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We study the role of ionic correlations on the electroosmotic flow in planar double-slit channels,
without salt. We propose an analytical theory, based on recent advances in the understanding of
correlated systems. We compare the theory with mean-field results and validate it by means of
dissipative particle dynamics simulations. Interestingly, for some surface separations, correlated
systems exhibit a larger flow than predicted by mean-field. We conclude that the electroosmotic
properties of a charged system can be used, in general, to infer and weight the importance of
electrostatic correlations therein.

I. INTRODUCTION

The proof that natural colloids bear a surface charge in
aqueous conditions dates back to 1809, with the electroki-
netic experiments of Reus: he observed electrophoresis
of clays, together with electroosmosis of water through
sand [1]. These two effects, driven by an electric field, can
be viewed as describing the same phenomenon in differ-
ent frames: while electrophoresis refers to the motion of
charged macromolecules in a fluid at rest, electroosmosis
is for the displacement of liquid when a solid interface
(such as a capillary) is fixed [2, 3]. The external elec-
tric field applies a force on the ions of the electric double
layer, that in turn transfer it to the surrounding solvent
by means of viscous interactions. Applications abound
in micro or nanofluidics, from pumping devices to blue
energy and biological systems [4–6].

While the validity of hydrodynamic continuum ap-
proaches is challenged by downsizing [4], electrokinetic
phenomena at small scale are usually described at a con-
tinuum mean-field (MF) level when it comes to Coulom-
bic effects, with neglect of ionic correlations [1–11]. Due
account of these effects has prompted only few theo-
retical attempts [12, 13]. In the vast body of com-
putational simulations as well, from lattice-Boltzmann
approaches [14–16] to explicit water molecular dynam-
ics simulations [17, 18] or dissipative particle dynam-
ics (DPD) [14, 19], the question remains somewhat over-
looked.

The study of ionic correlations, that eludes the
Poisson-Boltzmann (PB) framework, has focused on
static systems [20]. Different types of approaches have
been put forward, from field theoretic [21–24] to more

Figure 1. Sketch of the system. Counterions are confined
between two charged planar surfaces at distance d. An exter-
nal electric field E‖ is applied in the direction parallel to the
surfaces.

heuristic works [20, 25–28]. We proceed along the latter
angle of attack, to address the question of electroosmotic
transport. We make use of the recent approach developed
in [28] to present a theory of electroosmosis in salt-free
systems, that naturally includes Coulombic correlations.
Explicit dynamical quantities can be worked out, and we
present as well DPD simulations that validate the theo-
retical analysis.

We study in particular the double-slit geometry rep-
resented in Fig. 1: two parallel planar surfaces of sur-
face charge density σ are placed at distance d from each
other and delimit a solution containing ions of oppo-
site charge. In Sec. II we solve the electroosmotic pro-
file in the PB MF limit and in the correlated regime.
In Sec. III we compare theory and DPD simulations,
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showing ionic density profiles, velocity profiles and in-
tegrated flow. This comparison validates the theory in
the strongly correlated regime and defines its limits of
application for weekly correlated systems. Results are
discussed in Sec. IV. We will show that there is a range of
widths d, for which correlations enhance electroosmosis,
when compared to the MF expectation. This is an in-
teresting phenomenon, that can play a role in situations
of high confinement (e.g. nano-/subnanofluidic devices,
membrane porins), where solvent destructuring close to
the charged surfaces can boost ionic correlations [29, 30],
with yet unexplored effects on the electroosmotic flow.

II. THEORETICAL MODEL

The solvent is assumed to be a structureless dielectric
medium with relative permittivity εr and dynamic viscos-
ity η. Under steady state conditions, the velocity profile
of the fluid u(z) obeys the following Stokes equation:

∂2u

∂z2
= −

qeE‖

η
n(z) . (1)

where n(z) is the average density of counterions, q their
valence, and e the elementary charge. The solvent obeys
no-slip boundary conditions

u(0) = u(d) = 0 . (2)

When substituting the velocity field u for the electric po-
tential φ, Eq. (1) yields the Poisson equation; φ and u
are thus linearly related [2]. A second key observation
which stems from the planar geometry, where the fluid
flows parallel to the plates and thus perpendicular to the
charged interface, is that ion migration does not influence
the equilibrium density profile[2]. Characterising the flow
thus simply requires the knowledge of the equilibrium be-
haviour of the ionic density: in this sense, the ionic flow is
enslaved to the equilibrium density profile. We solve be-
low the Stokes equation using for the (equilibrium) ionic
density profile n(z) either the MF (uncorrelated) form,
or the strong coupling (SC) (correlated) regime.

A. Mean-field regime

In MF, the density of counterions is [31]

n(z) =
σK

q tan Kd
2

1

cos2
(
K
(
z − d

2

)) . (3)

K is given by the solution of the following equation

Kd tan
Kd

2
=
d

µ
, (4)

where µ = (2πlBqσ)−1 is the Gouy-Chapman length,
lB = e2/(4πε0εrkBT ) is the Bjerrum length and T is
temperature.

Plugging Eq. (3) into Eq. (1) and imposing conditions
(2), one gets the steady-state electroosmotic profile in
MF. Defining the convenient dimensionless velocity ũ

u(z) =
eE‖

2πlBηq
ũ(z) , (5)

one gets

ũ(z) = ln
cos
(
K
(
z − d

2

))
cos Kd2

. (6)

By symmetry, the flow is maximum at z = d
2 . With

ũm = ũ(d2 ), we have

ũm = − ln cos
Kd

2
'


d

4µ
if d� µ

ln
d

πµ
if d� µ

. (7)

If d � µ, ũm diverges logarithmically with the distance,
as does the electrostatic potential φ. This is the finger-
print of rather inefficient screening by counterions only,
as opposed to systems where both types of microions are
present, cations and anions (added salt) [31]. Indeed, the
equilibrium density ionic profile decays like a power-law
(z−2) far from a single charged plate, as opposed to ex-
ponentially with salt. This corresponds to a slower con-
vergence to neutrality, and there is thus a residual charge
on which the applied electric field pulls. There is no sim-
ilar mechanism at work under SC. Yet, it is possible to
observe an enhanced flow at intermediate interplate dis-
tances, as we will discuss.

By integrating Eq. (6) for z between 0 and d, we get Q,
the volume flow rate of fluid per unit width length (with
dimensions of surface divided by time). In the following
units

Q =
eE‖µ

2πlBηq
Q̃ , (8)

this is:

Q̃ =
Cl2(π −Kd)− Cl2(π +Kd)

2Kµ
− d

µ
ln

(
2 cos

Kd

2

)
,

(9)

where Cl2(x) = −
∫ x
0

ln
(
2 sin t

2

)
dt = i

2 [Li2(e−ix) −
Li2(eix)] is the Clausen integral, or Clausen function of
second order, or log-sine integral, and Li2 represents the

dilogarithm function. Q̃ goes as d2 for d � µ, and as
d ln(d) for d � µ. This reflects the behaviour of the
maximum velocity ũm, from Eq. (7).

B. Strong coupling analysis

We quantify the importance of ionic correlations by
means of the so-called electrostatic coupling parame-
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ter [32, 33], as routinely used in plasma physics:

Ξ =
q2lB
µ

= 2πq3l2Bσ . (10)

The MF regime corresponds to Ξ → 0 (low charges,
high permittivity), whereas higher Ξ values correspond
to more energy-dominated systems, with Ξ → ∞ rep-
resenting the ground state (formally, the behaviour at
T = 0, assuming εr does not depend on T ). In practice,
deviations from PB become appreciable when Ξ exceeds a
couple of units. At room temperature in water (εr = 80),
this means σ > 1/q3 nm−2. With monovalent ions q = 1,
this condition is hardly met in practice, while it becomes
more standard when q ≥ 2, with divalent or trivalent
counterions.

As proposed in [28], the density of counterions can be
approximated by introducing an effective field κ. In the
ground state, this is the total electric field felt by an ion
leaned to a charged surface: this includes the contribu-
tions of both charged walls and, most importantly, of all
the other ions. In practice it is defined by the energetic
cost κ∆z of moving such ion away from the surface by a
small distance ∆z. In the ground state (Ξ→∞), κ can
be computed analytically and varies with d on a scale
a =

√
q/σ ∝ µ

√
Ξ, the typical “in-plane” distance be-

tween ions. At finite coupling Ξ, a situation where fluc-
tuations are present, this picture can be retained with
very satisfactory results, as long as Ξ stays � 1 [28]; the
effective field, that from now on we express in units of
kBT/µ, can be approximated by the following expression:

κ

(
d

a

)
=

d
a√(

d
a

)2
+ 1

2π

. (11)

Note that for d → 0, ions are delocalised along z and κ
goes to 0; for d→∞, one of the walls together with half
of the ions are too distant to matter and κ goes to 1, the
electric field of a bare wall in our units.

The effective field is a useful tool to determine the
average ion density, that can be written [28] as

n(z) =
2πlBσ

2κ

1− e−κd/µ

(
eκ

z−d
µ + e−κ

z
µ

)
. (12)

The solution of Eqs. (1) and (2) for density (12) is

ũ(z) =
1 + e−κ

d
µ − eκ

z−d
µ − e−κ

z
µ

κ
(

1− e−κ
d
µ

) , (13)

where we used the same units as in Eq. (5).
At the midpoint z = d/2, solvent flows with the maxi-

mum velocity

ũm =

(
1− e−κ

d
2µ

)2
κ
(

1− e−κ
d
µ

) . (14)

Figure 2. Maximum fluid speed ũm as a function of di-
mensionless distance d/µ. MF (PB) is represented by a
black dashed line and SC by solid lines. To get the MF
curve, Eq. (4) is solved numerically and its result plugged
into Eq. (6). To get the SC curves, Eq. (14) is closed with
formula (11).

Asymptotically, this gives

ũm '


d

4µ
if d� µΞ1/4

1 if d & µΞ1/2

. (15)

In Fig. 2, ũm is plotted as a function of d/µ, for differ-
ent values of Ξ. Interestingly, ũm is non-monotonic: it in-
creases linearly (faster than the MF logarithmic solution)
until a distance ∼ µΞ1/4, then it peaks, decays (recross-
ing the MF curve), and eventually sets to a plateau for
distances larger than a ∝ µΞ1/2. The initial correlation-
driven boost of the electroosmotic velocity, compared to
MF, is due to the fact that correlations are more effi-
cient than MF at delocalising ions at small distances: a
more uniform distribution is then rewarded by Eq. (1)
with a higher electroosmotic flow. On the contrary, at
large distances, the SC density (12) decays to zero faster
than the MF one (3): this corresponds to a constant
mid-plane velocity for SC (no ion is present to supply a
velocity gradient within distances > µ from the walls)
and, conversely, to a virtually diverging velocity far from
the charged surfaces for MF (due to the aforementioned
algebraic tail).

It is also worth noticing how the addition of a new
length scale, a, through the expression of the effective
field (11) affects ũ: the system goes from a velocity (6) or
(7), where the relevant length scale is µ, to a velocity (14)
or (15), where the relevant length scales are a and the
geometrical average

√
µa ∝ µΞ1/4. Indeed, in a strongly

correlated system, µΞ1/4 (� µ) is the length scale over
which ions transition from an entropy-favored state with
uniform distribution along z, to a state where half of the
ions are adsorbed on either wall [34]. Note that upon
increasing the coupling parameter Ξ, the length scale a
can feature different behaviours, depending on which pa-
rameter is modified: it may increase if only q is modified,
it may decrease if correlations are enhanced through an
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Figure 3. Integrated flow divided by distance, as a function

of d/µ = d̃, in log-log scale. The situation is analogous to
that of Fig. 2.

increase of the surface charge, or it may stay constant if
temperature is modified. The latter T -based view pro-
vides a convenient way to envision the role of correlations
(decreasing T increases Ξ at fixed geometrical length a),
but one should keep in mind that it is experimentally al-
most impossible to change T significantly, at least with
a water solvent.

We now look at the position of the peaks in Fig. 2.
The spacing dmax at which ũm is the largest, for a given
Ξ, can be computed by imposing that the derivative of

ũm, from Eq. (14), with respect to d̃ = d/µ, vanish. This
amounts to solving the equation

d̃4 + 2d̃2Ξ− 2Ξ

√
d̃2 + Ξ sinh

(
d̃2

2
√
d̃2 + Ξ

)
= 0 . (16)

Making the assumption that d̃2 � Ξ, for Ξ sufficiently
large, this reduces to

sinh

(
d̃2

2
√

Ξ

)
' d̃2√

Ξ
. (17)

The equation sinh(y/2) = y has only one real positive

solution: y0 = 4.3546... . By equating d̃2/
√

Ξ to y0, one
gets

d̃max '
√

4.3546 Ξ1/4 , (18)

which satisfies the underlying assumption d̃2 � Ξ for
large Ξ and is consistent with Eq. (15). Eq. (18)

agrees with numerical calculations of d̃max from Eq. (14).
Eqs. (15) and (18) together indicate that the maximum
attainable velocity ũm,max, i.e. ũm at dmax, also scales as

Ξ1/4. Compared to Eq. (7), this indicates enhanced flow
with respect to the MF prediction.

A dmax scaling as µΞ1/4 confirms our previous inter-
pretation. Increasing the inter-plate distance when ions
are uniformly distributed, i.e. when d < µΞ1/4, increases
linearly the electroosmotic speed at the midplane: in-
deed, the uniform ion density scales as 1/d, so does

Figure 4. Integrated flow Q 2πη/(qeE‖) = Q̃/Ξ, as a function
of coupling. Two values of separation d are shown. In both
cases, as correlations are switched on, the SC flow (accurate
for large Ξ) decreases compared to the correlation-free value
(PB curve, Ξ → 0). However, at small separation (d/a = 0.1,
left), the SC theory predicts a stronger flow than PB. At large
separations (d/a = 10, right), this is not true and the effect
shown in the large-d part of Fig. 3 dominates.

the curvature of the electroosmotic profile, and there-
fore ũm = ũ(d/2) grows as d. Increasing the distance
beyond µΞ1/4, though, destroys uniformity and gradu-
ally favors an ionic distribution decaying rapidly away

from the walls: at constant total applied force (
∫ d
0
n(z) dz

is fixed by electroneutrality), this configuration gives a
lower ũm than the uniform distribution configuration.

This non-monotonic effect of correlations is visible in
integrated quantities, too. To see this, we compute the
volume flow rate Q, as we did for the MF case. By inte-
grating Eq. (13) for z between 0 and d, we get

Q̃ = − 2Ξ

d̃2
+

√
d̃2 + Ξ coth

(
d̃2

2
√
d̃2 + Ξ

)
− 2

=


d2

6µ2
if d� µΞ1/4

d

µ
if d & µΞ1/2

, (19)

where we used the same units as in Eq. (8). Fig. 3 rep-

resents Q̃ for different values of Ξ, and for MF (Eq. (9)).
To better understand the effect of correlations, we look

at Q in real units, that do not involve lB. We fix the
separation d, in units of the purely geometrical param-
eter a, and imagine to gradually increase coupling by
increasing lB only. As mentioned above, this provides
us with a theoretical tool to gradually switch on cor-
relations at constant separation and assess their effect.
Fig. 4 shows that a correlated system exhibits in gen-
eral a smaller flow than the uncorrelated one. This is
also evident from the fact that the maximum attainable
velocity ũm,max scales as Ξ1/4; when phrased in terms
of the original unscaled velocity from definition (5), this

translates to um,max ∝ l
−1/2
B : increasing correlation ef-

fects at constant charge thus leads to a net decrease of
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Figure 5. Integrated flow Q 2πη/(eE‖), as a function of va-

lence q. Here, 2πl2Bσ = 1 is kept fixed, so that the horizontal
axis can also be read as Ξ1/3. Two values of separation d are
shown.

transport. However, a correlated system, well described
by the SC theory, exhibits at small separations a stronger
flow than predicted by applying MF theory to the same
system (Fig. 4, left). In this sense and in this regime,
correlations enhance electroosmosis.

Finally, yet another way to assess the role of correla-
tions is to observe how the flux changes as a function of
ion valence q, keeping constant lB and σ. This amounts
to increasing Ξ only through q. Fig. 5 shows the same
qualitative behaviour as Fig. 4: it exhibits at small sep-
aration d an enhancement and at large separation a sup-
pression of the electroosmotic flow, compared to the MF
prediction.

III. COMPUTATIONAL MODEL

A. Simulation setup

The DPD simulations are performed in a box of size
Lxy×Lxy×Lz with periodic boundary conditions in the x
and y directions. The charged planes with charge density
σ are located at z = 0 and z = d, as above. Nc counte-
rions and Ns DPD particles (modeling solvent) are con-
fined in region 0 < z < d, with d ≤ Lz/2 and Lz ≥ Lxy/2.
The vacuum region in the z direction is defined according
to a recently developed Ewald sum method [35]. The Ns
solvent particles correspond to a solvent number density
ns. The Nc counterions are considered as DPD particles
with a centered charge qe. The parameters and method
of integration used in our DPD simulations, widely used
in the literature, are given in [36]. The same mass m
is used for ions and DPD solvent particles. Besides m,
the thermal energy β = 1/kBT and the Gouy-Chapman
length µ are the natural units in our calculations. Con-
sidering the level of coarse graining in our method and
the focus on hydrodynamic phenomena, important prop-
erties of water in confinement such as dielectric response
and water molecules alignment [30] are not taken into

Figure 6. Example of pure DPD solvent particles simulations
(uncharged system). The concentration and temperature pro-
files are represented by solid lines. Temperature is measured
locally from the particles’ velocity variance. Symbols are the
parallel velocity profile up, while the dashed line is the fit-
ting curve. The parameters are µ3ns = 4, βµF‖ = 0.02 and
d/µ = 10. Depending on Ξ, different parameters are used in
order to reduce the total number of particles.

account.
The dynamic viscosity of the DPD system is deter-

mined from the fitting of the velocity profile up(z) of
a pure system (solvent particles only), in a Poiseuille-
Hagen flow configuration: constant and uniform flow
force F‖, parallel to the surfaces, under no-slip boundary
conditions. The velocity profile parallel to the surfaces
then reads

up(z) = γ

[
d2

4
−
(
z − d

2

)2
]
. (20)

The viscosity expression is well studied in [14, 37]. It is
given by

η =
nsF‖

2γ
. (21)

In Fig. 6 we show the results for one of the pure sys-
tems considered. The dimensionless particle concentra-
tion is µ3ρs and the temperature profile is given by
〈v2〉mβ, where 〈v2〉 is the average quadratic velocity.
The parallel velocity up(z) and the fitting curve are
also shown. Following the fitting procedure, we find
γ = 0.033 (mβ)−1/2µ−2 and η = 1.21 (m/β)1/2µ−2.

In order to induce the electroosmotic flow in DPD
simulations with counterions, the dynamics is performed
with a constant electric field E‖ = 1 (βµqe)−1 parallel
to the surfaces, as in Fig. 1. The lateral side size of the
simulation box is chosen as Lxy/µ =

√
πΞNc, so as to

maintain charge neutrality. For higher coupling parame-
ters Ξ, in order to keep charge neutrality, the size of the
simulation box can be very high. This means that a typ-
ical concentration of DPD particles, such as µ3ns = 4,
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would give a huge number of particles. To circumvent
this issue, we decrease the concentration (until we get a
computationally reasonable number of particles, around
4 × 104) and increase the DPD interaction cut-off ra-
dius to obtain the desired hydrodynamic properties. We
concomitantly increase the level of coarse graining. As
a consequence we must obtain the viscosity for each set
of parameters. No-slip boundary conditions are applied.
The electrostatic part of molecular dynamics is also de-
rived from the modified Ewald sum method in [35]. The
fraction of number of ions/solvent particles in simulations
goes approximately from 0.01 to 0.001, depending on the
coupling parameter.

B. Results

First, we compare the ionic density profiles obtained
from the PB and SC theories with the profiles obtained
from the present DPD simulations. Results are repre-
sented in Fig. 7. We sample four values of Ξ, ranging
from 1 to 100, and three values of d, from 5 to 30µ.
The profiles are not affected by the flow, in line with the
discussion in Sec. II. For low coupling parameters (first
and, to a lesser extent, second line) the PB framework
describes our density profiles. As coupling increases, the
profiles depart from the PB result and approach their SC
counterpart. At Ξ = 100, the effective-field SC theory
accurately describes the numerical density profiles. Un-
fortunately we could not probe larger Ξ values, as this
would require to increase substantially the number of par-
ticles in simulations. Our results are consistent with the
validity limit of the effective field theory, probed with
Monte Carlo simulations and better discussed in [28]; we
point out that such limit reaches down to Ξ values that
are surprisingly low, given how the theory stems mainly
from low-temperature arguments.

As discussed in Sec. II, at small d, ions are rather lo-
calised on the walls for low values of Ξ, while they are
almost uniformly distributed for high values of Ξ. This
is why ionic correlations enhance electroosmotic flow at
small channel widths, as per Figs. 2 and 3. Such an effect
appears in Fig. 8, where fluid velocity profiles ũ(z) are
shown for the same Ξ and d values as in Fig. 7.

We summarise these observations by analyzing the two
scalar quantities we have focused on in Sec. II: the peak

velocity ũm and the volume flow rate Q̃. These are rep-
resented, together with their analytical MF and SC pre-
dictions, in Figs. 9 and 10a. The theoretical curves are
the same as in Figs. 2 and 3, respectively.

In general, the higher the coupling, the better our the-
ory is at describing simulation results: in Fig. 7 and
Fig. 8, agreement with the SC curves increases from top
to bottom, gradually subtracting credence to the MF re-
sults. By the time Ξ reaches 100, the SC curves prac-
tically coincide with simulation results. However, it is
worth noticing that the accuracy of the SC theory de-
pends not only on Ξ, but also on d: at Ξ = 10, for

instance, the velocity profile deviates from the SC theory
one only at d = 30µ (Fig. 8, second row). Additional in-
sight comes from the comparison of Ξ = 50 to Ξ = 100,
at d = 30µ, in Figs. 7 and 8: for Ξ = 50, the density only
deviates from the SC curve in the middle of the channel
– when its value is hundreds of times smaller than close
to the walls – but this causes a conspicuous deviation in
the velocity profile; for Ξ = 100, at the same d/µ, the
agreement with SC is complete. This phenomenon is due
to the high sensitivity of the electroosmotic flow to the
decaying behaviour of the ionic density away from the
charged surfaces (algebraic for MF, exponential for SC).
The question of a potential crossover to MF and in par-
ticular of the recovery of an algebraic tail, for arbitrary
coupling and very large separations, is presumably not
relevant for the values of d we probe here [22, 38].

IV. DISCUSSION AND CONCLUSION

Quantifying the role of ionic correlations in charged so-
lutions is a challenging task. While static problems have
been tackled through continuous [21, 22, 24, 39] and dis-
crete [25, 27, 28] approaches, comparatively little effort
has been devoted to understanding the signature of be-
yond mean-field (MF) correlations on electrokinetics [13].
We have addressed here this question within planar elec-
trosmosis, for a salt-free system. The theory is simple
and gives closed formulas for the relevant observables
(e.g. the velocity profile) for any Ξ, making use of no fit-
ting parameter and no arbitrary correlation length scale
(a common feature of many functional-based theories).
Our findings are backed up by DPD. These simulations
establish the regimes in which the theory is successful and
those, limited to moderately small coupling parameters,
in which MF is more accurate.

We showed that ionic correlations can have two effects
on electroosmotic properties, as compared to the MF ex-
pectation. On the one hand, they can boost the flow: this
happens in the regime where they promote ionic delocal-
isation. Indeed, a uniform ionic distribution corresponds
to a stronger flow. A correlated system exhibits an ap-
proximately uniform distribution up to inter-plane sep-
arations of order µΞ1/4, where µ is the Gouy-Chapman
length; such delocalisation of the ions is more efficient
than in MF theory and happens on a wider range of
separations (µΞ1/4 � µ). On the other hand, correla-
tions decrease the flow at much larger separations: in
this regime, correlated ions exhibit a short-range distri-
bution as a function of distance from the wall, and are
therefore more confined than in an uncorrelated system,
where the distribution is long-range.

In systems where the solvent has a high dielectric per-
mittivity, the Gouy-Chapman length µ is usually very
small under strong coupling regime, because of the large
surface charge required for a large Ξ. The separations at
which electroosmotic boost would be possible are rather
small and interfere with molecular scales, so that, in these
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Figure 7. Counterions density profiles for coupling parameters Ξ = 1, Ξ = 10, Ξ = 50 and Ξ = 100 in first, second, third and
fourth lines, respectively. The separations are d/µ = 5, 10 and 30, first, second and third columns, respectively. Symbols are
DPD simulation data, whereas lines are for PB and SC theories.

systems, it might only be possible to observe flow sup-
pression. In low-permittivity solvents, often apolar, fewer
systems reach surface charges for which Ξ is large enough,
but, in such cases, µ is larger. The left part of the Q(d)
diagram (Figs. 3 or 10b for instance) becomes then mean-
ingful. In these systems, flow boost could be observable
at distances of the order of tens of nanometres, while flow
suppression will be seen at larger distances. In this re-
gard, it is fair to point out that recent works [29, 30, 40]

highlight a decrease of the permittivity of water under
nanometric confinement: this might open up the boosted-
flow regime to water based systems.

Having identified the signature of electrostatic corre-
lations, it appears that electroosmotic flow may be used
to probe the coupling parameter Ξ in salt-free systems.
Although well defined a priori, this quantity can indeed
be elusive from an experimental point of view, through
the measure of the wall surface charge. To this end, Figs.
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Figure 8. Velocity profiles for the same parameters as indicated in Fig. 7.

9 and 10 may serve as a calibration reference to assess
the importance of ionic correlations in an experimental
system, or even in atomistic simulations.

Finally, perspectives include accounting for refined ef-
fects that may prove relevant under high surface charges,
such as charge-induced thickening of the electrolyte,
where the solution viscosity increases with charge den-
sity [12].
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by its MF (PB) limiting law. The color code is the same in
both panels; symbols are for DPD simulations and lines for
the theory.
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[28] L. Šamaj, M. Trulsson and E. Trizac, Soft Matter, 2018,

14, 4040–4052.
[29] A. Goyal, I. Palaia, K. Ioannidou, F.-J. Ulm, H. Van

Damme, R. J.-M. Pellenq, E. Trizac and E. Del Gado,
under review, 2020.

[30] A. Schlaich, A. P. Dos Santos and R. R. Netz, Langmuir,
2019, 35, 551–560.

[31] D. Andelman, in Soft Condensed Matter Physics in
Molecular and Cell Biology, ed. W. C. K. Poon and
D. Andelman, 2006, pp. 97–122.

[32] A. G. Moreira and R. R. Netz, Europhysics Letters, 2000,
52, 705–711.

[33] R. R. Netz and H. Orland, The European Physical Jour-
nal E, 2000, 1, 203.

[34] E. Trizac and L. Samaj, Proceedings of the International
School of Physics Enrico Fermi, 2012, pp. 61–73.

[35] A. P. dos Santos, M. Girotto and Y. Levin, J. Chem.
Phys., 2016, 144, 144103.

[36] R. D. Groot and P. B. Warren, J. Chem. Phys., 1997,
107, 4423.

[37] J. Smiatek, M. P. Allen and F. Schmid, Eur. Phys. J. E,
2008, 26, 115.

[38] I. Palaia, M. Trulsson, L. Šamaj and E. Trizac, Molecular
Physics, 2018, 116, 3134–3146.

[39] M. Z. Bazant, B. D. Storey and A. A. Kornyshev, Phys-
ical Review Letters, 2011, 106, 6–9.

[40] T. Mukhina, A. Hemmerle, V. Rondelli, Y. Gerelli,
G. Fragneto, J. Daillant and T. Charitat, The Journal
of Physical Chemistry Letters, 2019, 10, 7195–7199.


	Electroosmosis as a probe for electrostatic correlations
	Abstract
	Introduction
	Theoretical model
	Mean-field regime
	Strong coupling analysis

	Computational model
	Simulation setup
	Results

	Discussion and conclusion
	Conflicts of interest
	Acknowledgements
	References


