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Functional neuroimaging has identified that the temporal, frontal and parietal cortex support core as-
pects of speech processing. An objective measure of speech intelligibility based on cortical activation in
these brain regions would be extremely useful to speech communication and hearing device applica-
tions. In the current study, we used noise-vocoded speech to examine cortical correlates of speech
intelligibility in normally-hearing listeners using functional near-infrared spectroscopy (fNIRS), a non-
invasive, neuroimaging technique that is fully-compatible with hearing devices, including cochlear im-
plants. In twenty-three normally-hearing adults we measured (1) activation in superior temporal,
inferior frontal and inferior parietal cortex bilaterally and (2) behavioural speech intelligibility. Listeners
heard noise-vocoded sentences targeting five equally spaced levels of intelligibility between 0 and 100%
correct. Activation in superior temporal regions increased linearly with intelligibility. This relationship
appears to have been driven in part by changing acoustic properties across stimulation conditions, rather
than solely by intelligibility per se. Superior temporal activation was also predictive of individual dif-
ferences in intelligibility in a challenging listening condition. Beyond superior temporal cortex, we
identified regions in which activation varied non-linearly with intelligibility. For example, in left inferior
frontal cortex, activation peaked in response to heavily degraded, yet still somewhat intelligible, speech.
Activation in this region was linearly related to response time on a simultaneous behavioural task,
suggesting it may contribute to decision making. Our results indicate that fNIRS has the potential to
provide an objective measure of speech intelligibility in normally-hearing listeners. Should these results
be found to apply similarly in the case of individuals listening through a cochlear implant, fNIRS would
demonstrate potential for a clinically useful measure not only of speech intelligibility, but also of listening
effort.
Crown Copyright © 2018 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Functional neuroimaging has identified critical components of
the functional organization of speech and language processing in
the human brain (Hickok and Poeppel, 2000; Scott and Johnsrude,
2003). Functional magnetic resonance imaging (fMRI) studies show
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that temporal cortex responses to speech stimuli of varying intel-
ligibility (Evans et al., 2014; Zekfeld et al., 2006; Belin et al., 2000).
Furthermore, using positron emission tomography (PET) Scott and
colleagues (2006) found a selective response to intelligible speech
in the left anterior superior temporal sulcus by varying the intel-
ligibility of speech parametrically using vocoded stimuli.

It has been suggested that neuroimaging of cortical language
areas could provide an objective way to complement existing
behavioural assessments of speech understanding in speech
communication and hearing device applications (Anderson et al.,
2017a). For example, such a measure could prove particularly
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useful in very young children with a cochlear implant (CI), since
accurate behavioural measures of speech perception to assess this
group are currently lacking (Lawler et al., 2015). Unfortunatelymost
neuroimaging techniques, including fMRI are not compatible with a
CI. Furthermore, the risks associated with cumulative effects of
radionuclide exposure limits the clinical usefulness of PET as a
repeatable clinical tool to measure speech understanding in clinical
populations.

Functional near-infrared spectroscopy (fNIRS) is an increasingly
popular non-invasive optical technique that can be used safely and
repeatedly for studying cortical function. This technique images the
haemodynamic response to neuronal activity in the brain via the
use of near-infrared light (Boas et al., 2014). Low-power near-
infrared light is directed through the scalp and into the cortex; the
intensity of the light returning to the surface of the scalp is then
detected. Changes in the concentration of oxygenated haemoglobin
(HbO) and deoxygenated haemoglobin (HbR) can be measured
which are subsequently interpreted as an indirect reflection of
neuronal activity. It has been shown that fNIRS can reliably mea-
sure cortical responses to speech in normally-hearing adults
(Wiggins et al., 2016) and children (Blasi et al., 2014), at least at a
group level. Furthermore, fNIRS has been shown to be suitable for
use with both adult (Anderson et al., 2017b; Bisconti et al., 2016;
Chen et al., 2016; McKay et al., 2016; Olds et al., 2016; Van de Rijt
et al., 2016) and paediatric (Sevy et al., 2010) CI recipients.

Pollonini et al. (2014) used fNIRS in normally-hearing individuals
to compare responses to speech with a baseline condition. They
showed that the temporal cortex is more responsive to clear speech,
than to scrambled speech or to environmental sounds. More
recently, Defenderfer et al. (2017) used an event-related design in
normally-hearing adults to investigate temporal lobe activation
across different listening conditions using fNIRS. However, since
intelligibility was not parametrically varied in these fNIRS studies, it
was difficult to interpret whether there was an effect of speech
intelligibility on cortical responsiveness, as opposed to another
acoustic variable such as pitch or modulation envelope.

The aim of the current study was to investigate cortical corre-
lates of speech intelligibility using fNIRS. We presented normally-
hearing adults with noise-vocoded speech (Shannon et al., 1995)
that were parametrically manipulated to vary speech intelligibility.
A combination of normally-hearing participants and noise vocod-
ing was used to assess the efficacy of fNIRS to detect cortical cor-
relates of speech intelligibility in degraded listening conditions,
while at the same time allowing us to readily target performance
levels across the full range from 0 to 100% correct.

We principally targeted superior temporal brain regions, which
previous fNIRS studies suggest may be sensitive to speech intelligi-
bility (Olds et al., 2016; Pollonini et al., 2014). Additionally, we used a
probe that provided coverage extending beyond superior temporal
cortex, including the left inferior frontal cortex. Previous research
suggests that activation in this frontal region might be expected to
vary non-monotonically with speech intelligibility, potentially
reflecting compensatory activity under more effortful listening
conditions (Davis and Johnsrude, 2003; Wild et al., 2012; Wijayasiri
et al., 2017). We aimed to assess correlations between fNIRS re-
sponses and speech intelligibility both within individuals (i.e. across
different levels of acoustic degradation) and between individuals (i.e.
assessing individual differences in intelligibility amongst listeners
exposed to stimuli at a fixed level of acoustic degradation).

2. Materials and methods

2.1. Participants and ethical approval

Twenty-three healthy adult volunteers (median age 24.6 years,
range 18e38 years, 5 males, 18 females) were recruited to this
study. The design was approved by the University of Nottingham
Faculty of Medicine and Health Sciences Research Ethics Commit-
tee and all participants gave written informed consent. Participants
had no known cognitive or psycho-motor impairments, and all self-
reported normal hearing during a screening questionnaire. All
participants were native English speakers with normal or
corrected-to-normal vision. Most participants were right handed
(20 out of 23) as assessed using the Edinburgh Handedness In-
ventory (Oldfield, 1971).

2.2. Equipment

Testing was conducted in a sound-attenuated room with the
lighting dimmed. Participants were seated approximately 75 cm
from a visual display unit. A Genelec 8030A loudspeaker mounted
immediately above and behind the display was used to present the
auditory stimuli, at a level of 65 dB SPL (A-weighted root-mean-
square level averaged over the duration of each sentence,
measured at the listening position using a Brüel & Kjær Type 2250
sound level meter with the participant absent). Brain activity was
non-invasively measured using a Hitachi (Tokyo, Japan) ETG-4000
continuous-wave fNIRS system. The ETG-4000 measures simulta-
neously at wavelengths of 695 nm and 830 nm (sampling rate
10 Hz) and uses frequency modulation to minimize crosstalk be-
tween channels and wavelengths (Scholkmann et al., 2014). A
dense sound-absorbing screen was placed between the fNIRS
equipment and the listening position, resulting in a steady ambient
noise level of 38 dB SPL (A-weighted). During the main fNIRS task,
participants entered their responses using an “RTbox” button box
(Li et al., 2010). The experiment was implemented in MATLAB
(MathWorks, Natick, MA) using the Psychtoolbox-3 extensions
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

2.3. Speech stimuli

Stimuli were generated by applying eight-channel noise
vocoding (Shannon et al., 1995) to recordings of Bamford-Kowal-
Bench (BKB) sentences (Bench et al., 1979) spoken by a male
talker. The eight channels were spaced approximately equally along
the basilar membrane (Greenwood, 1990) and spanned an overall
bandwidth of 180e8000 Hz. Channel filtering was performed using
6th-order digital elliptic filters applied consecutively in the forward
and reverse directions to avoid phase distortion (MATLAB filtfilt
function). Within-channel amplitude envelopes were extracted by
half-wave rectification followed by zero-phase low-pass filtering at
160 Hz using a 1st-order elliptic filter (applied consecutively in the
forward and reverse directions). Following subsequent manipula-
tion (see below), each envelope was then applied to a white-noise
carrier and bandpass filtered using the same filters as used for
analysis. Input and output root-mean-square (RMS) levels were
matched on a within-channel basis, before summation across
channels to arrive at the final stimulus.

To parametrically vary intelligibility, we manipulated the depth
of envelope modulationwithin each vocoder channel by raising the
extracted envelopes to a fractional power (same exponent for all
channels). Based on the results of pilot testing (see below for de-
tails), we used envelope exponents of 0.000, 0.149, 0.212, 0.297 and
1.000, chosen to target group-mean intelligibility levels of 0, 25, 50,
75 and 100% keywords correct, respectively. These five stimulation
conditions are referred to as S0, S25, S50, S75 and S100 throughout the
remainder of the manuscript. Note that an envelope exponent of
zero resulted in a steady speech-shaped noise containing no lin-
guistic information, while an exponent of one left the original
speech envelope unaltered (i.e. comparable to a standard eight-



R.J. Lawrence et al. / Hearing Research 370 (2018) 53e64 55
channel vocoder).
The pilot study was carried out using seven adult volunteers

(who did not take part in the main study). The volunteers were
presented with BKB sentences processed as described above,
thoughwith one of seven different envelope exponents (1, 0.5, 0.25,
0.16, 0.125, 0.1 or 0). Following each sentence, the volunteer was
instructed to repeat back what they had heard and the number of
keywords correctly identified was scored. Each volunteer heard 16
sentences (one BKB list) per envelope exponent, with all trials
interleaved in random order. We fitted a psychometric function to
the group-average speech intelligibility data (see Supplementary
Figure 1), and from this derived five envelope exponents for use
in the main study that were expected to achieve group-average
intelligibility levels of around 0, 25, 50, 75 and 100%. Volunteers
in the pilot study received comparable practice listening to noise-
vocoded sentences before testing began as did participants in the
main study.

2.4. Speech intelligibility testing

All participants performed a behavioural test of speech intelli-
gibility both before (pre-imaging session) and after the main fNIRS
task (post-imaging session). During these tests participants were
presentedwith a total of 80 sentences,16 per stimulation condition,
in random interleaved order. After each sentence, participants were
asked to respond verbally by attempting to repeat what they had
heard. The experimenter scored the number of keywords correctly
reported using a touchscreen device. Before commencing data
collection, participants completed a short familiarization session in
which six sentences were presented for each stimulation condition.
The purpose of this familiarization session was to ensure that
participants understood the task and to provide them with some
initial practice listening to the degraded speech stimuli.

2.5. Main fNIRS task

An event-related neuroimaging design was used in which each
event corresponded to the presentation of a single sentence. Par-
ticipants were presented with 20 sentences per stimulation con-
dition, interspersed with 20 silent trials which acted as a baseline.
All trial types were presented in randomized order. The stimulus-
onset asynchrony (SOA; the time between the onset of auditory
stimulation on one trial and the next) was randomly varied in the
range 6e12 s (average SOA: 9 s; average offset-to-onset gap: 7.4 s),
following a previous event-related fNIRS study conducted in our
laboratory (Wijayasiri et al., 2017). Randomising the SOA helps to
reduce the influence of preparatory and anticipatory factors and
allows the response to multiple trial types to be deconvolved
despite the possibility of temporal overlap in the haemodynamic
activity elicited by consecutive trials (Dale, 1999). The imaging
lasted approximately 18min in total.

During imaging, participants were instructed to look at a fixa-
tion cross presented on a uniform background, while sitting as still
as possible to minimize motion artefacts. Instead of participants
repeating sentences verbally, 0.5 s after each stimulus ended a
probe word appeared on the display. The probe word was, with
equal probability, either a word that had featured in the presented
sentence or a replacement foil word, chosen to rhyme with one of
the true keywords. Foil words were equally likely to fall towards the
start, middle, or end of the sentence. Participants were required to
indicate by a button press whether the probe word had appeared in
the sentence just heard. “Yes” and “No” labels were presented to-
wards either side of the display accordingly. The orientation of
these labels was fixed throughout an individual's session; however,
the side that corresponded to a “Yes” response was alternated for
even- and odd-numbered participants. Participants had up to 2 s to
respond; otherwise a missed response was recorded. On silent
trials, in lieu of the speech-based task, participants were simply
randomly instructed to “Press yes” or “Press no”. To ensure that
participants were confident with the procedure, a short familiar-
ization session was conducted before the optode array was placed
on the participant's head.

2.6. fNIRS measurements

Measurementsweremadewith a total of 30 optodes arranged in
two 3� 5 arrays (each containing 8 sources and 7 detectors). The
arrays were placed on both sides of the head (Fig. 1a). We aimed to
primarily measure cortical activation in the following regions
bilaterally i) superior temporal cortex; ii) inferior frontal cortex
and; iii) inferior parietal cortex. To ensure consistency of optode
placement across individuals, we followed a fixed protocol. The
International 10e20 System (Jasper, 1958) was used to guide and
standardise optode placement: the central optical source in the
bottom row of the array was positioned in vertical alignment with
the preauricular point, with the uppermost source aligned towards
position Cz. The inter-optode spacing was fixed at 30mm.

To give an indication of the variability in probe placement across
individuals, Fig. 1b shows optode locations measured on six vol-
unteers who did not take part in the main study. A 3D digitizer was
used to record the position of the optodes, as well as anatomical
surface landmarks. The location of all optodes relative to the surface
landmarks of the left and right tragus, nasion, inion and Cz were
recorded for the purpose of estimating optode positioning relative
to underlying cortical anatomy. The measured positions were
registered to the “Colin 27” atlas brain (Collins et al., 1998) using the
AtlasViewer tool (Aasted et al., 2015). The mean optode positions
across the six volunteers were used as the basis for data visuali-
zation (Fig. 1b and c).

2.7. Analysis of fNIRS data

Analysis of the fNIRS data was performed in MATLAB (Math-
Works, Natick, MA) using functions provided in the HOMER2
package (Huppert et al., 2009) together with custom scripts. The
analysis proceeded in a similar manner to previous studies con-
ducted in our laboratory (Anderson et al., 2017b; Wiggins et al.,
2016; Wiggins and Hartley, 2015; Wijayasiri et al., 2017). In brief,
the following steps were performed:

Exclusion of channels with poor signal quality: we used the
scalp coupling index (SCI) to identify and exclude channels
suffering from poor optodeescalp contact (Pollonini et al., 2014).
We excluded channels with SCI <0.16, chosen to exclude only the
worst 5% of channels in our dataset. In previous studies, we have
found that excluding only a small percentage of the worst channels
generally offers a good compromise between the wish to include
only high-quality channels in the analysis vs. the need to maintain
as large a sample size as possible for statistical power. The distri-
bution of SCI values across our entire dataset is provided in
Supplementary Figure 2.

Conversion to optical density: the measured light intensity
levels were converted to optical density using the HOMER2
hmrIntensity2OD function, a standard step in fNIRS data analysis
(Huppert et al., 2009).

Motion-artefact correction: motion artefacts were suppressed
using the HOMER2 hmrMotionCorrectWavelet function, which im-
plements a simplified form of the wavelet filtering algorithm
described by Molavi and Dumont (2012). We excluded wavelet
coefficients lying further than 0.719 times the interquartile range
below/above the first/third quartile, respectively.



Fig. 1. Optode positioning. (a) Photograph of the optode array holder (without optodes inserted) placed on the head of one of the authors for demonstration purposes. Red/blue
coding indicates optical sources/detectors, respectively. (b) Variability in digitized optode positions across the six volunteers. Optode positions for each volunteer are represented by
different colour dots (right-hemisphere shown). (c) The mean optode positions across the six volunteers following registration to an atlas brain are represented by red/blue colour.
The numbers indicate the position of each channel as referred to in the manuscript (channels 1e22 right-hemisphere, channels 23e44 left-hemisphere).
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Bandpass filtering: the optical density signals were band-pass
filtered between 0.02 and 0.5 Hz to attenuate low-frequency drift
and cardiac oscillations.

Conversion to estimated changes in haemoglobin concen-
trations: optical density was converted to estimated changes in the
concentration of HbO and HbR through application of the modified
Beer-Lambert Law (Huppert et al., 2009). A default value of 6 was
used for the differential path-length factor at both wavelengths.
Note that the continuous-wave fNIRS system used in the present
study allows for the estimation only of relative changes in hae-
moglobin concentrations and not absolute concentrations.

Isolation of the functional haemodynamic response: we
applied the haemodynamic modality separation (HMS) algorithm
described by Yamada et al. (2012) to isolate the functional
component of the haemodynamic signal and suppress systemic
physiological interference. This algorithm attempts to separate
functional and systemic signals based on the assumption that the
correlation between HbO and HbR will be different in each case.
Although this approach does not accurately account for all statis-
tical properties of the noise typically found in fNIRS data (Huppert,
2016), in previous studies we have found application of this algo-
rithm to be beneficial to the detection of auditory cortical activation
(Wiggins et al., 2016; Wijayasiri et al., 2017); in particular, appli-
cation of the HMS algorithm was shown to substantially improve
the test-retest reliability of auditory fNIRS measurements (Wiggins
et al., 2016).

Quantification of response amplitude: to quantify fNIRS
response amplitude, we used a general linear model (GLM)
approach previously described in Wijayasiri et al. (2017). The GLM
was applied to the continuous data collected over the duration of
the imaging session. The design matrix included a set of three re-
gressors (corresponding to the canonical haemodynamic response
plus its first two temporal derivatives) for each experimental
condition, plus a further set for the silent trials. Each trial was
modelled as a short epoch corresponding to the actual period of
auditory stimulation on that trial (mean duration 1.64 s; audio
muted on silent trials). Within each condition, the canonical and
temporal-derivative regressors were serially orthogonalized with
respect to one another (Calhoun et al., 2004). Model estimationwas
performed using the two-stage ordinary least squares procedure
described by (Plichta et al., 2007), which incorporates a correction
for serial correlation (Cochrane and Orcutt, 1949). The ‘derivative-
boost’ technique (Calhoun et al., 2004; Steffener et al., 2010) was
used to estimate response amplitude: this technique calculates an
amplitude value that is a function of both the canonical (nonde-
rivative) and the derivative terms of the model; the resulting
amplitude estimates are less affected by any systematic differences
in latency or dispersion between conditions, compared to if the
amplitude is estimated from the canonical term alone.

2.8. Statistical analyses

2.8.1. Behavioural data
Repeated-measures analyses of variance (RM-ANOVAs) were

carried out using IBM SPSS Statistics for Windows Version 22.0
software (IBM Corp., Armonk, New York). The Greenhouse-Geisser
correction for non-sphericity was applied where necessary.

The speech intelligibility data were analysed using a two-way
RM-ANOVA with within-subjects factors “stimulation condition”
(five levels: S0, S25, S50, S75 and S100) and “session” (two levels: pre-
vs. post-imaging). The percent-correct scores were transformed to
rationalized arcsine units (RAUs) prior to analysis to help equalize
variance across different performance levels (Studebaker, 1985).

The main-task behavioural results were analysed using a one-
way RM-ANOVA with within-subjects factor “stimulation condi-
tion” (five levels as listed above). Separate analyses were performed



Fig. 2. Mean speech intelligibility scores. The mean score is shown for each of the
five stimulation conditions in the pre- and post-imaging test sessions. Error bars show
±1 standard error of the mean (corrected for repeated measures).
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for accuracy and response time. Polynomial contrasts were used to
identify trends in the data across stimulation conditions. Note that,
in keeping with Binder et al. (2004), response time data from all
trials were included in the analysis, regardless of whether the
participant's response was correct or incorrect.

2.8.2. fNIRS data
Our primary statistical analysis aimed to establish the rela-

tionship between speech intelligibility and fNIRS response ampli-
tude on a channel-wise basis. The analysis began by contrasting the
estimated response amplitude for each experimental condition
against the silent baseline. The contrast values for each channel
were then analysed using a linear mixed model (LMM) (West et al.,
2006). The use of a LMM allowed us to include as a predictor var-
iable subject-specific estimates of speech intelligibility. These
subject-specific estimates were calculated as the mean percent-
correct scores across the pre- and post-imaging sessions. To
enable us to detect possible non-linear relationships between brain
activation and speech intelligibility, we included the polynomial
expansion of intelligibility up to 2nd order. Serial orthogonalization
was applied to the polynomial terms such that the 0th order (con-
stant), 1st order (linear) and 2nd order (quadratic) fixed effects
were independent of one another and could be separately and
straightforwardly interpreted (Büchel et al., 1998). The effect of the
serial orthogonalization was such that maximal variance was at
each stage assigned to the lower-order term (e.g. the constant
term), with subsequent terms (e.g. the linear and quadratic terms)
tested on the remaining variance. Each LMM additionally included
a random intercept effect to model between-subject variability.

We performed secondary group-level analyses to obtain further
insight into the nature of the fNIRS-measured cortical activation.
Following the approach of Binder et al. (2004), we tested for a linear
relationship between fNIRS response amplitude and response time
to identify brain regions principally involved in decision-making,
rather than sensory, processes during speech perception. This
analysis was performed using a LMM similar to that employed in
the primary analysis, but with the following differences: i) mean
response time on the main task (conducted simultaneously with
fNIRS imaging), rather than speech intelligibility, was used as the
predictor variable; and ii) the polynomial expansion of mean
response time was restricted to 1st order (linear effect).

Recognising that any systematic relationships observed be-
tween speech intelligibility and fNIRS response amplitude could, in
theory, be driven by an effect of changing acoustic properties across
stimulation conditions, rather than intelligibility per se, we ran a
further analysis aimed at identifying regions of the brain that
responded more strongly on trials that were perceived correctly
versus those that were not. To achieve this, we re-ran the original
GLM analysis, but now including additional regressors coding all
“correct” and “incorrect” trials. We performed a group-level
random-effects analysis on the resulting estimated response am-
plitudes by using two-tailed t-tests to compare correct versus
incorrect trials on a channel-wise basis. Since we did not perform
any orthogonalization of the new regressors with respect to the
original condition-specific regressors, we were able to isolate
variance that could be uniquely attributed to the veracity of trial-
by-trial perception, after accounting for the effect of changing
acoustic properties across conditions (Mumford et al., 2015).

Finally, we examined whether fNIRS response amplitude
correlated with individual differences in behaviourally measured
speech intelligibility. For this purpose, we focused on the S50 con-
dition, in which speech intelligibility varied substantially between
individuals and was unaffected by floor or ceiling effects. On a
channel-wise basis, we calculated the Pearson correlation coeffi-
cient between (a) individually measured speech intelligibility and
(b) the fNIRS contrast between the S50 and S0 conditions (i.e. the
contrast between the response to the speech stimuli of interest and
steady speech-shaped noise). This analysis is informative because it
allows us to assess whether a one-shot fNIRS measurement (i.e. of a
single stimulation condition) shows sensitivity to differences in
speech intelligibility between individuals, as opposed to differences
across stimulation conditions within an individual.

In all fNIRS analyses, we accounted for multiple comparisons by
applying the false discovery rate (FDR) method (Benjamini and
Hochberg, 1995) across channels. We used the original formula-
tion of the FDR procedure, which offers greater statistical power,
but which requires the assumption of either independence or slight
positive dependency among channels. Although slight positive
spatial correlation of channel-wise statistics is generally expected
in fNIRS data (Singh and Dan, 2006), we cannot be certain that this
assumption holds in all cases. Fortunately, the FDR procedure
seems to be robust to the presence of deviations from the
assumption of positive dependency (Groppe et al., 2011), especially
as the number of tests increases (Clarke and Hall, 2009). We
adopted an FDR-corrected threshold of q< 0.05, meaning that, of all
the individual-channel effects we report as being statistically sig-
nificant, on average around 1 in 20 may be expected to be erro-
neous (i.e. a false positive).
3. Results

3.1. Behavioural results

3.1.1. Speech intelligibility
At intermediate levels (S25, S50, and S75 conditions), mean

intelligibility was between 5 and 14 percentage-points higher in
the post-imaging session than in the pre-imaging session, sug-
gesting a training effect over the course of the experiment (Fig. 2).
This was confirmed by a RM-ANOVA performed on the (RAU-
transformed) percentage of keywords correctly understood, which
revealed a significant main effect of session (F(1, 22)¼ 45.26,
p< .001), as well as a significant interaction between session and
stimulation condition (F(2.31, 50.72)¼ 8.95, p< .001) (a training
effect was observed only at intermediate intelligibility levels).
Nonetheless, mean intelligibility scores across the pre- and post-
imaging sessions were close to the targeted values: 0% for S0, 22%
for S25, 50% for S50, 74% for S75 and 99% for S100. We therefore
assumed that the average of each individual's pre- and post-
imaging scores provided an appropriate measure of the intelligi-
bility of the stimuli they were exposed to during the main fNIRS
task.
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3.1.2. Main fNIRS task
Accuracy and response time data for the main task (conducted

simultaneously with fNIRS imaging) are plotted in Fig. 3. As ex-
pected, accuracy in distinguishing true keywords from rhyming foil
words increased monotonically across the five stimulation condi-
tions (S0/S100). A RM-ANOVA confirmed a significant effect of
stimulation condition (F(4, 88)¼ 145.17, p< .001) with polynomial
trend analysis revealing significant linear, quadratic, and cubic
components (p< .05). Mean response time, in contrast, varied non-
monotonically across stimulation conditions, peaking in the S25
condition. There was again a significant effect of stimulation con-
dition (F(2.06, 43.33)¼ 14.65, p< .001) with significant linear,
quadratic, cubic and 4th-order trends (p< .05). Missed responses
were rare, occurring on less than 1% of all trials.

Accuracy on the main task was monotonically related to speech
intelligibility as measured in the pre- and post-imaging sessions,
although the relationship was curvilinear owing to the fact that
chance performance in the main task was at 50%, even for a fully
unintelligible stimulus (see Supplementary Figure 3).
3.2. fNIRS results

3.2.1. Channel-wise analysis of relationships with speech
intelligibility

The results of the primary analysis testing for systematic re-
lationships between fNIRS response amplitude and speech intelli-
gibility are shown in Fig. 4. A corresponding table of statistical
results is provided as supplementary information (Supplementary
Table 1). Fig. 4a shows the 0th-order effect, i.e. overall activation
or deactivation in response to sound vs. silence, irrespective of
intelligibility. Statistically significant activation (q< 0.05, FDR cor-
rected) was observed in channels overlying left (Ch#28,29,32,33)
and right (Ch#2,7,12) superior temporal cortex, right pre/post-
central gyrus (Ch#11,20), and inferior frontal cortex which was
more prominent in the left (Ch#30,31,35,39) than in the right
(Ch#14) hemisphere. A group of channels overlying right inferior
parietal cortex (Ch#18,21,22) showed significant deactivation in
response to sound vs. silence.

Fig. 4b identifies channels that exhibited a significant linear
relationship with speech intelligibility (1st-order effect). Such chan-
nels were found to lie principally over bilateral superior temporal
cortex and were more extensive in the left (Ch#25,28,29,32,33) than
in the right (Ch#7,12) hemisphere. Activation in these channels
increased as the speech becamemore intelligible. A single channel in
right inferior parietal cortex (Ch#22) showed a significant linear
relationship in the opposite direction, i.e. decreased activation in
response to more intelligible speech.
Fig. 3. Behavioural results from the main fNIRS task. Mean accuracy (a) and
response time (b) is shown for each of the five stimulation conditions. Error bars show
±1 standard error of the mean (corrected for repeated measures).
Fig. 4c identifies channels in which activation depended non-
linearly on speech intelligibility (2nd-order/quadratic effect). An
array of bilateral, posterior channels overlyingmiddle temporal and
inferior parietal regions (Ch#3,8,13,18,22,24,41,42) showed a sig-
nificant positive quadratic relationship with intelligibility (reduced
activation at intermediate intelligibility levels). A cluster of chan-
nels in left inferior frontal cortex (Ch#26,31,35) showed evidence of
an “inverted-U” response profile (maximal activation at interme-
diate intelligibility levels), although this effect did not reach sta-
tistical significance in any individual channel after correcting for
multiple comparisons.

3.2.2. Response profiles in regions-of-interest
To provide a clearer picture of how fNIRS response amplitude

varied with speech intelligibility in different parts of the brain,
Fig. 5 plots mean fNIRS contrast values (relative to silence) against
nominal intelligibility for select regions-of-interest (ROIs). These
ROIs were defined in post-hoc manner by selecting clusters of
adjacent channels that exhibited significant linear or quadratic
relationships with speech intelligibility (Fig. 4b and c) andwhich all
showed a qualitatively similar response profile within a given ROI.
We gave the ROIs thus defined the following descriptive labels: left
auditory (Ch#25,28,29,32,33); right auditory (Ch#7,12); left inferior
frontal gyrus (LIFG, Ch#26,31,35); and bilateral posterior
(Ch#3,8,13,18,22,24,41,42). Note that while the quadratic effect
failed to reach statistical significance in any individual channel
within the LIFG ROI (after multiple-comparisons correction), we
nonetheless considered it appropriate to further investigate the
response profile within this region on the basis that: i) three
spatially contiguous channels all approached statistical signifi-
cance; and ii) the quadratic effect was consistent with our a priori
hypothesis for this region based on previous research (Wijayasiri
et al., 2017; Wild et al., 2012).

In left and right auditory (i.e. superior temporal) regions, acti-
vation increased monotonically as intelligibility improved, with the
most pronounced step occurring between the S75 and S100 condi-
tions (Fig. 5a and b). In the LIFG, positive activation (relative to
silence) was seen in all conditions (Fig. 5c), with the strength of that
activation increasing monotonically as intelligibility was reduced
from the S100 condition down to the S25 condition (i.e. as listening
became more challenging). However, LIFG activation then fell off
steeply in the S0 condition, inwhich the stimuli were stripped of all
task-relevant linguistic information. In the bilateral posterior ROI,
covering an array of channels overlying middle temporal and
inferior parietal regions, the response profile indicated a tendency
towards deactivation relative to silence (Fig. 5d). The strength of
deactivation was greatest at intermediate levels of intelligibility,
peaking in the S50 condition.

Fig. 6 demonstrates grand-average event related haemodynamic
time courses across the group of participants for reference. The
mean fNIRS response to silent trials has been subtracted out to
derive overlap-reduced event-related responses for each speech
condition.

3.2.3. Relationship between fNIRS response amplitude and mean
response time

We tested for channels that exhibited a linear relationship be-
tween fNIRS response amplitude and mean response time on the
main task (conducted simultaneously with fNIRS imaging) (Fig. 7a).
A corresponding table of statistical results is provided as supple-
mentary information (Supplementary Table 2). Several channels in
the left inferior frontal region showed a trend towards a positive
linear relationship with response time (p< .05 uncorrected). This
effect reached significance in Ch#35 after correction for multiple
comparisons. Similarly, one channel (Ch#18) showed a significant



Fig. 4. Channel-wise relationships between fNIRS response amplitude and speech intelligibility. Rows aec show the results of statistical significance testing (uncorrected p-
values, thresholded at p< .05) for 0th-order, 1st-order (linear) and 2nd-order (quadratic) effects, respectively. Individual channels exhibiting significant effects after correction for
multiple comparisons (q< 0.05, FDR corrected) are highlighted. Note that the maps are interpolated from single-channel results and the overlay on the cortical surface is for
illustrative purposes only.

Fig. 5. Mean contrast values (i.e. estimated response amplitude relative to silence; arbitrary units) in select regions of interest. Inset figures illustrate the fNIRS sensitivity
profile for each region. Error bars show ±1 standard error of the mean (corrected for repeated measures). Bold lines indicate the overall LMM fit for each region including
polynomial expansion of individually measured speech intelligibility up to 2nd (quadratic) order.
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negative linear relationship withmean response time; this channel,
overlying right inferior parietal cortex, was amongst those that
showed deactivation relative to silence at intermediate levels of
intelligibility (Fig. 5d).
3.2.4. Relationship between fNIRS response amplitude and the
veracity of trial-by-trial perception

Fig. 7b shows the results of channel-wise significance testing on
the contrast between correctly versus incorrectly perceived trials,
after accounting for the effects of changing acoustic properties



Fig. 6. Grand-average event-related haemodynamic time courses. The red and blue traces show estimated changes in the concentration of HbO and HbR, respectively. Shading
indicates ±1 standard error of the mean across participants. Note that, prior to averaging across participants, the mean response to silent trials was subtracted out to derive overlap-
reduced event-related responses.

Fig. 7. Secondary group-level fNIRS analyses. (a) Testing for a linear relationship
between fNIRS response amplitude and mean response time on the main task. (b)
Testing for a difference between correctly and incorrectly perceived trials, after ac-
counting for the effects of changing acoustic properties across conditions. In each case
the colormap shows uncorrected p-values, thresholded at p< .05. Individual channels
exhibiting a significant effect after correction for multiple comparisons (q< 0.05, FDR
corrected) are highlighted. Note that the maps are interpolated from single-channel
results and the overlay on the cortical surface is for illustrative purposes only.
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across stimulation conditions. A corresponding table of statistical
results is provided as supplementary information (Supplementary
Table 2). Significantly greater activation on correct trials was
observed in left inferior frontal cortex (Ch#31,35) and in left pos-
terior superior temporal regions (Ch#28,32,37). Interestingly,
channels overlying left auditory brain regions that had previously
shown a significant linear relationship with speech intelligibility
(Ch#25,29,33; Fig. 4b) did not show a difference between correct
and incorrect trials in this analysis. This suggests that responses in
these channels may have been driven more by changing acoustic
properties across conditions, rather than by intelligibility per se.
Channels overlying right auditory regions (Ch#7,12), which had
also shown a significant linear relationship with speech intelligi-
bility previously (Fig. 4b), showed a tendency towards greater
activation on correct vs. incorrect trials (p< .05 uncorrected),
however this effect did not reach significance in either individual
channel after correction for multiple comparisons.

3.2.5. Correlation between fNIRS response amplitude and individual
speech intelligibility

We found modest evidence that fNIRS response amplitude
(specifically, the contrast between the S50 and S0 conditions)
correlated with individually measured speech intelligibility in the
S50 condition (Fig. 8). Channels that showed a trend (p< .05 un-
corrected) towards a positive correlation with individual speech
intelligibility were clustered in left (Ch#25,29) and right (Ch#7,12)
superior temporal cortex. However, the correlation did not reach



Fig. 8. Correlations between fNIRS amplitude (contrast between S50 and S0 conditions) and individual speech intelligibility in the S50 condition. The main plot shows the
results of significance testing on the channel-wise correlations (uncorrected p-values, thresholded at p< .05). The two subplots show the correlations in the left- and right-
hemisphere auditory regions that showed a significant positive linear relationship with speech intelligibility in the primary group-level analysis (Fig. 4b).
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statistical significance in any individual channel after correction for
multiple comparisons. Recognising that fNIRS response amplitude
is typically more reliable when averaged across a small number of
channels overlying a cortical ROI than when assessed on a single-
channel basis (Plitacha et al., 2007; Schecklmann et al., 2008;
Wiggins et al., 2016), we went on to assess the correlation with
individual speech intelligibility at a ROI level (Fig. 8 subplots). For
this, we adopted the previously defined left and right auditory ROIs
arising from the primary group-level analysis. Response amplitude
in the right auditory ROI was significantly correlated with indi-
vidual speech intelligibility (r¼ .52, p¼ .011). The corresponding
correlation for the left auditory ROI was narrowly non-significant
(r¼ 0.39, p¼ .068).
4. Discussion

We used noise vocoding to parametrically vary speech intelli-
gibility whilst measuring cortical activation using fNIRS. The results
confirm and extend the findings of previous fNIRS and fMRI studies.
Specifically, we confirm that fNIRS-measured activation in superior
temporal regions correlates with speech intelligibility (Pollonini
et al., 2014; Olds et al., 2016), both within and, to a lesser extent,
between individuals. A secondary analysis suggested that more
posterior regions of left-hemisphere superior temporal cortex
(Wernicke's area) may be sensitive to intelligibility per se, while
regions lying closer to unilateral auditory cortex may be more
responsive to changing acoustic properties across stimulation
conditions. Beyond superior temporal cortex, we found that acti-
vation in left inferior frontal cortex peaked at intermediate levels of
intelligibility, while an array of posterior channels (covering bilat-
eral inferior parietal and middle temporal cortex) showed deacti-
vation relative to silence that was again most pronounced at
intermediate levels of intelligibility. These non-linear relationships
with speech intelligibility may reflect effortful listening under
challenging conditions (Wijayasiri et al., 2017; Wild et al., 2012).
4.1. Cortical correlates of speech intelligibility

Our results align with other recent fNIRS studies that reported a
positive association between speech intelligibility and activation in
superior temporal cortex (Pollonini et al., 2014; Olds et al., 2016).
Previously, this effect has been probed by contrasting normal
speech with discrete control stimuli designed to be either intelli-
gible or unintelligible. Here, we parametrically manipulated the
intelligibility of noise-vocoded sentences across the full range from
0 to 100% correct, allowing us to probe the relationship between
speech intelligibility and fNIRS activation in greater depth.
Consistent with previous fMRI studies (Binder et al., 2004; Davis
and Jonsrude, 2003; Zekveld et al., 2006), we found that activa-
tion in superior temporal regions increased linearly as the speech
became more intelligible. Interestingly, the intelligibility-sensitive
region extended more anteriorly and posteriorly along the supe-
rior temporal gyrus in the left hemisphere compared with the right
(Fig. 4b). While we did not directly test for inter-hemispheric dif-
ferences, this pattern of results is consistent with left-hemispheric
dominance for language processing in most normally-hearing in-
dividuals (Frost et al., 1999).

We found some evidence to suggest that superior temporal
activation was related to speech intelligibility not just within in-
dividuals (i.e. across different levels of acoustic degradation), but
also between individuals. That is, the amplitude of fNIRS activation
within a right-hemisphere auditory ROI correlated with individual
speech intelligibility in the challenging S50 listening condition
(Fig. 8). Group-average intelligibility in this condition was 50%
keywords correct, but individual performance varied from 23 to
68%. Thus, our results indicate that fNIRS-based measures of su-
perior temporal activation have the potential to predict individual
differences in speech intelligibility, even among a relatively ho-
mogenous population of normally-hearing listeners. However, such
a relationship was not found in a recent fNIRS study of speech-in-
noise perception (Defenderfer et al., 2017). In the present dataset,
we also did not see a significant relationship between temporal-
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lobe activation and individual speech intelligibility in the more
challenging S25 condition. Overall, then, further research is needed
to verify the ability of fNIRS to reliably predict individual differ-
ences in speech intelligibility.

Interestingly, although in our primary analysis we found that
intelligibility-sensitive regions were more spatially extensive in the
left hemisphere than in the right, right-hemisphere responses
appear to have had greater ability to explain individual differences
in speech intelligibility. Similarly, Pollonini et al. (2014) observed
that right-hemisphere activation was more responsive to differ-
ences in intelligibility between stimulation conditions. Pollonini
et al. (2014) speculated that this may be due to the stimuli
evoking different responses in more superficial areas of the right
cortex compared to the left, making the differences more easily
detectable using fNIRS. In the present study, we did not formally
test for inter-hemispheric differences, and so no firm conclusion
can be drawn. However, the question of whether right-versus left-
hemisphere fNIRS measurements have greater ability to predict
individual speech intelligibility warrants consideration in future
research.

Taking advantage of the event-related nature of the design, we
conducted a secondary analysis comparing trials onwhich a correct
response was given to those on which an incorrect response was
given. By statistically factoring out variability in fNIRS activation
that could be explained by changing acoustic properties across
stimulation conditions, we aimed to identify cortical regions that
were sensitive to intelligibility per se. We found that activation was
significantly greater in left inferior frontal and posterior superior
temporal cortex (approximately corresponding to Broca's and
Wernicke's areas, respectively) on correct versus incorrect trials
(Fig. 7). Channels lying closer to unisensory auditory cortex did not
show significant sensitivity to the veracity of trial-by-trial percep-
tion, suggesting that the apparent linear relationship with intelli-
gibility in these channels may have been driven more by changing
acoustic properties of the stimuli across conditions. In the present
study, the primary acoustic difference across stimulation condi-
tions was an increase in amplitude-modulation depth. Another
recent fNIRS study similarly found that activation was stronger on
correctly perceived trials in a speech-in-noise task, although the
channels in question were more anteriorly located compared to
those showing a comparable effect in the present study
(Defenderfer et al., 2017). It remains unclear to what extent
increased activation in Broca's/Wernicke's area on correct trials
reflects greater success in extracting linguistic information from a
degraded speech signal versus the deployment of greater attention/
effort on those trials. Potential cortical correlates of effortful
listening are discussed further below.

4.2. Potential cortical correlates of effortful listening

Convergent evidence from studies employing subjective,
behavioural and physiological measures indicates that listening to
noise-vocoded speech can be a cognitively demanding task (Pals
et al., 2013; Winn et al., 2015) The LIFG has been identified as one
brain region potentially involved in effortful listening on the basis
that activation in this region is: i) greater for degraded-yet-
somewhat-intelligible speech than for either clear speech or un-
intelligible noise (Davis and Johnsrude, 2003; Wild et al., 2012);
and ii) critically dependent on attention to speech (Wijayasiri et al.,
2017; Wild et al., 2012). Although the aforementioned has been
postulated from studies involving normally-hearing subjects,
increased activation in the left frontal cortex of CI users in response
to non-speech auditory stimuli has been previously interpreted as a
marker of increased attention to and effort of listening (Jiwani et al.,
2016). Such a non-monotonic, “inverted U”-shaped relationship
with task difficulty is also observed in other objective markers of
listening effort, including pupil dilation (Zekveld et al., 2014).
Reduced effort under very difficult listening conditions is thought
to reflect “giving up” when the task is deemed impossible or,
equally, when the cost of completing the task is judged too high
relative to the anticipated reward (Pichora-Fuller et al., 2016).

In the present study, we found that a cluster of channels over-
lying the LIFG showed a consistent trend towards a quadratic
relationship with intelligibility (Fig. 4c). Analysis of response
amplitude in these channels at ROI level (Fig. 5c) confirmed that
activation was greatest at intermediate levels of intelligibility
(peaking in the S25 condition), and smaller for trials in which the
task was either impossible (S0 condition) or relatively easy (S100
condition). This pattern of results is consistent with a role of the
LIFG in supporting speech comprehension under effortful condi-
tions. However, the precise nature of the computations being per-
formed in the LIFG is unclear. The LIFG houses both language-
selective and domain-general “multiple demand” regions in close
proximity (Fedorenko et al., 2012). Thus, it is unclear whether the
elevated activation that we observed in the LIFG is directly
language-related, or whether it might reflect increased demand on
a general cognitive resource such as working memory (Rogalsky
and Hickok, 2010). Interestingly, in a secondary analysis we found
that the strength of activation in the LIFG was linearly related to
mean response time on the simultaneously conducted behavioural
task (Fig. 6). This suggests that the response in LIFG is likely to
reflect decision-making, rather than sensory, processes (Binder
et al., 2004).

Unexpectedly, we also observed strongly significant quadratic
relationships with intelligibility in an array of bilateral channels
overlying middle temporal and inferior parietal regions (Fig. 4c).
However, unlike the LIFG, these regions exhibited a tendency to-
wards deactivation (relative to the silent baseline condition), with
the strength of deactivation being greatest at intermediate levels of
intelligibility (Fig. 5d). Interestingly, Wild et al. (2012) reported a
similar pattern of deactivation in the right angular gyrus based on
fMRI data (their Fig. 7d), which was furthermore found to be crit-
ically dependent on attention to speech. This provides further
support that the deactivation we observed in the present study
using fNIRS is likely to have been both task-relevant and neural in
origin. We suggest that this selective deactivation under (presum-
ably) more effortful listening conditions likely reflects sensitivity of
our measurements to the default mode network (DMN). The DMN
describes a distributed system of interconnected brain regions that
are preferentially more active during “rest” (i.e. when an individual
is engaged in self-generated thought) than during engagement in
an external task (Buckner et al., 2008). The DMN includes, amongst
other regions, inferior parietal cortex and lateral temporal cortex
(Andrews-Hanna et al., 2014), aligning well with the channels in
which we observed selective deactivation under challenging
listening conditions. Furthermore, the strength of deactivation
within the DMN has been shown to correlate with task difficulty
(Mckiernan et al., 2003). Our results therefore indicate that fNIRS
may have sensitivity to components of the DMN in inferior parietal/
lateral temporal regions, and that the strength of deactivation in
corresponding channels may provide a marker of the attentional
demands of a challenging listening task.

4.3. Potential clinical applications

The primary aim of cochlear implantation is to optimise an in-
dividual's ability to discriminate speech. CIs require programming
to best suit the auditory requirements of the recipient. This pro-
gramming process takes months, requires multiple sessions, and at
present depends on behavioural speech perception testing.
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However, this method of assessing speech understanding can be
unreliable, especially in younger children and infants. Our findings
contribute to an emerging body of evidence suggesting that fNIRS
has the potential to objectively assess speech intelligibility at a
cortical level through the measurement of activation in superior
temporal brain regions (Olds et al., 2016; Pollonini et al., 2014).

Whereas previous studies have used the overall spatial extent of
activation in superior temporal cortex as a predictivemeasure (Olds
et al., 2016; Pollonini et al., 2014), our findings emphasize how
clinically relevant information might be gleaned by assessing
response amplitude in more specific cortical regions. For instance,
our results tentatively suggest that activation in channels overlying
unisensory auditory cortex might provide an indication of the fi-
delity with which complex modulated signals are transmitted from
ear to cortex, while activation in higher-order auditory regions (e.g.
Wernicke's area) might indicate how successful an individual is in
extracting meaningful linguistic information from those signals.
While further research is needed to confirm the validity and
practical utility of these findings, such an approach could allow for
differential diagnoses which might guide subsequent intervention/
rehabilitation strategies.

Our results additionally suggest that, beyond superior temporal
cortex, fNIRS could provide a brain-based marker for effortful
listening. Possible forms this marker could take are: i) elevated
activation in left inferior frontal cortex associated with recovering
meaning from degraded speech (Wijayasiri et al., 2017; Wild et al.,
2012); and/or ii) deactivation of the DMN (specifically, inferior
parietal/lateral temporal cortex), presumably reflecting the sup-
pression of self-generated thought under more effortful/attention-
demanding listening conditions. Thus, fNIRS could in future provide
an objective measure to help clinicians achieve the optimal goal of
maximizing intelligibility while at the same time minimizing the
cognitive load of listening (Pichora-Fuller et al., 2016). We appre-
ciate that in deaf individuals, areas of the cortex may exhibit sig-
nificant functional differences to the normally-hearing brain such
as auditory regions of the brain becoming responsive to visual
stimuli, so called cross-modal plasticity (Anderson et al., 2017b).
Hence, the results of this study can obviously not be directly applied
to deaf patients with or without a CI. However, our data does
support an important goal for future research, which is to establish
whether these non-linear patterns of activation in higher-level
brain areas, observed here in normally hearing adults, apply
equally in the case of adult and paediatric CI recipients.
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