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Diffusion MRI characteristics assessed by apparent diffusion coefficient (ADC) histo-

gram analysis in head and neck squamous cell carcinoma (HNSCC) have been

reported as helpful in classifying tumours based on diffusion characteristics. There is

little reported on HNSCC lymph nodes classification by diffusion characteristics. The

aim of this study was to determine whether pretreatment nodal microstructural diffu-

sion MRI characteristics can classify diseased nodes of patients with HNSCC from

normal nodes of healthy volunteers. Seventy-nine patients with histologically con-

firmed HNSCC prior to chemoradiotherapy, and eight healthy volunteers, underwent

diffusion-weighted (DW) MRI at a 1.5-T MR scanner. Two radiologists contoured

lymph nodes on DW (b = 300 s/m2) images. ADC, distributed diffusion coefficient

(DDC) and alpha (α) values were calculated by monoexponential and stretched expo-

nential models. Histogram analysis metrics of drawn volume were compared between

patients and volunteers using a Mann–Whitney test. The classification performance

of each metric between the normal and diseased nodes was determined by receiver

operating characteristic (ROC) analysis. Intraclass correlation coefficients determined

interobserver reproducibility of each metric based on differently drawn ROIs by two

radiologists. Sixty cancerous and 40 normal nodes were analysed. ADC histogram

Abbreviations used: ADC, apparent diffusion coefficient; AUC, area under the curve; BoT, base of tongue; CRT, chemoradiotherapy; CT, computed tomography; DDC, distributed diffusion

coefficient; DW, diffusion-weighted; FNA, fine needle aspiration; GTS, glossotonsillar sulcus; HNSCC, head and neck squamous cell carcinoma; ICC, intraclass correlation coefficient; NPV,

negative predictive value; PPV, positive predictive value; PROPELLER, Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction; ROC, receiver operating characteristic;

ROI, region of interest; UICC, Union for International Cancer Control; US, ultrasound.
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analysis revealed significant differences between patients and volunteers (p ≤0.0001

to 0.0046), presenting ADC distributions that were more skewed (1.49 for patients,

1.03 for volunteers; p = 0.0114) and ‘peaked’ (6.82 for patients, 4.20 for volunteers;

p = 0.0021) in patients. Maximum ADC values exhibited the highest area under the

curve ([AUC] 0.892). Significant differences were revealed between patients and

volunteers for DDC and α value histogram metrics (p ≤0.0001 to 0.0044); the highest

AUC were exhibited by maximum DDC (0.772) and the 25th percentile α value

(0.761). Interobserver repeatability was excellent for mean ADC (ICC = 0.88) and the

25th percentile α value (ICC = 0.78), but poor for all other metrics. These results sug-

gest that pretreatment microstructural diffusion MRI characteristics in lymph nodes,

assessed by ADC and α value histogram analysis, can identify nodal disease.

K E YWORD S

apparent diffusion coefficient, diffusion magnetic resonance imaging, head and neck squamous
cell carcinoma, lymph nodes

1 | INTRODUCTION

Computed tomography (CT) and magnetic resonance imaging (MRI) have similar performances for the detection of cervical nodal metastasis, with

a recently reported accuracy of 90% and 94%, respectively.1 Local disease recurrence following therapy can occur in 30% to 40% of patients with

head and neck squamous cell carcinoma (HNSCC) who present with nodal metastases at initial staging.1 One possible explanation for local recur-

rence may be the inaccuracy of detecting all disease sites using conventional imaging, resulting in undertreatment of undetected disease sites.

Diffusion-weighted (DW) MRI and the assessment of apparent diffusion coefficient (ADC) are considered powerful imaging tools in oncol-

ogy.2 DW-MRI assesses the diffusion of water molecules within biological tissues and correlates it to the tissue cellularity and the integrity of cell

membranes, thereby reflecting the microstructure of tissue. ADC is conventionally derived by fitting a monoexponential model to the signal (S)

acquired across the images with different degrees of sensitivity to water motion, that is, different b-value3:

S bð Þ¼ S0e
� b�ADCð Þ ð1Þ

The last decade has seen increased exploration of ADC as an imaging biomarker for the detection4,5 of HNSCC. However, research reports

varying degrees of success when using DW-MRI (with simple calculation of monoexponential ADC) for this purpose.6 This is due to the fact that

ADC is a summative parameter that gives a single value for all microstructures within a given voxel. It does not provide a breakdown across differ-

ent sources of diffusion signal weighting (e.g. vascular flow, extracellular water, intracellular water) and hence is a broad-brush representation of

all diffusion processes occurring within a voxel. To overcome this, a range of nonmonoexponential models has been developed that can extract

additional parameters from DW images, providing more specific information of individual diffusion components. For example, at the simplest

level, bi-exponential diffusion models allow the separation of the perfusion and diffusion effects contributing to the diffusion signal.7 Another

approach (which acknowledges that specific separation of diffusion signals into different microstructural elements is unlikely to be precise) has

been to assess the overall heterogeneity of diffusion rates within individual voxels through a stretched exponential model. This model has been

previously applied preclinically8 and clinically.9 It estimates the distributed diffusion coefficient (DDC) and an additional parameter, the alpha (α)

value related to the intravoxel heterogeneity of diffusion coefficients:

S bð Þ¼ S0 e �b�DDCð Þα
� �

ð2Þ

Heterogeneity has been suggested as an important parameter in predicting the outcomes of patients with cancer.10 Structural heterogeneity

on CT has been assessed using textural analysis techniques and has also demonstrated a similar relationship with outcomes.11 Diffusion heteroge-

neity assessed by histogram analysis in HNSCC patients has previously been reported as helpful in classifying primary tumour sites.12,13 To date,

little has been reported on the application of diffusion heterogeneity to the classification of HNSCC lymph nodes.

The aim of this study was therefore to determine whether pretreatment nodal microstructural diffusion MRI characteristics can classify dis-

eased nodes of patients with HNSCC from normal nodes of healthy volunteers.
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2 | MATERIALS AND METHODS

2.1 | Patient population

Institutional review board approval was achieved and written informed consent obtained from all patients and healthy volunteers for this prospective

study. From March 2010 to July 2017, 79 patients with histologically confirmed HNSCC with cervical nodal N2/N3 metastatic disease14 were rec-

ruited prior to chemoradiotherapy or radiotherapy only. Five patients declined trial entry and two had neck dissection without any residual disease,

resulting in 72 recruited patients. Exclusion criteria were related to MR imaging (i.e. claustrophobia, pacemaker, metallic implant, protocol deviations,

poor image quality); 11 of 72 patients were excluded from analysis, two due to not attending the MRI scan and nine due to inappropriate MR imaging.

Subsequently, data of 61 of 72 patients (mean age 57.7 years; range 25 to 79 years), 48 males (mean age 58.4 years; range 33 to 79 years) and

13 females (mean age 54.8 years; range 25 to 74 years), were analysed. Patient selection is illustrated in Figure 1. To compare the microstructural het-

erogeneity between diseased and healthy nodes, eight healthy volunteers were also recruited (mean age 43.4 years; range 19 to 65 years), three males

(mean age 58 years; range 50 to 65 years) and five females (mean age 39.4 years; range 19 to 56 years), from March 2010 to March 2012. For the

volunteers' scans, inclusion criteria were no previous malignancy and infective disease, and the exclusion criteria were contraindications to MR imaging.

2.2 | Nodal staging

Two experienced head and neck radiologists (T.B. and S.M., with 18 and 10 years of experience, respectively) reviewed all CT and anatomical MRI

and performed neck ultrasound (US) in all patients, as per local standard of care. Cervical nodes were assessed as per the Union for International

Cancer (UICC) TNMClassification of Malignant Tumour.15 Per patient, the largest node within the neck was sampled by US-guided fine needle aspi-

ration (FNA), and N2a (metastases in a single lymph node larger than 3 cm but not larger than 6 cm in greatest dimension), N2b (metastases in multi-

ple ipsilateral nodes not larger than 6 cm) or N3 (metastases to one or more lymph nodes greater than 6 cm in greatest dimension) status was

confirmed.

2.3 | Research MRI protocol

Patients pretreatment (2 to 4 weeks following the US FNA) and healthy volunteers were scanned on a 1.5-T MR scanner (MAGNETOM Avanto,

Siemens AG, Erlargen, Germany) using the carotid coils in the supine position. Axial T2-weighted (Periodically Rotated Overlapping ParallEL Lines

F IGURE 1 Flowchart illustrating the patient selection
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with Enhanced Reconstruction [PROPELLER]) and DW images were acquired covering the neck, from the base of the skull to the upper thorax

(Table 1). For the DW acquisition, images with six different b-values were acquired. Low b-value (b = 0, 50,100 s/mm2) images were obtained for

reflecting the signal loss mainly due to microcapillary perfusion, and the high b-value (b = 300, 600, 1000 s/mm2) images for reflecting the signal

loss, mainly of the diffusion component. This approach provided a clinically acceptable acquisition time of 4–5 min.

2.4 | Diffusion parameter extraction

Monoexponential (Equation 1) and stretched exponential (Equation 2) models were fitted to all pixels of the trace DW images of each slice using

a least-squares fit for all b-values (MATLAB 2016; MathWorks Inc., Natick, MA, USA). A radiologist with 8 years of experience (H.S.), aware of the

TABLE 1 T2- and diffusion-weighted pulse sequence parameters

Parameter T2-weighted PROPELLER Diffusion-weighted

Sequence Turbo spin echo Single-shot echo planar imaging

Slice orientation Axial Axial

Field of view (FOV) [mm (read) x mm (phase)] 180 � 180 206 � 206

Acquired (in-plane) matrix (read) 256 128

Reconstructed matrix (read) 256 256

Number of signal averages 1 4

Slice thickness (mm) 3 4

Slice gap (mm) 0.3 0.4

Number of slices 60 40 to 46

Parallel imaging reduction factor (GRAPPA) 2 2

Echo time (TE) (ms) 107 88

Repetition time (TR) (ms) 6,310 8700

Fat suppression n/a Short tau inversion recovery

Diffusion weightings (s/mm2) n/a 0, 50, 100, 300, 600 and 1000

PROPELLER, Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction.

F IGURE 2 (A) Axial Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) T2-weighted image
demonstrating diseased lymph nodes in a 52-year-old female patient. (B) Axial diffusion-weighted (DW) trace image (b = 300 s/mm2) with the
contoured regions of interest (ROI) in a 52-year-old female patient
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location of the sampled nodes and nodal status at conventional staging, reviewed the precontrast T1-weighted, T2- weighted PROPELLER and

trace DW images. Regions of interest (ROIs) were drawn using Jim 5.0 software (Xinapse Systems, Thorpe, Waterville, UK). For the patient

groups, the radiologist contoured the ROIs on DW images of b = 300 s/mm2 on each imaging slice containing the diseased node, encompassing

all solid nodal tissue while avoiding any macroscopic necrotic and cystic areas (Figure 2A,B). For the healthy volunteers, the radiologist contoured

one or more normal node ROIs per volunteer on DW images of b = 300 s/mm2 on each imaging slice containing the specified node or nodes, tak-

ing care to only include nodal tissue, whereby each selected node was clearly visible and suitable to draw around (Figure 3A,B). For both cases,

the ROIs from the DW images were electronically transferred to the corresponding calculated maps and a list of voxel-by-voxel diffusion parame-

ter values were derived for each node (Figures 4A-C and 5A-C). For each patient and volunteer node, the histogram distribution of ADC, DDC

and α values for the entire nodal volume were estimated (Figures 6A,B and 7A,B).

F IGURE 3 (A) Axial Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) T2-weighted image
demonstrating healthy nodes in a 50-year-old healthy male volunteer. (B) Axial diffusion-weighted (DW) trace image (b = 300 s/mm2) with the
contoured regions of interest (ROI) in a 50-year-old healthy male volunteer

F IGURE 4 Calculated parametric diffusion maps: (A) apparent diffusion coefficient (ADC) map, (B) alpha (α) value map and (C) distributed
diffusion coefficient (DDC) map with the contoured regions of interest (ROIs) from a 52-year-old female patient
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2.5 | Statistical analysis

To assess if there were significant differences between the histogram metrics of ADC, DDC and α values of patients and healthy volunteers, each

variable was compared between the two groups. For the statistical analysis, a Mann–Whitney test was utilised for the comparison between the

two groups, taking into account that the data were not normally distributed. A significance level of 0.05 was used for all comparisons.

Receiver operating characteristic (ROC) analysis was performed to calculate the area under the ROC curve of any significantly different

parameter. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of the cut-off values were also determined,

using as threshold probability the maximum sensitivity and specificity. Statistical and ROC analysis were performed with Statistical Package for

Social Sciences version 26.0 (SPPS Inc., Chicago, IL, USA).

2.6 | Interobserver reproducibility

To assess interobserver reproducibility, another radiologist with 6 years of experience (S.S.), aware of the location of the sampled nodes and nodal

status at conventional staging, but blinded from the other radiologist's ROI drawings, reviewed the T2-weighted PROPELLER and trace DW

F IGURE 5 Calculated parametric diffusion maps: (A) apparent diffusion coefficient (ADC) map, (B) alpha (α) value map and (C) distributed
diffusion coefficient (DDC) map with the contoured regions of interest (ROIs) from a 50-year-old healthy male volunteer

F IGURE 6 Histogram distributions of (A) apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) maps, and (B) alpha
(α) value map from the entire contoured nodal volume of a 52-year-old female patient
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images. For 39 of 61 patients, the second radiologist contoured the ROIs on DW images of b = 300 s/mm2 on each imaging slice containing the

diseased node, encompassing all solid nodal tissue while avoiding any macroscopic necrotic and cystic areas, using Jim 5.0 software. Again,

the ROIs from the DW images were electronically transferred to the corresponding calculated maps and the histogram distribution of the ADC,

DDC and α values for the entire nodal volume for the 39 patients were estimated.

Interobserver agreement of ADC, DDC and α histogram metrics based on two different ROIs drawn by two radiologists were determined

using intraclass correlation coefficients (ICCs). The ICCs were interpreted as follows: <0.40, poor reproducibility; 0.41–0.60, moderate reproduc-

ibility; 0.61–0.80, good reproducibility; and ≥0.81, excellent reproducibility.

2.7 | Logistic regression model

To define the histogram metrics of ADC, DDC and α values that significantly (p < 0.05) contributed to the nodal classification (diseased from

healthy) and exhibited an excellent interobserver reproducibility, a score test was used. A logistic regression model was derived including the two

histogram metrics with the higher scores and excellent interobserver reproducibility.16 The ROC area under the curve was also calculated for the

regression model. ROC and logistic regression analysis were performed with Statistical Package for Social Sciences version 26.0.

3 | RESULTS

In this study, 60 cancerous nodes (consisting of 86 to 11 493 voxels, median = 1663) were analysed from 61 patients, and 40 normal nodes (con-

sisting of 37 to 523 voxels, median = 117) from the eight healthy volunteers. One lesion was excluded from the analysis, due to its cystic appear-

ance in the DW images, not presenting any solid nodal tissue for the ROI drawing. Also, there was no precontrast T1-weighted high signal within

the FNA sampled nodes to suggest haemorrhage-induced artifact. Patient demographics, age, gender, primary tumour site, TNM stage and lymph

node size are listed in Table 2. Table 3 summarises the pretreatment histogram and statistical analysis of the ADC, DDC and α values, utilising the

monoexponential and stretched exponential models of patients’ and healthy volunteers’ lymph nodes and their comparisons, respectively.

3.1 | Monoexponential model analysis

The 25th percentile, 75th percentile, maximum, median and mean nodal ADC values of the healthy volunteers were significantly lower compared

with those of the patients (p ≤0.0001 to 0.0046; Table 3). The ADC nodal histogram distributions were more skewed (0.72 for patients and 0.16

F IGURE 7 Histogram distributions of (A) apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) maps, and (B) alpha
(α) value map from the entire contoured nodal volume of a 50-year-old healthy male volunteer
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TABLE 2 Patient and tumour characteristics

Patient no. Gender Age (y) Primary tumour site of SCC Primary tumour stage Lymph node size (small axis [mm])

1 Male 67 Supraglottis and hypopharynx T3 N2b M0 27

2 Female 55 Soft palate T2 N2c M0 26

3 Female 74 Faucial tonsil T1 N3 M0 7

4 Male 56 Right tonsil and piriform T1 N2 M0 13

5 Male 56 Left faucial tonsil T2 N2c M0 13

6 Male 67 Left inferior tonsil T1 N2b M0 16

7 Male 56 Left BoT T4 N2c M0 10

8 Male 63 Left faucial tonsil T2 N2b M0 26

9 Male 60 Left pyriform fossa T3 N2b M0 24

10 Male 48 Right pyriform fossa T2 N2b M0 47

11 Female 52 Unknown Tx N2 M0 16

12 Male 57 Right faucial tonsil T2 N2b 30

13 Male 56 Right tonsil T3 N2b M0 23

14 Male 57 Right tonsil T2 N2b M0 17

15 Male 79 Right tonsil T1 N2b M0 21

16 Male 52 Right glossotonsil sulcus T4 N2c 16

17 Male 54 BoT and epiglottis T3 N2c M0 20

18 Male 49 Right tonsil pT4 N2b M0 20

19 Female 74 Left BoT T2 N2b M0 32

20 Male 49 Left BoT and glossotonsillar sulcus T3 N2b M0 14

21 Male 43 Right BoT Tx N2c M0 14

22 Male 59 Left epiglottis T2 N2c M1 24

23 Male 60 Right tonsil T4 N2b M0 29

24 Female 47 Left tonsil T2 N2b M0 18

25 Male 48 Right faucial tonsil T3 N2b M0 21

26 Male 44 Right pyriform and aryepiglottic T1 N2b Mx 28

27 Male 63 Right BoT T4 N3 M0 46

28 Male 63 Right pyriform to oesophagus T3 N2b M0 15

29 Female 49 Left pyriform fossa T2 N2b M0 24

30 Male 67 Right tonsil T4 N2c M0 15

31 Male 62 Right BoT T4 N2c M0 22

32 Male 75 Right tonsil T3 N2b M0 17

33 Female 25 Left tonsil T2 N2b M0 17

34 Male 70 Left BoT T4a N2b M0 21

35 Male 73 Right tonsil T3 N2b M0 15

36 Male 64 Supraglottis T3 N2c M0 18

37 Male 52 Right pyriform T3 N2b M0 15

38 Male 54 Nasopharyngeal T4 N3 M0 20

39 Male 76 Hypopharyngeal T3 N2c M0 16

40 Male 68 Post oro/hypo-pharyngeal T4a N2c M0 13

41 Male 67 Left tonsil T3 N2c M0 22

42 Male 71 Left tonsil T4b N2a M0 7

43 Male 62 Floor mouth/BoT T2 N2a M0 10

44 Male 40 Left BoT T2 N2c M0 27

45 Male 58 Right tonsil T2 N2b M0 21

46 Male 57 Supraglottis T3N2cM0 16
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for healthy volunteers) and more ‘peaked’ (kurtotic) (3.94 and 3.05 for patients and healthy volunteers, respectively) in patients compared with

healthy volunteers (p ≤ 0.001 for both skewness and kurtosis). Table 4 summarises the diagnostic performance of the ADC histogram metrics in

the classification of diseased from healthy nodes. Maximum ADC values exhibited the highest area under the curve ([AUC] 0.892), sensitivity

(86.2%) and specificity (77.5%) among all the histogram metrics, followed by skewness and kurtosis (AUC = 0.765, sensitivity = 78.3% and spec-

ificity = 75% for skewness, and AUC = 0.746, sensitivity = 58.3% and specificity = 77.5% for kurtosis).

3.2 | Stretched exponential model analysis

The 25th percentile, median and mean nodal α values of healthy volunteers were significantly lower compared with those of patients (p ≤0.0001

to 0.0044; Table 3). The α nodal histogram distributions of patients were more kurtotic (2.817 for patients and 2.20 for healthy volunteers;

p = 0.0013). For both groups, the α nodal histogram distributions were negatively skewed, exhibiting a longer tail in patients than in healthy vol-

unteers, but without reaching statistical significance (p = 0.1279).

The 25th percentile, maximum, median and mean nodal DDC values of the healthy volunteers were lower compared with those of the

patients (Table 3), reaching statistical significance (p ≤0.0001 to 0.0114). The DDC nodal histogram distributions demonstrated significant

increased skewness (1.49 and 1.03 for patients and healthy volunteers, respectively) and kurtosis (6.82 for patients and 4.20 for healthy volun-

teers) in patients compared with healthy volunteers (p = 0.0114 for skewness and p = 0.0021 for kurtosis).

Table 4 summarises the diagnostic performance of the DDC and α value histogram metrics in the classification of diseased from healthy

nodes. From the DDC nodal histogram analysis, maximum DDC exhibited the highest AUC (0.772), sensitivity (83.3%) and specificity (62.5%).

From the α value histogram analysis, the 25th percentile presented the highest AUC (0.761), sensitivity (80.0%) and specificity (67.5%).

3.3 | Interobserver variability

The ICC results for each one of the MR diffusion histogram metrics are presented in Table 5. From the ADC histogram analysis, interobserver

agreement was excellent for the minimum (0.84), 25th percentile (0.94), 75th percentile (0.85), median (0.92) and mean (0.88), and poor for maxi-

mum (0.37), skewness (0.19) and kurtosis (0.25). From the α value histogram analysis, interobserver agreement was excellent for the 25th percen-

tile (0.78), 75th percentile (0.77), median (0.80), mean (0.79) and skewness (0.80), and fair for minimum (0.58) and kurtosis (0.60). On the other

TABLE 2 (Continued)

Patient no. Gender Age (y) Primary tumour site of SCC Primary tumour stage Lymph node size (small axis [mm])

47 Male 57 Hypopharynx T2 N2c M0 25

48 Female 70 Unknown T2 N2b M0 15

49 Male 59 Right tonsil T4a N2b M0 16

50 Male 33 Right tonsil T3 N2b Mo 15

51 Female 61 BoT T2 N2b Mo 27

52 Male 41 Right tonsil pT2a N2a M0 27

53 Male 59 Oropharynx (BoT) T3 N2c M0 25

54 Male 52 Unknown T3 N2b M0 21

55 Female 46 Left tonsil T2 N2a M0 22

56 Female 61 Left tonsil T2 N2b M0 31

57 Male 53 Post pharyngeal T4a N2c M0 13

58 Male 68 Oropharyngeal down from GTS T3 N2c M0 23

59 Female 56 Left tonsil T2 N2b M0 21

60 Female 43 Nasopharyngeal T1 N2 M0 12

61 Male 58 Oropharyngeal L BoT/GTS T1 N2b M0 25

N2a: single >3 cm but ≤6 cm in greatest dimension.

N2b: metastases in multiple ipsilateral nodes <6 cm.

N3: node >6 cm.

Abbreviations: BoT, base of tongue; GTS, glossotonsillar sulcus; N/A, not available; SCC, squamous cell carcinoma.
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hand, from the DDC histogram analysis, interobserver agreement was excellent for the minimum (0.89), 25th percentile (0.826), median (0.92) and

mean (0.85), fair to good for the 75th percentile (0.62), and poor for maximum (0.22), kurtosis (0.10) and skewness (0.19).

3.4 | Calculation of the logistic regression model

The score results from the MR diffusion histogram metrics are listed in Table 6. For the calculation of the logistic regression model, the two

highest score metrics with excellent interobserver reproducibility, which significantly contributed to the model, were determined. These metrics

were the mean ADC (score test = 12.332) and the 25th percentile α (score test = 12.800), presenting a statistically significant contribution to the

model (p ≤0.001 for both metrics). Subsequently, the logistic regression equation for the classification of diseased from healthy nodes is:

In Oddsð Þ¼�9:5þ5:037� MeanADCð Þþ8:887� 25thPercentileαð Þ: ð3Þ

ROC analysis was performed to determine the best cut-off as nodal classifier using the regression model (Figure 8). Based on this, the optimal

cut-off value was 0.1604, the AUC 0.80, sensitivity 82%, specificity 68%, positive predictive value (PPV) 79% and negative predictive value (NPV)

71%, and the overall accuracy was 76%.

TABLE 3 Apparent diffusion coefficient (ADC), distributed diffusion coefficient (DDC) and alpha (α) value histogram results from patients and
healthy volunteers (including mean ± standard deviation for all the metrics, and median and interquartile range for kurtosis), and p values derived
from the statistical comparisons

Patients (60 patients,

60 nodes)

Healthy volunteers (8 volunteers,

40 nodes)

p value (between patients

and healthy volunteers)

ADC (10�3 mm2/s)

Minimum 0.43 ± 0.19 0.46 ± 0.17 0.4543

25th percentile 0.77 ± 0.14 0.67 ± 0.12 0.0004a

75th percentile 1.00 ± 0.23 0.88 ± 0.15 0.0046a

Maximum 1.66 ± 0.42 1.14 ± 0.23 <0.0001a

Median 0.88 ± 0.17 0.78 ± 0.13 0.0046a

Mean 0.90 ± 0.17 0.78 ± 0.13 0.0010a

Skewness 0.72 ± 0.61 0.16 ± 0.51 <0.0001a

Kurtosis 3.94 [2.99, 5.32] 3.05 [2.35, 3.52] <0.0001a

DDC (10�3 mm2/s)

Minimum 0.34 ± 0.21 0.36 ± 0.20 0.4563

25th percentile 0.80 ± 0.24 0.68 ± 0.16 0.0029a

75th percentile 1.12 ± 0.44 0.97 ± 0.24 0.0516

Maximum 2.70 ± 0.95 1.85 ± 0.92 <0.0001a

Median 0.96 ± 0.44 0.81 ± 0.17 0.0097a

Mean 0.99 ± 0.34 0.84 ± 0.19 0.0121a

Skewness 1.49 ± 1.02 1.03 ± 1.28 0.0114a

Kurtosis 6.82 [4.95,11.65] 4.20 [2.60,9.61] 0.0021a

α

Minimum 0.29 ± 0.13 0.34 ± 0.14 0.1294

25th percentile 0.67 ± 0.08 0.60 ± 0.09 <0.0001a

75th percentile 0.88 ± 0.08 0.89 ± 0.10 0.7721

Maximum 1.00 ± 0.0 0.99 ± 0.03 0.0611

Median 0.78 ± 0.08 0.73 ± 0.08 0.0047a

Mean 0.77 ± 0.06 0.73 ± 0.07 0.0044a

Skewness �0.318 ± 0.444 �0.13 ± 0.52 0.1279

Kurtosis 2.817 [2.42,3.23] 2.20 [1.86, 297] 0.0013a

astatistically significant difference.
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4 | DISCUSSION

The current study aimed to determine whether pretreatment microstructural diffusion MRI characteristics could classify diseased nodes of

patients with HNSCC from normal nodes of healthy volunteers. We utilised two exponential models for the histogram analysis, namely, the well-

established monoexponential model for the ADC assessment, and the stretched exponential model for the assessment of DDC and α values; the

latter allows determination of intravoxel diffusion heterogeneity.17,18 Histogram analysis was utilised for ADC and DDC assessment to provide a

measure of intervoxel heterogeneity.9,12,19 We focused on the lymph nodes, because the status of the cervical lymph nodes is considered to be

the most important prognostic factor.4

Our first finding was that the 25th percentile, 75th percentile, maximum, median and mean nodal ADC values were significantly higher in

patients than in healthy volunteers. These higher ADC values denote that the averaged water diffusivity of the diseased nodes is higher compared

with that of the healthy nodes. This can be ascribed to the presence of micronecrosis (not apparent from the DW images) in the diseased nodes,

which is averaged with the cellular components, resulting in higher median and mean ADC (ADC estimates) in patients than in healthy volunteers.

The presence of micronecrosis is also related to the increased maximum ADC values in patients, presenting the highest diagnostic performance

across all the MR diffusion histogram metrics. Other researchers have reported significant differences between benign and metastatic cervical

lymph nodes. Sumi et al.20 reported higher mean ADC values in metastatic lymph nodes than in benign nodes, highlighting that nodal necrosis is

one of the characteristics of malignant nodes, whereas Vandecaveye et al.21 and de Bondt et al.5 reported higher ADC values in benign compared

with metastatic nodes. However, in these studies,5,20–22 the patient population was smaller (ranging from 16 to 33 patients) than in the current

study (60 patients), no lymph nodes from healthy volunteers were included, and a mean ADC value was used for the ADC comparison. To our

knowledge, there are no other studies utilising comparison of ADC histogram analysis of lymph nodes in patients with HNSCC and healthy

volunteers.

Second, the ADC histogram analysis showed that nodal disease could be identified by assessing intervoxel diffusion heterogeneity. The signif-

icantly increased kurtosis in diseased patient nodes suggests a decrease in heterogeneity for the larger part of the diseased nodal volume with

voxels with a narrower range of ADC values compared with the broader distribution of healthy volunteer nodes. The increased skewness in

patients resulted from distributions with a longer right tail, which may be due to micronecrosis, as suggested by Scalco et al.,23 resulting in higher

ADC values and in asymmetric ADC distributions. In HNSCC primary tumours, the value of ADC histogram analysis has been applied to assess

TABLE 4 Receiver operating characteristic (ROC) analysis (area under the curve [AUC], cut-off values, sensitivity, specificity, positive
predictive value, negative predictive value) for the apparent diffusion coefficient (ADC), distributed diffusion coefficient (DDC) and alpha (α)
values histogram metrics

AUC Cut-off value Sensitivity (%) Specificity (%) Positive predictive value Negative predictive value

ADC (10�3 mm2/s)

25th percentile 0.708 0.699 68.3 67.5 75.9 58.7

75th percentile 0.666 0.913 63.3 65.0 73.1 54.2

Maximum 0.892 1.278 86.2 77.5 84.7 79.5

Median 0.666 0.818 60.0 67.5 73.5 52.9

Mean 0.692 0.825 61.7 67.5 74.0 54.0

Skewness 0.765 0.371 78.3 75.0 82.5 69.8

Kurtosis 0.746 3.551 58.3 77.5 79.5 74.6

DDC (10�3 mm2/s)

25th percentile 0.675 0.730 63.3 70.0 76.0 56.0

Maximum 0.772 1.734 83.3 62.5 76.9 71.4

Median 0.652 0.792 68.3 52.5 68.3 52.5

Mean 0.648 0.893 56.7 60.0 68.0 48.0

Skewness 0.649 0.848 76.7 52.5 70.7 60.0

Kurtosis 0.680 5.010 73.3 60.0 73.3 60.0

α

25th percentile 0.761 0.639 80.0 67.5 78.7 69.2

Median 0.666 0.777 55.0 72.5 75.0 52.8

Mean 0.652 0.792 68.3 52.5 68.3 52.5

Kurtosis 0.688 2.361 76.7 57.5 73.0 62.2
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TABLE 5 Interobserver variability of apparent diffusion coefficient (ADC), distributed diffusion coefficient (DDC) and alpha (α) values
histogram metrics

MR diffusion histogram metric ICC

ADC (10�3 mm2/s)

Minimum 0.84

25th percentile 0.94

75th percentile 0.85

Maximum 0.37

Median 0.92

Mean 0.88

Skewness 0.19

Kurtosis 0.25

DDC (10�3 mm2/s)

Minimum 0.89

25th percentile 0.95

75th percentile 0.62

Maximum 0.22

Median 0.92

Mean 0.85

Skewness 0.19

Kurtosis 0.10

α

Minimum 0.58

25th percentile 0.78

75th percentile 0.77

Maximum N/A

Median 0.80

Mean 0.79

Skewness 0.80

Kurtosis 0.60

Abbreviation: ICC, interclass correlation coefficient.

TABLE 6 Score tests of apparent diffusion coefficient (ADC), distributed diffusion coefficient (DDC) and alpha (α) value histogram metrics for
the calculation of the logistic regression model with p values denoting the statistically significant contribution to the model

MR diffusion histogram metric Score test for classification, p value significant contribution to the model

ADC (10�3 mm2/s)

25th percentile 11.439 (p = 0.001)

75th percentile 8.527 (p = 0.003)

Median 9.464 (p = 0.002)

Mean 12.332 (p ≤0.001)

DDC (10�3 mm2/s)

25th percentile 7.678 (p = 0.006)

Median 4.017 (p = 0.45)

Mean 5.811 (p = 0.016)

α

25th percentile 12.800 (p ≤0.001)

Median 6.633 (p = 0.010)

Mean 7.014 (p = 0.008)

Kurtosis 7.182 (p = 0.007)
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differentiation of tumour grades13 and reflect tumour heterogeneity.19 In our study, the high diagnostic performance of ADC skewness and kurto-

sis suggests that a similar approach is valid for classification of lymph node disease in HNSCC patients from the lymph nodes of healthy

volunteers.

The assessment of the intravoxel (α value) and the intervoxel (DDC histogram distribution) MRI diffusion heterogeneity, utilising the stretched

exponential model, could also help to classify diseased nodes from those of healthy volunteers. The nodal DDC histogram analysis revealed more

‘peaked’ and skewed distributions with significantly higher 25th percentile, maximum, median and mean DDC values in patients than in healthy

volunteers, similar to the ADC histogram analysis. The statistical comparisons revealed significantly higher median, mean, 25th and 75th percentile

and kurtosis nodal α values in patients than in healthy volunteers, recommending the 25th percentile as a reliable nodal disease classifier. The α

value is a stretching parameter taking into account the distribution of the diffusion coefficients within a voxel and defining the deviation of the

signal attenuation from the monoexponential decay8; as the α value approaches 1, the signal attenuation approaches monoexponential behaviour.

A higher α value in patients supports lower intravoxel homogeneity in diffusion coefficients, reflecting less heterogeneity caused by intravascular

perfusion, and extravascular diffusion processes existing within the same voxel. Absolute ADC values for disease states and healthy tissues reflect

a single predominant tissue feature (e.g. cellularity), but they are also influenced by other tissue characteristics (e.g. vascularity). Therefore, bi-

exponential models have been introduced, including low diffusion and fast diffusion (perfusion) components, and applied to nodal disease

reporting the predictor role of f value.24,25 However, the IVIM analysis assumes only perfusion and diffusion components without accounting

either for the slow exchange between them or for other diffusion rates. The stretched exponential model overcomes these assumptions and the

stretching parameter has been reported to be more sensitive to the microstructural properties of cervical tumours than the ADC,26, and is able to

differentiate high grade gliomas from normal tissues,18 as well as discriminate low to high grade gliomas27 and different tumour stages of naso-

pharyngeal carcinoma,28 while being stable to noise.8

The assessment of the interobserver reproducibility showed that the parameters related to the shape of ADC and DDC distributions of each

node, such as skewness and kurtosis, varied between different observers. Whereas distribution metrics unrelated to the shape of the distribution,

such as the 25th percentile, mean and median, exhibited excellent interobserver agreement. Ren et al.29 have reported that the ROI selection

influenced the ADC histogram analysis between two observers. Liu et al.30 also reported excellent agreement between two observers in the ADC

histogram results, apart from skewness and kurtosis. In ADC and DDC histogram analysis, skewness and kurtosis are metrics assessing the

intervoxel heterogeneity across the nodal volume, although they are dependent on each observer. Deviations in the drawn edges of the ROI

nodes differently assessed by the observers can conclude in different results. Therefore, a reliable nodal disease classifier should not only present

higher diagnostic performance in one observer, but also be reproducible between observers.

The logistic regression analysis revealed that the best two classifiers for the nodal disease in the linear regression model were the mean ADC

and 25th percentile α value. In detail, mean ADC expresses a regional estimate of the water diffusivity across the whole volume of the node; and

F IGURE 8 Receiver operating characteristic (ROC) analysis of the logistic regression model to classify diseased from healthy nodes,
presenting the best cut-off value as nodal classifier
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the 25th percentile α value represents an intravoxel heterogeneity estimate. In the literature, several validation models have been presented as

disease classifiers in prostate cancer utilising multiparametric MRI,31 in breast cancer using multimodality imaging (PET and mpMRI),32 and in thy-

roid nodules with bi-parametric MRI.33 Our model not only includes a regional averaged estimate of the water diffusivity, but also takes into

account the effect of heterogeneity within each voxel, resulting in an integrated classifier for nodal disease using only DW-MRI.

Our study has some limitations. DW-MRI in the head and neck is challenging due to the introduced magnetic field inhomogeneities across

this area, resulting in DW images with low signal intensity and distortions.34 In this study, DW images of six b-values were acquired, to ensure suf-

ficient signal intensity covering the multiple exponential effects and resulting in a clinically acceptable scan time of 4–5 min. More accurate quan-

titation may be possible using a larger number of b-values,35 but would limit clinical acceptability. The normal lymph nodes sample size was not

exactly equal to the diseased lymph nodes sample size, but the fact that our data were significant suggests they are valid. Moreover, there is a lack

of pathology confirmation of the healthy lymph nodes, although no previous malignancy and infective disease were necessary for the healthy vol-

unteers' participation. Furthermore, following the institutional healthy volunteer scanning regulations, all the healthy volunteers' scans were

reviewed by a radiologist to confirm that they were healthy before their inclusion in the study.

In summary, our quantitative analysis suggests that the nodal microstructural diffusion MRI characteristics assessed by ADC, DDC and α value

histogram analysis can classify diseased from normal lymph nodes. Our linear regression model, taking into account the regional MR diffusion

across the whole nodal volume (mean ADC) and intravoxel (25th percentile α value) MR diffusion heterogeneity, demonstrated high diagnostic

performance as a nodal disease classifier. Future studies are required to further investigate the utility of the linear regression model, including a

regional diffusion estimate and intravoxel/intervoxel diffusion heterogeneity as a predictor of treatment response.
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