
Association of Apolipoprotein E ε4 Allele With Clinical
and Multimodal Biomarker Changes of Alzheimer Disease
in Adults With Down Syndrome
Alexandre Bejanin, PhD; Maria Florencia Iulita, PhD; Eduard Vilaplana, PhD; Maria Carmona-Iragui, MD, PhD;
Bessy Benejam, MSc; Laura Videla, MSc; Isabel Barroeta, MD, PhD; Susana Fernandez, MD;
Miren Altuna, MD, PhD; Jordi Pegueroles, MSc; Victor Montal, MSc; Silvia Valldeneu, MSc;
Sandra Giménez, MD, PhD; Sofía González-Ortiz, MD, PhD; Laia Muñoz, BSc; Concepción Padilla, PhD;
Mateus Rozalem Aranha, MD; Teresa Estellés, MD; Ignacio Illán-Gala, MD, PhD; Olivia Belbin, PhD;
Valle Camacho, MD, PhD; Liam Reese Wilson, PhD; Tiina Annus, PhD; Ricardo S. Osorio, MD;
Sebastián Videla, MD, PhD; Sylvain Lehmann, MD, PhD; Anthony J. Holland, MD; Henrik Zetterberg, MD, PhD;
Kaj Blennow, MD, PhD; Daniel Alcolea, MD, PhD; Jordi Clarimon, PhD; Shahid H. Zaman, MD, PhD;
Rafael Blesa, MD, PhD; Alberto Lleó, MD, PhD; Juan Fortea, MD, PhD

IMPORTANCE Alzheimer disease (AD) is the leading cause of death in individuals with Down
syndrome (DS). Previous studies have suggested that the APOE ε4 allele plays a role in the
risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce.

OBJECTIVE To investigate the association of the APOE ε4 allele with clinical and multimodal
biomarkers of AD in adults with DS.

DESIGN, SETTING, AND PARTICIPANTS This dual-center cohort study recruited adults with DS
in Barcelona, Spain, and in Cambridge, UK, between June 1, 2009, and February 28, 2020.
Included individuals had been genotyped for APOE and had at least 1 clinical or AD biomarker
measurement; 2 individuals were excluded because of the absence of trisomy 21. Participants
were either APOE ε4 allele carriers or noncarriers.

MAIN OUTCOMES AND MEASURES Participants underwent a neurological and
neuropsychological assessment. A subset of participants had biomarker measurements:
Aβ1-42, Aβ1-40, phosphorylated tau 181 (pTau181) and neurofilament light chain (NfL) in
cerebrospinal fluid (CSF), pTau181, and NfL in plasma; amyloid positron emission tomography
(PET); fluorine 18–labeled-fluorodeoxyglucose PET; and/or magnetic resonance imaging.
Age at symptom onset was compared between APOE ε4 allele carriers and noncarriers, and
within-group local regression models were used to compare the association of biomarkers
with age. Voxelwise analyses were performed to assess topographical differences in gray
matter metabolism and volume.

RESULTS Of the 464 adults with DS included in the study, 97 (20.9%) were APOE ε4 allele
carriers and 367 (79.1%) were noncarriers. No differences between the 2 groups were found
by age (median [interquartile range], 45.9 [36.4-50.2] years vs 43.7 [34.9-50.2] years;
P = .56) or sex (51 male carriers [52.6%] vs 199 male noncarriers [54.2%]). APOE ε4 allele
carriers compared with noncarriers presented with AD symptoms at a younger age (mean
[SD] age, 50.7 [4.4] years vs 52.7 [5.8] years; P = .02) and showed earlier cognitive decline.
Locally estimated scatterplot smoothing curves further showed between-group differences
in biomarker trajectories with age as reflected by nonoverlapping CIs. Specifically, carriers
showed lower levels of the CSF Aβ1-42 to Aβ1-40 ratio until age 40 years, earlier increases
in amyloid PET and plasma pTau181, and earlier loss of cortical metabolism and hippocampal
volume. No differences were found in NfL biomarkers or CSF total tau and pTau181. Voxelwise
analyses showed lower metabolism in subcortical and parieto-occipital structures and lower
medial temporal volume in APOE ε4 allele carriers.

CONCLUSIONS AND RELEVANCE In this study, the APOE ε4 allele was associated with earlier
clinical and biomarker changes of AD in DS. These results provide insights into the mechanisms
by which APOE increases the risk of AD, emphasizing the importance of APOE genotype for
future clinical trials in DS.
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I ndividuals with Down syndrome (DS) constitute a popu-
lation at ultrahigh risk of developing Alzheimer disease (AD)
because of trisomy of chromosome 21, which harbors the

APP (amyloid precursor protein; OMIM 104760) gene. Recent
estimates indicate a lifetime dementia risk of more than 90%
and identify Alzheimer dementia as the leading cause of death
in this population.1 This elevated risk has led to the concep-
tualization of DS as a genetically determined form of AD that
is similar to autosomal dominant forms. This idea is further
supported by a recent study that showed that the pattern of
AD biomarker changes follows a similar temporal profile in DS
as in autosomal dominant forms, with a long preclinical phase
and pathophysiological processes that are qualitatively com-
parable to sporadic AD.2

The apolipoprotein E (APOE; OMIM 107741) ε4 allele is
the most established genetic risk factor for sporadic AD and
has been consistently associated with earlier AD symptoms3,4

and pathology5-7 in the general population. A similar disease-
accelerating feature might exist in DS given that studies in
this population have reported that ε4 allele carriers show an
earlier onset of clinical symptoms8-11 and greater amyloid
burden12 than noncarriers. However, little is known about
the association of the APOE ε4 allele with the evolution of AD
biomarkers.

Using biochemical and neuroimaging measures for all 3 cat-
egories of the ATN system13 (ie, amyloid, tau, and neurode-
generation), we conducted this cohort study to investigate the
association of the APOE ε4 allele with clinical and multi-
modal biomarker changes of AD in adults with DS. We also ex-
amined the association of the APOE ε4 allele with the topog-
raphy of structural and functional brain changes.

Methods
This cohort study was approved by the Clinical Research Eth-
ics Committee at Hospital Sant Pau and the University of Cam-
bridge Research Ethics Committee and by the Administration
of Radioactive Substances Advisory Committee. In Spain, all
study participants or their legally authorized representatives
gave written informed consent before study enrollment. In the
United Kingdom, written consent was obtained from all adults
with DS who had the capacity to consent. For participants in
England and Wales who lacked the capacity to consent, the pro-
cedures in the Mental Capacity Act of 2005 were followed.

Between June 1, 2009, and February 28, 2020, we re-
cruited adults with DS. In Barcelona, Spain, adults with DS were
recruited from a population-based health plan that was de-
veloped for the screening of AD from which the Down Alzhei-
mer Barcelona Neuroimaging Initiative cohort was formed.2,18

In Cambridge, UK, participants were selected from a conve-
nience sample that was recruited from services for people with
intellectual disabilities in England and Scotland.14

The study included adults with DS who were screened for
the APOE genotype and underwent a comprehensive clinical
evaluation. Most, but not all, of these individuals had at least
1 biochemical or imaging AD biomarker assessment. Genetic
screening confirmed complete trisomy 21 in 98.3% of the in-

dividuals who were assessed; 2 individuals were excluded
because of the absence of trisomy 21.

Clinical and Neuropsychological Assessment
The Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition was used to stratify the level of intellectual disability
as mild, moderate, or severe or profound. Participants were fur-
ther classified as having asymptomatic, prodromal, or AD de-
mentia in a consensus meeting between the neurologist or psy-
chiatrist and neuropsychologist (eMethods in the Supplement).

Global cognition was assessed using the Cambridge Cog-
nitive Examination for Older Adults with Down Syndrome
(CAMCOG-DS),15 and episodic memory was evaluated with the
modified Cued Recall Test (mCRT).16 The mCRT was adapted
for people with intellectual disabilities and consisted of 3 trials
of free and cued recall performed both immediately and ap-
proximately 15 to 20 minutes after the learning phase. Free and
cued performances were summed to obtain total scores of
immediate and delayed recall. To account for the association
of intellectual disability with cognitive performances, we
excluded severe or profound cases to prevent floor effects17

and z-transformed the cognitive performances in the mild
and moderate intellectual disability groups separately.

APOE Genotyping, Fluid Biomarkers, and Neuroimaging
DNA was extracted from peripheral blood by technicians
who were blinded to clinical and biomarker data, and APOE
genotyping was determined by polymerase chain reaction
amplification.18 Participants were dichotomized according to
the presence of at least 1 ε4 allele.

Cerebrospinal fluid (CSF) and blood samples were ac-
quired, as previously described.18,19 Plasma levels of phosphory-
lated tau 181 (pTau181) and neurofilament light chain (NfL)
were measured using single molecule array technology
(Simoa; Quanterix). The pTau181 analyses were carried out at
the University of Gothenburg (Sweden) using a validated
assay.20 The analysis of NfL was performed at the Centre
Hospitalier Universitaire de Montpellier (France) and Hospi-
tal Sant Pau (Spain).2,18 The CSF levels of amyloid-β peptide

Key Points
Question What is the association of the apolipoprotein E (APOE)
ε4 allele with Alzheimer disease–related clinical and biomarker
changes in Down syndrome?

Findings In this cohort study of 464 adults with Down syndrome,
carriers of the APOE ε4 allele showed both earlier clinical
symptoms of Alzheimer disease and earlier changes in amyloid
(cerebrospinal fluid Aβ1-42/1-40 and amyloid positron emission
tomography), tau (plasma phosphorylated tau 181), and
neurodegeneration (cerebral glucose hypometabolism and
hippocampal atrophy) biomarkers. The APOE ε4 allele also altered
the topography of neurodegeneration.

Meaning Results of this study suggest that the APOE ε4 allele
can modulate both the clinical expression and the biomarkers of
Alzheimer disease in a genetic form of the disease, such as in
Down syndrome.
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1-40 (Aβ1-40), Aβ1-42, pTau181, and total tau were quanti-
fied using a fullyautomated platform (Lumipulse; Fujirebio),
following the published protocol.21 The CSF NfL levels were
measured with enzyme-linked immunosorbent assay (NF-
Light Assay; UmanDiagnostics) according to the manufac-
turer recommendations.

A subset of participants underwent 3-T magnetic reso-
nance imaging (MRI; n = 175), fluorine 18–labeled (18F) fluo-
rodeoxyglucose (FDG) positron emission tomography (PET;
n = 132), and/or amyloid PET (n = 75). The Computational
Anatomy Toolbox (CAT12; Christian Gaser and Robert Dahnke)
for the SPM12 software (Wellcome Centre for Human Neuro-
imaging, University College London, Queen Square Institute
of Neurology) was used to preprocess the structural, 3-dimen-
sional, T1-weighted MRI and extract the hippocampal and total
intracranial volumes. The 18F-FDG PET images were intensity
scaled by the pons-vermis region and spatially normalized
using the SPM12 software. The standardized uptake value ra-
tios were extracted from the region of interest in Landau et al.23

Both the 18F-FDG PET and the segmented and modulated
gray matter maps were smoothed using an 8-mm full-width
at half-maximum Gaussian kernel for voxelwise analyses.
The amyloid PET data were collected using 18F-florbetapir in
Barcelona and carbon 11–labeled Pittsburg compound B in
Cambridge. Images were spatially normalized using the MRI
transformations computed with Advanced Normalization
Tools24 and scaled using the whole cerebellum as the refer-
ence region.2,25,26 The mean cortical standardized uptake value
ratio22 was then transformed into centiloid units according to
standard procedures.27

Statistical Analysis
All statistical analyses were performed with R software, ver-
sion 4.0.4 (R Foundation for Statistical Computing). Differ-
ences in baseline characteristics, percentage of symptomatic
cases across age intervals, and age at diagnosis were ana-
lyzed using χ2 tests (or Fisher exact tests, when appropriate)
for categorical data, and Mann-Whitney or 2-sample, un-
paired, 2-tailed t tests were used for continuous variables. Sur-
vival analysis with a log-rank test was also conducted to as-
sess between-group differences in the age at the first diagnosis
of symptomatic AD (which combines prodromal and demen-
tia cases). The threshold for significance was set at P < .05.

To compare the age-associated changes in cognition and
biomarkers between APOE ε4 allele carriers and noncarriers,
we fitted a first-order locally estimated scatterplot smooth-
ing curve, with a tricubic weight function and a span param-
eter of 0.75, in each group independently. Given that no ε4 al-
lele carriers were older than 60 years, the curves did not include
noncarriers older than carriers for a more uniform compari-
son. The exact age at which the intervals diverge depends on
the intrinsic limitations of the study, such as the nature of the
variable, the sensitivity of the assay, the slope of the associa-
tion, and, in the present case, the uneven sample sizes for the
different measurements. Therefore, we defined cognitive or
biomarker change as the age at which the groups’ curves ap-
peared to start diverging visually and provided the age range
at which the 95% CIs between groups did not overlap. A con-

venience sample of cognitively unimpaired euploid participants
(n = 158; eTable 1 in the Supplement) from the Sant Pau Initia-
tive on Neurodegeneration cohort21 was included in the analy-
ses as a visual reference of the biomarker changes occurring in
individuals without trisomy 21. In addition to the locally esti-
mated scatterplot smoothing analyses, we conducted between-
group comparisons for each biomarker and each decade using
Mann-Whitney tests (eFigures 2-4 in the Supplement).

We used voxelwise linear models to compare the topog-
raphy of gray matter metabolism and volume in ε4 allele car-
riers vs noncarriers. Analyses were performed in a mask that
excluded non–gray matter voxels, and the statistical models
were corrected for age and sex as well as for total intracranial
volume and recruitment center for the models that included
volume. Voxelwise results are presented at an uncorrected
threshold of P < .001 (cluster size k >100 mm3).

Results
Of the 464 adults with DS included, 97 (20.9%) were APOE ε4
allele carriers (ε2/4: n = 7; ε3/4: n = 86; and ε4/4: n = 4) and 367
(79.1%) were noncarriers. The 2 groups did not differ signifi-
cantly in age (median [interquartile range (IQR)], 45.9 [36.4-
50.2] years vs 43.7 [34.9-50.2] years; P = .56), sex distribution
(male participants: 51 [52.6%] vs 199 [54.2%]; female partici-
pants: 46 [47.4%] vs 168 [45.8%]; P = .86), level of intellectual
disability (mild: 23 [23.7%] vs 82 [22.5%]; moderate: 50 [51.6%]
vs 190 [52.2%]; and severe or profound: 24 [24.7%] vs 92
[25.3%]; P = .97), or the most common health conditions ob-
served in DS (eg, hypothyroidism: 29 [44.6% of those evalu-
ated] vs 124 [51.2% of those evaluated]; P = .42) (Table; eTable 2
in the Supplement has details on the subsamples for each bio-
marker). Similar to the general population, the ε3 allele was the
most prevalent, followed by ε4 and ε2 alleles. When compar-
ing recruiting sites, we found no demographic, genetic, or clini-
cal differences between the Barcelona and Cambridge cohorts
except for intellectual disability (eTable 3 in the Supplement).

Clinical and Neuropsychological Findings
The overall proportion of individuals with DS with a diagno-
sis of symptomatic AD was similar between APOE ε4 allele car-
riers and noncarriers (36.8% vs 29.9%; χ2

1,460 = 1.4; P = .24).
However, an age-stratified analysis by 5-year intervals re-
vealed 2 key differences (Figure 1A). First, in the 40 to 45 years
of age range, the prevalence of symptomatic AD was 40% in
carriers and 12% in noncarriers (χ2

1,75 = 4.9; P = .03). Second,
in contrast to the noncarrier group in which 18 individuals were
older than 60 years, we found no individuals carrying the ε4
allele who were older than 60 years, even when examining data
from follow-up visits.

Next, we used baseline and follow-up data to examine the
age at which individuals with DS had been diagnosed with
symptomatic AD. The survival curve showed a significant dif-
ference in the distributions of the 2 groups (log-rank test,
P = .01), with the carrier group showing a greater probability
of being diagnosed with symptomatic AD at an earlier age
(Figure 1B). The between-group comparison further con-
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firmed this earlier age at diagnosis in carriers compared with
noncarriers (mean [SD] age, 50.7 [4.4] years vs 52.7 [5.8] years;
P = .02) (Figure 1C).

We also evaluated the performance on the CAMCOG-DS and
mCRT tests (immediate and delayed recall) expressed as z scores
and as a function of age (eFigures 1 and 2 in the Supplement have
raw data and analyses in participants with mild and moderate
levels of intellectual disability). All participants with DS showed
decreased CAMCOG-DS z scores with age regardless of APOE

genotype. Visually, the change seemed earlier and steeper in
APOE ε4 allele carriers compared with noncarriers starting from
age 40 years, but the CIs did not diverge (Figure 1D). Carriers
also showed a decrease in both the immediate and delayed re-
call scores of the mCRT at an earlier age compared with non-
carriers (Figure 1E and F). The difference between the 2 groups
was evident from age 40 years (nonoverlapping CIs from age
44 years). These age-associated differences were not reflected
by significant group differences, when the mCRT scores were

Table. Study Participantsa

Variable
APOE ε4 allele
noncarrier

APOE ε4 allele
carrier

P
value

All participants (n = 464), No. (%) 367 (79.1) 97 (20.9) NA

Age, median (IQR), y 43.7 (34.9-50.2) 45.9 (36.4-50.2) .56

Sex, No. (%)

Female 168 (45.8) 46 (47.4)
.86

Male 199 (54.2) 51 (52.6)

Level of intellectual disability, No. (%)b

Mild 82 (22.5) 23 (23.7)

.97Moderate 190 (52.2) 50 (51.6)

Severe or profound 92 (25.3) 24 (24.7)

Diagnostic group, No. (%)b

Asymptomatic AD 256 (70.1) 60 (63.2)
.24

Symptomatic AD 109 (29.9) 35 (36.8)

APOE alleles, No. NA

ε2/ε2 1 0

ε2/ε3 47 0

ε2/ε4 0 7

ε3/ε3 319 0

ε3/ε4 0 86

ε4/ε4 0 4

Medical conditions, No. (%)b

Hypothyroidism (n = 307) 124 (51.2) 29 (44.6) .42

Epilepsy (n = 289) 19 (8.3) 8 (13.3) .35

Sleep apnea (n = 297) 27 (11.4) 11 (18.3) .22

Depression (n = 330) 34 (13.1) 13 (18.3) .36

Cognition, median (IQR)c

CAMCOG-DS score (n = 301) 74.0 (59.0-85.0) 73.5 (63.0-83.0) .68

mCRT immediate recall (n = 263) 35.0 (33.0-36.0) 35.0 (31.0-36.0) .14

mCRT delayed recall (n = 262) 12.0 (10.0-12.0) 12.0 (9.0-12.0) .30

Fluid biomarkers, median (IQR)

CSF Aβ1-42/1-40 (n = 156) 0.1 (<0.1-0.1) 0.1 (<0.1-0.1) .08

CSF NfL (n = 139) 493.7 (305.6-791.9) 663.9 (372.5-880.0) .47

CSF pTau181 (n = 158) 44.2 (25.8-122.3) 71.8 (32.0-119.7) .29

CSF total tau (n = 158) 398.5 (247.8-755.0) 516.0 (236.0-749.0) .82

Plasma NfL (n = 354) 9.6 (5.3-15.3) 10.7 (6.3-16.8) .11

Plasma pTau181 (n = 354) 12.5 (8.6-22.2) 17.8 (11.4-25.8) .007

Imaging biomarkers, median (IQR)

Centiloid amyloid PET (n = 75)d 7.6 (0.3-33.8) 17.4 (5.0-67.7) .08
18F-FDG PET SUVR (n = 132) 1.3 (1.1-1.4) 1.2 (0.9-1.4) .44

Bilateral hippocampal volume (n = 175) 6.8 (6.2-7.4) 6.5 (5.1-7.4) .20

Bilateral hippocampal volume per TIV (n = 175) 0.0059 (0.0053-0.0062) 0.0057 (0.0047-0.0062) .16

Abbreviations: Aβ1-40, amyloid-β
peptide 1-40; Aβ1-42, amyloid-β
peptide 1-42; AD, Alzheimer disease;
APOE, apolipoprotein E;
CAMCOG-DS, Cambridge Cognitive
Examination for Older Adults with
Down Syndrome; CSF, cerebrospinal
fluid; 18F FDG, fluorine 18–labeled
fluorodeoxyglucose;
IQR, interquartile range;
mCRT, modified Cued Recall Test;
NA, not applicable;
NfL, neurofilament light chain;
PET, positron emission tomography;
pTau181, phosphorylated tau 181;
SUVR, standardized uptake value
ratio; TIV, total intracranial volume.
a Unless otherwise indicated, values

were number (%) or median (IQR).
All fluid biomarker concentration
units, except for the CSF Aβ1-42 to
Aβ1-40 ratio, were picograms per
milliliter. P values refer to analyses
of χ2 tests for categorical variables
and Mann-Whitney tests for
continuous variables.

b Percentages for intellectual
disability, diagnostic group, and
medical conditions were calculated
according to the total of patients
with available data in each group.

c Cognition included cognitive
performances only for individuals
with DS who had mild or moderate
intellectual disability.

d Forty-five participants had amyloid
PET with fluorine 18–labeled
florbetapir, and 30 participants had
amyloid PET with carbon 11–labeled
Pittsburgh compound B.
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compared between the whole group of carriers and noncarri-
ers (median (IQR) immediate recall: 35.0 [31.0-36.0] vs 35.0
[33.0-36.0]; P = .14; median (IQR) delayed recall: 12.0 [9.0-
12.0] vs 12.0 [10.0-12.0]; P = .30) (Table).

Amyloid and Tau Pathology Biomarkers
The CSF Aβ1-42 to Aβ1-40 ratio was lower in APOE ε4 allele
carriers than in noncarriers among the youngest participants
(20s to 30s) and overlapped with noncarriers starting from age
40 years (Figure 2A and eFigure 3A in the Supplement). This
result was driven by the lower levels of CSF Aβ1-42 in carriers
(eFigure 4A and D in the Supplement). Similarly, carriers
showed an earlier and greater increase in cortical amyloid
PET uptake than noncarriers (mid-30s vs early 40s), with non-
overlapping CIs throughout the older ages (41 to 54 years)
(Figure 2B) up to when amyloid uptake seemed to plateau.

The age-associated trajectories of CSF pTau181 (Figure 2C)
did not differ between ε4 allele carriers and noncarriers. How-
ever, when analyzing this biomarker in plasma in a larger
sample, carriers showed higher levels starting from the mid-
40s and with CIs not overlapping by age 50 years (Figure 2D).

Neurodegeneration Biomarkers
No between-group differences in the levels of NfL were found
in CSF or in plasma as seen by the overlapping CIs across all

ages and in the analyses by decade (Figure 2E and F; eFig-
ure 3E and F in the Supplement). The CSF total tau likewise
showed no differences between groups (eFigure 4C and F in
the Supplement).

By contrast, neuroimaging biomarkers revealed signifi-
cant differences between APOE genotypes. Specifically, the
ε4 allele carriers showed lower brain metabolism than non-
carriers starting at age 40 years. This difference was sus-
tained until the sixth decade, and the CIs of both groups
diverged from age 45 to 53 years (Figure 2G and eFigure 3G in
the Supplement). Similarly, carriers showed an earlier loss of
hippocampal volume starting from age 40 years and with
nonoverlapping CIs from age 48 to 52 years (Figure 2H and eFig-
ure 3H in the Supplement).

Topography of Brain Hypometabolism and Atrophy
The voxelwise analysis that was adjusted by age and sex re-
vealed lower metabolism in the APOE ε4 allele carriers com-
pared with noncarriers in subcortical structures (caudate, len-
tiform nucleus, and thalamus), posterior insula, medial, and
lateral parietal and occipital cortices (Figure 3A and eFigure 5
in the Supplement). No brain region showed higher metabo-
lism in carriers than in noncarriers.

In addition, carriers showed lower gray matter volume
in the hippocampus bilaterally and right superior parietal

Figure 1. Association of Apolipoprotein E (APOE) ε4 Allele With Clinical Diagnosis and Cognitive Performance in Adults With Down Syndrome (DS)
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Figure 2. Association of Apolipoprotein E (APOE) ε4 Allele With Age-Related Changes
in Alzheimer Disease (AD) Biomarkers
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cortex compared with noncarriers (Figure 3B and eFigure 6
in the Supplement). No brain region showed greater volume
in carriers than in noncarriers.

Discussion
To our knowledge, this is the first large, multimodal bio-
marker study to characterize the association of the APOE ε4
allele with clinical and biomarker changes of AD in DS. We
found that APOE ε4 allele carriers (1) presented an earlier
decline in episodic memory and were diagnosed with symp-
tomatic AD a mean of 2 years before noncarriers, (2) exhib-
ited earlier changes in AD biomarkers, and (3) showed differ-
ences in the topography of structural and functional brain

changes. These results demonstrate that the APOE ε4 allele
can modulate both the clinical expression and changes in AD
biomarkers in a genetic form of the disease.

It has been well established that the APOE ε4 allele
is associated with an increased risk of sporadic AD and
younger age at onset.3,4 This association is also true in auto-
somal dominant forms, in which the ε4 allele is associated
with earlier diagnoses.28 In line with this finding, we
observed an association of the APOE ε4 allele with earlier
decline in episodic memory and earlier clinical AD diagno-
ses in individuals with DS. This observation is in agreement
with previous findings in other DS cohorts that showed
greater cognitive impairment among ε4 allele carriers29

and a similar 2-year advancement in symptomatic AD
diagnosis.8,11

Figure 3. Association of Apolipoprotein E (APOE) ε4 Allele With Gray Matter Metabolism and Volume
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We observed this earlier age at symptom onset despite no
significant difference in the overall proportion of ε4 allele
carriers between asymptomatic and symptomatic individu-
als. Discrepant results in DS have been reported concerning the
ε4 allele proportions in these clinical groups, with some stud-
ies showing more carriers in the symptomatic group and oth-
ers finding no differences.10,30 Although no overall group
differences were found, the age-stratified analysis that we con-
ducted revealed an increased prevalence of symptomatic AD
in carriers aged 40 to 45 years. This result further emphasizes
that age and sample composition are critical variables to in-
terpreting results in the context of DS, wherein AD is inexo-
rable. Note that no individuals with DS older than 60 years were
found in the ε4 allele carrier group, a finding that is consis-
tent with previous studies that associated the ε4 allele with
lower life expectancy.8,11

The results also provided new in vivo pathophysiological
data with which to interpret the clinical findings. We found that
the APOE ε4 allele was associated with age-associated changes
in the 3 categories of the ATN system (amyloid, tau, and neu-
rodegeneration). The associations with amyloid pathology ap-
peared to be the earliest (differences in the early 20s for CSF
Aβ1-42 to Aβ1-40 ratio and in the mid-30s for amyloid PET),
the greatest (highest magnitude), and the most consistent
across the different biomarkers. Specifically, we found lower
levels of CSF Aβ1-42 and CSF Aβ1-42 to Aβ1-40 ratio associ-
ated with the APOE ε4 allele. This finding reproduces previ-
ous observations in both sporadic AD5,31-33 and autosomal
dominant AD.34,35 It also fits with the lower age-adjusted level
of CSF Aβ1-42 reported in ε4 allele carriers with DS.36 The early
decrease in CSF Aβ1-42 to Aβ1-40 ratio in carriers supports
the finding that cerebral Aβ deposition occurs at a young age
in DS and is consistent with the abundant Aβ42-immunore-
active diffuse plaques reported in teenagers and young adults
in this population.37

The differences in CSF amyloid biomarkers were concor-
dant with the earlier and higher increase in amyloid PET
uptake in ε4 allele carriers (mid-30s) compared with noncar-
riers (mid-40s). As in sporadic and other genetic forms of
AD,5,32 the APOE ε4 allele might be associated with an earlier
and greater brain amyloid accumulation in DS. This idea is
supported by postmortem data showing a greater burden of
amyloid plaques in carriers with DS than noncarriers.12

Besides the association with amyloid pathology, the ε4
allele altered the age-related trajectory of plasma, but not
CSF, pTau181. This association was noticeable around age 50
years, only a few years before AD symptom onset. Controver-
sial results have been reported concerning the association
between biochemical measures of pTau181 and the APOE ε4
allele, with some studies finding an association38 but others
finding no association.5,32,33,35 In the present study, the dif-
ferences in sample sizes between plasma pTau181 and CSF
pTau181 measures (354 vs 158 participants) may partially
account for the different results. The discrepancy may also be
explained by the existence of other variables that modulate
the association between the APOE ε4 allele and tau pathol-
ogy, such as biological sex.38,39 Alternatively, the biochemical
measurements across different biofluids may not consis-

tently capture the pathological changes that occur in some
specific brain structures, such as the higher tau pathology in
the medial temporal lobe previously reported in ε4 allele car-
riers with sporadic AD.40 A similar explanation might account
for the lack of association that we observed with biochemical
markers of neurodegeneration (plasma and CSF NfL; CSF
total tau), despite differences in neuroimaging biomarkers
(18F-FDG PET and MRI).

Both neuroimaging biomarkers showed diverging trajec-
tories between APOE ε4 allele carriers and noncarriers
around age 40 years. The voxelwise analyses further indi-
cated that the APOE ε4 allele was associated with not only
accelerated onset of biomarker changes but also differences
in the extent and topography of the pattern of neurodegen-
eration. Carriers had lower glucose metabolism in subcorti-
cal structures and several cortical areas, including the
medial parietal region. Moreover, they presented with less
medial temporal volume compared with noncarriers. These
results mirror previous findings in sporadic AD that showed
decreased parietal metabolism and hippocampal volume
in carriers.41 In addition, we found an earlier decline in
episodic memory in carriers starting at age 40 years. This
observation corroborates the literature on the association of
the APOE ε4 allele with episodic memory in the general
population,42 which has also been suggested in DS.43 Given
the crucial role of the hippocampus in episodic memory, its
greater atrophy likely underlies the earlier memory deficits
in carriers. Carriers also showed a lower metabolism in
the striatum. This finding, which is not typically reported
in sporadic AD, might reflect the greater vulnerability of the
striatum to AD pathology in genetically determined forms
of AD.44,45

Overall, this study provided evidence that the APOE ε4
allele exerts a similar association with AD pathophysiological
processes in DS as in the general population. The association
with amyloid pathology and the concurrent shift toward greater
hippocampal atrophy and memory impairments in APOE ε4
allele carriers resemble the association of the APOE ε4 allele
with the earlier clinical symptoms and pathogenesis of
sporadic AD.41 Several molecular mechanisms have been pro-
posed by which the ε4 isoform may alter AD pathology,
including the impairment of amyloid clearance and the pro-
motion of its deposition into amyloid plaques.46 Growing evi-
dence also suggests that the APOE ε4 allele might contribute
to tau aggregation that is independent of amyloid-β,47 and an
autopsy study supports an association between truncated
APOE forms and tau pathology in DS.48 Future studies that use
ultrasensitive methods may explore these truncated forms in
body fluids from people with DS.

Overall, this study capitalized on the largest cohort of
adults with DS with clinical assessments and multimodal bio-
markers to inform on the age-related association of the APOE
ε4 allele with in vivo AD biomarkers, increasing the under-
standing of the mechanisms that link APOE to the accelera-
tion of disease in genetically at-risk populations. We believe
that this work is timely in the emerging landscape of preven-
tive trials for dementia in DS given that consideration of APOE
genotype might be important for drugs that are designed to
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lower amyloid burden and/or trials that use MRI as a surro-
gate marker of improved outcomes.

Limitations
This study has limitations. The cross-sectional design and the
relatively small sample sizes for some biomarkers (eg, amy-
loid PET) did not allow for an investigation of the differences
between each of the APOE genotypes. Nevertheless, note that
age can be used as a proxy for disease progression in geneti-
cally determined AD, and the results remained essentially simi-
lar when sensitivity analyses were performed in the subsample
with the ε3 and ε4 polymorphisms.

Conclusions

In this cohort study, APOE ε4 allele carriers (compared with
noncarriers) showed an earlier decline in episodic memory,
earlier clinical diagnosis of symptomatic AD, earlier changes
in AD biomarkers, and differences in the pattern of neurode-
generation. These findings demonstrate that the APOE ε4
allele can modulate both the clinical expression and biomark-
ers of AD in a genetic form of the disease, such as in DS, and
emphasize the importance of the APOE genotype for future
clinical trials in DS.
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