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Abstract. Complex algorithms are increasingly used to automate
high-stakes decisions in sensitive areas like healthcare and finance.
However, the opacity of such models raises problems of intelligibil-
ity and trust. Researchers in interpretable machine learning (iML)
have proposed a number of solutions, including local linear approxi-
mations, rule lists, and counterfactuals. I argue that all three methods
share the same fundamental flaw – namely, a disregard for severe
testing. Techniques for quantifying uncertainty and error are central
to scientific explanation, yet iML has largely ignored this method-
ological imperative. I consider examples that illustrate the dangers
of such negligence, with an emphasis on issues of scoping and con-
founding. Drawing on recent work in philosophy of science, I con-
clude that there can be no explanation – algorithmic or otherwise –
without inference. I propose several ways to severely test existing
iML methods and evaluate the resulting trade-offs.

1 Introduction
Machine learning (ML) is increasingly ubiquitous in modern society.
Complex algorithms are widely deployed in private industries like
finance [3], as well as public services such as healthcare [20]. Their
prevalence is driven by results. ML models outperform humans not
just at strategy games like chess [17], but at important scientific tasks
like antibiotic discovery [19] and tumor diagnosis [10].

High-performance algorithms are often opaque, in the sense that
it is difficult for humans to understand the internal logic behind indi-
vidual predictions. This raises fundamental issues of trust. How can
we be sure a model is right when we have no idea why it predicts
particular values? While model interpretation is by no means a new
concern in statistics, it is only in the last few years that a dedicated
subfield has emerged to address the issues surrounding algorithmic
opacity.

Interpretable machine learning (iML) comprises a diverse collec-
tion of technical approaches intended to render statistical predic-
tions more intelligible to humans [11]. My focus here is on model-
agnostic, post-hoc local methods, which explain the individual pre-
dictions of some target model without making any assumptions about
its form. Prominent examples include local linear approximators
(e.g., SHAP [6]), which produce feature attributions that sum to the
explanandum; rule lists (e.g., Anchors [15]), which provide explana-
tions via sequences of if-then statements; and counterfactuals (e.g.,
MACE [4]), which identify one or several nearest neighbors on the
opposite side of a decision boundary. Despite their merits, all three
approaches fail to meet the severity criteria outlined in Sect. 2. I il-
lustrate the issues with this failure in Sect. 3, and propose some di-
rections for improvement. I conclude in Sect. 4 with a reflection on
the trade-offs implied by this analysis.
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2 Severe Testing

Mayo [9, 8, 7] argues that the problem of induction is defeasibly
resolved by severe testing. The basis for this resolution is her severity
principle, which states that “We have evidence for a claim C just
to the extent it survives a stringent scrutiny. If C passes a test that
was highly capable of finding flaws or discrepancies from C, and
yet none or few are found, then the passing result, x, is evidence
for C” [7, p. 14]. On Mayo’s view, the justification for believing a
given hypothesis is a function not of the hypothesis itself or the data
it purportedly explains, so much as the tests it has passed. When tests
are sufficiently sensitive (i.e., likely to detect true effects) and specific
(i.e., likely to reject false effects), then we say they are severe.

To make matters concrete, consider a single parameter location
test. Let Θ denote the parameter space, and let T be a test that decides
between H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, where Θ0 and Θ1 are some
partition of Θ. We observe sample data x and compute sufficient
statistic d(x), which measures the disagreement between x and H0.
Test T rejects H0 when d(x) meets or exceeds the critical value cα.
We say that H0 passes an (α, β)-severe test T with data x if:

(S1) d(x) < cα; and
(S2) with probability at least 1− β, if H1 were true, then we would

observe some sufficient statistic d(x′) such that d(x′) ≥ cα.

Readers well-versed in frequentist inference will recognize some fa-
miliar concepts here. The critical value is indexed by the type I error
rate α, such that, under H0, the rejection region of statistics greater
than or equal to cα integrates to α. Under H1, the rejection region
of statistics less than cα integrates to the type II error rate, β. The
complement of this value, 1−β, denotes the power of the test. A test
with small α is said to be specific, since it only accepts hypotheses
that are likely to be true; a test with small β is said to be sensitive,
since it is able to detect even slight deviations from the null.

While this explication is faithful to the frequentist framework that
Mayo favors, the severity criteria are in fact very general, and have
been reformulated along Bayesian lines [2]. ML is not inherently
aligned with any particular interpretation of probability, and nothing
in the proceeding argument depends upon one’s preferred method
of inference. The epistemological upshot of Mayo’s analysis is that
science advances knowledge not just by falsifying theories, as Pop-
per would have it [12], but by subjecting hypotheses to increasingly
severe tests. Hypotheses earn their warrant by passing such tests,
thereby providing positive justification for successful theories.

3 Severity and iML

An algorithmic explanation is an empirical claim relating certain
factors in the input data to the resulting prediction. Since empirical
claims are typically the realm of science, we may justifiably wonder



whether Mayo’s severity criteria can be fruitfully applied in this set-
ting. I argue that they can and should. I highlight two ways that algo-
rithmic explanations mislead when severity criteria are not taken into
account: through ambiguity of scope and sensitivity to confounding.

Local explanations are constructed to apply only in some fixed re-
gion of the feature space. Yet iML methods do not generally provide
information about the bounds of a given explanation or goodness of
fit within the target region. For illustration, I will focus on linear ap-
proximators, but the point applies more broadly.

If you zoom in far enough to any point on a continuous func-
tion, you will eventually find a linear tangent. This is the intuition
behind methods like LIME [14] and SHAP [6]. However, when the
regression surface or decision boundary around the target point is ex-
tremely nonlinear, the linear region tends to be very small and the es-
timated coefficients highly unstable. In this case, feature attributions
are acutely sensitive to regional bounds. In a simple two-dimensional
example, Wachter et al. [21] visually demonstrate how a linear expla-
nation for the same model prediction may assign positive, negative,
or zero weight to a feature depending on the scope of the linear win-
dow (see Fig. 1).

The most obvious statistical solution here would be to augment
iML outputs with information regarding the scope and fit of the
approximation. It is common, for instance, in linear regression to
compute the significance and standard error of model coefficients.
This would satisfy (S1). Power analysis typically requires paramet-
ric assumptions or data simulations, which could be used to satisfy
(S2). Unfortunately, these strategies are not readily available to al-
gorithms like LIME and SHAP, which use unconventional sampling
techniques, kernel weights, and regularization penalties that preclude
easy analytic solutions for calculating expected error rates. Nonpara-
metric resampling methods could help but at major computational
cost. The problem becomes especially acute as the number of ex-
plananda increases.

Another challenge for iML arises when features are highly depen-
dent. The issue can be especially nefarious when auditing for algo-
rithmic bias. If a sensitive attribute is associated with a permissible
variable (e.g., if race is well predicted by zip code) then the latter can
serve as a proxy for the former. This allows bad actors to get away
with discrimination, so long as they can fool an auditor into believ-
ing they were using the permissible variable rather than the sensitive
one. The concern is not merely speculative. Authors have exploited
these vulnerabilities to make discriminatory models pass algorithmic
audits [18] and appear fair in user studies [13].

Severe testing cannot, on its own, prevent bad actors from en-
gaging in discriminatory behavior. However, it can make it harder
for them to get away with it by elucidating the uncertainty associ-
ated with algorithmic explanations under confounding. Just as stan-
dard errors for regression coefficients are inflated by collinear pre-
dictors, the severity of particular explanations will tend to decrease
with strongly correlated features. Reporting the error rates of given
outputs will provide much-needed context for users and regulators
alike.

Algorithmic fairness is a complex and contested topic. Dozens of
statistical fairness criteria have been proposed [1], while impossibil-
ity theorems have shown that most popular definitions are mutually
incompatible except in trivial cases [5]. No matter which criteria one
adopts for a given application, almost all may be expressed in terms
of marginal or conditional independences, which means that classi-
cal tests can be used for auditing purposes. Severity therefore has a
central role to play in holding people and institutions accountable for
their algorithmically mediated decisions.

Figure 1: Unstable linear approximations. The grey line in each panel
shows a local approximation of the same function centered at the
same location. The varying range is indicated by the black bars, lead-
ing to vastly different linear explanations. From [21, p. 885].

4 Discussion

Many authors motivate the iML project with appeals to trust. “Why
should I trust you?” reads the title of Ribeiro et al.’s paper introduc-
ing LIME [14]. “Building trust is essential to increase societal accep-
tance of algorithmic decision-making,” [21, p. 843] write Wachter et
al. in their paper on counterfactual explanations. So long as complex
algorithms remain opaque, users will harbor suspicions about their
reliability in particular cases. That is why we seek transparent ex-
planations that can assuage concerns about unfair or unreasonable
model predictions.

But do iML algorithms really settle matters, or merely push the
problem one rung up the ladder? After all, why should we trust their
outputs? Presumably the target function at least has the advantage
of performing well on some test dataset. Can we say the same of
algorithms like SHAP, Anchors, or MACE? Their outputs are read-
ily intelligible, and that is clearly a start. But does that necessarily
mean that their explanations should all be given equal weight, or are
some more reliable than others? How can we be sure that they have
not produced unstable estimates or selected the wrong features? Are
there principled methods for critically evaluating individual explana-
tions, much like we can critically evaluate individual predictions?

I argue that severe testing holds the key to securing the trustwor-
thiness of algorithmic explanations. The goal of all iML algorithms
is to produce claims relating inputs to outputs. Such claims can in
principle be tested. That, for instance, is how we come to trust scien-
tific theories – by repeatedly, mercilessly subjecting them to severe
tests with quantifiable error rates. There is no good reason to hold
iML to a lesser standard.

Concerns over feasibility are legitimate. Bootstrapping methods
for evaluating the scope and stability of local explanations could be
time consuming. Conditional independence testing, which may aid
in fairness audits, is notoriously difficult in high-dimensional settings
and provably hard for continuous conditioning events [16]. But if the
stakes are sufficiently high that we need an algorithmic explanation
in the first place – perhaps even a legally mandated one – then it is
important that we get that explanation right.

Proponents of black box algorithms argue that results often matter
above all else. Would we prefer a transparent model that diagnoses
cancer with 90% accuracy or an opaque one that does so with 99%
accuracy? By the same token, we cannot dismiss severe testing for
iML merely due to concerns about the computational burden. When
consequential decisions depend upon algorithmic explanations, we
had better make sure they withstand a stringent scrutiny.
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