for microbiological culture, many of whom may not have had

urine symptoms.

Conclusion

Clinical coding of suspicion of UTI in structured EHR data is currently

limited. More detailed recording, particularly regarding the presence or

absence of urinary symptoms will be required to account for the large

variations in the clinical presentation of UTIs and allow for the estimation

of reliable and comparable results from EHR data. Better recording of

UTI symptoms may be achieved for example by incentivising more detailed

coding in structured data via national payment programmes (see for example
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the Quality Outcomes Framework (QOF) [223] or Commissioning for

Quality and Innovation (CQUIN) [54]), or by providing researchers with

easier access to full-text information recorded in clinical notes.

7.1.2 Findings on UTI obtained from EHR are highly dependent

on included patient case mix

The above described inability to precisely define inclusion criteria for community-

onset UTI likely affected the findings reported here and elsewhere. I repeatedly

encountered difficulties when comparing the results of models developed here to

findings that had previously been published. Through careful sensitivity analyses,

I was able to show that the results of the employed statistical models as well as

their clinical interpretation strongly depended on the included patient case mix.

This finding is not unique to UTI nor EHR data, and has also been reported for

prospective studies of other diseases [224]. However, prospective data collection

allows researchers to define precisely which patients should be included in the

study. EHR data, on the other hand, represents real-world clinical practice and

captures only information that is routinely recorded as part of it. While this can

be an advantage, it also means that the patient populations captured within EHR

data reflect the full heterogeneity encountered in clinical practice. It is therefore

paramount to consider a priori how the data analysis — and any results thereof

— may be used prospectively to inform clinical decision making, and to clearly

define the intended target population with this goal in mind. The interpretation of

the obtained findings then needs to consider how closely the analysis was able to

mirror that target population and how possible deviations from it may have affected

the results.

In Chapter 4, more thoroughly defining the date of UTI episode start and

excluding patients with evidence of hospital-acquired infection may partially

explain the differences between the results presented here and those reported

by Gharbi et al. [112]. Delaying antibiotic prescribing will be most viable

in a population of low-risk patients with new community-onset UTI. The more
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stringent exclusion of cases that originated in hospital may have removed spurious

associations between disease severity, treatment decisions in primary care, and risk

of complications. By more closely reflecting the target population, study results

therefore become increasingly interpretable and applicable.

The impacts of patient case mix were particularly apparent in the ED analyses

in Chapters 5 and 6. I was able to show that there was considerable variation in

model performance depending on the characteristics of patients included in the

study population. Estimated discriminative performance and calibration of the

predictive models ranged widely by age, sex, ED diagnosis, and over time (Chapters

5 and 6). Results were further impacted by local procedures such as reflex cultures1

and rules about the interpretation of mixed growth. These variations impeded the

comparison of the model developed here with findings published previously in the

United States [109] and in Switzerland [51]. Interpreting differences in model

performance without a clear reference to the patient population in which the model

was evaluated may therefore lead to arbitrary conclusions of model superiority.

Cohort differences were not immediately obvious from published findings alone,

and obtaining analysis code and patient-level information for these studies was

central to enable a more meaningful comparison between study findings.

Conclusion

The results obtained from EHR analyses may vary considerably depending

on characteristics of included patients. In the context of UTI, such variation

may be caused by unintentional heterogeneity in the study population due to

coarse diagnostic coding. Routine subgroup analyses based on important

confounding factors such as age, sex, and initial UTI diagnosis may be

necessary to evaluate the sensitivity of obtained results to such heterogeneity.

1A set of criteria that need to be met in order for a urine culture to be incubated, e.g. bacteria seen
during urine flow cytometry. See Chapter 1 for a discussion of reflex cultures.
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7.1.3 The context of diagnosing and managing UTI is often

insufficiently captured in EHR data

Decisions on how to manage suspected or confirmed UTIs are also influenced by

the wider clinical and social context. For example, clinicians may be more likely

to prescribe an antibiotic to sicker patients or if the social circumstances of the

patient do not provide an adequate safety net. While the fact that an antibiotic was

prescribed may be automatically recorded in EHR data [121], this wider clinical

and social context is often difficult to capture. Even purely clinical histories such as

antibiotic prescribing in the community prior to a patient’s ED visit weren’t always

available in EHR data due to lack of linkage and/or recording of information. An

inability to account for this context, however, may lead to biased results.

The perils of insufficient contextual information were particularly apparent

in Chapter 4. Delayed antibiotic prescribing — the main exposure of interest

— was not generally well recorded in national primary care databases [139]. I

was therefore forced to infer delayed prescribing indirectly through the absence of

an antibiotic prescribing record. This led to a paradox finding in which patients

that tended to be at higher risk of complications were more — rather than less

— likely to be treated with delayed prescribing strategies [72]. It is therefore

unlikely that the definition of delayed or withheld antibiotic prescribing used in

this thesis represented a purposeful decision to delay antibiotics in anticipation of

self-limiting infection. As a result, the findings obtained from the EHR analysis

may not reflect the effect of interest, but instead estimate the influence of underlying

patient characteristics that warranted the differences in prescribing, or recording of

prescribing. A similar issue could be observed in Chapters 5 and 6, in which missing

information on antibiotic exposure prior to arrival in the ED may have confounded

the prediction of bacterial growth in ED urine samples.

More advanced methodological approaches may be used to try and limit

the impact of this problem. Balancing techniques like propensity score analysis

may allow to create a balanced patient population in which the influence of

treatment context has been accounted for. However, due to the likely unobserved
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nature of many confounding factors, additional methodological approaches did

not meaningfully change point estimates when applied in Chapter 4. The biggest

change was instead observed when additional contextual information was included

in the model. I was able to demonstrate that the inclusion of home visits accounted

for more than half of the difference between crude and adjusted estimates. It is likely

that further unobserved factors — and therefore residual confounding — remained.

The reliability of the obtained estimates is therefore questionable, and it is unclear

if and how they should be interpreted.

Conclusion

Reasons for why a particular diagnostic test (e.g., urine culture) was

performed or why a particular treatment (e.g., delayed prescribing) was

chosen are often missing from EHR data, which may prevent researchers

from ascertaining the exposure of interest. Unless the context of clinical

decision making for UTI is better captured in EHR data (e.g., through more

detailed recording in structured data fields or free-text analysis), treatment

effects or model performances obtained from retrospective EHR analyses

remain questionable.

7.2 Strengths and limitations of this thesis
Strengths of this thesis are its use of state-of-the-art English EHR databases —

both on a national level and locally — together with comprehensive sensitivity

analyses that allowed me to critically evaluate the reliability of the results obtained

here and in recent key publications [109, 112]. I was able to show that findings

may change considerably depending on cohort and variable definitions, and that

careful interpretation is necessary to obtain meaningful, generalisable insights on

the diagnosis and management of UTI from EHR data. I was further able to identify

areas in which improved recording of UTI is essential to fully exploit routine data

on UTIs in English clinical practice.

Limitations of the clinical findings reported in this thesis mainly related
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to the way that clinical information on UTIs was recorded in retrospective

records. Identification of UTI in primary and secondary care in this thesis relied

predominantly on diagnosis of UTI using structured diagnostic codes. As discussed

earlier, limited resolution of these codes likely introduced unintended heterogeneity

into the study population, erroneously including (excluding) patients without (with)

symptoms of UTI and leading to imprecise or biased results. The reliability of

clinical coding may also have changed over time, or may have varied between

included healthcare sites. Further lack of recording of several key variables —

including urinary symptoms, urine dipstick tests, prior antibiotic use, and reasons

for antibiotic prescribing — prevented me from fully assessing the reliability of

diagnostic codes. Taking a pragmatic approach, I instead built on previously

published code lists to define and identify UTI within the included databases. In

the subset of patients for whom I was able to compare recorded diagnostic codes to

information extracted manually from ED free-text notes (Appendix F), my findings

showed a limited agreement between UTI symptoms recorded in free-text and

coded UTI diagnoses in the ED. Retrospective EHR data therefore only allowed for

an incomplete reconstruction of the real-world clinical decision making involved in

diagnosing and treating UTIs.

Methodological findings presented in this thesis were limited by the choice

of data sources and case studies. While I was able to access a widely-used

national database for all primary care analyses, no national dataset currently exists

in secondary care that includes prescriptions or laboratory values. I therefore used

data from a single tertiary hospital. Although this hospital is one of England’s

digital centres of excellence, other hospitals might have better integration of some

of the key information crucially missing in this thesis. Using only a single hospital

further has implications for the generalisability of the results. Many NHS trusts

still lack fully-integrated EHR systems, potentially limiting the applicability of the

models developed in this thesis. Patient populations and/or clinical procedures (such

as urine flow cytometry thresholds for urine culture) may further differ at other

hospitals, potentially affecting the transferability of my findings to other hospitals.
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While key research findings presented above proved to be important in the case

studies chosen in this thesis, they might not play as large a role for other research

questions. For example, if other exposures are at a lesser risk of confounding by

indication — which may be the case for example for antibiotic treatment duration

— EHR data may contain sufficient contextual information to account for remaining

differences between treatment groups.

Either way, the results presented in this thesis highlight that the analysis of

EHR records can only be one piece in improving the management of UTI. In

order to fully understand healthcare processes and be able to intervene at the right

place, at the right time, and in the right way, a deeper understanding of the wider

healthcare context is essential. Working closely with clinical colleagues at the UCL

Institute of Health Informatics (Dr Anna Aryee and Dr Arnoupe Jhass) and at Queen

Elizabeth Hospital Birmingham (Dr Martin Gill) was invaluable to understand the

expected clinical behaviours and interpret deviations from them. In parallel to

the work on this thesis, I also had the pleasure to be involved in the Preserving

Antibiotics through Safe Stewardship (PASS) project [160], which acknowledges the

complexity of real-life infectious disease management and antibiotic stewardship.

Bringing together clinicians, statisticians, epidemiologists, behavioural scientists,

and designers in an interdisciplinary mixed-methods approach, PASS attempted

to provide a more comprehensive picture of the underlying healthcare processes,

allowing it to go beyond the work presented in this thesis and work towards

designing effective clinical interventions.

7.3 Translating EHR research into clinical practice
Digital transformation of the National Health Service (NHS) has become a major

national policy goal, accruing more than £4 billion in national investment between

2016 and 2019 [99]. The commitment to a digital NHS is reflected in the NHS Long

Term Plan, which aims to enable the comprehensive use and exchange of healthcare

data across clinical settings by 2024 [98]. While there is strong focus on building

capacity and digital maturity, the NHS Long Term Plan also ascertains the intention
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to use the increasingly abundant data to enable medical research, new population

health management approaches, and the development of decision support systems

and artificial intelligence. Below, I discuss the implications of the NHS’ plans for

the findings of this thesis and discuss several issues that need to be considered when

attempting to apply my findings within NHS England.

7.3.1 Technological considerations

Many of the findings described in this thesis relate to the technological challenge

of accurately inferring clinical information from EHR data and providing clinicians

with helpful information in real-time.

Data collection and linkage The NHS Long Term Plan includes a pledge to

push all healthcare providers towards a minimum level of digital maturity, and to

support healthcare personnel in recording detailed, high-quality information as a

"by-product of care" [98]. The NHS is also accelerating the integration of care

records from primary practices, hospitals, community services, and social care via

so-called Local Health and Care Record (LHCR) programmes. Better capture of

rich contextual information like urinary symptoms or medical history may alleviate

many of the issues reported in this thesis (e.g., identification of antibiotic exposure

in the community prior to ED visit) and allow for a robust definition of patient

populations, exposures, and outcomes (Chapters 4–6). Increased documentation of

care processes, however, also usually requires additional resources [225]. Careful

planning will therefore be needed to ensure relevant information is captured without

imposing an undue burden on an already stretched healthcare personnel.

Population health management systems Access to detailed data across

healthcare settings will be fundamental to realising the NHS’ ambition to develop

population health management systems [98]. Clinical coding for UTI currently

contains substantial uncertainty about the patient’s health status and management

plan, and richer information capture will be necessary to gain actionable insights

on the management of UTI (Chapter 4). Similar caveats will apply to other acute

(infectious) conditions, and a holistic approach will be required that improves the

capture of necessary clinical detail in often very short consultations.
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Clinical decision support systems If they are to be used across the NHS, clinical

decision support systems will require standardised data in real-time (Chapter 5).

The NHS has committed to increase the recruitment of technical expertise to

develop and maintain the infrastructure necessary to effectively deploy decision

support systems [98], which will be needed to enable the use of prediction models

like the one developed in this thesis beyond the currently still small number of

digitally mature hospitals.

Regulatory approvals Finally, decision support systems — and perhaps also

population health management systems — based on EHR data will be required

to provide similar quality assurance as other healthcare products. In Chapter

6, I showed that predictive models might perform very differently in different

patient populations. The UK Medicines and Healthcare products Regulatory

Agency (MHRA) together with industry stakeholders has recognised this issues

and is currently developing guidance for validation of artificial intelligence in

healthcare [226]. Performance of EHR models may also change over time

(Chapter 5), introducing further regulatory complications. The US Food and

Drug Administration (FDA) has recently published a white paper discussing the

additional challenges of continued learning in a fluid healthcare system but further

work is required to ensure the continued safety of EHR-based systems once

deployed in clinical practice [227].

7.3.2 Barriers to implementing learning from this thesis into

clinical practice

The use of EHR-driven technology does not only pose technological challenges,

but doctor-patient interactions are complex behavioural situations by themselves

and are influenced by a multitude of contextual factors and motivations [228].

Evidence and models derived from EHR data — even when carefully obtained and

technologically feasible — therefore depend on being accepted by both patients and

clinicians in order to create meaningful clinical impact, and need to consider how

doctors interact with their patients, where undesired behaviours originate, and when

and how they can best support doctors [100].
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Asymptomatic bacteriuria Asymptomatic bacteriuria is a chief concern for

the usability of statistical models that aim to guide diagnosis and management

of UTI [25, 30, 31]. Throughout this thesis I have made the assumption that

patients undergoing treatment for suspected UTI in primary care and the ED

have symptomatic infection, but this is unlikely to be the case and highlights

the complexity of diagnosing and managing UTI. Unless combined with effective

training and clear guidelines, the naive use of statistical models faces the same

limitations as existing diagnostic tests and guidelines, and might similarly lead

to over-treatment of suspected UTI if clinicians rely on them to guide empirical

prescribing in the absence of clear clinical symptoms.

Point of intervention Thought must be given to decide at which point clinicians

ought to be supported in their decision making. Possible points of intervention

include the empirical prescribing process during initial presentation2 or later

during regular medication reviews. Close collaboration with clinicians as well as

prospective studies will be necessary to explore the respective merits of each option.

Presentation of evidence Similarly, it remains unclear how evidence derived from

statistical models should be provided to clinicians. Possible options include binary

yes/no predictions at "optimal" cut-offs, expected probabilities of the outcome for

a particular patient, a list of variables that generally indicate likely presence of the

outcome, or a combination of the above. In any case, clinicians must be trained to

adequately use the evidence provided by the models and appropriately account for

it during their clinical decision making. Rather than making the decision for the

clinician, models should provide additional evidence that can be interpreted by the

clinician in the appropriate context [208].

Clinician-model feedback Once a model is deployed into clinical practice, the

use of the model may itself impact clinical behaviour, which in turn may change

the distribution — and perhaps even underlying meaning — of the variables used

to build the model [208]. Models therefore need to be monitored for changes

in their performance over time, and re-calibrated or re-trained as necessary (with

2 Assuming that all inputs like urine flow cytometry are already available at this point.
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implications for regulatory approval, see Section 7.3.1).

7.4 Future research
EHR databases provide a potentially valuable resource that may be leveraged to

improve the diagnosis and management of UTI in England, but more research is

required to fully understand the validity of the captured information and its impact

on clinical practice.

Case note reviews in primary and secondary care More research is required

to understand the recording of UTI in EHR databases, particularly in the absence

of evidence of urinary symptoms in structured data fields. Case note review in a

random subset of UTI patients identified from CPRD and at several other hospital

sites may be used to partially answer this question, assessing the expected reliability

of results obtained from current EHR sources. These findings may be used to create

guidance and incentives that improve recording of key diagnostic information for

UTI in local and national EHR databases.

Multi-centre validation studies In this thesis, I was only able to investigate

the performance of a risk prediction model for bacteriuria at the same hospital

at which it was developed. In order to investigate the generalisability of the

estimated models, retrospective and prospective external validation at multiple

hospital sites across England needs to be performed. I secured seed funding from

the Department of Health and Social Care to validate the model on retrospective data

from University College London Hospital (UCLH). If the model shows promise, the

intention is to evaluate its use prospectively to inform early antibiotic cessation in a

low risk group of patients who have been treated empirically for suspected UTI in

the ED and who have subsequently been admitted to hospital.

Methodological research on evaluation of prediction models Variance in

model performance suggested differences in the applicability of prediction models

for bacteriuria in key patient populations. However, estimates quickly became

imprecise due to a considerable reduction in sample sizes when stratifying by

patient characteristics. While some initial work has been performed to isolate
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case-mix effects in clinical prediction models [224, 229], further research is

required to propose and promote methods to estimate and clearly report model

performance in different key populations, identify changes in the meaning of

variables derived from EHR data, and distinguish issues of model fit from changes

in patient case-mix.

Investigating the reliability of urine culture as the gold standard for diagnosis

of UTI This thesis has treated culture results as the ground truth for confirming

bacterial UTI in the presence of urinary symptoms. This view is increasingly

challenged [56], and future research using for example metagenomic sequencing

may investigate the reliability of urine culture results in confirming the presence of

uropathogens in routine practice. To this end, I have received funding for a pilot

project that prospectively compares model predictions, urine culture results, and

results from 16S metagenomic sequencing. The proposed analysis will undertake

metagenomic sequencing in a small number of urine samples to investigate the

presence of uropathogens in individuals with negative culture results but who were

predicted to have likely bacteriuria by the statistical model.

In conclusion, this thesis has shown that there may be scope to use

routinely-collected EHR data to investigate community-onset UTI. However,

deriving insights on the diagnosis and treatment of UTIs from EHR data is currently

curtailed by a difficulty to ascertain patient state and treatment decisions. Results

from EHR studies to date need to be interpreted carefully and critically, especially

when assessing treatment effects. A combination of improved data collection,

more comprehensive linkage of data sources, tailored statistical methodologies, and

further validation studies will be needed in order to use EHR data to derive reliable

and reproducible conclusions on the management of community-onset UTI.
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Review data extraction form

The following data extraction template was used to chart data from each full-text

article included in the scoping review presented in Chapter 2, as per Preferred

Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping

Reviews (PRISMA-ScR) Checklist (Appendix G).

Table A.1: Review data extraction form

Study characteristics

Author(s)

Year of publication

Healthcare setting

© Community

© Primary care

© Hospital (emergency department)

© Hospital (outpatient clinic)

© Hospital (inpatient ward)

Geographical location

© US

© UK

© Europe: _____

© Other: _____

Participants

Definition of

community-onset UTI

© Recorded symptoms of UTI

© Recorded diagnosis of UTI

© Urinalysis requested

© Urine culture requested

© Prescription of antibiotics
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Other inclusion/exclusion

criteria

Number of included patients

(or samples)

Methodology

Exposures (if any)

Covariates

Outcomes

Statistical methods

Results

Summary of key findings
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Appendix C

Risk of bias appraisal tools

Studies included in the scoping review in Chapter 2 were assessed for risk

of bias using two commonly used risk assessment tools: an adaption of the

well-known Newcastle - Ottawa Quality Assessment Scale (NOS) for cohort studies

of exposures, and the recently developed Prediction model Risk of Bias Assessment

Tool (PROBAST) for studies that developed or evaluated clinical prediction models.

A template for both tools is presented below.

C.1 Risk of bias in cohort studies of exposures
The following tool was proposed by Busse and Guyatt [103] and is based on the

popular Newcastle - Ottowa Quality Assessment Scale (NOS). This tool was chosen

over the traditional NOS due to its broader assessment of the quality of all predictors

(and not only the exposure) and because it explicitly distinguishes between risk

of bias — i.e., risk to the internal validity of the study – and applicability of the

study results to the review question. The tool used in this thesis was restructured to

align with the four categories of the Prediction model Risk of Bias Assessment Tool

(PROBAST) — participants, predictors, outcomes, analysis (see Section C.2 below)

— and additionally included an appraisal regarding the applicability of study results

to the review question.
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Table C.1: Adapted Newcastle - Ottowa Quality Assessment Scale

DOMAIN 1: Participants

A. Risk of Bias

Describe the sources of data and criteria for participant selection:

1.1 Was selection of exposed and non-exposed cohorts drawn from the same

population?

1.2 Were co-interventions similar between groups?

Risk of bias introduced by selection of participants RISK:

(low/high/unclear)

Rationale of bias rating:

B. Applicability

Describe included participants, setting and dates:

1.3 Was the exposed cohort representative of the average patient?

Concern that the included participants and setting do not

match the review question

CONCERN:

(low/high/unclear)

Rationale of applicability rating:

DOMAIN 2: Predictors

A. Risk of Bias

List and describe the exposure and other prognostic factors included in the final model,

e.g. definition and timing of assessment:

2.1 Can we be confident in the assessment of exposure?

2.2 Can we be confident in the assessment of the presence or absence of

prognostic factors?
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Risk of bias introduced by predictors or their assessment RISK:

(low/high/unclear)

Rationale of bias rating:

B. Applicability

Concern that the definition, assessment or timing of

predictors in the model do not match the review question

CONCERN:

(low/high/unclear)

Rationale of applicability rating:

DOMAIN 3: Outcomes

A. Risk of Bias

Describe the outcome(s), how it was defined and determined, and the time interval between

predictor assessment and outcome determination:

3.1 Can we be confident that the outcome of interest was not present at start of

study?

3.2 Can we be confident in the assessment of outcome?

Risk of bias introduced by the outcome or its determination RISK:

(low/high/unclear)

Rationale of bias rating:

B. Applicability

At what time point was the outcome determined:

If a composite outcome was used, describe the relative frequency/distribution of each

contributing outcome:

3.3 Was the follow up of cohorts adequate?

Concern that the outcome, its definition, timing or

determination do not match the review question

CONCERN:

(low/high/unclear)

Rationale of applicability rating:
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DOMAIN 4: Analysis

A. Risk of Bias

Describe numbers of participants, number of predictors, outcome events and events

per predictor:

Describe how the model was developed (for example in regards to modelling technique

(e.g. survival or logistic modelling), predictor selection, and risk group definition):

Describe missing data on predictors and outcomes as well as methods used for missing data:

4.1 Did the study match exposed and unexposed for all variables that are

associated with the outcome of interest or did the statistical analysis adjust for

these prognostic variables?

Risk of bias introduced by the analysis RISK:

(low/high/unclear)

Rationale of bias rating:

C.2 Risk of bias in risk prediction studies
Wolff et al. (2019) [104] recently proposed a novel tool to assess the risk of

bias in studies developing (and/or evaluating) clinical risk prediction models: the

Prediction model Risk of Bias Assessment Tool (PROBAST). The tool was used

without further adaption to assess the risk of bias in risk prediction studies reviewed

in Chapter 2.

Table C.2: Prediction model Risk of Bias Assessment Tool (PROBAST)

DOMAIN 1: Participants

A. Risk of Bias

Describe the sources of data and criteria for participant selection:
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Dev Val

1.1 Were appropriate data sources used, e.g. cohort, RCT or nested

case-control study data?

1.2 Were all inclusions and exclusions of participants appropriate?

Risk of bias introduced by selection of participants RISK:

(low/high/unclear)

Rationale of bias rating:

B. Applicability

Describe included participants, setting and dates:

Concern that the included participants and setting do

not match the review question

CONCERN:

(low/high/unclear)

Rationale of applicability rating:

DOMAIN 2: Predictors

A. Risk of Bias

List and describe predictors included in the final model, e.g. definition and timing of assessment:

Dev Val

2.1 Were predictors defined and assessed in a similar way for all

participants?

2.2 Were predictor assessments made without knowledge of outcome data?

2.3 Are all predictors available at the time the model is intended to be

used?

Risk of bias introduced by predictors or their

assessment

RISK:

(low/high/unclear)

Rationale of bias rating:

B. Applicability

Concern that the definition, assessment or timing of

predictors in the model do not match the review

question

CONCERN:

(low/high/unclear)
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Rationale of applicability rating:

DOMAIN 3: Outcomes

A. Risk of Bias

Describe the outcome, how it was defined and determined, and the time interval between

predictor assessment and outcome determination:

Dev Val

3.1 Was the outcome determined appropriately?

3.2 Was a pre-specified or standard outcome definition used?

3.3 Were predictors excluded from the outcome definition?

3.4 Was the outcome defined and determined in a similar way for all

participants?

3.5 Was the outcome determined without knowledge of predictor

information?

3.6 Was the time interval between predictor assessment and outcome

determination appropriate?

Risk of bias introduced by the outcome or its

determination

RISK:

(low/high/unclear)

Rationale of bias rating:

B. Applicability

At what time point was the outcome determined:

If a composite outcome was used, describe the relative frequency/distribution of each

contributing outcome:

Concern that the outcome, its definition, timing or

determination do not match the review question

CONCERN:

(low/high/unclear)

Rationale of applicability rating:

DOMAIN 4: Analysis



C.2. Risk of bias in risk prediction studies 242

A. Risk of Bias

Describe numbers of participants, number of candidate predictors, outcome events and events

per candidate predictor:

Describe how the model was developed (for example in regards to modelling technique

(e.g. survival or logistic modelling), predictor selection, and risk group definition):

Describe whether and how the model was validated, either internally (e.g. bootstrapping,

cross validation, random split sample) or externally (e.g. temporal validation,

geographical validation, different setting, different type of participants):

Describe the performance measures of the model, e.g. (re)calibration, discrimination,

(re)classification, net benefit, and whether they were adjusted for optimism:

Describe any participants who were excluded from the analysis:

Describe missing data on predictors and outcomes as well as methods used for missing data:

Dev Val

4.1 Were there a reasonable number of participants with the outcome?

4.2 Were continuous and categorical predictors handled appropriately?

4.3 Were all enrolled participants included in the analysis?

4.4 Were participants with missing data handled appropriately?

4.5 Was selection of predictors based on univariable analysis avoided?

4.6 Were complexities in the data (e.g. censoring, competing risks,

sampling of controls) accounted for appropriately?

4.7 Were relevant model performance measures evaluated appropriately?

4.8 Were model overfitting and optimism in model performance accounted

for?
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4.9 Do predictors and their assigned weights in the final model correspond

to the results from multivariable analysis?

Risk of bias introduced by the analysis RISK:

(low/high/unclear)

Rationale of bias rating:
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Propensity score analysis and coarsened

exact matching

Retrospective observational studies of treatment effects are at high risk of

confounding by indication due to the non-random assignment of medications.

Clinicians’ decisions to prescribe are likely influenced by clinical and social

contexts. Applied to the case study in Chapter 4, this might lead to biases of

uncertain direction. If delayed or withheld prescribing was systematically chosen

for patients at the lowest risk of complications, the protective effect of antibiotics

would be underestimated. In contrast, if a failure to record antibiotics in certain

situations like home visits leads to patients at the highest risks to be wrongly

classified as having received no antibiotics, the protective effect of antibiotics

would instead be overestimated. These biases are caused by an imbalance in patient

characteristics, where certain types of patients — e.g., the very sick — are mostly

found in one treatment group and not the other.

In Chapter 4, I used matching and weighting techniques (propensity score [PS]

matching or weighting and coarsened exact matching [CEM]) to try and account

for these imbalances [168]. The following tables and figures present in-depth

results from PS and CEM relating to the analyses in Chapter 4. Table D.1 presents

univariate differences in covariates before (raw data) and after matching procedures

were applied. Figure D.1 shows the distribution of the multivariate imbalance

measure L1 across 250 random draws of bins, as recommended in Iacus, King &

Porro (2011) [166]. Creating such a figure is helpful, since value of L1 depends

on the (arbitrary) choice of bins [166]. The L1 values reported in Table 4.5
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Table D.1: Standardised differences (continuous variables) and χ2 distances (categorical
variables) in the raw data, after one-to-one PS matching, and after CEM.

Raw data PS matching CEM

Continuous variables
Age (per 5 years) -0.354 0.289 -1.088
CCI -0.097 0.003 -0.230
Number of hospital stays (per 5)1 -0.015 0.000 -0.007
Number of nights in hospital (per 7)1 -0.114 0.004 -0.045
Number of ED visits (per 5) -0.026 0.001 -0.016

Categorical variables
IMD 65.442 2.355 155.120
Geographical region 14.265 2.579 92.428
Financial year 40.476 3.780 25.318
Smoking status 53.123 59.369 73.423
Recurrent UTI 2241.674 0.117 3821.223
Recent antibiotic2 6014.463 21.515 7196.474
Index event was home visit 3734.163 40.046 1992.171
Recent hospitalisation2 233.385 0.041 1136.282
Recent ED visit2 1466.154 0.949 1802.357

1 Within 12 months prior to episode start. 2 Within 30 days prior to episode start.

CCI, Charlson Comorbidity Index; CEM, coarsened exact matching; ED, emergency department; IMD,
Index of Multiple Deprivation; PS, propensity score; UTI, urinary tract infection.

correspond to the median value in the raw data (dotted red line in Figure D.1).

Using these rebalanced data, Tables D.2–D.5 show generalised estimating equations

results for the analysis of an association between delayed or withheld antibiotic

prescribing and risk of progression to severe urinary tract infection (Table D.2),

death (Table D.3), hospitalisation for lower respiratory tract infection (Table D.4),

and hospitalisations for other reasons (Table D.5).
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Table D.2: Multivariable associations between delayed or withheld antibiotic prescribing
for UTI and progression to severe UTI within 30 days, adjusting for covariates using GEEs
and Huber-White sandwich estimators and re-balancing via PS or CEM.

PS matching PS weighting CEM3

aOR (95%-CI) aOR (95%-CI) aOR (95%-CI)

Delayed / withheld prescribing 1.57 (1.44–1.71) 1.49 (1.41–1.58) 1.87 (1.72–2.04)

Age (per 5 years) 1.11 (1.10–1.13) 1.08 (1.08–1.09) 1.09 (1.08–1.10)

IMD quintiles
Q1 1 1 1
Q2 1.07 (0.94–1.21) 1.11 (1.04–1.17) 1.14 (1.04–1.26)
Q3 1.09 (0.96–1.24) 1.15 (1.09–1.22) 1.20 (1.09–1.33)
Q4 1.14 (0.99–1.31) 1.29 (1.21–1.37) 1.26 (1.13–1.41)
Q5 1.25 (1.09–1.45) 1.40 (1.31–1.49) 1.14 (1.01–1.29)

Region
South 1 1 1
London 0.92 (0.80–1.08) 1.00 (0.94–1.07) 0.95 (0.83–1.08)
Midlands and East 1.04 (0.93–1.15) 1.07 (1.02–1.12) 1.17 (1.08–1.26)
North and Yorkshire 0.94 (0.84–1.06) 1.06 (1.01–1.11) 1.03 (0.93–1.13)

Financial year
2007 0.82 (0.69–0.98) 0.99 (0.92–1.07) 0.88 (0.77–1.00)
2008 0.98 (0.84–1.16) 1.08 (1.01–1.16) 0.93 (0.82–1.07)
2009 1.00 (0.85–1.17) 1.05 (0.98–1.12) 1.04 (0.92–1.18)
2010 1 1 1
2011 1.00 (0.85–1.17) 0.99 (0.92–1.06) 0.97 (0.85–1.10)
2012 1.00 (0.85–1.18) 0.91 (0.85–0.98) 1.03 (0.91–1.18)
2013 0.89 (0.75–1.05) 1.02 (0.95–1.10) 1.03 (0.91–1.18)
2014 1.07 (0.90–1.28) 0.96 (0.89–1.04) 1.11 (0.96–1.28)

CCI 1.11 (1.09–1.14) 1.14 (1.13–1.15) 1.16 (1.13–1.18)
Smoking status

Non-smoker 1 1 1
Ex-smoker 0.97 (0.88–1.07) 1.05 (1.00–1.10) 0.94 (0.86–1.03)
Smoker 1.20 (1.04–1.37) 1.35 (1.28–1.43) 1.17 (1.05–1.31)

Recurrent UTI 1.11 (1.01–1.22) 0.76 (0.72–0.80) 1.12 (1.02–1.23)

Recent antibiotic1 1.18 (1.08–1.30) 1.17 (1.12–1.22) 1.36 (1.24–1.49)
Index event was home visit 1.98 (1.75–2.25) 2.04 (1.89–2.20) 3.31 (2.75–3.99)
Hospital stays

Recent hospitalisation1 1.24 (1.07–1.45) 1.81 (1.70–1.92) 1.92 (1.37–2.70)
Number of stays (per 5)2 2.46 (1.98–3.06) 2.87 (2.54–3.24) -
Number of nights (per 7)2 1.04 (1.02–1.06) 1.02 (1.02–1.03) 1.09 (1.03–1.15)

ED visits
Recent visit1 1.45 (1.23–1.70) 1.36 (1.23–1.50) -
Number of visits (per 5)2 0.98 (0.87–1.11) 1.25 (1.18–1.33) 3.20 (2.37–4.33)

1 Within 30 days prior to episode start.
2 Within 12 months prior to episode start.
3 ED visit in the prior 30 days and number of hospitalisations in the prior year where excluded as covariates in the CEM
analysis due to small remaining numbers after matching.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; CCI, Charlson Comorbidity Index; CEM, coarsened exact
matching; ED, emergency department; GEE, generalised estimating equations; IMD, Index of Multiple Deprivation; PS,
propensity score; UTI, urinary tract infection.



247

Table D.3: Multivariable associations between delayed or withheld antibiotic prescribing
for UTI and death within 30 days, adjusting for covariates using GEEs and Huber-White
sandwich estimators and re-balancing via PS or CEM.

PS matching PS weighting CEM3

aOR (95%-CI) aOR (95%-CI) aOR (95%-CI)

Delayed / withheld prescribing 1.31 (1.13–1.53) 1.49 (1.41–1.58) 1.45 (1.21–1.74)

Age (per 5 years) 1.52 (1.46–1.57) 1.08 (1.08–1.09) 1.95 (1.87–2.04)

IMD quintiles
Q1 1 1 1
Q2 1.07 (0.85–1.33) 1.11 (1.04–1.17) 1.18 (0.96–1.46)
Q3 1.08 (0.86–1.36) 1.15 (1.09–1.22) 1.43 (1.16–1.76)
Q4 1.35 (1.07–1.71) 1.29 (1.21–1.37) 1.30 (1.02–1.67)
Q5 1.22 (0.94–1.58) 1.40 (1.31–1.49) 1.36 (1.01–1.82)

Region
South 1 1 1
London 0.57 (0.41–0.78) 1.00 (0.94–1.07) 0.49 (0.32–0.75)
Midlands and East 0.95 (0.80–1.14) 1.07 (1.02–1.12) 0.91 (0.77–1.08)
North and Yorkshire 0.96 (0.78–1.17) 1.06 (1.01–1.11) 0.79 (0.63–0.99)

Financial year
2007 0.95 (0.71–1.28) 0.99 (0.92–1.07) 1.28 (0.99–1.67)
2008 0.88 (0.66–1.19) 1.08 (1.01–1.16) 0.90 (0.68–1.20)
2009 1.05 (0.79–1.39) 1.05 (0.98–1.12) 1.02 (0.77–1.35)
2010 1 1 1
2011 1.03 (0.77–1.37) 0.99 (0.92–1.06) 0.80 (0.59–1.07)
2012 1.12 (0.84–1.48) 0.91 (0.85–0.98) 1.03 (0.77–1.36)
2013 0.81 (0.60–1.11) 1.02 (0.95–1.10) 0.79 (0.57–1.07)
2014 1.05 (0.77–1.43) 0.96 (0.89–1.04) 0.99 (0.72–1.35)

CCI 1.19 (1.16–1.23) 1.14 (1.13–1.15) 1.14 (1.09–1.19)
Smoking status

Non-smoker 1 1 1
Ex-smoker 0.99 (0.83–1.17) 1.05 (1.00–1.10) 0.99 (0.82–1.20)
Smoker 1.36 (1.00–1.86) 1.35 (1.28–1.43) 2.23 (1.48–3.35)

Recurrent UTI 0.77 (0.65–0.92) 0.76 (0.72–0.80) 0.75 (0.60–0.94)

Recent antibiotic1 1.10 (0.94–1.29) 1.17 (1.12–1.22) 1.28 (1.05–1.55)
Index event was home visit 2.13 (1.80–2.53) 2.04 (1.89–2.20) 2.22 (1.74–2.83)
Hospital stays

Recent hospitalisation1 1.89 (1.48–2.40) 1.81 (1.70–1.92) 1.82 (0.66–4.99)
Number of stays (per 5)2 2.55 (1.65–3.94) 2.02 (1.58–2.60) -
Number of nights (per 7)2 1.05 (1.02–1.07) 1.02 (1.02–1.03) 1.09 (1.00–1.19)

ED visits
Recent visit1 1.15 (0.86–1.55) 1.36 (1.14–1.62) -
Number of visits (per 5)2 0.65 (0.44–0.97) 1.25 (1.18–1.33) 0.91 (0.36–2.31)

1 Within 30 days prior to episode start.
2 Within 12 months prior to episode start.
3 ED visit in the prior 30 days and number of hospitalisations in the prior year where excluded as covariates in the CEM
analysis due to small remaining numbers after matching.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; CCI, Charlson Comorbidity Index; CEM, coarsened exact
matching; ED, emergency department; IMD, Index of Multiple Deprivation; PS, propensity score; UTI, urinary tract infection.
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Table D.4: Multivariable associations between delayed or withheld antibiotic prescribing
for UTI and hospitalisation for LRTI within 30 days, adjusting for covariates using GEEs
and Huber-White sandwich estimators and re-balancing via PS or CEM.

PS matching PS weighting CEM3

aOR (95%-CI) aOR (95%-CI) aOR (95%-CI)

Delayed / withheld prescribing 1.34 (1.02–1.76) 1.49 (1.41–1.58) 1.62 (1.20– 2.18)

Age (per 5 years) 1.32 (1.25–1.38) 1.08 (1.08–1.09) 1.37 (1.31– 1.43)

IMD quintiles
Q1 1 1 1
Q2 1.06 (0.69–1.62) 1.11 (1.04–1.17) 1.01 (0.70– 1.47)
Q3 1.44 (0.96–2.16) 1.15 (1.09–1.22) 1.39 (0.98– 1.97)
Q4 1.37 (0.89–2.12) 1.29 (1.21–1.37) 1.74 (1.20– 2.53)
Q5 1.11 (0.68–1.79) 1.40 (1.31–1.49) 1.75 (1.14– 2.69)

Region
South 1 1 1
London 0.75 (0.45–1.25) 1.00 (0.94–1.07) 0.69 (0.39– 1.20)
Midlands and East 1.03 (0.74–1.43) 1.07 (1.02–1.12) 0.99 (0.75– 1.31)
North and Yorkshire 1.05 (0.73–1.51) 1.06 (1.01–1.11) 0.97 (0.70– 1.35)

Financial year
2007 0.67 (0.38–1.21) 0.99 (0.92–1.07) 0.68 (0.43– 1.07)
2008 0.92 (0.54–1.54) 1.08 (1.01–1.16) 0.80 (0.52– 1.24)
2009 0.95 (0.57–1.60) 1.05 (0.98–1.12) 0.93 (0.61– 1.41)
2010 1 1 1
2011 1.13 (0.69–1.87) 0.99 (0.92–1.06) 0.85 (0.55– 1.30)
2012 1.20 (0.73–1.97) 0.91 (0.85–0.98) 0.88 (0.57– 1.35)
2013 1.08 (0.64–1.82) 1.02 (0.95–1.10) 0.60 (0.36– 0.99)
2014 0.92 (0.52–1.66) 0.96 (0.89–1.04) 0.77 (0.46– 1.29)

CCI 1.13 (1.06–1.20) 1.14 (1.13–1.15) 1.14 (1.06– 1.22)
Smoking status

Non-smoker 1 1 1
Ex-smoker 1.08 (0.79–1.48) 1.05 (1.00–1.10) 1.07 (0.80– 1.43)
Smoker 2.36 (1.56–3.58) 1.35 (1.28–1.43) 1.94 (1.25– 3.01)

Recurrent UTI 0.66 (0.47–0.91) 0.76 (0.72–0.80) 0.74 (0.52– 1.05)

Recent antibiotic1 1.23 (0.93–1.64) 1.17 (1.12–1.22) 1.57 (1.15– 2.12)
Index event was home visit 1.34 (0.93–1.94) 2.04 (1.89–2.20) 2.70 (1.67– 4.39)
Hospital stays

Recent hospitalisation1 1.17 (0.74–1.85) 1.81 (1.70–1.92) 4.02 (1.48–10.96)
Number of stays (per 5)2 2.98 (1.75–5.07) 2.12 (1.52–2.96) -
Number of nights (per 7)2 1.05 (1.01–1.09) 1.02 (1.02–1.03) 0.99 (0.78– 1.26)

ED visits
Recent visit1 1.40 (0.87–2.27) 1.30 (0.97–1.73) -
Number of visits (per 5)2 0.92 (0.73–1.15) 1.25 (1.18–1.33) 1.53 (0.37– 6.22)

1 Within 30 days prior to episode start.
2 Within 12 months prior to episode start.
3 ED visit in the prior 30 days and number of hospitalisations in the prior year where excluded as covariates in the CEM
analysis due to small remaining numbers after matching.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; CCI, Charlson Comorbidity Index; CEM, coarsened exact
matching; ED, emergency department; GEE, generalised estimating equations; IMD, Index of Multiple Deprivation; LRTI,
lower respiratory tract infection; PS, propensity score; UTI, urinary tract infection.
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Table D.5: Multivariable associations between delayed or withheld antibiotic prescribing
for UTI and hospitalisation for reasons unrelated to UTI, LRTI, or bloodstream infection
within 30 days, adjusting for covariates using GEEs and Huber-White sandwich estimators
and re-balancing via PS or CEM.

PS matching PS weighting CEM3

aOR (95%-CI) aOR (95%-CI) aOR (95%-CI)

Delayed / withheld prescribing 1.39 (1.29–1.50) 1.49 (1.41–1.58) 1.58 (1.46–1.70)

Age (per 5 years) 1.09 (1.08–1.10) 1.08 (1.08–1.09) 1.09 (1.08–1.10)

IMD quintiles
Q1 1 1 1
Q2 1.10 (0.98–1.23) 1.11 (1.04–1.17) 1.06 (0.97–1.15)
Q3 1.17 (1.04–1.31) 1.15 (1.09–1.22) 1.16 (1.06–1.26)
Q4 1.40 (1.25–1.58) 1.29 (1.21–1.37) 1.27 (1.16–1.39)
Q5 1.46 (1.29–1.65) 1.40 (1.31–1.49) 1.53 (1.39–1.68)

Region
South 1 1 1
London 0.89 (0.79–1.02) 1.00 (0.94–1.07) 0.96 (0.86–1.07)
Midlands and East 1.07 (0.98–1.17) 1.07 (1.02–1.12) 1.09 (1.02–1.16)
North and Yorkshire 1.00 (0.90–1.10) 1.06 (1.01–1.11) 1.06 (0.99–1.15)

Financial year
2007 1.03 (0.89–1.19) 0.99 (0.92–1.07) 1.00 (0.90–1.12)
2008 1.13 (0.98–1.30) 1.08 (1.01–1.16) 1.04 (0.93–1.15)
2009 1.10 (0.96–1.26) 1.05 (0.98–1.12) 1.06 (0.95–1.17)
2010 1 1 1
2011 1.01 (0.88–1.17) 0.99 (0.92–1.06) 0.99 (0.89–1.10)
2012 0.91 (0.79–1.06) 0.91 (0.85–0.98) 0.85 (0.76–0.95)
2013 1.11 (0.96–1.28) 1.02 (0.95–1.10) 0.93 (0.83–1.04)
2014 0.93 (0.79–1.09) 0.96 (0.89–1.04) 0.98 (0.87–1.11)

CCI 1.13 (1.11–1.15) 1.14 (1.13–1.15) 1.19 (1.16–1.21)
Smoking status

Non-smoker 1 1 1
Ex-smoker 1.08 (0.99–1.18) 1.05 (1.00–1.10) 1.00 (0.93–1.08)
Smoker 1.39 (1.24–1.54) 1.35 (1.28–1.43) 1.31 (1.21–1.43)

Recurrent UTI 0.71 (0.65–0.78) 0.76 (0.72–0.80) 0.67 (0.61–0.73)

Recent antibiotic1 1.08 (0.99–1.17) 1.17 (1.12–1.22) 1.18 (1.08–1.28)
Index event was home visit 1.92 (1.72–2.15) 2.04 (1.89–2.20) 2.41 (2.01–2.89)
Hospital stays

Recent hospitalisation1 1.71 (1.52–1.91) 1.81 (1.70–1.92) 2.43 (1.88–3.14)
Number of stays (per 5)2 4.10 (3.43–4.91) 4.64 (4.19–5.14) -
Number of nights (per 7)2 1.01 (1.00–1.03) 1.02 (1.02–1.03) 1.07 (1.02–1.13)

ED visits
Recent visit1 1.55 (1.37–1.76) 1.58 (1.47–1.70) -
Number of visits (per 5)2 1.13 (1.03–1.24) 1.25 (1.18–1.33) 5.16 (4.00–6.67)

1 Within 30 days prior to episode start.
2 Within 12 months prior to episode start.
3 ED visit in the prior 30 days and number of hospitalisations in the prior year where excluded as covariates in the CEM
analysis due to small remaining numbers after matching.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; CCI, Charlson Comorbidity Index; CEM, coarsened exact
matching; ED, emergency department; GEE, generalised estimating equations; IMD, Index of Multiple Deprivation; LRTI,
lower respiratory tract infection; PS, propensity score; UTI, urinary tract infection.
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Figure D.1: L1 profile of the raw data from Chapter 4 (red line) compared to balanced data
after PS matching, PS weighting, and CEM, evaluated in 250 randomly chosen bins H and
ordered by the value of L1 in the raw data.

CEM, coarsened exact matching; IPTW, inverse probability of treatment weighting; PS, propensity score.



Appendix E

Comparison of pre-processing and

imputation methods

Many different data pre-processing and imputation methods could have been chosen

to prepare the data in Chapter 5 for analysis. I chose to apply a selection of

commonly used pre-processing steps (identity, log transformation, Yeo-Johnson

transformation) and imputation approaches (mean imputation, k-nearest neighbour

imputation, kmeans imputation, multiple imputation), and compare their relative

performances. A summary of my results were reported in Chapter 5. More detailed

results of these sensitivity analyses are presented below.

E.1 Pre-processing steps
The choice of transformations prior to model fitting in Chapter 5 had a strong

impact on the performance of linear models. Logistic regression (LR) that received

raw, — i.e., not transformed — data had much lower estimated performance of

in terms of its area under the receiver operating characteristic (AUROC): .661

(95% CI .654–.668; Table E.1). Tree-based models performed similar irrespective

of which transformation was used. A log transformation of all urinalysis and

lab data except those representing percentages achieved the best discriminatory

performance across models and was therefore presented in Tables 5.6 and 5.8. A

more flexible Yeo-Johnson transformation, which automatically chooses the best

power transformations, performed very similar to the simpler log transformation.

A gradient boosting tree following a Yeo-Johnson transformation achieved an

identical performance of AUROC .808 (95% CI .802–.814), but the transformation

led to slightly worse performance with other algorithms like LR.
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Table E.1: Discriminative performance during internal validation for LR and XGB models
by pre-processing method

LR XGB

Transformation AUROC (95% CI) AUROC (95% CI)

Raw / identity .661 (.654–.668) .808 (.802–.814)
Log transformation .788 (.782–.793) .808 (.802–.814)
Yeo-Johnson transformation .785 (.779–.791) .808 (.802–.814)

Note: All models presented in this table used mean imputation. Performance metrics represent
performance of the best hyperparameter combination during internal validation.

95% CI, 95% confidence interval; AUROC, area under the receiver operating characteristic;
LR, logistic regression; XGB, extreme gradient boosting tree.

E.2 Imputation methods
The addition of more complex imputation methods did not improve the estimated

performance of the model (Table E.2). Models trained on data imputed with a

KNN approach with a preset size of 5 neighbours achieved a peak performance

of AUROC of .805 (95% CI .799–.810) which was comparable but slightly lower

than the performance estimated for simple mean imputation with missing indicator

variables. Similarly, the k-means binning strategy used previously by Taylor et

al. (2018) [109] did not improve performance and resulted in a peak AUROC of

.779 (95% CI .774–.785). Due to its increased computational burden, multiple

imputation was only applied for LR which doesn’t require hyperparameter tuning.

Using multiple imputation led to significantly lower performance estimates of

AUROC .643 (95% CI .634–.652) for LR.

Since the sub-par performance of multiple imputation was quite surprising, a

careful re-examination of the source code was performed to exclude implementation

errors as a possible source of discrepancy but no errors could be identified. A

possible explanation for these findings might be the fact that almost all of the

model performance appeared to be derived from urinalysis parameters. Predictions

for patients with missing data on these variables were therefore generally poor,

particularly if all urinalysis parameters were jointly missing as was usually the

case (Figure 5.3). As briefly discussed in the methods section, the main reason

for missing information on urinalysis parameters were high urine viscosity or a

low urine sample quantity. No other variable measured in the ED was strongly
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Table E.2: Discriminative performance during internal validation for LR and XGB by
imputation method (after log-transformation).

LR XGB

Imputation method AUROC (95% CI) AUROC (95% CI)

Mean imputation .788 (.782–.793) .808 (.802–.814)
k-nearest neighbour .786 (.781–.792) .805 (.799–.810)
k-means .777 (.771–.783) .779 (.774–.785)
Multiple imputation .643 (.634–.652) -

Note: All models presented in this table used log transformation. Performance
metrics represent performance of the best hyperparameter combination during
internal validation.

95% CI, 95% confidence interval; AUROC, area under the receiver operating
characteristic; LR, logistic regression; XGB, extreme gradient boosting tree.

associated with the probability of urinalysis parameters being missing or the values

of urinalysis parameters, preventing more sophisticated imputation procedures

from capitalising on correlation structures between predictors. Consequently, it is

possible that a combination of mean imputation and missing indicators was the

best — or at least most efficient — representation of the missing pattern in this

dataset. The even larger drop in model performance when using multiple imputation

on all predictors might be explained by the extremely high proportion of missing

values among vital signs and laboratory measurements. While these values would

be largely ignored by classification algorithms using mean imputation, multiple

imputation captures the large uncertainty surrounding those values and propagates

them to the classification algorithm. This might cause a substantial increase of

random noise without any increase in true signals, leading to the drop in observed

performance.



Appendix F

Agreement between coded diagnoses and

case notes in the ED

In Chapters 5 and 6, I relied on the correctness of clinical coding in the emergency

department (ED). Patients who had a recorded diagnosis of lower urinary tract

infection (UTI), pyelonephritis, or urosepsis were considered to have a suspected

UTI. However, as briefly touched upon throughout the analysis chapters, a recorded

diagnosis of UTI might represent a variety of cases, ranging from elderly patients

presenting with confusion to young women with urinary symptoms such as dysuria

and haematuria. These characteristics, in turn, might influence the a priori

probability of positive bacterial growth during culture and change the interpretation

of model predictions when using it in clinical practice — e.g., in the case of likely

asymptomatic bacteriuria (see Chapter 1). In this additional analysis, I therefore

compared recorded ED diagnoses to manually curated information documented in

patients’ case notes, evaluating whether ED diagnosis of UTI at Queen Elizabeth

Hospital Birmingham (QEHB) can be interpreted as clear suspicion of UTI or

whether it describes a heterogeneous patient population.

Data: In a pilot study prior to the analysis presented in Chapter 5, I previously

selected a random subset of 1,000 patients (300 patients discharged from the ED and

700 patients admitted to hospital) who visited the ED at QEHB between January

2014 and May 2017 and who had a urine sample submitted for microbiological

culture within 48 hours of arrival in hospital [24]. After excluding children,

patients directly referred to specialist care, and patients without a valid hospital
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record or identifier, 943 patients were included in this pilot study1. Case notes

recorded in the ED were manually reviewed by Dr Laura Shallcross, extracting

all recorded free-text information on urinary symptoms (dysuria, haematuria,

frequency, urgency, hesitancy, and difficulty), relevant pain (abdominal, back, flank,

loin, and suprapubic), fever, and vomiting. A detailed description of the data can be

found in Shallcross et al. (2020) [24].

Methods: Re-analysing the above data, I assessed the sensitivity, specificity,

and positive predictive value (PPV) of ED diagnoses for UTI (lower UTI,

pyelonephritis, and urosepsis) at QEHB in reflecting recorded evidence of UTI

in ED case notes, defined as presence of at least two urinary symptoms, or a single

urine symptom and relevant pain. Coding reliability was assessed for a combined

category of UTI (lower UTI, pyelonephritis, or urosepsis), as well as for every

condition individually. Approximate 95% confidence intervals (95% CI) were

calculated by bootstrapping the original data 1,000 times and taking the 2.5% and

97.5% percentiles.

Results: Out of the random selection of 943 ED patients who had a urine sample

submitted for microbiological culture, 307 (32.6%) patients had a coded ED

diagnosis of UTI and 162 (17.2%) had evidence of UTI recorded in their case

notes (Figure F.1 A). The most commonly recorded urinary symptom in the case

notes was dysuria (151; 16.0%) followed by urinary frequency (98; 10.4%) and

haematuria (54; 5.7%; Table F.1). Most urinary symptoms as well as pain and

fever were positively associated with an ED diagnosis of UTI. ED diagnosis of

UTI had a sensitivity of 61.7% (95% CI 54.4–69.1) and a PPV of 32.6% (95% CI

27.3–37.9) when using it to identify patients with evidence of UTI in their case

notes (Figure F.1 A). Specificity of diagnosis codes was higher but still limited at

73.5% (95% CI 70.5–76.8). The reliability of diagnosis codes varied by condition.

While 45.6% of pyelonephritis cases had evidence of UTI according to case note

review, this was true for only 29.3% of lower UTI and 31.1% of urosepsis cases

1 The patients included in the pilot study overlapped with the cohort used in Chapters 5 and 6.
However, the exact extent of overlap could not be determined since different patient identifiers
were provided for this data extract due to concerns about patient confidentiality.
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Table F.1: Number and proportion of urinary symptoms recorded in the case notes of
943 randomly selected ED patients who had a urine sample submitted for microbiological
culture at QEHB.

All ED diagnosis of UTI p-value1

Yes No

Total number of patients (row-%) 943 (100) 307 (32.6) 636 (67.4)

Urinary symptoms (%)
Dysuria 151 (16.0) 96 (31.5) 55 (8.6) <0.001
Urinary frequency 98 (10.4) 59 (19.2) 39 (6.1) <0.001
Haematuria 54 (5.7) 26 (8.5) 28 (4.4) 0.018
Difficulty urinating 29 (3.1) 11 (3.6) 18 (2.8) 0.670
Urinary urgency 15 (1.6) <10 (<3.3) <10 (<1.6) 0.369
Other urinary symptoms2 32 (3.4) 18 (5.9) 14 (2.2) 0. 007

Pain (%) 223 (23.6) 99 (32.2) 124 (19.5) <0.001
Fever (%) 158 (16.8) 83 (27.0) 75 (11.8) <0.001
Vomiting (%) 154 (16.3) 54 (17.6) 100 (15.7) 0.527

1 Obtained via χ2 tests.
2 Including hesitancy, urinary retention, malodorous urine, and catheter related symptoms.

ED, emergency department; UTI, urinary tract infection.

Figure F.1: Agreement between evidence of UTI recorded in case notes and coded ED
diagnosis for A) UTI / No UTI and B) Lower UTI / Pyelonephritis / Urosepsis / No UTI.

Evidence of UTI in the case notes was defined as the presence of at least two urinary symptoms, or a single urine symptom
and relevant pain. Note that the total number of UTI cases differs between the analysis shown here and that published in
Shallcross et al. (2020) [24], since the published results included additional information collected from the case notes to
determine ED diagnosis.

ED, emergency department; UTI, urinary tract infection.
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(Figure F.1 B). More overall cases (27.7%) would have had evidence of UTI if

fever and vomiting recorded in the case notes were also considered symptoms, but

sensitivity of coded ED diagnoses would have been reduced from 61.7% to 54.4%,

likely due to the large number of alternative causes of these symptoms. Notably, by

including just fever 71.9% of pyelonephritis cases would end up being classified as

having evidence of UTI, highlighting the importance of this symptom for coding of

pyelonephritis in the ED at QEHB. Sensitivity and specificity remained similar but

PPV also improved to 42.3% (95% CI 36.8–47.5) when including fever.

Discussion: There was limited agreement between coded ED diagnosis for

suspected lower UTI, pyelonephritis, and urosepsis in the ED and evidence of

UTI status derived manually from case notes. Only a minority of patients with

a diagnosis of UTI in the ED had clear urinary symptoms documented in their

case notes, whereas many more had diffuse symptoms of local pain, fever, or

vomiting. These findings demonstrate the difficulty of diagnosing UTI in the ED

more generally, and highlight the limitations of determining patient status and

suspected diagnosis from clinical codes alone.



Appendix G

Reporting guidelines

The quality of reporting of medical research in peer-reviewed articles has repeatedly

been found to be poor [105, 169, 170, 200]. In order to promote a more

comprehensive and standardised way of describing research findings in published

literature, reporting checklists have been devised. These checklist aid researchers

by specifying the minimum information that should be included in a manuscript

to allow for a sufficient appraisal of the performed analyses. Over time, separate

checklists have been developed for most major study designs (e.g., randomized

controlled trials, retrospective cohort studies, etc.).

In each chapter of this thesis that described original primary research, I used

the appropriate reporting checklist to ensure all relevant information was included.

For Chapter 2, I used the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) Extension for Scoping Reviews (ScR) statement

[105]. For Chapter 4, I used the the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) statement [169] and the REporting of studies

Conducted using Observational Routinely-collected Data (RECORD) [170], which

extends STROBE for electronic health records research. For Chapter 5, I used the

Transparent Reporting of a multivariable prediction model for Individual Prognosis

Or Diagnosis (TRIPOD) statement [200]. As Chapter 6 primarily presented

sensitivity analyses for Chapter 5, no reporting statement was used. Filled in

statements for each chapter are presented below.
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G.1 PRISMA-ScR checklist (Chapter 2)

Table G.1: PRISMA-ScR reporting checklist for Chapter 2: Use of EHR data to guide
diagnosis and management of suspected community-acquired UTI in adults

Section/Topic PRISMA-ScR item Location

Title

Title Identify the report as a scoping review. Chapter 2

Abstract

Structured

summary

Provide a structured summary that includes (as

applicable): background, objectives, eligibility

criteria, sources of evidence, charting methods,

results, and conclusions that relate to the review

questions and objectives.

Chapter 2

Introduction

Rationale Describe the rationale for the review in the

context of what is already known. Explain why

the review questions/objectives lend themselves

to a scoping review approach.

Sections 2.1 and 2.2

Objectives Provide an explicit statement of the questions

and objectives being addressed with reference to

their key elements (e.g., population or

participants, concepts, and context) or other

relevant key elements used to conceptualize the

review questions and/or objectives.

Section 2.3

Methods

Protocol and

registration

Indicate whether a review protocol exists; state

if and where it can be accessed (e.g., a Web

address); and if available, provide registration

information, including the registration number.

Section 2.3

Eligibility criteria Specify characteristics of the sources of

evidence used as eligibility criteria (e.g., years

considered, language, and publication status),

and provide a rationale.

Sections 2.4.1 and

2.4.2
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Table G.1 Continued: PRISMA-ScR reporting checklist for Chapter 2

Section/Topic PRISMA-ScR item Location

Information sources Describe all information sources in the search

(e.g., databases with dates of coverage and

contact with authors to identify additional

sources), as well as the date the most recent

search was executed.

Section 2.4.3

Search Present the full electronic search strategy for at

least 1 database, including any limits used, such

that it could be repeated.

Table 2.1

Selection of

sources of evidence

State the process for selecting sources of

evidence (i.e., screening and eligibility) included

in the scoping review.

Section 2.4.4

Data charting

process

Describe the methods of charting data from the

included sources of evidence (e.g., calibrated

forms or forms that have been tested by the team

before their use, and whether data charting was

done independently or in duplicate) and any

processes for obtaining and confirming data

from investigators.

Section 2.4.5

Data items List and define all variables for which data were

sought and any assumptions and simplifications

made.

Section 2.4.5

Critical appraisal

of individual

sources of evidence

If done, provide a rationale for conducting a

critical appraisal of included sources of

evidence; describe the methods used and how

this information was used in any data synthesis

(if appropriate).

Section 2.4.6

Synthesis of

results

Describe the methods of handling and

summarizing the data that were charted.

Section 2.4.7

Results

Selection of

sources of evidence

Give numbers of sources of evidence screened,

assessed for eligibility, and included in the

review, with reasons for exclusions at each

stage, ideally using a flow diagram.

Figure 2.1
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Table G.1 Continued: PRISMA-ScR reporting checklist for Chapter 2

Section/Topic PRISMA-ScR item Location

Characteristics of

sources of evidence

For each source of evidence, present

characteristics for which data were charted and

provide the citations.

Table 2.2

Critical appraisal

within sources of

evidence

If done, present data on critical appraisal of

included sources of evidence.

Table 2.3

Results of

individual sources

of evidence

For each included source of evidence, present

the relevant data that were charted that relate to

the review questions and objectives.

Section 2.5.2

Synthesis of

results

Summarize and/or present the charting results as

they relate to the review questions and

objectives.

Section 2.5.2

Discussion

Summary of

evidence

Summarize the main results (including an

overview of concepts, themes, and types of

evidence available), link to the review questions

and objectives, and consider the relevance to key

groups.

Section 2.6

Limitations Discuss the limitations of the scoping review

process.

Section 2.6.1

Conclusions Provide a general interpretation of the results

with respect to the review questions and

objectives, as well as potential implications

and/or next steps.

Section 2.6.2

Funding

Funding Describe sources of funding for the included

sources of evidence, as well as sources of

funding for the scoping review. Describe the

role of the funders of the scoping review.

Not applicable
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G.2 STROBE and RECORD checklists (Chapter 4)

Table G.2: STROBE reporting checklist for Chapter 4: Antibiotic prescribing for lower
UTI in primary care and subsequent risk of infectious complication

Section/Topic STROBE item Location

Title and abstract

Title and

abstract

(a) Indicate the study’s design with a commonly

used term in the title or the abstract

Chapter 4

(b) Provide in the abstract an informative and

balanced summary of what was done and what

was found

Chapter 4

Introduction

Background

rationale

Explain the scientific background and rationale

for the investigation being reported

Section 4.2

Objectives State specific objectives, including any

prespecified hypotheses

Section 4.3

Methods

Study Design Present key elements of study design early in the

paper

Section 4.4

Setting Describe the setting, locations, and relevant

dates, including periods of recruitment,

exposure, follow-up, and data collection

Sections 4.4.1–4.4.6

Participants (a) Cohort study - Give the eligibility criteria,

and the sources and methods of selection of

participants. Describe methods of follow-up

Section 4.4.1

(b) Cohort study - For matched studies, give

matching criteria and number of exposed and

unexposed

Matching was only

performed in

secondary analysis

(Section 4.4.8)

Variables Clearly define all outcomes, exposures,

predictors, potential confounders, and effect

modifiers. Give diagnostic criteria, if applicable.

Sections 4.4.4–4.4.6
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Table G.2 Continued: STROBE reporting checklist for Chapter 4

Section/Topic STROBE item Location

Data sources/

measurement

For each variable of interest, give sources of

data and details of methods of assessment

(measurement). Describe comparability of

assessment methods if there is more than one

group

Sections 4.4.4–4.4.6

Bias Describe any efforts to address potential sources

of bias

Sections 4.4.4 and

4.4.8

Study size Explain how the study size was arrived at Figure 4.2

Quantitative

variables

Explain how quantitative variables were handled

in the analyses. If applicable, describe which

groupings were chosen, and why

Section 4.4.7

Statistical

methods

(a) Describe all statistical methods, including

those used to control for confounding

Section 4.4.8

(b) Describe any methods used to examine

subgroups and interactions

Section 4.4.8

(c) Explain how missing data were addressed Section 4.4.7

(d) Cohort study - If applicable, explain how

loss to follow-up was addressed

Section 4.4.1

(e) Describe any sensitivity analyses Section 4.4.8

Other information

Participants (a) Report the numbers of individuals at each

stage of the study (e.g., numbers potentially

eligible, examined for eligibility, confirmed

eligible, included in the study, completing

follow-up, and analysed)

Figure 4.2

(b) Give reasons for non-participation at each

stage.

Figure 4.2

(c) Consider use of a flow diagram Figure 4.2

Descriptive data (a) Give characteristics of study participants

(e.g., demographic, clinical, social) and

information on exposures and potential

confounders

Table 4.2

(b) Indicate the number of participants with

missing data for each variable of interest

Section 4.4.7
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Table G.2 Continued: STROBE reporting checklist for Chapter 4

Section/Topic STROBE item Location

(c) Cohort study - summarise follow-up time

(e.g., average and total amount)

Section 4.5

Outcome data Cohort study - Report numbers of outcome

events or summary measures over time

Table 4.2

Main results (a) Give unadjusted estimates and, if applicable,

confounder-adjusted estimates and their

precision (e.g., 95% confidence interval). Make

clear which confounders were adjusted for and

why they were included

Table 4.3 and Section

4.4.7

(b) Report category boundaries when continuous

variables were categorized

Only applicable for

coarse matching, see

Section 4.4.8

(c) If relevant, consider translating estimates of

relative risk into absolute risk for a meaningful

time period

Section 4.5

Other analyses Report other analyses done—e.g., analyses of

subgroups and interactions, and sensitivity

analyses

Sections 4.5.2–4.5.4

and Appendix D

Discussion

Key results Summarise key results with reference to study

objectives

Section 4.6

Limitations Discuss limitations of the study, taking into

account sources of potential bias or imprecision.

Discuss both direction and magnitude of any

potential bias

Section 4.6.3

Interpretation Give a cautious overall interpretation of results

considering objectives, limitations, multiplicity

of analyses, results from similar studies, and

other relevant evidence

Section 4.6.4

Generalisability Discuss the generalisability (external validity) of

the study results

Sections 4.7

Other information
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Table G.2 Continued: STROBE reporting checklist for Chapter 4

Section/Topic STROBE item Location

Funding Give the source of funding and the role of the

funders for the present study and, if applicable,

for the original study on which the present

article is based

Not applicable

Table G.3: RECORD reporting checklist for Chapter 4: Antibiotic prescribing for lower
UTI in primary care and subsequent risk of infectious complication

Section/Topic RECORD item Location

Title and abstract

Title and

abstract

a) The type of data used should be specified in

the title or abstract. When possible, the name of

the databases used should be included.

Chapter 4

b) If applicable, the geographic region and

timeframe within which the study took place

should be reported in the title or abstract.

Chapter 4

c) If linkage between databases was conducted

for the study, this should be clearly stated in the

title or abstract.

Chapter 4

Methods

Participants a) The methods of study population selection

(such as codes or algorithms used to identify

subjects) should be listed in detail. If this is not

possible, an explanation should be provided.

Appendix H

b) Any validation studies of the codes or

algorithms used to select the population should

be referenced. If validation was conducted for

this study and not published elsewhere, detailed

methods and results should be provided.

No direct validation

studies exist.

c) If the study involved linkage of databases,

consider use of a flow diagram or other

graphical display to demonstrate the data

linkage process, including the number of

individuals with linked data at each stage.

Section 3.2.1
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Table G.3 Continued: RECORD reporting checklist for Chapter 4

Section/Topic RECORD item Location

Variables A complete list of codes and algorithms used to

classify exposures, outcomes, confounders, and

effect modifiers should be provided. If these

cannot be reported, an explanation should be

provided.

Appendix H

Data access and

cleaning methods

a) Authors should describe the extent to which

the investigators had access to the database

population used to create the study population.

Section 4.4.1

b) Authors should provide information on the

data cleaning methods used in the study.

Sections 4.4.4–4.4.7

Linkage State whether the study included person-level,

institutional-level, or other data linkage across

two or more databases. The methods of linkage

and methods of linkage quality evaluation

should be provided.

Section 3.2.1

Results

Participants Describe in detail the selection of the persons

included in the study (i.e. study population

selection) including filtering based on data

quality, data availability and linkage. The

selection of included persons can be described in

the text and/or by means of the study flow

diagram.

Section 4.4.1 and

Figure 4.2

Discussion

Limitations Discuss the implications of using data that were

not created or collected to answer the specific

research question(s). Include discussion of

misclassification bias, unmeasured confounding,

missing data, and changing eligibility over time,

as they pertain to the study being reported.

Section 4.6.3

Other information
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Table G.3 Continued: RECORD reporting checklist for Chapter 4

Section/Topic RECORD item Location

Accessibility of

protocol, raw data,

and programming

code

Authors should provide information on how to

access any supplemental information such as the

study protocol, raw data, or programming code.

End of chapter
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G.3 TRIPOD checklist (Chapter 5)

Table G.4: TRIPOD reporting checklist for Chapter 5: Using EHR data to predict
bacteriuria in the ED: a case study using data from QEHB

Section/Topic TRIPOD item Location

Title and abstract

Title Identify the study as developing and/or

validating a multivariable prediction model, the

target population, and the outcome to be

predicted.

Not applicable

Abstract Provide a summary of objectives, study design,

setting, participants, sample size, predictors,

outcome, statistical analysis, results, and

conclusions.

Chapter 5

Introduction

Background and

objectives

a) Explain the medical context (including

whether diagnostic or prognostic) and rationale

for developing or validating the multivariable

prediction model, including references to

existing models.

Section 5.2

b) Specify the objectives, including whether the

study describes the development or validation of

the model or both.

Section 5.3

Methods

Source of data a) Describe the study design or source of data

(e.g., randomized trial, cohort, or registry data),

separately for the development and validation

data sets, if applicable.

Section 5.4.1,

identical for

development and

validation datasets

b) Specify the key study dates, including start of

accrual; end of accrual; and, if applicable, end of

follow-up.

Sections 5.4.1 and

5.4.6.4

Participants a) Specify key elements of the study setting

(e.g., primary care, secondary care, general

population) including number and location of

centres.

Section 5.4

b) Describe eligibility criteria for participants. Section 5.4.1
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Table G.4 Continued: TRIPOD reporting checklist for Chapter 5

Section/Topic TRIPOD item Location

c) Give details of treatments received, if

relevant.

Not applicable

Outcome a) Clearly define the outcome that is predicted

by the prediction model, including how and

when assessed.

Section 5.4.4

b) Report any actions to blind assessment of the

outcome to be predicted.

Not applicable

(retrospective data).

Outcome was

predefined in study

protocol [180].

Predictors a) Clearly define all predictors used in

developing or validating the multivariable

prediction model, including how and when they

were measured.

Section 5.4.5

b) Report any actions to blind assessment of

predictors for the outcome and other predictors.

Not applicable

(retrospective data).

Sample size Explain how the study size was arrived at. Figure 5.1

Missing data Describe how missing data were handled (e.g.,

complete-case analysis, single imputation,

multiple imputation) with details of any

imputation method.

Section 5.4.6.2

Statistical

analysis methods

a) Describe how predictors were handled in the

analyses.

Section 5.4.6.2

b) Specify type of model, all model-building

procedures (including any predictor selection),

and method for internal validation.

Sections 5.4.6.3 and

5.4.6.4

c) For validation, describe how the predictions

were calculated.

Sections 5.4.6.3 and

5.4.6.4

d) Specify all measures used to assess model

performance and, if relevant, to compare

multiple models.

Section 5.4.6.4

e) Describe any model updating (e.g.,

recalibration) arising from the validation, if

done.

Section 5.4.6.4
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Table G.4 Continued: TRIPOD reporting checklist for Chapter 5

Section/Topic TRIPOD item Location

Risk groups Provide details on how risk groups were created,

if done.

Not performed.

Development vs.

validation

For validation, identify any differences from the

development data in setting, eligibility criteria,

outcome, and predictors.

Section 5.4.6.4

Results

Participants a) Describe the flow of participants through the

study, including the number of participants with

and without the outcome and, if applicable, a

summary of the follow-up time. A diagram may

be helpful.

Figure 5.1 and Tables

5.2–5.4

b) Describe the characteristics of the participants

(basic demographics, clinical features, available

predictors), including the number of participants

with missing data for predictors and outcome.

Tables 5.2–5.4 and

Figure 5.3

c) For validation, show a comparison with the

development data of the distribution of

important variables (demographics, predictors

and outcome).

Figure 5.2 (for

outcomes) and

Appendix E

Model development a) Specify the number of participants and

outcome events in each analysis.

Section 5.5 and

Figure 5.2

b) If done, report the unadjusted association

between each candidate predictor and outcome.

Tables 5.2–5.5

Model specification a) Present the full prediction model to allow

predictions for individuals (i.e., all regression

coefficients, and model intercept or baseline

survival at a given time point).

Appendix E

b) Explain how to use the prediction model. Appendix E

Model performance Report performance measures (with CIs) for the

prediction model.

Tables 5.6–5.8 and

Figures 5.4–5.7

Model-updating If done, report the results from any model

updating (i.e., model specification, model

performance).

Figures 5.6–5.7
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Table G.4 Continued: TRIPOD reporting checklist for Chapter 5

Section/Topic TRIPOD item Location

Discussion

Limitations Discuss any limitations of the study (such as

non-representative sample, few events per

predictor, missing data).

Section 5.6.3

Interpretation a) For validation, discuss the results with

reference to performance in the development

data, and any other validation data.

Sections 5.6 and

5.6.4

b) Give an overall interpretation of the results,

considering objectives, limitations, results from

similar studies, and other relevant evidence.

Sections 5.6.4 and

5.7

Implications Discuss the potential clinical use of the model

and implications for future research.

Section 5.7

Other information

Supplementary

information

Provide information about the availability of

supplementary resources, such as study

protocol, Web calculator, and data sets.

End of chapter

Funding Give the source of funding and the role of the

funders for the present study.

Not applicable
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Codelists

H.1 Primary care
Diagnoses in primary care were identified using Read codes. Read codes used in

this thesis were based on those used by Gharbi et al. (2019).

H.1.1 Urinary tract infection

Table H.1: Read codes for lower UTI in primary care.

Read code Description

1AG..00 Recurrent urinary tract infections
1J4..00 Suspected UTI
K15..00 Cystitis
K150.00 Acute cystitis
K15z.00 Cystitis NOS
K190.00 Urinary tract infection, site not specified
K190.11 Recurrent urinary tract infection
K190100 Pyuria, site not specified
K190200 Post operative urinary tract infection
K190300 Recurrent urinary tract infection
K190311 Recurrent UTI
K190400 Chronic urinary tract infection
K190500 Urinary tract infection
K190z00 Urinary tract infection, site not specified NOS
SP07700 Infect+inflam react due pros dev, implt+graft in urinary syst
SP07Q00 Catheter associated urinary tract infection
SP07Q11 CAUTI - catheter associated urinary tract infection
K15y.00 Other specified cystitis
K152z00 Other chronic cystitis NOS
K152.00 Other chronic cystitis
K152y00 Chronic cystitis unspecified
K155.00 Recurrent cystitis
K15yz00 Other cystitis NOS
1AZ6000 Mild lower urinary tract symptoms
7N51.00 [SO]Lower urinary tract
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Table H.1 Continued: Read codes for lower UTI in primary care.

Read code Description

1AZ6100 Moderate lower urinary tract symptoms
1AZ6.00 Lower urinary tract symptoms
Kyu5100 [X]Other cystitis
14D4.00 H/O: recurrent cystitis

Table H.2: Read codes for pyelonephritis in primary care.

Read code Description

K100.00 Chronic pyelonephritis
K100000 Chronic pyelonephritis without medullary necrosis
K100100 Chronic pyelonephritis with medullary necrosis
K100400 Nonobstructive reflux-associated chronic pyelonephritis
K100500 Chronic obstructive pyelonephritis
K100600 Calculous pyelonephritis
K100z00 Chronic pyelonephritis NOS
K101.00 Acute pyelonephritis
K101000 Acute pyelonephritis without medullary necrosis
K101z00 Acute pyelonephritis NOS
K104.00 Xanthogranulomatous pyelonephritis
K10y.00 Pyelonephritis and pyonephrosis unspecified
K10y000 Pyelonephritis unspecified
K10y300 Pyelonephritis in diseases EC
K10yz00 Unspecified pyelonephritis NOS
K100200 Chronic pyelitis
K10y400 Pyelitis in diseases EC
K101200 Acute pyelitis
K10y100 Pyelitis unspecified
K102000 Renal abscess
K102.00 Renal and perinephric abscess
K102100 Perinephric abscess
K102z00 Renal and perinephric abscess NOS
K10..00 Infections of kidney
K10z.00 Infection of kidney NOS
K10..11 Renal infections
K10..00 Infections of kidney
K10z.00 Infection of kidney NOS
K21..11 Prostatitis and other inflammatory diseases of prostate
K210.00 Acute prostatitis
K211.00 Chronic prostatitis
K214.00 Prostatitis in diseases EC
K214z00 Prostatitis in diseases EC NOS
K21z.00 Prostatitis NOS
K213.00 Prostatocystitis
K212.00 Abscess of prostate
K10y200 Pyonephrosis unspecified
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Table H.2 Continued: Read codes for pyelonephritis in primary care.

Read code Description

K105.00 Chronic infective interstitial nephritis
A160200 Tuberculous pyelonephritis
A160100 Tuberculous pyelitis

Table H.3: Read codes for recurrent UTI in primary care.

Read code Description

1AG..00 Recurrent urinary tract infections
K190.11 Recurrent urinary tract infection
K190300 Recurrent urinary tract infection
K190311 Recurrent UTI
K190400 Chronic urinary tract infection
K152z00 Other chronic cystitis NOS
K152.00 Other chronic cystitis
K152y00 Chronic cystitis unspecified
K155.00 Recurrent cystitis
14D4.00 H/O: recurrent cystitis
K100.00 Chronic pyelonephritis
K100000 Chronic pyelonephritis without medullary necrosis
K100100 Chronic pyelonephritis with medullary necrosis
K100400 Nonobstructive reflux-associated chronic pyelonephritis
K100500 Chronic obstructive pyelonephritis
K100600 Calculous pyelonephritis
K100z00 Chronic pyelonephritis NOS
K100200 Chronic pyelitis
K211.00 Chronic prostatitis
K105.00 Chronic infective interstitial nephritis

H.1.2 Bloodstream infection
Table H.4: Read codes for bloodstream infection in primary care.

Read code Description

A38z.11 Sepsis
A38..00 Septicaemia
A3C..00 Sepsis
K190600 Urosepsis
A38z.00 Septicaemia NOS
A381.00 Staphylococcal septicaemia
R106.00 [D]Unspecified bacteraemia
A380.00 Streptococcal septicaemia
A382.00 Pneumococcal septicaemia
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Table H.4 Continued: Read codes for bloodstream infection in primary care.

Read code Description

A384200 Escherichia coli septicaemia
A384211 E.coli septicaemia
A384.00 Septicaemia due to other gram negative organisms
A3Cz.00 Sepsis NOS
A3Cy.00 Other specified sepsis
A381000 Septicaemia due to Staphylococcus aureus
A38y.00 Other specified septicaemias
A380100 Septicaemia due to streptococcus, group B
A384300 Pseudomonas septicaemia
A384000 Gram negative septicaemia NOS
A380300 Septicaemia due to streptococcus pneumoniae
A384100 Haemophilus influenzae septicaemia
A380400 Septicaemia due to enterococcus
A380000 Septicaemia due to streptococcus, group A
Ayu3J00 [X]Septicaemia, unspecified
AB2y300 Candidal septicaemia
A270100 Listeria septicaemia
A383.00 Septicaemia due to anaerobes
A3C3.00 Sepsis due to Gram negative bacteria
A381100 Septicaemia due to coagulase negative staphylococcus
A3C0100 Sepsis due to Streptococcus group B
A380500 Vancomycin resistant enterococcal septicaemia
A3C1.00 Sepsis due to Staphylococcus
A384400 Serratia septicaemia
A3C2.11 Sepsis due to anaerobes
AB2y500 Candidal sepsis
A3C1000 Sepsis due to Staphylococcus aureus
A3C0300 Sepsis due to Streptococcus pneumoniae
A3C0000 Sepsis due to Streptococcus group A
A3C0.00 Sepsis due to Streptococcus
A270611 Listerial sepsis
A384z00 Other gram negative septicaemia NOS
A3C0z00 Streptococcal sepsis, unspecified
A3C0y00 Other streptococcal sepsis
Ayu3F00 [X]Streptococcal septicaemia, unspecified
A396.00 Sepsis due to Actinomyces
A3C2.00 Sepsis due to anaerobic bacteria
Ayu3E00 [X]Other streptococcal septicaemia
A271100 Erysipelothrix septicaemia
Ayu3G00 [X]Septicaemia due to other gram-negative organisms
A3C3.11 Sepsis due to Gram negative organisms
AB2y511 Sepsis due to Candida
A3C3y00 Sepsis due to other Gram negative organisms
A270600 Sepsis due to Listeria monocytogenes
Ayu3H00 [X]Other specified septicaemia
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H.1.3 Charlson Comorbidity Index

The list to calculate the Charlson Comorbidity Index in primary care contains more

than 3,000 Read codes. Due to its volume, the list was not included here. A full list

of all codes used in this analysis can be found in the online repository for Shallcross

et al. (2020) [133].

H.2 Secondary care
Diagnoses in secondary care were identified using 10th revision of the International

Statistical Classification of Diseases and Related Health Problems (ICD-10) codes

(inpatient admissions) and Emergency Care Data Set (ECDS)/bespoke codes

(emergency department visits). ICD-10 codes used in this thesis were partially

based on those used by Gharbi et al. (2019).

H.2.1 Urinary tract infection

Table H.5: ICD-10 codes for lower UTI in hospital.

ICD-10 code Description

N30.0 Acute cystitis
N30.9 Cystitis, unspecified
N30.8 Other cystitis
N39.0 Urinary tract infection, site not specified

Table H.6: ICD-10 codes for pyelonephritis in hospital.

ICD-10 code Description

N10 Acute tubulo-interstitial nephritis
N12 Tubulo-interstitial nephritis, not specified as acute or chronic
N13.6 Pyonephrosis
N15.1 Renal and perinephric abscess
N15.8 Other specified renal tubulo-interstitial diseases
N15.9 Renal tubulo-interstitial disease, unspecified
N16.0 Renal tubulo-interstitial disorders in infectious and parasitic diseases

classified elsewhere
N28.8 Other specified disorders of kidney and ureter
N34.0 Urethral abscess
N34.1 Nonspecific urethritis
N34.2 Other urethritis
N34.3 Urethral syndrome, unspecified
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Table H.6 Continued: ICD-10 codes for pyelonephritis in hospital.

ICD-10 code Description

N41.0 Acute prostatitis
N41.1 Chronic prostatitis
N41.2 Abscess of prostate
N41.3 Prostatocystitis
N41.8 Other inflammatory diseases of prostate
N41.9 Inflammatory disease of prostate, unspecified
N11.0 Nonobstructive reflux-associated chronic pyelonephritis
N11.1 Chronic obstructive pyelonephritis
N11.8 Other chronic tubulo-interstitial nephritis
N11.9 Chronic tubulo-interstitial nephritis, unspecified

Table H.7: ECDS / bespoke codes for suspected UTI in the emergency department.

ECDS / bespoke Description

195 Pyelonephritis
203 Urinary Tract Infection / UTI
204 Urosepsis
1418111000 Pyelonephritis
1513111000 Urinary tract infection

H.2.2 Bloodstream infection
Table H.8: ICD-10 codes for bloodstream infection in hospital.

ICD-10 code Description

R57.2 Septic shock
R65.1 Systemic Inflammatory Response Syndrome of infectious origin with

organ failure
R65.0 Systemic Inflammatory Response Syndrome of infectious origin without

organ failure
A40.0 Sepsis due to streptococcus, group A
A40.1 Sepsis due to streptococcus, group B
A40.2 Sepsis due to streptococcus, group D
A40.3 Sepsis due to Streptococcus pneumoniae
A40.8 Other streptococcal sepsis
A40.9 Streptococcal sepsis, unspecified
A41.0 Sepsis due to Staphylococcus aureus
A41.1 Sepsis due to other specified staphylococcus
A41.2 Sepsis due to unspecified staphylococcus
A41.3 Sepsis due to Haemophilus influenzae
A41.4 Sepsis due to anaerobes
A41.5 Sepsis due to other Gram-negative organisms
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Table H.8 Continued: ICD-10 codes for bloodstream infection in hospital.

ICD-10 code Description

A41.8 Other specified sepsis
A41.9 Sepsis, unspecified
R65.0 Severe sepsis without septic shock
R65.1 Severe sepsis with septic shock

H.2.3 Lower respiratory tract infection

Table H.9: ICD-10 codes for lower respiratory tract infection in hospital.

ICD-10 code Description

J09 Influenza due to identified zoonotic or pandemic influenza virus
J10 Influenza due to identified seasonal influenza virus
J10.0 Influenza with pneumonia, seasonal influenza virus identified
J10.1 Influenza with other respiratory manifestations, seasonal influenza virus

identified
J10.8 Influenza with other manifestations, seasonal influenza virus identified
J11 Influenza, virus not identified
J11.0 Influenza with pneumonia, virus not identified
J11.1 Influenza with other respiratory manifestations, virus not identified
J11.8 Influenza with other manifestations, virus not identified
J12 Viral pneumonia, not elsewhere classified
J12.0 Adenoviral pneumonia
J12.1 Respiratory syncytial virus pneumonia
J12.2 Parainfluenza virus pneumonia
J12.3 Human metapneumovirus pneumonia
J12.8 Other viral pneumonia
J12.9 Viral pneumonia, unspecified
J13 Pneumonia due to Streptococcus pneumoniae
J14 Pneumonia due to Haemophilus influenzae
J15 Bacterial pneumonia, not elsewhere classified
J15.0 Pneumonia due to Klebsiella pneumoniae
J15.1 Pneumonia due to Pseudomonas
J15.2 Pneumonia due to staphylococcus
J15.3 Pneumonia due to streptococcus, group B
J15.4 Pneumonia due to other streptococci
J15.5 Pneumonia due to Escherichia coli
J15.6 Pneumonia due to other Gram-negative bacteria
J15.7 Pneumonia due to Mycoplasma pneumoniae
J15.8 Other bacterial pneumonia
J15.9 Bacterial pneumonia, unspecified
J16 Pneumonia due to other infectious organisms, not elsewhere classified
J16.0 Chlamydial pneumonia
J16.8 Pneumonia due to other specified infectious organisms
J17 Pneumonia in diseases classified elsewhere
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Table H.9 Continued: ICD-10 codes for lower respiratory tract infection in hospital.

ICD-10 code Description

J17.0 Pneumonia in bacterial diseases classified elsewhere
J17.1 Pneumonia in viral diseases classified elsewhere
J17.2 Pneumonia in mycoses
J17.3 Pneumonia in parasitic diseases
J17.8 Pneumonia in other diseases classified elsewhere
J18 Pneumonia, organism unspecified
J18.0 Bronchopneumonia, unspecified
J18.1 Lobar pneumonia, unspecified
J18.2 Hypostatic pneumonia, unspecified
J18.8 Other pneumonia, organism unspecified
J18.9 Pneumonia, unspecified
J20 Acute bronchitis
J20.0 Acute bronchitis due to Mycoplasma pneumoniae
J20.1 Acute bronchitis due to Haemophilus influenzae
J20.2 Acute bronchitis due to streptococcus
J20.3 Acute bronchitis due to coxsackievirus
J20.4 Acute bronchitis due to parainfluenza virus
J20.5 Acute bronchitis due to respiratory syncytial virus
J20.6 Acute bronchitis due to rhinovirus
J20.7 Acute bronchitis due to echovirus
J20.8 Acute bronchitis due to other specified organisms
J20.9 Acute bronchitis, unspecified
J21 Acute bronchiolitis
J21.0 Acute bronchiolitis due to respiratory syncytial virus
J21.1 Acute bronchiolitis due to human metapneumovirus
J21.8 Acute bronchiolitis due to other specified organisms
J21.9 Acute bronchiolitis, unspecified
J22 Unspecified acute lower respiratory infection
J40 Bronchitis, not specified as acute or chronic
J41 Simple and mucopurulent chronic bronchitis
J41.0 Simple chronic bronchitis
J41.1 Mucopurulent chronic bronchitis
J41.8 Mixed simple and mucopurulent chronic bronchitis
J42 Unspecified chronic bronchitis
J43.0 MacLeod syndrome
J43.1 Panlobular emphysema
J43.2 Centrilobular emphysema
J43.8 Other emphysema
J43.9 Emphysema, unspecified
J44.0 Chronic obstructive pulmonary disease with acute lower respiratory

infection
J44.1 Chronic obstructive pulmonary disease with acute exacerbation,

unspecified
J44.8 Other specified chronic obstructive pulmonary disease
J44.9 Chronic obstructive pulmonary disease, unspecified
J85.1 Abscess of lung with pneumonia
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H.2.4 Comorbidities

All lists for comorbidities only list 3-character codes and include all 4-character

subcodes of the codes included.

Table H.10: ICD-10 codes for renal disease in hospital.

ICD-10 code Description

N00 Acute nephritic syndrome
N01 Rapidly progressive nephritic syndrome
N02 Recurrent and persistent haematuria
N03 Chronic nephritic syndrome
N04 Nephrotic syndrome
N05 Unspecified nephritic syndrome
N06 Isolated proteinuria with specified morphological lesion
N07 Hereditary nephropathy, not elsewhere classified
N08 Glomerular disorders in diseases classified elsewhere
N13 Obstructive and reflux uropathy
N14 Drug- and heavy-metal-induced tubulo-interstitial and tubular conditions
N15 Other renal tubulo-interstitial diseases
N16 Renal tubulo-interstitial disorders in diseases classified elsewhere
N17 Acute renal failure
N18 Chronic kidney disease
N19 Unspecified kidney failure
N25 Disorders resulting from impaired renal tubular function
N26 Unspecified contracted kidney
N27 Small kidney of unknown cause
N28 Other disorders of kidney and ureter, not elsewhere classified
N29 Other disorders of kidney and ureter in diseases classified elsewhere

Table H.11: ICD-10 codes for urological disease in hospital.

ICD-10 code Description

N20 Calculus of kidney and ureter
N21 Calculus of lower urinary tract
N22 Calculus of urinary tract in diseases classified elsewhere
N23 Unspecified renal colic
N30 Cystitis
N31 Neuromuscular dysfunction of bladder, not elsewhere classified
N32 Other disorders of bladder
N33 Bladder disorders in diseases classified elsewhere
N34 Urethritis and urethral syndrome
N35 Urethral stricture
N36 Other disorders of urethra
N37 Urethral disorders in diseases classified elsewhere
N39 Other disorders of urinary system
N40 Hyperplasia of prostate
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Table H.11 Continued: ICD-10 codes for urological disease in hospital.

ICD-10 code Description

N41 Inflammatory diseases of prostate
N42 Other disorders of prostate

Table H.12: ICD-10 codes for cancer in hospital.

ICD-10 code Description

C00 Malignant neoplasm of lip
C01 Malignant neoplasm of base of tongue
C02 Malignant neoplasm of other and unspecified parts of tongue
C03 Malignant neoplasm of gum
C04 Malignant neoplasm of floor of mouth
C05 Malignant neoplasm of palate
C06 Malignant neoplasm of other and unspecified parts of mouth
C07 Malignant neoplasm of parotid gland
C08 Malignant neoplasm of other and unspecified major salivary glands
C09 Malignant neoplasm of tonsil
C10 Malignant neoplasm of oropharynx
C11 Malignant neoplasm of nasopharynx
C12 Malignant neoplasm of piriform sinus
C13 Malignant neoplasm of hypopharynx
C14 Malignant neoplasm of other and ill-defined sites in the lip, oral cavity

and pharynx
C15 Malignant neoplasm of oesophagus
C16 Malignant neoplasm of stomach
C17 Malignant neoplasm of small intestine
C18 Malignant neoplasm of colon
C19 Malignant neoplasm of rectosigmoid junction
C20 Malignant neoplasm of rectum
C21 Malignant neoplasm of anus and anal canal
C22 Malignant neoplasm of liver and intrahepatic bile ducts
C23 Malignant neoplasm of gallbladder
C24 Malignant neoplasm of other and unspecified parts of biliary tract
C25 Malignant neoplasm of pancreas
C26 Malignant neoplasm of other and ill-defined digestive organs
C30 Malignant neoplasm of nasal cavity and middle ear
C31 Malignant neoplasm of accessory sinuses
C32 Malignant neoplasm of larynx
C33 Malignant neoplasm of trachea
C34 Malignant neoplasm of bronchus and lung
C37 Malignant neoplasm of thymus
C38 Malignant neoplasm of heart, mediastinum and pleura
C39 Malignant neoplasm of other and ill-defined sites in the respiratory

system and intrathoracic organs
C40 Malignant neoplasm of bone and articular cartilage of limbs
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Table H.12 Continued: ICD-10 codes for cancer in hospital.

ICD-10 code Description

C41 Malignant neoplasm of bone and articular cartilage of other and
unspecified sites

C43 Malignant melanoma of skin
C44 Other malignant neoplasms of skin
C45 Mesothelioma
C46 Kaposi sarcoma
C47 Malignant neoplasm of peripheral nerves and autonomic nervous system
C48 Malignant neoplasm of retroperitoneum and peritoneum
C49 Malignant neoplasm of other connective and soft tissue
C50 Malignant neoplasm of breast
C51 Malignant neoplasm of vulva
C52 Malignant neoplasm of vagina
C53 Malignant neoplasm of cervix uteri
C54 Malignant neoplasm of corpus uteri
C55 Malignant neoplasm of uterus, part unspecified
C56 Malignant neoplasm of ovary
C57 Malignant neoplasm of other and unspecified female genital organs
C58 Malignant neoplasm of placenta
C60 Malignant neoplasm of penis
C61 Malignant neoplasm of prostate
C62 Malignant neoplasm of testis
C63 Malignant neoplasm of other and unspecified male genital organs
C64 Malignant neoplasm of kidney, except renal pelvis
C65 Malignant neoplasm of renal pelvis
C66 Malignant neoplasm of ureter
C67 Malignant neoplasm of bladder
C68 Malignant neoplasm of other and unspecified urinary organs
C69 Malignant neoplasm of eye and adnexa
C70 Malignant neoplasm of meninges
C71 Malignant neoplasm of brain
C72 Malignant neoplasm of spinal cord, cranial nerves and other parts of

central nervous system
C73 Malignant neoplasm of thyroid gland
C74 Malignant neoplasm of adrenal gland
C75 Malignant neoplasm of other endocrine glands and related structures
C76 Malignant neoplasm of other and ill-defined sites
C77 Secondary and unspecified malignant neoplasm of lymph nodes
C78 Secondary malignant neoplasm of respiratory and digestive organs
C79 Secondary malignant neoplasm of other and unspecified sites
C80 Malignant neoplasm without specification of site
C81 Hodgkin lymphoma
C82 Follicular lymphoma
C83 Non-follicular lymphoma
C84 Mature T/NK-cell lymphomas
C85 Other and unspecified types of non-Hodgkin lymphoma
C86 Other specified types of T/NK-cell lymphoma
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Table H.12 Continued: ICD-10 codes for cancer in hospital.

ICD-10 code Description

C88 Malignant immunoproliferative diseases
C90 Multiple myeloma and malignant plasma cell neoplasms
C91 Lymphoid leukaemia
C92 Myeloid leukaemia
C93 Monocytic leukaemia
C94 Other leukaemias of specified cell type
C95 Leukaemia of unspecified cell type
C96 Other and unspecified malignant neoplasms of lymphoid, haematopoietic

and related tissue
C97 Malignant neoplasms of independent (primary) multiple sites

Table H.13: ICD-10 codes for immunosuppression in hospital.

ICD-10 code Description

D80 Immunodeficiency with predominantly antibody defects
D81 Combined immunodeficiencies
D82 Immunodeficiency associated with other major defects
D83 Common variable immunodeficiency
D84 Other immunodeficiencies
D86 Sarcoidosis
D89 Other disorders involving the immune mechanism, not elsewhere

classified

H.2.5 Pregnancy

Pregnancy was defined as any code of ICD-10 Chapter XV: Pregnancy, childbirth

and the puerperium (O00-O99). Pregnancy tests were identified via the laboratory

system’s bespoke labels.

H.2.6 Charlson Comorbidity Index

As listed in Table 1 of Quan, Hude, Vijaya Sundararajan, Patricia Halfon, Andrew

Fong, Bernard Burnand, Jean-Christophe Luthi, L. Duncan Saunders, Cynthia A.

Beck, Thomas E. Feasby, and William A. Ghali. 2005. “Coding Algorithms for

Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data.” Medical

Care 43 (11): 1130–39.
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