
Review Article

Diagnostic circulating biomarkers to detect
vision-threatening diabetic retinopathy: Potential
screening tool of the future?

Karen Frudd,1 Sobha Sivaprasad,1,2 Rajiv Raman,3 Subramanian Krishnakumar,3

Yeddula Rebecca Revathy3 and Patric Turowski1

1Institute of Ophthalmology, University College London, London, UK
2NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
3Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India

ABSTRACT.

With the increasing prevalence of diabetes in developing and developed countries,

the socio-economic burden of diabetic retinopathy (DR), the leading complica-

tion of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the

leading causes of blindness in working-age adults worldwide. Robust method-

ologies exist to detect and monitor DR; however, these rely on specialist imaging

techniques and qualified practitioners. This makes detecting and monitoring DR

expensive and time-consuming, which is particularly problematic in developing

countries where many patients will be remote and have little contact with

specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic

until late in the pathology. Therefore, early identification and stratification of

vision-threatening DR (VTDR) is highly desirable and will ameliorate the global

impact of this disease. A simple, reliable and more cost-effective test would

greatly assist in decreasing the burden of DR around the world. Here, we

evaluate and review data on circulating protein biomarkers, which have been

verified in the context of DR. We also discuss the challenges and developments

necessary to translate these promising data into clinically useful assays, to detect

VTDR, and their potential integration into simple point-of-care testing devices.
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Introduction

Diabetes mellitus (DM) is a complex
group of diseases characterized by high
blood glucose levels due to either an
inability to produce insulin or an insen-
sitivity to insulin. The number of adults
with any form of diabetes worldwide is
estimated to have quadrupled from 108

million in 1980 to 463 million in 2019
(International Diabetes Federation,
2019). This equates to a doubling of %
incidence across the population (Zhou
et al., 2016). Hyperglycaemia, caused by
diabetes, is a major risk factor for
microvascular complications of dia-
betes. Diabetic retinopathy (DR) is a

highly prevalent complication of dia-
betes throughout theworld,with around
35% of people with diabetes thought to
also have DR. The worst outcome of
DR is blindness; 10% of people with
diabetes have VTDR, and, as such, DR
is a leading cause of acquired blindness
in the adult population (Cheung et al.,
2010; Yau et al., 2012).

Diabetes is a global disease and has
not spared any nation. Many low- and
middle-income countries (LMICs) such
as India and high-income countries such
as China are now facing a high public
health burden due to diabetes (in China,
the prevalence of diabetes rose from
0.67% to 9.7% between 1980 and 2008
(Yang et al., 2010)) and consequently
increasing levels of DR. Whilst early
detection and tight control of risk fac-
tors have decreased DR prevalence in
some western countries (Wong et al.,
2009; Liew et al., 2014; Liew et al., 2017;
Claessen et al., 2018), this is not the case
in LMICs where all forms of DR con-
tinue to be on the rise (Leasher et al.,
2016; Flaxman et al., 2017). As the
disease is largely asymptomatic in its
early stages and thus not detected by
ophthalmic examination, there are no
recommended treatments other than
control of risk factors, until more
advanced pathology is identified. Dia-
betic retinopathy (DR) is currently
diagnosed through imaging of the
retina, revealing changes consequent to
damage of the retinal vasculature. This
requires specialist equipment and
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trained practitioners to both operate
cameras and grade the images and is
highly effective and efficient to detect
referable cases of DR, as documented in
countries with comprehensive health-
care systems.However, the ever-increas-
ing number of patients with diabetes
precludes the sustainable use of retinal
imaging for universal and routine
screening (Vujosevic et al., 2020). For
many countries, the cost of DR screen-
ing and treatments runs into the tens of
millions and likely into the hundreds of
millions when taking into account
absence from work (Aspelund et al.,
2011;Andersson et al., 2020). In the case
ofmanyLMICs, health care provision is
disparate and often privately funded,
and so costly routine screening for DR
by current examination pathways is
simply not a viable option. Simpler
and more cost-effective tests for DR
are actively sought as theywould benefit
both high- and low-income countries.
Indeed, new risk stratification pathways
and novel technologies, including more
portable imaging equipment, the
automation of grading and the data
integration into telemedicine pathways
are currently trialled and validated
(Natarajan et al., 2019; Karakaya &
Hacisoftaoglu, 2020). Emerging tech-
nologies and cost assessments for new
retinal screening modalities have
recently been extensively discussed else-
where (Vujosevic et al., 2020). Here, we
will instead focus on reviewing promis-
ing blood-based protein markers that
have potential to detect DR. Whilst
many have withstood solid verification
studies, caution is advised. Many mark-
ers have shown promise and specificity
in detecting DR but may also be linked
to the diabetic state generally, to inflam-
mation or to parallel vascular morbid-
ity. Thus, only large-scale clinical
validationwill reveal if simple and cheap
blood tests, accessible to all people with
diabetes, can be considered as an effec-
tive option in the arsenal of DR screen-
ing pathways.

Clinical features and
current methods for
diagnosis and monitoring
of DR

DR is a progressive disease, which
visibly affects the retinal vasculature.
The initial instability of the vasculature
eventually leads tomicroaneurysms and

haemorrhages, and the consequent
hypoxia triggers neovascularisation
and, with breakdown of the delicate
neuroretinal homeostasis, loss of visual
acuity. Diabetic retinopathy (DR) is
classified by observable clinical features
of varying severities. In the early stages,
the disease is asymptomatic and moni-
tored for worsening but not treated. It is
only in the later stages where there is a
risk of vision loss that therapeutic
intervention is applicable. It is widely
recognized that effective screening and
prompt intervention at the stage of
VTDR limit losses in visual acuity
(Jampol et al., 2020; Mansour et al.,
2020). Indeed, clinical trials demon-
strate that timely treatment for DR
can reduce the risk of severe visual loss
(ETDRS, 1991) (Wells et al., 2016).

The early stages of DR are referred to
as non-proliferative diabetic retinopa-
thy (NPDR) and are characterized by
the emergence of initial damage to the
retinal vasculature. Observable microa-
neurysms are usually the first sign of
NPDR, and the disease is classified as
mild if these are the only retinal lesions
observed. Individuals with moderate
NPDR have more microaneurysms
and may also have evidence of intrareti-
nal haemorrhage, venous beading and
other microvascular abnormalities. If
large numbers of these abnormalities are
present throughout the retina but there
is no evidence of neovascularisation,
then severe NPDR will be diagnosed.
Once evidence of neovascularisation is
seen, proliferative DR (PDR) is diag-
nosed, which can lead to loss of vision
andwill require intervention (Wilkinson
et al., 2003;CoreNDESP team, 2012).A
further complication from DR is the
development of diabetic macular
oedema (DMO). DMO is characterized
by the presence of hard exudates,
thought to be leaked lipidswhich appear
as yellow or whitish deposits with either
sharp or diffuse margins in fundus
images. It is also accompanied by thick-
ening of the retina, generally revealed by
optical coherence tomography (OCT).
DMO is categorized as mild, moderate
or severe depending on the extent of
hallmark alterations of the retina. Typ-
ically, if these are located at the centre of
the macular, the disease is severe and
results in moderate visual loss if left
untreated.

DR is currently effectively diagnosed
and graded by imaging (Goh et al.,
2016). Colour fundus photography of

the retina in seven overlapping fields has
been the gold standard for almost
30 years; however, this type of test is
time-consuming and can result in
reduced patient compliance (ETDRS,
1991; Williams et al., 2004). In practice,
up to three fields of fundus photogra-
phy can provide adequate diagnostic
power (Aptel et al., 2008; Vujosevic
et al., 2009). One of the main downsides
of colour fundus imaging is the diffi-
culty in detecting DMO in 2D images.
Optical coherence tomography (OCT),
on the other hand, allows 2D and 3D
analysis of the retina, showing changes
in retinal architecture and thickness
(Drexler & Fujimoto, 2008). Overall,
this form of diagnosis is most accurate
but also more costly. Not all people
with diabetes, particularly in LMICs,
can be subjected to annual retinal pho-
tographic screening due to the complex-
ity and cost of this screening pathway
and need for trained human resources
(Vujosevic et al., 2020). To alleviate this
problem, hand-held cameras for fundus
photography are being trialled, but it
will still not enable universal coverage
and frequent systematic retinal evalua-
tion. Therefore, there is an unmet need
to identify those at risk of blindness
from the population with diabetes so
that they can be triaged to confirmatory
retinal screening test.

In most countries, where this screen-
ing is used, people with diabetes are
divided into risk categories, which
forms the basis for the regularity of
their check-ups, which again relies on
retinal imaging. As only 8 to 10% of
people with diabetes ever develop
VTDR, isolating this group early will
save much time and money. The avail-
ability of large datasets on individuals
with DR has allowed some groups to
devise algorithms, stratifying the risk
of disease progression. Such methods,
based on factors including duration of
diabetes, HbA1c, systolic blood pres-
sure, gender, and retinopathy grade,
allow for more flexible screening inter-
vals for those at lower risk and thus
can reduce annual costs significantly
(Aspelund et al., 2011; Broadbent
et al., 2021). Whilst potentially highly
effective for countries with defined DR
treatment pathways, this type of mon-
itoring is currently impractical and
unachievable for LMICs where many
of these factors are not routinely mea-
sured (Sivaprasad et al., 2020). Indeed,
one study from India found that many
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individuals only seek help once their
vision has begun to deteriorate (Shukla
et al., 2016).

More recently, it has been recognized
that DR also involves retinal neurode-
generation, which can develop in the
absence of clinically diagnosed
microvascular disease (Sohn et al.,
2016; Sim�o et al., 2018). Diabetic retinal
neuropathy structurally affects a wide
variety of non-vascular retinal cells and
leads to measurable functional deficits
(e.g. by electroretinogram). Whilst an
extension of the currently used classifi-
cation schemes such as the ETDRS has
beenproposedto incorporatenovel tech-
nological advances and insights intoDR
pathogenesis including the comprehen-
sive use of multimodal biomarkers
(Abramoffetal.,2018), itshouldbenoted
that non-invasive technologies to detect
neuropathy are evenmore resource-con-
suming than the imaging described
above. Thus, additional focus on circu-
lating biomarker may be of significant
value to detect diabetic retinal neuropa-
thy cost-effectively. Indeed, and in anal-
ogy to cerebral neurodegeneration
(Ashton et al., 2020), the degenerating
retinamaygiverise totractablebiochem-
ical and molecular changes in the circu-
lation, albeit possibly to a smaller extent
due to its much smaller size.

Taken together, a unique blood
profile that identifies individuals, who
will develop VTDR, would revolution-
ize DR screening in all countries.

Pathogenesis of DR

Hyperglycaemia triggers multiple bio-
chemical reactions, which contribute to
the development and pathogenesis of
DR (Brownlee, 2001). Oxidative stress,
inflammation, accumulation of
advanced glycation end products
(AGEs), activation of protein kinase
C (PKC), and dysregulation of the
polyol and renin–angiotensin pathways
can all contribute to vascular endothe-
lial dysfunction leading to increased
vascular permeability and/or neovas-
cularisation, with no single process
predominating (Cheung et al., 2010;
Pusparajah et al., 2016; Wu et al., 2018;
Antonetti et al., 2021).

Increased levels of circulating glu-
cose during hyperglycaemia lead to
surges in non-enzymatic glycosylation
of proteins such as haemoglobin and
basement membrane proteins. During
persistent hyperglycaemia, as in DM,

this initially reversible glycosylation
becomes irreversible and leads to the
formation of AGEs (Brownlee et al.,
1988; Stitt, 2010; Xu et al., 2018).
Accumulation of AGEs in the retina
induces pericyte apoptosis, increased
production of endothelial growth fac-
tors and subsequent neovascularisa-
tion, and increased inflammation, all
prevalent hallmarks of DR. Increased
flux through the hexosamine (fructose-
6-phosphate to UDP-GlcNAc) path-
way also leads to increased modifica-
tion of proteins by o-linked
glycosylation, further exacerbating a
hyperglycaemic state (Brownlee, 2001).

High glucose concentrations also
dysregulate glucose metabolism and in
particular the polyol pathway, which
converts glucose to sorbitol and then
fructose (Safi et al., 2014). Enzymes of
this pathway utilize both NADPH and
NAD+, and during glucose-induced
overload, large amounts of fructose
will be produced at the expense of
NADPH (Gabbay, 1973). This, in turn,
results in an increased ratio of oxidized
to reduced glutathione, and oxidative
stress (Lorenzi, 2007).

Hyperglycaemia, through an excess
of glycolytic intermediates, also leads
to de novo synthesis of diacylglycerol
(DAG), an activator of protein kinase
C (PKC) (Koya & King, 1998; Guzik
et al., 2002). In cultured endothelial
cells, PKC activation causes permeabil-
ity (Lynch et al., 1990). PKC activation
also reduces endothelial vasodilation
by dysregulation of endothelial nitric
oxide synthase (eNOS) and upregula-
tion of vasoconstrictors. In non-en-
dothelial vascular cells such as smooth
muscle cells and pericytes, PKC acti-
vation causes further vascular dysreg-
ulation. Due to the wide range of
detrimental effects from PKC activa-
tion during DR, many studies have
tested inhibitors for different isoforms
of PKC in vitro and in vivo with mixed
results (Davis et al., 2009; Geraldes &
King, 2010; Wu et al., 2018).

Many of these hyperglycaemia-in-
duced alterations of the vasculature
and underlying neuronal-glia networks
also result in non-specific inflammatory
and oxidative stress responses, with
increases in inflammatory mediators,
such as IL-1b, IL-6, IL-8 and MCP-1
reported in plasma, serum and the
vitreous and aqueous humour of DR
patients (Youngblood et al., 2019).
Naturally, DR shares many pathogenic

mechanisms with DM, but also dia-
betic nephropathy (DN), another
microvascular complication of DM.
In both DR and DN, vessel stability
and integrity are compromised, result-
ing in loss of function of the eye and
kidney, respectively. Importantly, both
of these microvascular complications
of DM are risk factors for each other.

Persistent hyperglycaemia is consid-
ered a strong risk factor for the
progression of DR. The Diabetes
Control and Complications Trial
(DCCT) reports that aggressive gly-
caemic control, along with control of
blood pressure and circulating lipids,
reduces DR progression in those with
type-1 DM (Hainsworth et al., 2019).
In a recent data-driven environment-
wide association study, HbA1c has
also been recognized as the strongest
risk factor among over 400 laboratory
parameters (Blighe et al., 2020) (see
also below).

Biomarkers as tools for
clinical assessment

A blood-based biomarker test for DR
could provide a rapid, cost-effective and
patient-friendly means of screening at
the population level to identify those at
risk ofVTDR,broadening access to care
globally. Biomarkers can identify dis-
ease and even subclinical disease, but are
also used to monitor clinical response to
treatments (Lyons & Basu, 2012).
Therefore, biomarkers can be diagnos-
tic, prognostic and predictive, and their
purpose needs to be defined early. The
best biomarkers are specific and easily
monitored bynon-invasive orminimally
invasive methods, such as a blood test.
For DR, many studies have focused on
components in ocular fluids (Ma et al.,
1996; Garcia-Ramirez et al., 2007; Kim
et al., 2007; Gao et al., 2008; Simo et al.,
2008; McAuley et al., 2014). As delicate
surgical procedures are required to
obtain them, they are clearly not prac-
tical for high-throughput screens at a
population level. Nevertheless, many
such studies have led to important
insight into the pathogenesis of DR,
e.g. the involvement of the kallikrein–
kinin system (Liu & Feener, 2013), or
formed the basis for subset selection in
blood-based verification studies (Kim
et al., 2007; Jin et al., 2016).

Typically, biomarker development
needs to progress through several stages
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before a clinically useful end-point is
reached. These stages are often referred
to differently but, broadly speaking,
involve the following: a discovery step,
whereby distinct control and target
samples are tested in an unbiased way
for any differences; a qualification step,
where feasibility of identified markers is
assessed in relation to the humandisease
of investigation; a verification step,
where the specificity of markers is tested
in a wider population-based sample set;
and finally if a marker has passed all of
these stages, it will have to be validated
in target patient groups using an opti-
mized clinical assay (Fig. 1A). Discov-
ery and qualification are usually focused
on demonstrating sensitivity, whereas
verification and validation are con-
cerned with specificity (see also below).
The required sample number will

generally increase through biomarker
development, while the number of tar-
gets assessed will decrease. Importantly,
whilst verificationof protein biomarkers
is often still doneusingmedium-to-high-
throughput methods such as MS, vali-
dation requires the development of a
clinically robust (usually antibody-
based) assay for each marker under
investigation. An overwhelming major-
ity of preclinical biomarker candidates
never make it to clinical use and some of
those that do are ineffective due to
failures in either the analysis or experi-
mental design of the above stages. This
may well be due to biomarker develop-
ment being led by specialists of the
disease rather than of biomarker devel-
opment. Indeed, many specialized arti-
cles describe in detail all stages of
biomarker development, highlighting

associated pitfalls and the importance
of consistency throughout the process
(Rifai et al., 2006; Ioannidis & Bossuyt,
2017).

Importantly, biomarker datamust be
carefully computed to reveal their
desired diagnostic, prognostic and pre-
dictive value. Distribution plots for
disease and non-disease groups reveal
the overlap between the two. Theoreti-
cally, if all cases have reliably different
values than all non-cases – with no
overlap – then a perfectly accurate
prediction is possible. In practice, con-
siderable overlap exists and models of
discrimination are used to assess how
well a given biomarker separates the
target groups. In biomarker research,
the discrimination is most often mea-
sured using receiver operating charac-
teristic (ROC) curves, or c statistics,
with the area under the curve (AUC)
used to distinguish the discriminating
power of different models. For ROC
curves, sensitivity (the ability to detect
true positives) is plotted against 1-speci-
ficity (the ability to detect true negatives)
across a range of thresholds creating a
curve of increasing sensitivity with
decreasing specificity (Fig. 1B, C). The
area under the curve (AUC) gives a
general measure of the accuracy of the
test, with 1 indicating perfect prediction
and 0.5 an equal likelihood of predicting
disease or no disease, regardless of the
biomarker value (Hoo et al., 2017).
Points along the curve can be used to
assess the relative specificity and sensi-
tivity under those conditions and thus
determine suitable inclusion or exclu-
sion thresholds depending on the test
and relative impact of misdiagnosis.
Relying solely on c statistics and AUC
has been criticized, in particular, when
used for risk prediction (Cook, 2007).
When the study cohort is representative
of the general population, a largemajor-
ity of cases will be non-disease with
similar measures, whereas the disease
caseswill bemuch fewer butwith greater
variation inmeasure. Thus, a biomarker
with a clinically significant odds ratio
may show little discriminative power by
c statistics; many risk factors used for
cardiovascular risk prediction today
would not be considered on the basis
ofAUCdiscrimination.Additional tests
such as likelihood ratios, and further
stratification of the disease cases may be
required to ascertain the contribution of
the measured parameter to the severity
of disease.

Fig. 1. The stages of biomarker development. A, Typical stages of biomarker research indicating

the types of sample required and the relative number of targets and patient samples used at each

stage. B, Potential distribution of a marker (X) in disease and control. Points a–e demonstrate how

different thresholds relate to the sensitivity and specificity of this marker using ROC curve

analysis. C, The contribution of multiple markers could be used to improve a tests ability to

distinguish between disease and no disease. In this case, data from multiple markers can be

combined into one value by principle component analysis (or similar), which may then result in

two distinct populations. This results in an AUC closer to 1 with increased sensitivity and

specificity.
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Generally, individual molecules are
used as biomarkers. While single
biomarkers are simple to test for and
analyse, they can only provide limited
diagnostic information. Currently, only
a few biomolecules have the required
sensitivity and specificity to be used as
reliable markers. Individual molecules,
particularly those related to inflamma-
tory pathways, could also be indicative
of more than one disease, potentially
leading to an incorrect diagnosis. A
multi-marker panel could provide a
more detailed diagnosis for complex
diseases such as DR (Blighe et al.,
2020). Multiple risk factors and path-
ways impact the development and pro-
gression of DR; thus, selecting
successful classifiers that work across
the population is challenging. In par-
ticular, shared pathological mecha-
nisms of DR with other diabetic
complications such as DN, but also
other eye diseases, such as age-related
macular degeneration, can be con-
founders. Multiple component biomar-
ker panels have the potential for
greater sensitivity, specificity and
improved stratification of disease
groups (Rusling et al., 2010).

Two verification studies from the
Kim group suggest that the combina-
tion of multiple markers could enhance
sensitivity and specificity of using
blood-borne proteins in the detecting
DR (Kim et al., 2013; Jin et al., 2016).
These two studies identify early-stage
DR biomarkers in plasma, through use
of multi-marker panels, to enable accu-
rate identification of individuals with
VTDR. Candidate DR markers were
analysed by multiple reaction monitor-
ing mass spectrometry in plasma sam-
ples from people with all stages of
NPDR (mild, moderate and severe)
and people with diabetes without
retinopathy (No DR) as a control.
Twenty-eight and 15 candidate pro-
teins, from each study, respectively,
were found differentially expressed
across the four disease groups. These
markers were reduced by logistic
regression analysis, in different combi-
nations, to improve predictive power.
Importantly, in each study, the combi-
nation of four markers stratifies mild
NPDR and both mild and moderate
NPDR cases, respectively, against No-
DR cases much better than any single
protein marker in isolation. If such
four-marker panels withstood valida-
tion in a large clinical cohort,

combined with inexpensive, high-
throughput techniques, a new method
to screen for DR could be rapidly
developed.

Integrating biomarkers
with sensors

Clinical biomarker testing traditionally
requires samples to be taken by a
medical professional, and then sent to
a laboratory for analysis. Results can
take several days, at which point the
patient may need to visit their health
care provider again to discuss the
results and their options. Point-of-care
testing (POCT) enables immediate
readouts of results and, in some cases,
enables patients to monitor their dis-
ease state themselves. Currently, this
type of testing is used in a small
number of instances, such as blood
glucose monitoring and pregnancy
tests. However, advancements in bio-
marker identification could make it
possible to diagnose many more dis-
eases at the point of care (POC).
Biosensors can be employed as portable
POC devices, designed to detect and
quantify target biomarkers. They are
powerful analytical tools in medical
diagnostics and provide an attractive
platform for monitoring highly preva-
lent diseases, such as diabetes and its
complications. A biosensor can detect
biological molecules such as proteins
and nucleic acids or monitor antigen–
antibody interaction, for example. To
generate an easily interpretable readout,
a biosensor requires an element that can
detect the biomolecule of interest, which
is connected to a suitable transducer,
capable of converting the biochemical
signal into a quantifiable readout (Sethi,
1994; Vo-Dinh, 2008; Devi et al., 2020).
POC biosensors can be used in the
clinical setting or in the field to give
instantaneous results, reducing the need
for travel and delays in diagnosis. To be
maximally effective, electrochemical
biosensors need to be easy-to-use, min-
imally invasive, sensitive, and inexpen-
sive. This will enable rapid identification
of at-risk patients with reduced depen-
dence on centralized medical and labo-
ratory facilities.

Integrated biosensors also often
come with further practical benefits
including low sample volume require-
ments, easy-to-use interfaces, portabil-
ity and low energy requirements. These
mean that, although some training may

be required, highly skilled operators
may not be necessary, and in some
cases, patients may self-administer
their tests. Overall, the lower costs
and portability associated with this
style of testing are ideal for LMICs
where patients are likely to be spread
across remote areas.

As sample processing is minimal or
completely absent, POC biosensors
must have high sensitivity and speci-
ficity for their target analyte in their
target sample type (blood, urine or tear
fluid, for example). Furthermore, as
discussed above, complex diseases, such
as DR, may require a combination of
markers for accurate diagnosis. Thus,
multiplex detection of biomarkers is
necessary to ensure precise diagnostics
and reduce costs in comparison with
performing multiple single tests. Opti-
misation will, therefore, be required to
enable the measurement of differentially
expressed biomarkers in complex bio-
logical fluids, without interference from
other highly abundant proteins.

The biosensor field continues to grow
at pace, and the focus is not only on new
target molecules but also new materials
with enhanced capabilities in detection
and signal transduction (Dinesh et al.,
2019). Novel techniques, which do not
rely on antibody-based detection, may
also be developed (Devi et al., 2020;
Shalini Devi et al., 2020). There is
significant interest in developing single-
step detection of pathogenic RNA and
DNA in blood samples, which could be
extended to circulating non-coding
RNA. Rapid detection of targets in un-
processed sample fluids is a major
problem in this field and requires reac-
tions to be both highly specific and
highly sensitive to identify low-abun-
dance species in complex mixtures.
Portability and compatibility with cur-
rent technologies such as those in smart
phones are also crucial to the success of
novel biosensors (Banik et al., 2021).
Miniaturisation of electronic transduc-
ers and microfluidics technology will
hopefully maximize portability and
allow multiplexing capacity in small
devices. Ultimately, new diagnostic tests
need to be an improvement on central
laboratory testing that is the current
norm. In some cases, cost per testmaybe
increased, but this may result in
improved management of chronic dis-
eases, which will reduce overall health
care costs. In the case of DR, even
replacing a small percentage of imaging
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required for diagnosis would result in a
huge saving in both time and money.

Markers

As referred to previously, circulating
biomarkers could be useful, not only for
identifying VTDR but also for monitor-
ing and stratifying patients based on
their responses to treatments. Other
reviews have covered promising
biomarkers for DR and cover different
molecule types as well as sample source
and potential quantification or qualifi-
cation (Jenkins et al., 2015;Raffort et al.,
2015; Pusparajah et al., 2016; Ting et al.,
2016; Nath et al., 2017; Safi et al., 2018).
Here, we only focus on the most
advancedcirculating,proteinbiomarker
candidates, forwhich verification data is
already available, and for which clinical
validation appears feasible using exist-
ing antibody-based platforms.

Glycated Haemoglobin (HbA1c)

Biological Role

HbA1c is formed by the non-enzymatic
glycation of haemoglobin in the blood
and, in healthy adults, accounts for 1–
4% of total Hb (Rahbar, 2005). HbA1c
reflects the average blood glucose con-
centration over the preceding 120 days
due to the irreversible nature of the
glycosylation and the circulating life of
erythrocytes. It has been adopted as a
measure for the presence of diabetes,
alongside other blood glucose measure-
ments (Goldstein et al., 2004). The long-
lived nature of Hb glycosylation means
such modifications can progress to
AGEs which, as discussed above, can
contribute to the pathogenesis of dia-
betic complications, including DR.
Chronic hyperglycaemia, associated
with diabetes, is thought to be the key
driverofpathological changes indicative
of DR and is measured by elevated
HbA1c values (Cheung et al., 2010).
The EURODIAB prospective compli-
cations study found that HbA1c level
was significantly correlated with inflam-
matory markers measured in diabetic
individuals, suggesting a link between
persistent hyperglycaemia and endothe-
lial inflammation (Schram et al., 2003).

Evidence

Many studies have identified the link
between elevated HbA1c and increased
risk of developing DR and several
focus on maintaining strict control of

HbA1c to mitigate this risk. For exam-
ple, the DCCT study demonstrated
that intensive control of HbA1c
(<6.05%) in insulin-dependent diabetic
patients reduced the incidence of DR
significantly compared to less stringent
control (DCCT, 1995). However, in
this study, HbA1c and diabetes dura-
tion only explained ~10% of the differ-
ence in retinopathy risk, suggesting a
significant contribution of other factors
(Hirsch & Brownlee, 2010). More
recently, Lind et al. reported that such
strict control of HbA1c (<6.5%) does
not confer a significant reduction in
DR risk and increases the risk of
hypoglycaemia in type-1 diabetics.
They identify a range of 6.5–6.9% as
ideal to prevent the development of
serious complications. The risk of
major and mild complications was
significant for individuals with HbA1c
>8.6% and >7.0%, respectively (Lind
et al., 2019). Similarly, a 2012 meta-
analysis of global data on DR preva-
lence identified an increase in preva-
lence of any DR from 18% to 51.2%
when comparing HbA1c of <7 and >9
(Yau et al., 2012).

Not all studies find that Hba1c levels
are statistically predictive of DR pro-
gression or severity however, likely due
to differences in patient cohort and
study design. For example, the Veter-
ans Affairs Diabetes Trial found no
benefit to strict glycaemic control with
regard to DR risk; however, this group
was mainly male, had a mean age of
60 years and around 40% had already
experienced an adverse cardiac event
(Duckworth et al., 2009).

More recently, Hba1c variability
rather than its static value has been
posed as a better predictor of DR risk.
High variability between HbA1c mea-
surements on successive clinic visits is
predictive of new-onset DR but not
directly predictive of progression to
worsening forms of DR. Interestingly,
abrupt decreases in HbA1c, as well as
increases, contribute to this (Kilpatrick
et al., 2008; Kim et al., 2021). Further-
more, in a Cox regression model pre-
dicting DR risk, the addition of Hba1c
variability improved predictive power
(Hermann et al., 2014). It is important
to note that HbA1c variability can be
calculated in different ways and not all
give the same results with respect to
DR prediction (Foo et al., 2017).
HbA1c is inextricably linked to dia-
betes and the risk of developing further

complications, although it is clearly not
the only factor or marker. Taken
together, HbA1c levels are a good
predictor of DR risk and could become
a useful clinical marker, especially
when combined with other clinical
readouts (Blighe et al., 2020).

Enzyme inhibitors

Alpha-2-macroglobulin (A2MG)

Biological Role. Alpha-2-macroglobulin
(A2MG) is a major blood glycoprotein
that functions as a proteinase inhibitor
by physically entrapping a broad range
of proteases including trypsin, thrombin
and collagenase and delivering them to
an endocytotic clearance pathway (Idiris
et al., 2003; Wang et al., 2011). A2MG
has also been implicated in immunomod-
ulation and extracellular proteostasis
(Borth, 1992; Armstrong et al., 1999;
French et al., 2008). Alpha-2-macroglob-
ulin (A2MG) is known to bind to
growth factors and cytokines, including
transforming growth factor-b, tumour
necrosis factor-a (TNFa), interleukin 1b,
interleukin 8 and vascular endothelial
growth factor (LaMarre et al., 1991;
Feige et al., 1996). Binding can result in
degradation of the complex or stabilize
circulating factors, depending on the
form of A2MG, modulating immune
and inflammatory responses.
Evidence. There has been a long-stand-
ing link between A2MG levels and
DM, and a correlation between levels
of A2MG and HbA1c has been noted
(James et al., 1980; Tureck�y et al.,
1999). Characterisation of the salivary
proteome in individuals with type 2
diabetes mellitus (T2DM) indicated
that A2MG was incrementally
increased in the saliva of those in a
prediabetic state and further increased
in those with diagnosed T2DM (Rao
et al., 2009). It has long been known
that circulating A2MG is elevated in
people with diabetes compared to
healthy controls and even that elevated
A2MG is associated with the presence
of DR (James et al., 1980; Gray et al.,
1982; Takada et al., 2013; Yoshino
et al., 2019). Indeed, A2MG has been
identified as a marker for DR in several
sample types including saliva (Rao
et al., 2009), vitreous (Kim et al.,
2007) and, importantly for this review,
in plasma (Kim et al., 2013). The latter
work shows that A2MG is increased in
plasma of patients with mild NPDR
compared to no DR and is useful, in
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combination with other markers, to
identify patients with mild NPDR.

Cystatin C

Biological Role. Cystatin C (CysC)
belongs to the evolutionarily well-con-
served cystatin type 2 superfamily of
cysteine protease inhibitors (Barrett,
1986). Originally identified in cere-
brospinal fluid in humans, CysC has
since been identified in all mammalian
body fluids and tissues where it regu-
lates endogenous proteinases including
multiple cathepsins and papain (Bobek
& Levine, 1992; Turk et al., 2008).
CysC is particularly abundant in brain
tissue (Hakansson et al., 1996) where it
is expressed by neurons, astrocytes,
endothelial and microglial cells (Yasu-
hara et al., 1993; Palm et al., 1995;
Miyake et al., 1996). Cystatin C (CysC)
is also used as a marker of glomerular
filtration rate as it is completely removed
from the circulation in the kidney and
then almost fully resorbed by proximal
tubular cells for degradation. Circulat-
ing levels of CysC remain fairly con-
stant, and some studies refer to it as a
housekeeping protein; however, changes
in expression have been associated with
diseases such as cancer, neurodegenera-
tive disorders, DN and cardiovascular
disease (Mussap & Plebani, 2004; Jeon
et al., 2011; Kim et al., 2018).
Evidence. Recent studies have reported
a positive correlation between serum
CysC levels and DR in T2DM patients
(He et al., 2013; Wong et al., 2015;
Kim et al., 2018). Importantly, He
et al., (2013) observed that circulating
CysC levels are linked to the severity
of DR and could be a predictor of
VTDR. The authors showed that,
along with the duration of DM and
HbA1c, CysC is a risk factor for DR.
The risk of VTDR was increased 11-
fold in patients with serum cystatin C
levels over 1.25 mg/L (He et al., 2013;
Wong et al., 2015) and revealed that
serum CysC in T2DM patients corre-
lated positively with moderate DR,
suggesting that CysC may play a role
in the pathogenesis of DR, although
the mechanisms are unclear. In the
eye, CysC is secreted by the retinal
pigment epithelium and could con-
tribute to the progression of macular
degeneration (Zurdel et al., 2002;
Paraoan et al., 2010), thus explaining
the correlation between serum CysC
and DR. Notably, CysC has been
analysed in serum using an

electrochemical immunosensor with
high sensitivity (Devi & Krishnan,
2020). Using 1.2 mg/L as a cut-off
value the device showed 85% accuracy
in predicting DR in a small (n = 10)
cohort of clinical samples.

Plasma protein transport regulators

Apolipoproteins

Biological Role. Apolipoproteins are
lipid-binding proteins, which help to
transport triglycerides, phospholipids
and cholesterol in blood, CSF and
lymph. Apolipoproteins solubilize cir-
culating lipids by forming lipoproteins,
which are vehicles for the transport of
lipids in the intra- and extravascular
space. Apolipoproteins belong to sev-
eral groups (ApoA–ApoH); individual
forms are differentially expressed and
associated with different types of cir-
culating lipoprotein particle including
chylomicrons, HDL, LDL and VLDL.
Most apolipoproteins can move
between lipoprotein particles as they
are remodelled and circulate in the
plasma, a feature that is referred to as
exchangeable. ApoAI, the major pro-
tein component of HDL (constituting
~70%), is produced primarily in the
liver and small intestine and is crucial
to the regulation of cholesterol home-
ostasis. Furthermore, it possesses
antioxidant, anti-inflammatory and
atheroprotective properties and is
involved in the anti-clotting process
(Yui et al., 1988). ApoCIII is a com-
ponent of very-low-density lipoprotein
(VLDL), constituting ~40% of its pro-
tein mass, and HDL (Sundaram &
Yao, 2012). It regulates the secretion
and clearance of VLDL and inhibits
the activities of several fat-metabolising
enzymes (Mendivil et al., 2010).
ApoAIV is secreted from intestinal
enterocytes and is mainly associated
with chylomicrons and is potentially
involved in their assembly (Green et al.,
1980). ApoB is a non-exchangeable
apolipoprotein, remaining with the
same lipoprotein from synthesis to
cellular uptake and degradation. ApoB
is mainly associated with VLDL, with
one of its forms constituting the ligand
for the LDL receptor (Boren et al.,
1998). ApoB is strongly associated with
the risk of developing coronary artery
disease.
Evidence. Elevated serum levels of
ApoAI and ApoCIII are associated
with T2DM risk (Onat et al., 2009;

Brahimaj et al., 2017), and analyses of
vitreous fluid demonstrate a positive
correlation between ApoA1 levels and
PDR (Simo et al., 2008). By contrast,
circulating ApoAI levels are inversely
associated with DR, according to
severity, in several studies of people
with diabetes (Sasongko et al., 2011;
Hu et al., 2012; Moosaie et al., 2020). A
recent study by Zhang et al., (2018)
further confirmed the association
between circulating ApoAI and risk
of DR but also found a positive rela-
tionship for ApoCIII levels. Elevated
ApoA1 levels could be a protective
factor against DR, where a baseline
serum level of ApoAI ≥ 7.4 lmol/L
was associated with a decreased risk
of DR. In contrast, baseline levels of
ApoCIII ≥ 6.3 lmol/L and ApoCIII-
to-ApoAI ratio ≥0.9 correlated with an
increased risk of DR (Zhang et al.,
2018). Further studies by Chung et al.
and Moosaie et al. also report an
inverse relationship between ApoA1
and DR severity and a positive correla-
tion of ApoB/ApoAI ratio to DR
severity (Chung et al., 2019; Moosaie
et al., 2020). Patients with type-1
diabetes in the DCCT/EDIC cohort
with severe retinopathy had signifi-
cantly higher circulating ApoCIII con-
centration, compared to those with
moderate or mild retinopathy (Klein
et al., 2005). Kim et al., (2013)
describe strong correlations between
apolipoproteins in plasma with differ-
ing severity of DR. ApoCIII, ApoAII
and ApoAIV are reduced in mild and
moderate NPDR, compared to con-
trols without retinopathy. ApoAI and
ApoC1 are elevated in mild NPDR,
but ApoC1 only in moderate NPDR
(Kim et al., 2013).

Afamin (AFM)

Biological Role. Afamin, an albumin
superfamily member, shares 55%
amino acid similarity with albumin. It
is primarily expressed in the liver and
secreted into the bloodstream (Lichen-
stein et al., 1994) and noted for its high
degree of glycosylation (Lichenstein
et al., 1994; Araki et al., 1998). It is
highly abundant in plasma but can also
be found in follicle, seminal and cere-
brospinal fluid (Voegele et al., 2002).
Its role in vitamin E-binding has been
reported by several groups, and its
ability to transport vitamin E across
the blood–brain barrier has implica-
tions for neuroprotection (Heiser et al.,
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2002; Jerkovic et al., 2005; Kratzer
et al., 2009).
Evidence. Strong correlations exist
between serum afamin and the devel-
opment of metabolic syndrome and
high BMI (Kronenberg et al., 2014). A
population-based study on T2DM,
including more than 20 000 individu-
als, also showed increased afamin con-
centrations in individuals with T2DM
(Kollerits et al., 2017). Proteomics
analysis showed decreased afamin
expression in plasma from DR patients
compared to no DR (Lu et al., 2013).
Kim et al., (2013) point to its usefulness
as a marker for DR since afamin, in
combination with some of the other
target proteins mentioned above,
improves specificity in distinguishing
moderate NPDR from T2DM patients
with no DR.

Retinol binding protein 4 (RBP4)

Biological role. Circulating RBP4 binds
and transports retinol (vitamin A),
taking it from the liver to its target
peripheral tissues. Retinol binding pro-
tein 4 (RBP4) solubilizes retinol, limit-
ing the free amount in the circulation,
which would otherwise be toxic. Many
studies have identified links between
RBP4, retinol, retinoic acid and obesity
and its related conditions (Graham
et al., 2006). These interactions and
their implications have been reviewed
comprehensively (Zabetian-Targhi
et al., 2015; Olsen & Blomhoff, 2020).
Evidence. Several studies have reported
positive correlations between circulat-
ing RBP4 levels and T2DM or DR.
Takebayashi et al. found serum RBP4
to be elevated in patients with diabetes
compared to healthy controls and to be
correlated positively with other mark-
ers of T2DM. Furthermore, RBP4 is
elevated in patients with PDR com-
pared to DR and non-DR (Take-
bayashi et al., 2007). A similar trend
was seen in another study where a
significant positive correlation was also
reported between serum RBP4 and
urine albumin excretion rate (Li et al.,
2010). More recently, in a cohort of 287
T2DM patients and 150 healthy con-
trols, Li et al., (2018) found RBP4 to be
significantly elevated in T2DM patients
with DR or VTDR; the AUC was
found to be 0.79 and 0.9 for DR and
VTDR, respectively. However, other
studies have reported a decrease in
serum RBP4 with DM or simply no
difference in circulating RBP4 in

patients with DR (Akbay et al., 2010;
Zhang et al., 2019a, 2019b). Due to the
apparent links between RBP4 and
metabolic disorders, correcting for
BMI, fat deposition and urine albumin
excretion may be key to elucidating
genuine links between RBP4 levels and
disease status.

Coagulation cascade mediators

Complement cascade proteins

Biological role. The complement cas-
cade is a key component of the innate
immune system, which modulates var-
ious immune and inflammatory
responses (Walport, 2001a, 2001b).
The complement system is always
active at a basal level, but its activity
is monitored by complement regula-
tors. It is now recognized that chronic,
low-grade inflammation and innate
immune system over-activation are fea-
tures and influencers of T2DM
(McLaughlin et al., 2017; Saltiel &
Olefsky, 2017). Recently, circulating
exosomes have been postulated as
potential activators of complement in
diabetic models (Huang et al., 2018).
Elevated, circulating complement fac-
tor B (CFB) increases the risk of
endothelial dysfunction (Hertle et al.,
2016), which may lead to coronary
heart disease (Donahue et al., 2006).
Complement factor B (CFB) binds
component C3 forming C3B, con-
tributing to the formation of the mem-
brane attack complex (Ricklin et al.,
2010). Therefore, CFB is essential for
pathogen clearance and host cell apop-
tosis. CFH is a soluble serum glyco-
protein that regulates the function of
the alternative complement pathway in
blood and on cellular surfaces.
Evidence. The complement system has
been implicated in the pathogenesis of
DR and related conditions. Increased
circulating CFB has been found in south
Asian populations at risk of developing
T2DM (Somani et al., 2012), and
expression of CFB in adipose tissue
has a strong correlation with fasting
glucose and circulating lipids (Moreno-
Navarrete et al., 2010). Several studies
have identified increased expression of
CFB in the vitreous of DR patients,
which led to further investigation of
these proteins as potential specific mark-
ers for DR (Garcia-Ramirez et al., 2007;
Gao et al., 2008). Wang et al. (2013a)
showed that polymorphisms in CFH
and CFB genes are associated with the

development of DR and that the com-
bined effect of CFH rs80029 and CFB
rs1048709 results in a significantly
increased risk of DR. Additional poly-
morphisms in the CFH and CFB genes
are also correlated with a higher risk of
developing age-related macular degener-
ation (Gold et al., 2006; Liu et al., 2010),
a disorder that shares many pathophys-
iological features with DR. Based on
differential expression of complement
proteins in the vitreous of DR patients
(Kim et al., 2007), Kim et al., (2013)
identified CFB, CFH and complement
component C3 as potential circulating
markers for DR. In this case, plasma
levels were decreased in mild and mod-
erate NPDR patients compared to non-
DR controls. An additional paper from
the same group also identifies comple-
ment component C7 as a circulating
marker for DR, with ROC curve anal-
ysis showing the highest AUC (0.85) of
any single marker analysed (Jin et al.,
2016). Upon analysis of vitreous and
serum samples from PDR, NPDR and
healthy controls, Shahulhameed et al.
identified a decrease of CFB and an
increase in CFH in the vitreous of PDR
patients. In contrast, CFH levels were
downregulated in serum of these
patients (Shahulhameed et al., 2020).
Therefore, CFB and CFH could be
accurate markers of DR, but the sample
type appears crucial.

Factor 2 (F2, Thrombin)

Biological role. Blood coagulation cru-
cially prevents blood loss and throm-
bin, a serine protease, plays a central
role in the coagulation cascade. In a
first step, its inactive precursor, pro-
thrombin is cleaved to form active
thrombin (Jeon et al., 2011). Thrombin
then cleaves and solubilizes fibrinogen
into strands of fibrin, an important step
in the formation of clots. It also plays a
key role in platelet activation and the
catalysis of other coagulation-related
reactions. Further to its role in clot
formation, thrombin is also a potent
activator of angiogenesis and perme-
ability during inflammatory responses
(Maragoudakis et al., 2002; Mullins
et al., 2009; Rathnakumar et al., 2016).
Most mice lacking expression of
thrombin die in utero due to defects in
yolk sac vasculature, while those that
are born succumb to haemorrhage on
the first postnatal day (Sun et al.,
1998). Mutations in the prothrombin
gene, F2, lead to various forms of
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thrombosis and dysprothrombinaemia
(Girolami et al., 2018).
Evidence. Kim et al., (2013) point to
the usefulness of F2 (in combination
with other markers) to detect and
stratify DR. Additionally, proteomic
analysis, as well as targeted ELISA
analysis, showed increased prothrom-
bin in vitreous samples from individu-
als with PDR compared to individuals
with no diabetes (Gao et al., 2008; Abu
El-Asrar et al., 2016). Thrombin–anti-
thrombin III complex (TAT) is a
parameter of coagulation and could
act as a proxy for thrombin levels.
Plasma and vitreous TAT levels have
been shown to be significantly higher in
patients with retinopathy (Asakawa
et al., 2000) and have been shown to
positively correlate with the severity of
DR (Dan-Brezis et al. 2020; Fujiwara
et al., 1998). Given the many associa-
tions and activation steps thrombin is
involved in, care must be taken in the
comparison of studies.

Kallistatin (SerpinA4)

Biological role. Kallistatin (SER-
PINA4) is a serine protease inhibitor.
Kallistatin binds to and inhibits the
activity of tissue kallikreins which
cleave kininogens to generate bioactive,
pro-inflammatory kinins (Chao et al.,
1990; Zhou et al., 1992). Bradykinin
has been implicated in the pathogenesis
of DMO and DR due to its pro-
inflammatory and permeability-induc-
ing effects (Liu & Feener, 2013). Kal-
listatin activity triggers multifactorial
effects, including vasodilation and inhi-
bition of oxidative stress, inflamma-
tion, fibrosis and apoptosis, primarily
by increasing NO formation via eNOS
levels (Chao et al., 1990; Chao et al.,
2006; Shen et al., 2008; Shen et al.,
2010; Yin et al., 2010; Li et al., 2014).
Evidence. Kallistatin levels have been
shown to be significantly reduced in the
vitreous fluids of patients with PDR
and the retinas of streptozotocin-in-
duced diabetic rats (Ma et al., 1996;
Hatcher et al., 1997). Furthermore, Liu
et al. showed that overexpression of
kallistatin in an in vivo model amelio-
rates diabetes-induced retinal leukosta-
sis and vascular leakage, by inhibiting
diabetes-induced Wnt/b-catenin sig-
nalling pathway activation (Liu et al.,
2013). Interestingly, Kim et al. (2013)
showed a stepwise fold-increase in
plasma kallistatin between control
and mild NPDR subjects and also

between mild NPDR and moderate
NPDR subjects (Kim et al., 2013). This
is in accord with other studies showing
circulating kallistatin to be elevated in
patients with diabetic vascular compli-
cations compared to control and sub-
jects with diabetes with no vascular
complications (Jenkins et al., 2010;
McBride et al., 2014; El-Asrar et al.,
2015). Kallistatin may, therefore, be a
more generalized marker for diabetes
but does appear to be further increased
in patients with additional complica-
tions such as DR and thus be a
valuable marker in combination with
others.

Inflammatory markers

Lipoprotein-associated phospholipase A2

(Lp-PLA2)

Biological role. Lipoprotein-associated
phospholipase A2 (Lp-PLA2) is a cir-
culating phospholipase that binds to
LDL-cholesterol (LDL-c) and HDL in
the plasma. As an A2-type phospholi-
pase, Lp-PLA2 hydrolyses modified
polyunsaturated fatty acids within oxi-
dized low-density lipoprotein (oxLDL)
releasing lysophosphatidylcholine
(LPC) and oxidized non-esterified fatty
acids, which can elicit a range of pro-
inflammatory and pro-apoptotic effects
(Silva et al., 2011). Elevated Lp-
PLA2 has been proposed as a predic-
tive biomarker for several vascular
diseases including stroke (Oei et al.,
2005), atherosclerosis (Katan et al.,
2014) and coronary heart disease
(Thompson et al., 2010). Macrophages
and other pro-inflammatory cells are a
primary source of Lp-PLA2 in the
systemic circulation (Stafforini et al.,
1990), although many ot her cells
including endothelial cells also express
this enzyme (Doublier et al., 2007).
Evidence. Lp-PLA2 activity releases
pro-inflammatory lipids, which have
been implicated in endothelial damage
leading to disruption of the inner
blood-retinal barrier, observed in DR
and DME. In vitro and in vivo studies
with Lp-PLA2 antagonists, darapladib
and SB435495 (GlaxoSmithKline),
have shown favourable responses in
rats (Canning et al., 2016) and pigs
(Acharya et al., 2017), improving visual
loss by reducing retinal vascular leak-
age. Crucially, Lp-PLA2 inhibition has
demonstrated efficacy as a treatment
for DMO, improving visual loss and
reducing retinal thickness (Staurenghi

et al., 2015). Interestingly, Siddiqui
et al. showed that, in an adult Cau-
casian population, increased serum Lp-
PLA2 activity is not only associated
with increased risk of development of
DR but also with a transition to more
advanced forms of DR (Siddiqui et al.,
2018).

Leucine-rich alpha-2-glycoprotein (LRG1)

Biological role. Leucine-rich alpha-2-
glycoprotein (LRG1) is a highly con-
served member of the leucine-rich
repeat family of proteins (Andersen
et al., 2010), which is involved in cell
adhesion (Kobe & Kajava, 2001), gran-
ulocytic differentiation (O’Donnell
et al., 2002), cell migration (Saito
et al., 2002), signalling (Li et al., 2007),
cell survival and apoptosis (Ai et al.,
2008; Weivoda et al., 2008). Leucine-
rich alpha-2-glycoprotein (LRG1) has
already been identified as a marker for
various chronic inflammatory diseases,
including rheumatoid arthritis and
asthma (Fujimoto et al., 2015; Honda
et al., 2016). Additionally, it can act as a
mitogen for endothelial cells in tumour
neovascularisation and, importantly,
retinal neovascularisation (Wang et al.,
2013b; Zhang et al., 2016). Leucine-rich
alpha-2-glycoprotein (LRG1) modu-
lates endothelial transforming growth
factor-b (TGF-b) signalling to promote
angiogenesis (Wang et al., 2013b).
Evidence. Leucine-rich alpha-2-glyco-
protein (LRG1) exclusively localizes
with the vasculature of various human
tissues including the eye. Interestingly,
its expression increases in response to
the murine model of oxygen-induced
ischemic retinopathy (Wang et al.,
2013b), which mimics neovascularisa-
tion seen in PDR. Plasma and intrav-
itreal LRG1 has been described to be
significantly increased in PDR patients,
suggesting that LRG1 levels increase
with DR progression (Chen et al.,
2019; Hase et al., 2017; Zhang et al.,
2019). This increase appears to be
particularly detectable in more severe
DR such as PDR but modest increases
in milder forms of the disease could
contribute to early detection.

Interleukin-6

Biological role. Interleukin 6 (IL-6) is a
pleiotropic pro-inflammatory cytokine
that is mainly secreted by monocytes
(Navarro et al., 1989) and binds to its
specific receptor (IL-6R) on the surface
of cells. Also, IL-6 can bind to soluble

9

Acta Ophthalmologica 2021



IL-6R and thus directly activate cells.
Interleukin 6 (IL-6) promotes B-cell
maturation and T-cell differentiation,
while at the same time synergizing with
TNFa and IL-1 to promote a systemic
inflammatory response (Romano et al.,
1997; Skelly et al., 2013). IL-6 produc-
tion is rapidly upregulated in response
to infections and tissue injuries; how-
ever, this is transient. As such, it is a
key contributor to host defence
through the stimulation of acute-phase
responses, haematopoiesis and immune
reactions. The expression of Il-6 is
tightly controlled both transcription-
ally and post-transcriptionally. How-
ever, dysregulation of these
mechanisms can lead to continual syn-
thesis, which affects the pathology of
chronic inflammation.
Evidence. IL-6 has been implicated in
the pathogenesis of DR because it is
elevated in the vitreous fluid and blood
of patients with DR (Schram et al.,
2005; Kaviarasan et al., 2015; Feng
et al., 2018; Yao et al., 2019). In the
EURODIAB prospective complica-
tions study, circulating IL-6, in combi-
nation with C-reactive protein and
TNFa, was able to stratify T1DM
patients with no retinopathy, NPDR
and PDR (Schram et al., 2005). Inter-
leukin 6 (IL-6) may be a key early
indicator of DR as higher circulating
levels were detected in children with
DR, who, crucially, will have diabetes
and DR for much shorter times than
adults (Zorena et al., 2007). Further-
more, IL-6 concentration in serum also
positively correlates to the severity of
DMO (Shimizu et al., 2002).

TNFa
Biological role. Tumour necrosis factor-
a (TNFa) is a primary cytokine linked
to many cellular processes. Crucially, it
can promote the production of reactive
oxygen species, promote leukostasis
and induce blood-retinal barrier break-
down (Woo et al., 2000; Derevjanik
et al., 2002; Chandrasekharan et al.,
2007; Bradley, 2008). Tumour necrosis
factor-a (TNFa) has two receptors,
TNFR1 and TNFR2, through which
it signals and regulates cellular func-
tions including proliferation, survival,
differentiation and apoptosis. Tumour
necrosis factor-a (TNFa) is produced
and secreted by macrophages and plays
a pivotal role in inducing the cytokine
cascade in many inflammatory diseases
and is therefore under investigation as

a therapeutic target for several dis-
eases.
Evidence. As mentioned above, TNFa,
in combination with other inflamma-
tory markers, is an indicator of DR in
T1DM patients (Schram et al., 2005).
Circulating TNFa levels have been
associated with retinopathy in several
studies on patients with both T1DM
and T2DM. In children with T1DM,
this correlation was found to be a
predictor of NPDR and was com-
pletely absent in healthy non-diabetics
(Zorena et al., 2007). Elevated TNFa
level was found to be associated with
severe retinopathy in T1DM patients
with kidney disease; however, at a 15-
year follow-up, this correlation was no
longer observed (Klein et al., 2009). In
African-Americans with T1DM, it has
been reported that baseline circulating
TNFa is a predictor of PDR incidence
as well as DME (Roy et al., 2013).
Additionally, the TNFa level in tears is
highly correlated with DR severity
(Costagliola et al., 2013). Notably,
moving towards alternative screening
methods, a nanoparticle-based sensor
has been described in a proof-of-con-
cept study to detect TNFa in tear fluid
(Chuang et al., 2018).

Basement membrane and extracellular

matrix turnover markers

Collagen IV

Biological role. Collagen IV is an essen-
tial component of the basement mem-
brane. It forms a mesh-like network,
surrounding epithelial and endothelial
cells, supporting cellular adhesion, migra-
tion and wound healing (Boudko et al.,
2018). Due to its integral role in the
basement membrane, collagen IV acts as
a scaffold for many different binding
partners. It is degraded by specialist
proteases, releasing subdomains impor-
tant for signalling. Increased urinary
collagen IV is a biomarker for diabetic
nephropathy and microangiopathy
(Haiyashi et al., 1992; Lee et al., 1994;
Yagame et al., 1997).
Evidence. Collagen IV concentration
has been evaluated in the serum, urine
and vitreous of patients with diabetes
and its associated microvascular com-
plications. Elevated collagen IV in each
of these fluids is associated with
retinopathy or other diabetic compli-
cations, such as nephropathy or
microalbuminuria, in both adults and
children (Haiyashi et al., 1992; Yagame

et al., 1997; Nicoloff et al., 2001.
Plasma collagen IV levels were identi-
fied as indicative of severity of DN and
DR (Lee et al., 1994). Kotajima et al.,
2001 also found that collagen IV was
elevated in the serum and also vitreous
fluid of patients with DR. In the
vitreous, this increase also correlated
with disease duration.

Matrix metalloproteinases (MMPs)

Biological role. Matrix metallopro-
teinases (MMPs) are zinc-dependent
endopeptidases, which degrade and
remodel all types of extracellular
matrix, apart from polyglycan.
Humans have at least 23 MMPs, out
of a total of 28 found in vertebrates,
which can be broadly subdivided based
on their target proteins. Their func-
tions involve tissue remodelling, wound
healing, bone remodelling and cell
migration, and, as such, MMPs can
play roles in cancer metastasis and
invasiveness as well as other diseases.
In retinopathy, MMPs can degrade
junction proteins, increase vascular
permeability, exacerbate inflammatory
responses, initiate cell death and pro-
mote neovascularisation (Kowluru &
Mishra, 2017). In addition to this
primary role, MMPs are also able to
influence cell signalling behaviours
through activation or inhibition of cell
surface receptors. To prevent erro-
neous degradation, MMPs are pro-
duced as inactive pro-enzymes that
need to be proteolytically activated.
The activity of MMPs is closely regu-
lated by different factors including
tissue inhibitors of metalloproteinases
(TIMPs), which serve as their endoge-
nous inhibitors. The balance between
MMPs and TIMPs is crucial to their
function in tissue homeostasis.
Evidence. MMP14 was found at signif-
icantly higher levels in vitreous from
patients with PDR compared to non-
diabetic controls as well as in the
retinae of diabetic rats (Abu El-Asrar
et al., 2018). Additionally, MMP14 was
also higher in patients with active
neovascularisation compared to those
with stable PDR. MMP1 has been
found in the vitreous of patients with
PDR (around 40% of patients) but is
not present in those without DM.
Furthermore, a correlation was also
seen between those expressing MMP1
and those with the highest levels of
VEGF (Kwon et al., 2016). Circulating
MMP1, MMP7 and MMP9 have also
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been found to be elevated in patients
with diabetes, alongside the MMP/
TIMP1 ratio, and these circulating
factors are further increased in patients
with DR (Jacqueminet et al., 2006)
(Maxwell et al., 2001) (Abu El-Asrar
et al., 2014). In the EURODIAB study
MMP2, MMP3, MMP10 and TIMP1
were higher in PDR patients with
adjustment for age, sex, duration of
DM and HbA1c; however, when these
results were further corrected for CVD
and albuminuria, only the MMP2
changes remained significant (Peeters
et al., 2015). As CVD is a common
complication of DM, these MMPs
alone are unlikely to be suitable mark-
ers for DR or PDR.

Other circulating factors

Advanced glycation end products

Biological role. As described above,
AGE formation in response to hyper-
glycaemia is part of the DR pathogen-
esis (Brownlee et al., 1985). AGEs can
perturb cellular function and also dis-
rupt cell structure by accumulating in
the vessel wall. In addition, they also
act through specific receptors (RAGE)
on endothelial cells, Muller glia, peri-
cytes and retinal pigment epithelial
cells by which they contribute further
to vascular complications of diabetes.
AGEs disrupt cellular homeostasis by
modifying the extracellular matrix
(ECM) but also by impacting on the
action of hormones, cytokines and free
radicals and the function of intracellu-
lar proteins (Brownlee et al., 1988).
Evidence. Two AGEs, in particular,
have been proposed as biomarkers for
DR. N-Epsilon-carboxymethyl lysine
(N-e-CML) is the most common circu-
lating AGE and has been found at
elevated levels in the serum of patients
with diabetes and to an even higher
extent in those with DR and other
microvascular complications (Wautier
et al., 2003; Boehm et al., 2004; Hirata
& Kubo, 2004). Choudhuri et al.,
(2013) found that subjects with both
PDR and NPDR had significantly
increased total serum AGEs compared
to no DR; however, the NPDR group
had significantly higher levels of N-e-
CML than the PDR group. Kerkeni
et al., (2012) showed that serum levels
of AGEs were elevated in DR patients
and also reported an increase in pen-
tosidine, another AGE related to DR,
in DR patients compared to controls.

However, this may not be a highly
specific marker for DR as, in the
EURODIAB study, the association
between pentosidine and DR was attrib-
uted to the duration of diabetes
(Schram et al., 2005). To further com-
plicate the presence of pentosidine in
DR, Salman et al., (2009) found ele-
vated levels in the early and moderate
stages of NPDR, but this was lost once
patients had developed PDR, as seen by
some groups with N-e-CML. Kidney
disease is often a further complicating
factor in the pathogenesis of DM. This
may be key to levels of circulating
AGEs in DM patients as AGE levels
tend to increase with loss in kidney
function (Hirata & Kubo, 2004).

Vascular endothelial growth factor

(VEGF)

Biological role. Vascular endothelial
growth factors (VEGFs) are a family
of endothelial-specific cytokines which
have functions in both physiological
and pathological angiogenesis of differ-
ent vessel types throughout the body.
VEGFA is the prototypical form, often
just referred to as VEGF, responsible
for endothelial homeostasis but also
vascular permeability. Dysregulated
levels of VEGF can lead to aberrant
leakage and vessel growth and have
been directly implicated in the patho-
genesis of DR. VEGF also drives early
events of DR pathogenesis by inducing
ICAM-1 expression, leading to leuko-
cyte adhesion and blood-retinal barrier
breakdown (Joussen et al., 2002). Due
to the roles of VEGFs in DR, anti-
VEGFs are increasingly used to treat
advanced retinopathies; however, they
are not effective in all patients (Ford
et al., 2013). In this regard, it is inter-
esting to note that, in at least one study,
VEGF was not detectable in the ocular
fluids of some patients with DR, which
may explain why not all DR patients
respond to anti-VEGF treatment
(Aiello et al., 1994).
Evidence. Many studies have described
links between circulating VEGF levels
and DR; however, these studies often
do not agree on the degree of correla-
tion or ability to predict disease sever-
ity. Increased serum VEGF levels have
been linked to DR and raised HbA1c
values (Celebiler Cavusoglu et al.,
2007), which have also been associated
with an increased risk of DM compli-
cations (Nordwall et al., 2015). Fur-
thermore, several studies have shown

that VEGF levels in serum are
increased with the severity of DR
(Celebiler Cavusoglu et al., 2007; Du
et al., 2014). Levels of serum VEGF
correlate positively with disruption of
the external limiting membrane and the
inner-segment–outer-segment junction,
suggesting that increased serum VEGF
is associated with severity of DR (Jain
et al., 2013). Ozturk et al., (2009)
reported a significant correlation
between serum VEGF and severity of
DR although there was no statistically
significant difference between NPDR
and PDR. A further study reported
that although VEGF significantly
increases in DM compared to controls,
it is lower in PDR compared to NPDR
(Suguro et al., 2008). Other studies,
such as the one from Chaturvedi et al,
found only a weak correlation between
VEGF and the severity of DR, this time
in plasma (Chaturvedi et al., 2001). A
recent meta-analysis of 29 different
studies found that these showed overall
that serum but not plasma VEGF levels
were increased in DR patients com-
pared to controls, with increases also
correlating with severity of disease
(Zhou et al., 2019).

Limitations of
circulating protein
biomarkers
Diseased tissues generally display
molecular signatures related to their
pathology and pathogenesis, and these
can sometimes be utilized through tis-
sue biopsies. However, serum and
plasma are preferred for biomarker-
based tests: they can be considered a
circulating representation of all body
tissues, also reflecting disease-specific
molecular signatures. Discovery of pro-
teomic signatures is often hampered
due to the complexity and dynamic
range of serum and plasma (often
requiring predepletion of highly abun-
dant constituents). In addition, with
pathologies that are restricted to a
relatively small proportion of the body,
many specific biomarker changes can-
not be detected reliably. This is
undoubtedly an important factor for
biomarkers of DR, as the retinal blood
volume constitutes a small proportion
of the total circulation. For instance,
increased intraocular VEGF has been
measured in the vitreous of all forms of
DR, but changes in circulating levels
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do not reflect this robustly enough to
justify its use as a blood-based biomar-
ker. In the case of pigment epithelium-
derived factor (PEDF), circulating
levels are increased in patients with
PDR, compared to those without, yet
in ocular tissue, PEDF levels are lower
in patients with late-stage DR than in
those without retinopathy (Jenkins
et al., 2007; Li et al., 2012; McAuley
et al., 2014). This may not be an issue,
in theory, provided the results for
circulating levels are consistent and
reliable. However, it does pose ques-
tions regarding why this is the case and
what altered levels of PEDF are indica-
tive of. In this case, targeted basic
science studies can show how biomar-
ker levels correlate to pathogenesis
(Elahy et al., 2014) and, in combination
with more longitudinal studies on
patients, could help to develop a more
nuanced classification of disease.
Lastly, as DR constitutes a complica-
tion of a complex systemic disorder,
one should be wary of changes that
may in fact not be specific for DR but
possibly of generalized inflammation or
vascular disease.

Biomarker validation is highly
dependent on preanalytical specimen
handling, which needs to be standard-
ized to minimize technical variance
between studies (also reviewed by
(Rifai et al., 2006)). Several studies
have demonstrated significant changes
in the levels of analytes following
different processing protocols. Addi-
tionally, protein biomarkers are not
very robust analytes, which could make
them disadvantageous in an outpatient
setting, where the period between sam-
pling and sample analysis can some-
times vary due to unforeseen delays.
Other extreme conditions such as
repeated freeze and thaw cycles can
compromise protein stability in serum.
Additionally, classical immunoassays,
such as ELISA, are highly sensitive,
but labour-intensive and challenging to
implement for multiplexing detection.

Biomarkers must be validated on
large cohorts to determine usefulness
across the general population. How-
ever, changes that are only significant
in large cohorts may not provide suf-
ficient specificity and sensitivity in
individual patients. New biomarkers
also need to be tested on diverse
populations in case they have altered
specificities based on gender, age, eth-
nicity or type of diabetes. Indeed, it has

recently been suggested that people
with diabetes can be more usefully
subdivided into five groups, based on
clinical characteristics, rather than the
two more commonly used to date.
These cohorts allow better stratifica-
tion of disease outcomes and could
provide an early indication of compli-
cations (Ahlqvist et al., 2018). None of
the DR biomarker verification studies
have correlated marker levels to these
more advanced clinical subgroups of
diabetes. In addition, DR classification
often differs considerably between
studies, thus making direct comparison
difficult. In line with this, pre-existing
comorbidities, medications and other
environmental factors could also alter
biomarker levels and their relationship
with DR. Consideration of such
comorbidities is not always included
in study design and analysis, which
could explain, in part, some differences
between reports. Nephropathy is a
closely related microvascular complica-
tion to retinopathy and many studies
describe a greater risk of retinopathy in
patients with nephropathy and cardio-
vascular disease risk is also elevated in
patients with existing diabetes compli-
cations (Hahr & Molitch, 2010; Son
et al., 2011; Grunwald et al., 2012;
Rajalakshmi et al., 2020). This is per-
haps unsurprising as both diseases
affect microvascular beds, dense with
capillaries, and share many of the same
risk factors including high HbA1c,
duration of diabetes, hypertension
and poor lipid control (Romero et al.,
2007; Lee et al., 2014). Therefore,
biomarkers may in fact stratify the
high-risk group of people with diabetes
that should be triaged for at risk of
complications. In addition, validation
in multiple cohorts needs to be done
before clinical pathways can be re-
designed to include biomarkers and
biosensors.

Future trends

Circulating biomarkers will continue to
evolve with increased identification of
markers, ongoing improvements in
detection limits, and reduction of the
operating cost and time. Furthermore,
new technologies, including pro-
teomics, metabolomics and genomics,
will enable exploration of previously
unavailable target molecules and will
potentially lead to identification of
novel biomarkers.

As discussed in this review, electro-
chemical biosensors have emerged as
advantageous molecular sensing
devices with the potential to benefit
POC diagnostics (Shalini Devi et al.,
2020). Furthermore, the emergence of
nanotechnologies is providing new
materials and methodologies for POC
devices, reducing sample volumes and
improving portability (Pirzada & Alt-
intas, 2019). It is also becoming
increasingly possible to couple devices
to smartphones, allowing for at-home
testing and increasing the possibility to
monitor complex conditions with reg-
ularity (Kou et al., 2020). Traditional
tests for many conditions, such as
diabetes, use antibody-mediated detec-
tion to confirm the presence or quan-
tity of a target analyte. Miniaturisation
of this process must take into consid-
eration the stability of the biological
components, ease of sample prepara-
tion, as well as the cost and reliability
of the device (Chen et al., 2020).
Devices and reactions need to be par-
ticularly robust if patients are to self-
administer as there will be variations in
compliance and environment.

The use of blood-based biomarkers
is ubiquitous throughout current med-
ical practice and many types of mole-
cule can be detected, including
proteins, lipids and sugars. However,
in recent decades the research commu-
nity has been exploring additional
metrics such as circulating RNAs and
metabolic by-products. There is a
wealth of published data on the use of
microRNA as biomarkers for DR as
well as more novel omics approaches
such as metabolomics (Raffort et al.,
2015; Gong & Su, 2017; Zhang et al.,
2017; Martinez & Peplow, 2019; Zhu
et al., 2019); however, this is beyond
the scope of this review. Additionally,
proteomics techniques are being
applied to different sample types to
identify more specialized markers. As
discussed in this review, and others,
aqueous and vitreous humour are only
obtained with invasive surgery and so
not suitable for screening; however,
tear fluid could be a non-invasive
sample source for detecting diseases of
the eye (Cs}osz et al., 2017).

It is anticipated that any novel
biomarkers will be embedded in cur-
rent and future care and diagnostic
pathways, and undoubtedly current
screening methods and pathways will
evolve at pace as well. Thus, for DR
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and many other retinal disorders, auto-
mated image analysis and cloud tech-
nologies are being harnessed to reduce
the need for manual retinopathy grad-
ing (Trucco et al., 2013; Tufail et al.,
2017). Recent work on the use of
machine learning has shown that with
a large amount of data, an algorithm
can be trained to detect DR from
fundus images (Takahashi et al., 2017;
Ting et al., 2017). In addition, the use
of smartphone cameras is being
explored to improve the accessibility
of imaging analyses. Progress is also
being made in using non-mydriatic
cameras, thus further easing burden of
intervention (Nderitu et al., 2021).
Machine learning techniques promise
to detect early changes in vasculature,
which may be beyond the capabilities of
any trained ophthalmologist, and thus
will form a key part of future telemedi-
cine. Nevertheless, they may continue to
require high-quality images, which can-
not be easily obtained for the most
remote patients, and data storage, pro-
cessing and administration will continue
be associated with considerable cost and
requirement of expert input. Overall,
this leaves a clearly defined role for a
routine and cheap biomarker test,
should it become available.

Whilst current biomarker develop-
ment focuses on detecting and stratify-
ing ongoing retinopathy, future studies
should also explore if predictive molec-
ular signatures can be identified. In
addition, markers that predict the
effectiveness of current interventions
for individuals with DR could reduce
costs and streamline clinical pathways
considerably. For instance, even with
aggressive anti-VEGF treatment
around 50% of patients have persistent
macular oedema and moderate to no
improvement in their visual acuity
(Ford et al., 2013), suggesting a differ-
ent treatment plan could have been
more beneficial. However, developing
predictive markers will require much
more extensive longitudinal cohort
studies fuelled by clearly defined pre-
clinical candidates.

Conclusion

Efficient, cost-effective methods for
monitoring DR and specifically for
identifying early-stage VTDR will be
a game-changer in the management of
this disease, particularly in LMIC.
Circulating biomarkers could be

complementary to existing pathways,
not only for identifying these patients
but, also, for stratifying patients
according to their treatment responses
and monitoring their progress. Indeed,
a more holistic approach to diagnosis
and care of all microvascular compli-
cations of diabetes may be the most
appropriate model, and circulating
parameters are the best surrogate for
such disease phenotypes. Effective col-
laboration between specialists would
undoubtedly improve the risk stratifi-
cation of individuals with diabetes.
However, a cheaper screening marker
may help stratify the population with
diabetes better, so that the group at
risk of complications can be triaged for
more detailed screening of complica-
tions using gold standard tests. For
example, DR is a costly disease in all
countries, either through cost of treat-
ment and monitoring or through the
burden of blindness. Therefore, all
available tools should be exploited to
suit the means and requirements in
each region or country.

At present, a selective marker for
early-stage DR remains elusive. In real-
ity, it may be most achievable to identify
people with diabetes most at risk of
developing any form of microvascular
complication and then further triage
these people to the most appropriate
specialists. For either of these outcomes,
large, comprehensive studies are
required comparing markers for differ-
ent microvascular complications of DM.

If a blood-based test or sensor can
be developed, this could easily be incor-
porated into existing clinical settings or
laboratories for onward referral to spe-
cialist care centres. Streamlining this
diabetes care pathway will have signif-
icant immediate impact, especially in
LMIC, where patients tend to self-refer
themselves when complications are
already advanced and symptomatic.
Nevertheless, the complexity of inte-
grating a blood-based test into some
existing clinical practice should not be
underestimated. Even regular HbA1c
measurements are not accessible to
many people with diabetes.

Many small studies have identified
and verified potential circulating
biomarkers for DR; however, none of
these have been validated in large
multi-centre studies. Multiple potential
confounders need to be addressed in
the search for screening markers,
including geographic, ethnic and

genetic variations in the study popula-
tions as well as the varying phenotypes
of DR. Therefore, large-scale, collabo-
rative, multi-centre studies will be
needed to conclusively validate and
determine the reliability of the various
biomarkers of DR.
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