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Abstract: 14 

In this paper we demonstrate the use of atmospheric pressure plasma jet (APPJ) to functionalize 15 

the surface of hydrothermally synthesized vertically aligned TiO2 nanorods (TNRs) for photo 16 

electrochemical (PEC) application. The TNRs functionalized with the atmospheric pressure He- 17 

plasma showed relatively higher crystallinity, improved light absorption, and change in the 18 

morphology with additional surface area, leading to an enhanced photocurrent density than that of 19 

the untreated. Achieving the PEC performance on par with the best in the literature, this APPJ 20 

treatment is shown to be a promising technique to obtain better functionality with TNR kind of 21 

materials and many other nano-micro systems for various applications such as PEC hydrogen 22 

generation.  23 
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1. Introduction: 34 

TiO2 has been widely explored for thin film solar cells [1], photocatalytic H2 evolution [2], photo-35 

electrochemical (PEC) water splitting [3], self-cleaning and antifogging applications [4] due to its 36 

optical and electronic properties along with the nontoxicity, economical, chemical stability, and 37 

anticorrosive characteristics [5]. TiO2 finds valuable applications in LEDs, as photo-anode in new 38 

photovoltaic devices, photoelectrochemical cells, water splitting, and in gas sensors & heat reflec-39 

tors [6–12]. Of particular interest are, one-dimensional TiO2 nanorod (TNR) arrays fabricated by 40 

a simple and economical hydrothermal method [13], found to have a superior chemical stability 41 

and high electron mobility [14,15] that are required for all the above applications. Furthermore, 42 

for solar energy applications, the vertical alignment of nanorods on a substrate can offer improved 43 

absorption of light due to the diffuse reflection happening between the nanorod arrays. Also, such 44 

structures offer a direct and efficient transport pathway for the photo-generated electrons. Alto-45 

gether, these features are expected to enhance the carrier generation, their separation, and transport 46 

in solar energy conversion devices [16]. However, the wide band-gap of the TiO2 (3.2 eV) limits 47 

its light-absorption only to the UV range, which is only a small part of the solar spectrum [17]. 48 

Hence, bandgap engineering of TiO2 has been explored through metal, non-metal doping [18], and 49 

also metal doping with Ar, N2, & O2 plasma treatment [19] to improve the absorption of the solar 50 

radiation. Such efforts on improving the optical properties of TiO2 film with & without doping 51 

have been made by employing the plasma treatment technique [20]. In another way, many methods 52 

for its surface modification have been practiced including surface hydrogenation, vacuum activa-53 

tion and plasma treatment [21–23]. The plasma treatment cover's a very broad range of different 54 

plasma techniques based on the operating pressure (low and atmospheric), thermodynamics (ther-55 

mal and non-thermal), temperature (low and high), source of plasma (Microwave discharge, DC 56 

discharge, dielectric barrier discharge, corona discharge, AC arc discharge, electron beam, plasma 57 

torch, glow discharge, hollow cathode discharge) [24–36]. 58 

Among them, non-thermal and atmospheric pressure plasmas have grown to be of huge scientific 59 

and commercial importance for materials processing due to their simple cost effective nature and 60 

ability to bring in rich chemical as well as physical properties [37,38]. Plasma treatment technique 61 

has been the most versatile surface treatment [39–42] based on a few of its advantages namely; (i) 62 

the air plasma treatment removes organic impurities absorbed on the surface of TiO2, (ii) formation 63 

of hydroxyl group on the surface during the plasma treatment to improve wettability [43], and (iii) 64 
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oxygen vacancies might serve as the trap centers for photo-generated electrons and suppress the 65 

recombination. Hence, the electron-hole pairs could be separated and transported more effectively 66 

[44]. For example, the plasma treatment of TNRs with reactive gases such as H2, N2, and O2 has 67 

been explored and an improved the PCE efficiency from 0.62 % (untreated) to 1.11 % (N2 plasma-68 

treated) of DSSCs [45].  69 

Several efforts were made to improve the PEC activity of TiO2 nanostructures. TiO2 nanoparticle 70 

layer synthesized on Ti foil via the potentiostatic anodization method showed a PEC current den-71 

sity of 2 µAcm-2 and further improved up to 40 µAcm-2 after combining it with Cu2O [46]. The 72 

photocurrent density up to 1 mAcm-2 was achieved with TiO2 nanoporous photoelectrodes with 73 

mixed anatase and rutile phases by a dip-coating and subsequent calcination process [47]. Further, 74 

the PEC performance of TiO2 was also improved by doping such as Fe, N, Mn, Cr, Si, Co [48–75 

51]. Particularly, Fe doped TiO2 nanoparticles exhibited a photocurrent density of 54 μAcm-2, 76 

which was 3.6 times higher than that of un-doped TiO2 nanoparticles [52]. Peng et al. reported the 77 

N-doped TiO2 (P25 Degussa) for photoelectrochemical CO2 reduction and achieved the maximum 78 

current density of 0.104 mAcm-2 at 2 V (vs. SCE) [53]. N doping of anatase and rutile phase TiO2 79 

nanowires also improved the PEC performance [54,55]. The activity of TNRs was improved up to 80 

1.25, 2.0, 1.53 mAcm-2 (vs. Ag/AgCl) and 0.81 mAcm-2 (vs. RHE), by doping of C, Sn, W and Si 81 

[56–59].  The hydrogenation of TNR via rapid thermal annealing (RTA) process was also explored 82 

for PEC H2 evolution. The highest photocurrent of 3.7 mAcm-2 was obtained using TNRs treated 83 

with RTA at 400 oC for 1 hr [60].  84 

Few of such efforts to improve the PEC performance of TiO2 were involving the conventional 85 

plasma. The TiO2 nanotubes treated under vacuum with air plasma for 20 minutes also showed a 86 

stable & improved photocurrent density (2.4 mAcm-2 vs. RHE) [43]. The TiO2 thin film deposited 87 

by the atomic layer deposition method showed enhancement in the PEC current density from 0.12 88 

to 1 mAcm-2 after hydrogen plasma treatment [61]. TiO2 nanosheets plasma-treated using a plasma 89 

cleaner under Ar atmosphere showed the current density of 43.7 µAcm-2(vs. Ag/AgCl) under 300 90 

W Xenon arc lamp with an AM 1.5 filter [62]. In another report, after incorporation of hydrogen 91 

by H2 plasma treatment, the mesoporous TiO2 films showed the current densities of 22.9 µAcm-2 92 

& 0.16 µAcm-2 under UV-LED & Blue-LED respectively [63]. Thus, in general, the conventional 93 

plasma treatment was already proved to be an effective technique to improve the PEC performance 94 

of TiO2. The plasma treatment is also known to improve the functional properties in many other 95 
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materials as well [64–66] and for example, it has also been reported that helium (He) plasma treat-96 

ment is a promising method to reduce the contact resistance of source/drain region for Indium-97 

Gallium-Zinc oxide (IGZO) thin film transistors [64] due to the formation of oxygen vacancies 98 

[65].  99 

One-dimensional TNRs could offer an advantageous conducting network because of their short 100 

electron pathway as discussed in the works of literature [16]. Thus, it was expected that the 101 

nanorods would show a better PEC performance with higher photocurrent density. However, it can 102 

be also observed from the literature that they generally showed relatively inferior PEC activity 103 

with lower photocurrent, probably due to the lower crystallinity, higher contact angle with water, 104 

as well as due to the absence of surface defect states. Few efforts, as mentioned above, were made 105 

to overcome these limitations and to improve the PEC performance of TNRs. However, most of 106 

these efforts used the plasma treatment process under vacuum and high temperature conditions. 107 

As reported, the low-power atmospheric pressure plasma jet (APPJ) is an easily scalable, non-108 

thermal technique to improve the electronic properties of many functional materials [67–69]. 109 

Presently, there has been an increasing interest for APPJ in materials processing, as there is no 110 

requirement for sophisticated vacuum equipment and high temperatures which makes it cost 111 

effective [38,69]. Additionally, plasma jets can be directed towards substrated, hence can be used 112 

remotely suitable for industrial applications. APPJ is known to control the defects, crystallinity, 113 

and surface wettability [68–70]. APPJs can deliver transient electric fields along with charged 114 

particles, neutral metastable species, radicals, and radiation in the UV and visible regions 115 

conveniently in a processing plume [68,71]. To overcome the small area covered by the plasma jet 116 

on the substrate, several approaches have been reported so far, e.g. array of plasma jet or by varying 117 

the plasmas jet operating conditions [72–75]. 118 

It can be expected that the functionalization of TNRs using APPJ could improve the optical, 119 

electrical, and interface properties between TNR and electrolyte resulting in better PEC 120 

performance. Being a simple technique, which consumes minimum time and can be done at room 121 

temperature, this could prove to be a quick and cool tool to use even with flexible substrates. Such 122 

functionalized TNRs with atmospheric pressure plasma treatment at room temperature are not 123 

reported to the best of our knowledge. Herein, we demonstrate for the first time, the room 124 

temperature APPJ surface modification of high performance 1D TNR arrays that are grown by a 125 

simple, one-step hydrothermal process on FTO substrate. We chose He, (He+O2), & (He+N2) as 126 
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carrier gases to modify the surface of the 1D TNR and observed the changes leading to enhanced 127 

photoelectrochemical activity. 128 

 129 

2. Experimental: 130 

2.1. Preparation of TiO2 nanorods: 131 

One dimensional TiO2 nanorods (TNRs) were prepared via a simple hydrothermal route by 132 

following the procedure reported in the literature [76]. In a typical synthesis, the TiCl4 was added 133 

to the mixture of concentrated hydrochloric acid (HCl) and DI water (1:1 solution) followed by 134 

stirring for 30 min. The solution was then transferred into a Teflon coated 50 ml autoclave with 135 

pre-cleaned Fluorine-doped tin oxide (FTO) substrates placed at an angle against the wall of a 136 

container with the conducting side facing down. The reaction was carried out at 180 oC by keeping 137 

the above autoclave in an electric oven for 2 hours. After the reaction the FTO/TNR substrate was 138 

taken out, washed 3 times with DI water, dried, and was annealed at 450 oC for 1 hr in the air. The 139 

obtained TNR films were used for further studies. 140 

 141 

2.2. Plasma-functionalization of TNR surface: 142 

To functionalize the TNR surface, an atmospheric pressure plasma jet was employed [67]. The 143 

radio frequency (RF) plasma jet with Helium carrier gas mixed with either oxygen or nitrogen was 144 

used in this process for surface modification. A RF field was applied between two stainless steel 145 

electrodes covered on the sides with quartz plates forming a gap of 1×1 mm2 in cross section and 146 

30 mm in length [77]. The plasma was ignited using a gas mixture of helium and oxygen, 147 

corresponding to flow rates of 3 slm and 30 sccm, respectively, with an input power of 10 watts. 148 

The distance between the jet and the substrate was maintained at 5 mm during the exposure for 5 149 

mins. 150 

 151 

2.3. Characterization: 152 

The X-ray diffraction was carried out using Cu Kα radiation (BRUKER USA D8 Advance, 153 

Davinci, wavelength =1.5405 Å) with the diffraction angle from 10° to 80°. Absorption studies 154 

were carried out with the ultraviolet-diffuse reflectance spectroscopy (UV-DRS) by using Agilent-155 

Cary (Cary 5000 UV-Vis-NIR) spectrophotometer. Raman spectra were recorded using Micro 156 

Raman spectrometer (HORIBA France, LABRAM HR Evolution) with a 532 nm laser 157 
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wavelength. The surface morphology of the film was studied by using a high-resolution Scanning 158 

Electron Microscope (F E I Quanta FEG 200). Water contact angle measuring instrument (HO-159 

IAD-CAM-01) was used in this study to measure the wettability of TNR substrates before and 160 

after AP treatment. 1 mL of deionized water was dispensed for each measurement. The 161 

photoelectrochemical measurements of the TNR samples were recorded using CHI604E 162 

potentiostat with the scan rate of 50 mV/s and a scanning range of -1.0V to 1.5V. 163 

Photoelectrochemical cell had the platinum, Ag/AgCl, and TiO2/FTO films used as a counter, 164 

reference, and working electrodes respectively. 0.1 M NaOH was used as the electrolyte 165 

throughout measurements and the light from a PET (Photo Emission Tech, Inc. USA, 300WSS-166 

EM) solar simulator with power 100 mW/cm2 was used for illumination under 1.5 AM filter. 167 

 168 

3. Results and Discussion: 169 

3.1 Structural and morphological study: 170 

 171 

Fig.1. (a) XRD patterns with (b)overlay spectra of (101) plane & (c), (d), (e), (f) surface and (inset) 172 

cross-sectional FE-SEM images of the TNR, TNR(He), TNR(He + O2) and TNR(He + N2) films  173 

 174 
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Fig.1 (a) shows that the XRD patterns of TNR, TNR (He), TNR (He + O2), and TNR (He + N2) 175 

films were in accordance with the standard data for TiO2 (space group; P42/mnm) as provided by 176 

JCPDS (Joint Committee on Powder Diffraction Standards), reference: 01-078-1510, thereby 177 

confirming tetragonal rutile phase of TiO2. All the films exhibited crystalline nature having the 178 

most intense peak consistent to (101) plane of TiO2. Six more peaks corresponding to (110), (200), 179 

(111), (211), (002), (221), (112) and (301) planes were also observed. No peaks were observed 180 

corresponding to anatase or brookite phase indicating the high purity of the rutile TNR samples. 181 

The crystallite size (D) was estimated by using Debye–Scherrer formula, 182 

𝐷 =
0.9𝜆

𝛽𝑐𝑜𝑠Ɵ
 183 

 where, λ- 0.15418 nm, β- full width at half maximum (FWHM), and Ɵ- Bragg’s angle in degree.  184 

Fig. 1(b) shows the overlay spectra of (101) plane and we estimated 2Ɵ values (36.26 o, 35.98 o, 185 

36.25 o & 36.23 o) FWHM (0.3085 o, 0.1278 o, 0.1299 o & 0.2996 o) for (101) plane of TiO2 (TNR, 186 

TNR (He), TNR (He + O2), & TNR (He + N2)). The observed shift in 2Ɵ values with respect to 187 

the untreated TNR was about 0.28 o, 0.01 o & 0.03 o after He, (He + O2), & (He + N2) APPJ 188 

treatments respectively. The shift in the 2Ɵ values can be attributed to the stress on the lattice 189 

caused due to the pressure exerted by the reactive gas used for the APPJ treatment. The calculated 190 

crystalline sizes for TNR, TNR (He), TNR (He + O2), and TNR (He + N2) films were 28.31, 68.29, 191 

67.24, and 29.10 nm respectively. It can be noticed that the APPJ treatment caused observable 192 

changes in the crystalline size. He and He + O2 plasma-treated samples showed bigger size crystals, 193 

more than double in size, as compared to the He + N2 APPJ treated and untreated TNRs. This 194 

effect is similar to the observation with N2 plasma-treated TiO2 nanoparticles in the literature [78]. 195 

The increase in the crystalline size indicates the improvement in the crystallinity of TNRs and also 196 

can be related to the formation of intrinsic defects on the surface of TiO2 itself referring to the 197 

similar observations in the literature [79]. The improved crystallinity with the formation of 198 

intrinsic defects after He and (He + O2) APPJ treatment may lead to an improved PEC activity 199 

[80–82]. 200 

Fig. 1 (c, d, e & f) shows the surface and cross-sectional FE-SEM images of samples TNR, TNR 201 

(He), TNR (He + O2), and TNR (He + N2) films respectively. In the Fig. 1(c & f), we observed 202 

that the package of few TNR arrays which was vertically aligned perpendicular to the surface of 203 

the substrate. But, after He and (He + O2) APPJ treatment the TNRs became slightly slanted & 204 
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separated from each other (Fig. 1(d &f)). For the calculation of diameter and length of TNRs, we 205 

have used imageJ software and an average value of 10 readings for each sample was taken. The 206 

APPJ treated and untreated TNR films showed the uniform distribution of vertical TiO2 nanorods 207 

with a diameter of about 100 nm and the length of around 3 µm throughout the substrate [54]. As 208 

shown in Fig. 2, the TNRs were aligned perpendicular to the surface of the substrate and the 209 

alignment was changed slightly after the He atmospheric plasma treatment, where they became 210 

slightly slanted & separated from each other. The reason behind this change in morphology could 211 

be the longitudinal force exerted on the surface. This can be from the substantial gas velocity which 212 

caused by the high input gas pressure or adatoms by the ions in the plasma. Also, the etching which 213 

happens when the energetic ions hit the surface of TNRs could affect the morphology. Moreover, 214 

the transient electric field (EF) at the tip of plasma plume, typically in the kV/cm could not be 215 

neglected as well [83–85]. However, the observed change in morphology/alignment can offer an 216 

additional surface for the interaction of He APPJ treated TNRs with the electrolyte and form an 217 

effective TNR-electrolyte interface for the photoelectrochemical reaction. As we discussed in the 218 

introduction section, there is also a possibility that the changes in the alignment of nanorods might 219 

be detrimental for light absorption. 220 

 221 

 222 

Fig.2. Schematic of the He-APP treatment of the TNR films 223 

 224 



9 
 

3.2 Optical study: 225 

 226 

Fig.3. (a) UV-visible spectra with (inset) Tauc plot and (b) Raman spectra with an overlay of 227 

Raman spectra for A1g &  Eg modes of the TNR, TNR(He), TNR(He + O2), and TNR(He + N2) 228 

films. 229 

 230 

The UV-visible absorbance spectra of treated and untreated TNR films over the wavelength range 231 

of from 300–900 nm is shown in Fig.  3(a). The bandgap of the TNR films has been determined 232 

using the relation,  233 

𝛼 = 𝐴(ℎ𝜈 − 𝐸𝑔)
1
2 234 

where, α is the absorption coefficient, A is the constant, Eg is the energy gap and ℎ𝜈  is the incident 235 

photon energy. The values of bandgap were estimated from the Tauc plots (inset of Fig. 3(a)) as 236 

3.24, 3.22, 3.25, and 3.19 eV for the TNR, TNR (He), TNR (He + O2), and TNR (He + N2) films 237 

respectively, which are in accordance with the previous reports [86,87].  238 

It can be observed that the absorption edge was shifted to higher wavelength (red shift) and the 239 

bandgap was reduced for TNR (He) as well as TNR (He+N2) samples. In contrast, there was an 240 

increase in the bandgap (blue shift) for TNR (He+O2). The possibility for such variation in the 241 

band edge after plasma treatment of TiO2 is indicated in the literature and our results are in accord-242 

ance with the same [20]. The plasma treatment was used as an effective technique to decrease the 243 

bandgap of TiO2 and to promote the formation of defect states by introducing the oxygen vacancies 244 
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[62], both of which could improve the UV-visible light absorption [88,89]. Similar changes ob-245 

served in our UV-visible absorption spectra of TNRs after the He and (He + N2) APPJ treatment, 246 

where there was an improved absorption and red shift of band edge [65, 66] indicating the for-247 

mation of oxygen vacancy defect states unlike in the case of (He + O2) APPJ treatment. These 248 

changes observed in the UV-visible light absorption after the He and (He + N2) APPJ treatment 249 

also indicate improved PEC activity, analogous to the earlier observation in the literature [62].  250 

Fig.3 (b) shows the Raman spectra of the TNR, TNR (He), and TNR (He + O2) films. Raman 251 

spectra of all the samples confirmed the formation of the rutile phase of TiO2. There are five Raman 252 

active modes namely A1g, B1g, B2g, Eg, and multi-photon process mode for rutile TiO2 [76,88,90], 253 

which appear around at 611 cm-1, 143 cm-1, 830 cm-1, 447 cm-1, and 240 cm-1 respectively. The 254 

two prominent maxima at 447 cm-1 (Eg) and 611 cm-1 (A1g) are in accordance with literature for 255 

rutile TiO2 [76,91]. The A1g peak position ( Fig (b) inset) for TNR, TNR(He), TNR(He + O2), and 256 

TNR(He + N2) films appeared at 611.10, 609.16, 610.07, and 611.10 cm-1 with FWHM 27.42, 257 

26.50, 28.75 and 38.86 cm-1. Also, the Eg peak position (Fig (b) inset) appeared at 447.72, 445.23, 258 

445.23 and 445.23 cm-1 with FWHM 32.30, 30.07, 32.95 and 23.24 cm-1 for TNR, TNR(He), 259 

TNR(He + O2), and TNR(He + N2) films respectively. The decrement in the FWHM of A1g and 260 

Eg peaks indicated that the increment in the crystallinity of TNR after He APP, in concurrence 261 

with their XRD result as well as the literature report [76].  262 

Surface wettability, as one of the fundamental surface properties of an electrode, could show sig-263 

nificant influence on its functionalities such as electrolyte-wetting, redox electron transfer and gas 264 

release in electrochemical reactions [92–97]. Its known that a hydrophilic surface leads to better 265 

electron transfer rate between electrolyte and electrode [94]. The surface plasma treatment also 266 

improves the wettability of the TiO2 photoanode by forming hydroxyl groups and could contribute 267 

to the enhancement of PEC performance [43]. Expecting the similar effect, we have performed the 268 

wettability test of untreated and APPJ treated TiO2 NRs with water, and the results are shown in 269 

Fig. S1 (Supporting information). The contact angles of the water droplet for the APPJ treated 270 

TiO2 NRs were smaller than that for the untreated TiO2 NRs. He APPJ treatment showed a small 271 

change in wettability, and further optimization of plasma treatment conditions may be needed to 272 

achieve the hydrophilic nature of the TNR films. Lee et al. had observed a significant improvement 273 

in wettability of Ti substrate after plasma treatment by using He and O2/He mixture carrier gases 274 



11 
 

[98]. Similarly, in our case wettability has improved after (He + O2) & (He + N2) APPJ treatment 275 

with a switch from hydrophobic to hydrophilic nature.  276 

 277 

3.3 PEC measurements of TiO2 films: 278 

 279 

Fig.4. (a) Linear sweep voltammogram (LSV) curves and (b) Results from a 280 

chronoamperometry measurement of TNR, TNR(He), TNR(He + O2), and TNR(He + N2) 281 

films under light chopping for 10 seconds. 282 

Fig. 4 (a) shows the linear sweep voltammogram (LSV) curves of the treated and untreated TNR 283 

samples in dark and under illumination. The maximum current density at 0 V (Ag/AgCl) observed 284 

for the TNR, TNR (He), TNR (He + O2), and TNR (He + N2) were 0.1964, 0.8715, 0.0079, and 285 

0.7450 mAcm-2 respectively. Further, chronoamperometry measurement was performed to check 286 

the stability and reproducibility of the photoanode. The measurement was carried out with 5 on-287 

off cycles of 10 s time interval, in a similar manner as reported earlier on PEC devices [62,99]. 288 

Fig. 4(b) revealed the good reproducibility & stability of the current density with time. All treated 289 

and untreated TNR films were observed to be stable after 5 on-off cycles with a time duration of 290 

10 seconds at 0.4 V (Ag/AgCl). We observed almost 4 times enhancement in the maximum current 291 

density for TNR (He) film as compared to untreated TNR under the light. At fixed potentials the 292 

electrodes usually adopt a steady dark current. In our case, we could observe that the current 293 

reached a sharp maximum (the current spike) immediately after switching on the light. This might 294 
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be attributed to the rapid initial separation of electron/hole pairs or to the presence of the high 295 

initial concentration of negative charge carriers accumulated in the film during the deposition 296 

[100]. Such spikes are known to arise due to the electron recombination with surface-trapped holes 297 

or photo-oxidation intermediates [101]. 298 

Based on our observations, this enhancement in the current density of the He-treated TNRs can be 299 

ascribed to the higher crystallinity, reduced bad gap, availability of additional surface area, and the 300 

possible formation of oxygen vacancy defect states in the TNRs. However, the TNR sample treated 301 

with (He + O2) showed very less current density compared to all others, which may be due to the 302 

absence of oxygen vacancy defect states as indicated by the UV-visible absorption studies. Also, 303 

due to the lower crystallinity, as shown by the XRD & Raman results, TNR (He + N2) samples 304 

exhibited lower current density compared to the TNR (He).  305 

The results obtained are comparable with the previous reports in the literature (Table 1). It is 306 

noteworthy that the PEC activity of He plasma surface-modified TNRs was comparable to the best 307 

in the literature using ALD grown Hydrogen plasma-treated planar TiO2. The photocurrent density 308 

shown by the He APPJ treated TNRs is the second-highest reported so far for TiO2 and there is 309 

room for further improvement by optimization or employing the plasma of other carrier gases such 310 

as H2, Ar, N2, and O2. The approach presented here for the first time by combining the simpler, 311 

greener, and a single step hydrothermal route for making the TNRs with the room temperature 312 

atmospheric pressure plasma functionalization technique can be explored for many other 313 

applications as well. 314 

 315 

TiO2 Plasma modification 
Max. photocurrent density 

(mAcm-2) 
Reference 

ALD grown planar 

TiO2 

As prepared 0.12 (0.8 V vs NHE) 

[61] 
Hydrogen plasma for 1 hr 

at 200 oC 
1.0 (0.8 V vs NHE) 

TiO2 nanosheet 

As prepared 0.113 (0.6 V vs Ag/AgCl) 

[62] 
Argon plasma for 2 hr at 

40 Pa 
0.0437 (0.6 V vs Ag/AgCl) 

Mesoporous TiO2 As prepared 0.00081(0.4 V vs Ag/AgCl) [63] 
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Hydrogen plasma for 5 min 

at 60mTorr 
0.0229 (0.4 V vs Ag/AgCl) 

TiO2 nanorods 

As prepared 0.1964 (0 V vs Ag/AgCl) 

This work 

Helium atmospheric 

pressure plasma for 5 min 
0.8715 (0 V vs Ag/AgCl) 

(Helium+ Oxygen) 

atmospheric pressure 

plasma for 5 min 

0.0079 (0 V vs Ag/AgCl) 

(Helium+ Nitrogen) 

atmospheric pressure 

plasma for 5 min 

0.7450 (0 V vs Ag/AgCl) 

 316 

Table-1: Comparison of our photoelectrochemical results with literature 317 

 318 

4. Conclusion: 319 

In summary, surface functionalization of TNRs was achieved using the simple, room temperature 320 

atmospheric pressure plasma treatment technique. The effect of APP treatment on the structural, 321 

optical, and PEC properties of TNRs was established. A four-fold enhancement in the photocurrent 322 

was observed after the He-APPJ treatment of TNRs, and this performance is on par with the best 323 

in the literature using the conventional hydrogen plasma-treated ALD grown planar TiO2. The 324 

improvement in the PEC performance could be correlated with our observations on (i) the 325 

availability of surplus surface area of TNRs to interact with the electrolyte, (ii) the increase in the 326 

crystalline size, accompanied by the possible formation of more intrinsic defects in TNRs and (iii) 327 

reduction in the bandgap which improved the UV-visible light absorption.  328 

 329 
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