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Abstract
Recent years have seen increasing use of supervised learning methods for segmenta-1

tion tasks. However, the predictive performance of these algorithms depends on the2

quality of labels. This problem is particularly pertinent in the medical image domain,3

where both the annotation cost and inter-observer variability are high. In a typical la-4

bel acquisition process, different human experts provide their estimates of the “true”5

segmentation labels under the influence of their own biases and competence levels.6

Treating these noisy labels blindly as the ground truth limits the performance that7

automatic segmentation algorithms can achieve. In this work, we present a method8

for jointly learning, from purely noisy observations alone, the reliability of individual9

annotators and the true segmentation label distributions, using two coupled CNNs.10

The separation of the two is achieved by encouraging the estimated annotators to11

be maximally unreliable while achieving high fidelity with the noisy training data.12

We first define a toy segmentation dataset based on MNIST and study the properties13

of the proposed algorithm. We then demonstrate the utility of the method on three14

public medical imaging segmentation datasets with simulated (when necessary) and15

real diverse annotations: 1) MSLSC (multiple-sclerosis lesions); 2) BraTS (brain16

tumours); 3) LIDC-IDRI (lung abnormalities). In all cases, our method outperforms17

competing methods and relevant baselines particularly in cases where the number18

of annotations is small and the amount of disagreement is large. The experiments19

also show strong ability to capture the complex spatial characteristics of annotators’20

mistakes, which could be potentially utilised for the purpose of education.21

1 Introduction22

Segmentation of anatomical structures in medical images is known to suffer from high inter-reader23

variability [1, 2, 3, 4, 5], affecting limiting the performance of downstream supervised machine24

learning models. This problem is particularly prominent in the medical domain where the labelled25

data is commonly scarce due to the high cost of annotations. For instance, accurate identification of26

multiple sclerosis (MS) lesions in MRIs is difficult even for experienced experts due to variability in27

lesion location, size, shape and anatomical variability across patients [6]. Another example [4] reports28

the average inter-reader variability in the range 74-85% for glioblastoma (a type of brain tumour)29

segmentation. Further aggravated by differences in biases and levels of expertise, segmentation30

annotations of structures in medical images suffer from high annotation variations [7]. In consequence,31

despite the present abundance of medical imaging data thanks to over two decades of digitisation,32

the world still remains relatively short of access to data with curated labels [8], that is amenable to33

machine learning, necessitating intelligent methods to learn robustly from such noisy annotations.34

To mitigate inter-reader variations, different pre-processing techniques are commonly used to curate35

segmentation annotations by fusing labels from different experts. The most basic yet popular approach36

is based on the majority vote where the most representative opinion of the experts is treated as the37

ground truth (GT). A smarter version that accounts for similarity of classes has proven effective in38
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aggregation of brain tumour segmentation labels [4]. A key limitation of such approaches, however,39

is that all experts are assumed to be equally reliable. Warfield et al.[9] proposed a label fusion method,40

called STAPLE that explicitly models the reliability of individual experts and uses that information to41

“weigh” their opinions in the label aggregation step. After consistent demonstration of its superiority42

over the standard majority-vote pre-processing in multiple applications, STAPLE has become the go-to43

label fusion method in the creation of public medical image segmentation datasets e.g., ISLES [10],44

MSSeg [11], Gleason’19 [12] datasets. Asman et al.later extended this approach in [13] by accounting45

for voxel-wise consensus to address the issue of under-estimation of annotators’ reliability. In [14],46

another extension was proposed in order to model the reliability of annotators across different pixels47

in images. More recently, within the context of multi-atlas segmentation problems [15] where image48

registration is used to warp segments from labeled images (“atlases”) onto a new scan, STAPLE has49

been enhanced in multiple ways to encode the information of the underlying images into the label50

aggregation process. A notable example is STEP proposed in Cardoso et al.[16] who designed a51

strategy to further incorporate the local morphological similarity between atlases and target images,52

and different extensions of this approach such as [17, 18] have since been considered. However,53

these previous label fusion approaches have a common drawback—they critically lack a mechanism54

to integrate information across different training images. This fundamentally limits the remit of55

applications to cases where each image comes with a reasonable number of annotations from multiple56

experts, which can be prohibitively expensive in practice. Moreover, relatively simplistic functions57

are used to model the relationship between observed noisy annotations, true labels and reliability of58

experts, which may fail to capture complex characteristics of human annotators.59

In this work, we introduce the first instance of an end-to-end supervised segmentation method that60

jointly estimates, from noisy labels alone, the reliability of multiple human annotators and true61

segmentation labels. The proposed architecture (Fig. 1) consists of two coupled CNNs where one62

estimates the true segmentation probabilities and the other models the characteristics of individual63

annotators (e.g., tendency to over-segmentation, mix-up between different classes, etc) by estimating64

the pixel-wise confusion matrices (CMs) on a per image basis. Unlike STAPLE [9] and its variants,65

our method models, and disentangles with deep neural networks, the complex mappings from the input66

images to the annotator behaviours and to the true segmentation label. Furthermore, the parameters67

of the CNNs are “global variables” that are optimised across different image samples; this enables68

the model to disentangle robustly the annotators’ mistakes and the true labels based on correlations69

between similar image samples, even when the number of available annotations is small per image70

(e.g., a single annotation per image). In contrast, this would not be possible with STAPLE [9] and71

its variants [14, 16] where the annotators’ parameters are estimated on every target image separately.72

For evaluation, we first simulate a diverse range of annotator types on the MNIST dataset by performing73

morphometric operations with Morpho-MNIST framework [19]. Then we demonstrate the potential74

in several real-world medical imaging datasets, namely (i) MS lesion segmentation dataset (MSLSC)75

from the ISBI 2015 challenge [20], (ii) Brain tumour segmentation dataset (BraTS) [4] and (iii)76

Lung nodule segmentation dataset (LIDC-IDRI) [21]. Experiments on all datasets demonstrate77

that our method consistently leads to better segmentation performance compared to widely adopted78

label-fusion methods and other relevant baselines, especially when the number of available labels79

for each image is low and the degree of annotator disagreement is high.80

2 Related Work81

The majority of algorithmic innovations in the space of label aggregation for segmentation have82

uniquely originated from the medical imaging community, partly due to the prominence of the inter-83

reader variability problem in the field, and the wide-reaching values of reliable segmentation methods.84

The aforementioned methods based on the STAPLE-framework such as [9, 13, 14, 16, 22, 17, 17, 18, 23]85

are based on generative models of human behaviours, where the latent variables of interest are the86

unobserved true labels and the “reliability” of the respective annotators. Our method can be viewed87

as an instance of translation of the STAPLE-framework to the supervised learning paradigm. As such,88

our method produces a model that can segment test images without needing to acquire labels from89

annotators or atlases unlike STAPLE and its local variants. Another key difference is that our method90

is jointly trained on many different subjects while the STAPLE-variants are only fitted on a per-subject91

basis. This means that our method is able to learn from correlations between different subjects, which92

previous works have not attempted— for example, our method uniquely can estimate the reliability93

and true labels even when there is only one label available per input image as shown later.94
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Figure 1: General schematic of the neural fusion network. The method consists of two components: (1)
Segmentation network parametrised by θ that generates an estimate of the GT segmentation probabilities, pθ(x)
for the given input image x; (2) Annotator network, parametrised by φ, that estimates the CMs {A(r)

φ (x)}nr=1

of the annotators. The segmentation probabilities of respective annotators p̂(r)
φ (x) := A(r)

φ (x) ·pθ(x) are then
computed. The model parameters {θ,φ} are optimized to minimize the sum of five cross-entropy losses between
each estimated annotator distribution p(r)

φ (x) and the noisy labels ỹ(r) observed from each annotator.

Our work also relates to a recent strand of methods that aim to generate a set of diverse and plausible95

segmentation proposals on a given image. Notably, probabilistic U-net [24] and its recent variants,96

PHiSeg [25] have shown that the aforementioned inter-reader variations in segmentation labels can be97

modelled with sophisticated forms of probabilistic CNNs. Such approaches, however, fundamentally98

differ from ours in that variable annotations from many experts in the training data are assumed to99

be all realistic instances of the true segmentation; we assume, on the other hand, that there is a single,100

unknown, true segmentation map of the underlying anatomy, and each individual annotator produces101

a noisy approximation to it with variations that reflect their individual characteristics. The latter102

assumption may be reasonable in the context of segmentation problems since there exists only one103

true boundary of the physical objects captured in an image while multiple hypothesis can arise from104

ambiguities in human interpretations.105

We also note that, in standard classification problems, a plethora of different works have shown106

the utility of modelling the labeling process of human annotators in restoring the true label distri-107

bution [26, 27, 28]. Such approaches can be categorized into two groups: (1) two-stage approach108

[29, 30, 31, 32, 33], and (2) simultaneous approach. In the first category, the noisy labels are first curated109

through a probabilistic model of annotators, and subsequently, a supervised machine-learning model110

is trained on the curated labels. The initial attempt [29] was made in the early 1970s, and numerous111

advances such as [30, 31, 32, 33] since built upon this work e.g. by estimating sample difficulty and112

human biases. In contrast, models in the second category aim to curate labels and learn a supervised113

model jointly in an end-to-end fashion [34, 35, 36, 37, 27, 28] so that the two components inform each114

other. Although the evidence still remains limited to the simple classification task, these simultaneous115

approaches have shown promising improvements over the methods in the first category in terms of the116

predictive performance of the supervised model and the sample efficiency (i.e., fewer labels are required117

per input). However, to date very little attention has been paid to the same problem in more complicated,118

structured prediction tasks where the outputs are high dimensional. In this work, we propose the119

first simultaneous approach to addressing such a problem for image segmentation, while drawing120

inspirations from the STAPLE framework [9] which would fall into the two-stage approach category.121
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3 Method122

3.1 Problem Set-up123

In this work, we consider the problem of learning a supervised segmentation model from noisy124

labels acquired from multiple human annotators. Specifically, we consider a scenario where set of125

images {xn ∈RW×H×C}Nn=1 (with W,H,C denoting the width, height and channels of the image)126

are assigned with noisy segmentation labels {ỹ(r)
n ∈YW×H}

r∈S(xi)
n=1,...,N from multiple annotators where127

ỹ(r)n denotes the label from annotator r∈{1,...,R} and S(xn) denotes the set of all annotators who128

labelled image xi andY=[1,2,...,L] denotes the set of classes.129

Here we assume that every image x annotated by at least one person i.e., |S(x)|≥1, and no GT labels130

{yn ∈YW×H}n=1,...,N are available. The problem of interest here is to learn the unobserved true131

segmentation distribution p(y | x) from such noisy labelled dataset D= {xn,ỹ(r)n }
r∈S(xn)
n=1,...,N i.e., the132

combination of images, noisy annotations and experts’ identities for labels (which label was obtained133

from whom).134

We also emphasise that the goal at inference time is to segment a given unlabelled test image but not135

to fuse multiple available labels as is typically done in multi-atlas segmentation approaches [15].136

3.2 Probabilistic Model and Proposed Architecture137

Here we describe the probabilistic model of the observed noisy labels from multiple annotators. We138

make two key assumptions: (1) annotators are statistically independent, (2) annotations over different139

pixels are independent given the input image. Under these assumptions, the probability of observing140

noisy labels {ỹ(r)}r∈S(x) on x factorises as:141

p({ỹ(r)}r∈S(x) |x)=
∏

r∈S(x)

p(ỹ(r) |x)=
∏

r∈S(x)

∏
w∈{1,...,W}
h∈{1,...,H}

p(ỹ
(r)
wh |x) (1)

where ỹ(r)wh∈ [1,...,L] denotes the (w,h)th elements of ỹ(r)∈YW×H . Now we rewrite the probability142

of observing each noisy label on each pixel (w,h) as:143

p(ỹ
(r)
wh |x)=

L∑
ywh=1

p(ỹ
(r)
wh |ywh,x)·p(ywh |x) (2)

where p(ywh | x) denotes the GT label distribution over the (w, h)th pixel in the image x, and144

p(ỹ
(r)
wh | ywh,x) describes the noisy labelling process by which annotator r corrupts the true seg-145

mentation label. In particular, we refer to theL×Lmatrix whose each (i,j)th element is defined by the146

second term a(r)(x,w,h)ij :=p(ỹ
(r)
wh= i |ywh=j,x) as the CM of annotator r at pixel (w,h) in imagex.147

We introduce a CNN-based architecture which models the different constituents in the above joint148

probability distribution p({ỹ(r)}r∈S(x) | x) as illustrated in Fig. 1. The model consists of two149

components: (1) Segmentation Network, parametrised by θ, which estimates the GT segmentation150

probability map, p̂θ(x)∈RW×H×L whose each (w,h,i)th element approximates p(ywh = i | x);(2)151

Annotator Network, parametrised by φ, that generate estimates of the pixel-wise CMs of respective152

annotators as a function of the input image, {Â
(r)

φ (x)∈ [0,1]W×H×L×L}Rr=1 whose each (w,h,i,j)th153

element approximates p(ỹ(r)wh= i |ywh= j,x). Each product p̂(r)
φ (x) := Â

(r)

φ (x)·p̂θ(x) represents the154

estimated segmentation probability map of the corresponding annotator. Note that here “·” denotes155

the element-wise matrix multiplications in the spatial dimensions W,H . At inference time, we use156

the output of the segmentation network p̂θ(x) to segment test images.157

We note that each spatial CM Â
(r)

φ (x) containsWHL2 variables, and calculating the corresponding158

annotator’s prediction p̂(r)
φ (x) requiresWH(2L−1)L floating-point operations, potentially incurring159

a large time/space cost when the number of classes is large. Although not the focus of this work (as we160

are concerned with medical imaging applications for which the number of classes are mostly limited161

to less than 10), we also consider a low-rank approximation (rank=1) scheme to alleviate this issue162

wherever appropriate. More details are provided in the supplementary.163
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3.3 Learning Spatial Confusion Matrices and True Segmentation164

Next, we describe how we jointly optimise the parameters of segmentation network, θ and the parame-165

ters of annotator network,φ. In short, we minimise the negative log-likelihood of the probabilistic model166

plus a regularisation term via stochastic gradient descent. A detailed description is provided below.167

Given training input X = {xn}Nn=1 and noisy labels Ỹ
(r)

= {ỹ(r)n : r ∈ S(xn)}Nn=1 for168

r = 1, ..., R, we optimaize the parameters {θ, φ} by minimizing the negative log-likelihood169

(NLL),−logp(Ỹ(1)
,...,Ỹ

(R)|X ). From eqs. (1) and (2), this optimization objective equates to the sum170

of cross-entropy losses between the observed noisy segmentations and the estimated annotator label171

distributions:172

−logp(Ỹ(1)
,...,Ỹ

(R)|X )=

N∑
n=1

R∑
r=1

1(ỹ(r)
n ∈S(xn))·CE

(
Â

(r)

φ (x)·p̂θ(xn),ỹ
(r)
n

)
(3)

Minimizing the above encourages each annotator-specific prediction p̂(r)(x) := Â
(r)

φ p̂θ(x) to be173

as close as possible to the true noisy label distribution of the annotator p(r)(x). However, this loss174

function alone is not capable of separating the annotation noise from the true label distribution; there175

are many combinations of pairs Â
(r)

φ (x) and segmentation model p̂θ(x) such that p̂(r)(x) perfectly176

matches the true annotator’s distribution p(r)(x) for any input x (e.g., permutation of rows in the177

CMs). To combat this problem, inspired by Tanno et al.[28], which addressed an analogous issue178

for the classification task, we add the trace of the estimated CMs to the loss function in Eq. (3) as a179

regularisation term (see Sec 3.4). We thus optimize the combined loss:180

N∑
n=1

R∑
r=1

1(ỹ(r)
n ∈S(xi))·

[
CE
(
Â

(r)

φ (x)·p̂θ(xn),ỹ
(r)
n

)
+λ·tr

(
Â

(r)

φ (xn)
)]

(4)

where S(x)) denotes the set of all labels available for image x, and tr(A) denotes the trace of matrix181

A. The mean trace represents the average probability that a randomly selected annotator provides an182

accurate label. Intuitively, minimising the trace encourages the estimated annotators to be maximally183

unreliable while minimising the cross entropy ensures fidelity with observed noisy annotators. We184

minimise this combined loss via stochastic gradient descent to learn both {θ,φ}.185

3.4 Justification for the Trace Norm186

Here we provide a further justification for using the trace regularisation. Tanno et al.[28] showed that if187

the average CM of annotators is diagonally dominant, and the cross-entropy term in the loss function is188

zero, minimising the trace of the estimated CMs uniquely recovers the true CMs. However, their results189

concern properties of the average CMs of both the annotators and the classifier over the data population,190

rather than individual data samples. We show a similar but slightly weaker result in the sample-specific191

regime, which is more relevant as we estimate CMs of respective annotators on every input image.192

First, let us set up the notations. For brevity, for a given input image x∈RW×H×C , we denote the193

estimated CM of annotator r at (i,j)th pixel by Â
(r)

:= [A(r)(x)ij ] ∈ [0,1]L×L. We also define the194

mean CM A∗ :=
∑R
r=1πrÂ

(r)
and its estimate Â

∗
:=
∑R
r=1πrÂ

(r)
where πr∈ [0,1] is the probability195

that the annotator r labels image x. Lastly, as we stated earlier, we assume there is a single GT196

segmentation label per image — thus the true L-dimensional probability vector at pixel (i,j) takes197

the form of a one-hot vector i.e., p(x) = ek for, say, class k ∈ [1,...,L]. Then, the followings result198

motivates the use of the trace regularisation:199

Theorem 1. If the annotator’s segmentation probabilities are perfectly modelled by the model200

for the given image i.e., Â
(r)

p̂θ(x) = A(r)p(x)∀r = 1, ..., R, and the average true CM A∗ at a201

given pixel and its estimate Â
∗

are diagonally dominant (a∗ii > a∗ij , â
∗
ii > â∗ij for all i 6= j), then202

A(1),...,A(R)=argmin Â(1)
,...,Â(R)

[
tr(Â

∗
)
]

and such solutions are unique up to the kth column where203

k is the correct pixel class.204

The corresponding proof is provided in the supplementary material. The above result shows that if205

each estimated annotator’s distribution Â
(r)

p̂θ(x) is very close to the true noisy distribution p(r)(x)206
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Figure 2: CMs of 5 simulated annotators on MNIST dataset (Best viewed in colour: white is the true positive,
green indicates the false negative, red is the false positive and black is the true negative).

(which is encouraged by minimizing the cross-entropy loss), and for a given pixel, the average CM207

has diagonal entries larger than any other entries in each row 1, then minimizing its trace will drive208

the estimates of the kth (‘correct class’) columns in the respective annotator’s CMs to match the true209

values. Although this result is weaker than what was shown in [28] for the population setting rather210

than the individual samples, the single-ground-truth assumption means that the remaining values of211

the CMs are uniformly equal to 1/L, and thus it suffices to recover the column of the correct class.212

To encourage {Â(1),...,Â(R)} to be also diagonally dominant, we initialize them with identity matrices213

by training the annotation network to maximise the trace for sufficient iterations as a warm-up period. In-214

tuitively, the combination of the trace term and cross-entropy separates the true distribution from the an-215

notation noise by finding the maximal amount of confusion which explains the noisy observations well.216

4 Experiments217

We evaluate our method on a variety of datasets including both synthetic and real-world scenarios:1)218

for MNIST segmentation and ISBI2015 MS lesion segmentation challenge dataset [38], we apply219

morphological operations to generate synthetic noisy labels in binary segmentation tasks; 2) for BraTS220

2019 dataset [4], we apply similar simulation to create noisy labels in a multi-class segmentation task;221

3) we also consider the LIDC-IDRI dataset which contains multiple annotations per input acquired222

from different clinical experts as the evaluation in practice. Details of noisy label simulation can be223

found in Appendix A.1.224

Our experiments are based on the assumption that no ground-truth (GT) label is not known a priori,225

hence, we compare our method against multiple label fusion methods. IN particular, we consider four226

label fusion baselines: a) mean of all of the noisy labels; b) mode labels by taking the “majority vote”;227

c) label fusion via the original STAPLE method [9]; d) Spatial STAPLE, a more recent extension of c)228

that accounts for spatial variations in CMs. After curating the noisy annotations via above methods, we229

train the segmentation network and report the results. For c) and d), we used the toolkit2. In addition,230

we also include a recent method called Probabilistic U-net as another baseline, which has been shown231

to capture inter-reader variations accurately. The details are presented in Appendix A.2.232

For evaluation metrics, we use: 1) root-MSE between estimated CMs and real CMs; 2) Dice coefficient233

(DICE) between estimated segmentation and true segmentation; 3) The generalized energy distance234

proposed in [24] to measure the quality of the estimated annotator’s labels.235

4.1 MNIST and MS lesion segmentation datasets236

MNIST dataset consists of 60,000 training and 10,000 testing examples, all of which are 28 × 28237

grayscale images of digits from 0 to 9, and we derive the segmentation labels by thresholding the238

intensity values at 0.5. The MS dataset is publicly available and comprises 21 3D scans from 5 subjects.239

All scans are split into 10 for training and 11 for testing. We hold out 20% of training images as a240

validation set for both datasets. On both datasets, our proposed model achieves a higher dice similarity241

coefficient than STAPLE on the dense label case and, even more prominently, on the single label242

(i.e., 1 label per image) case (shown in Tables. 1&2 and Fig. 2). In addition, our model outperforms243

1For the standard “majority vote” or the mean label to capture the correct true labels, one requires each diagonal
element in the average CM to be larger than the sum of the remaining elements in the same row, which is a more
strict condition.

2https://www.nitrc.org/projects/masi-fusion/
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Figure 3: Curves of validation accuracy during
training of our model for a range of hyperparame-
ters. For our method, the scaling of trace regularizer
is varied in [0.001, 0.01, 0.1, 0.4, 0.7, 0.9].)

Figure 4: Segmentation accuracy of different models on
MNIST (a, b) and MS (c, d) dataset for a range of annotation
noise (measured in averaged Dice with respect to GT.

STAPLE without or with trace norm, in terms of CM estimation, specifically, we could achieve an244

increase at 6.3%. Additionally, we include the performance on different regularisation coefficient,245

which is presented in Fig. 3. Fig. 4 compares the segmentation accuracy on MNIST and MS lesion246

for a range of average dice where labels are generated by a group of 5 simulated annotators. Fig. 5247

illustrates our model can capture the patterns of mistakes for each annotator.248

MNIST MNIST MSLesion MSLesion
Models DICE (%) CM estimation DICE (%) CM estimation

(testing) (validation) (testing) (validation)
Naive CNN on mean labels 38.36± 0.41 n/a 46.55± 0.53 n/a
Naive CNN on mode labels 62.89± 0.63 n/a 47.82± 0.76 n/a
Probabilistic U-net [24] 65.12± 0.83 n/a 46.15± 0.59 n/a
Separate CNNs on annotators 70.44± 0.65 n/a 46.84± 1.24 n/a
STAPLE [9] 78.03± 0.29 0.1241± 0.0011 55.05± 0.53 0.1502± 0.0026
Spatial STAPLE [14] 78.96± 0.22 0.1195± 0.0013 58.37± 0.47 0.1483± 0.0031
Ours without Trace 79.63± 0.53 0.1125± 0.0037 65.77± 0.62 0.1342± 0.0053
Ours 82.92± 0.19 0.0893± 0.0009 67.55± 0.31 0.0811± 0.0024
Oracle (Ours but with known CMs) 83.29± 0.11 0.0238± 0.0005 78.86± 0.14 0.0415± 0.0017

Table 1: Comparison of segmentation accuracy and error of CM estimation for different methods with dense
labels (mean± standard deviation).

MNIST MNIST MSLesion MSLesion
Models DICE (%) CM estimation DICE (%) CM estimation

(testing) (validation) (testing) (validation)
Naive CNN on mean & mode labels 32.79± 1.13 n/a 27.41± 1.45 n/a
STAPLE [9] 54.07± 0.68 0.2617± 0.0064 35.74± 0.84 0.2833± 0.0081
Spatial STAPLE [14] 56.73± 0.53 0.2384± 0.0061 38.21± 0.71 0.2591± 0.0074
Ours without Trace 74.48± 0.37 0.1538± 0.0029 54.76± 0.66 0.1745± 0.0044
Ours 76.48± 0.25 0.1329± 0.0012 56.43± 0.47 0.1542± 0.0023

Table 2: Comparison of segmentation accuracy and error of CM estimation for different methods with one label
per image (mean± standard deviation).

Generalised Energy Distance (Dice) MNIST MS BraTS LIDC-IDRI
Probabilistic U-net [24] 1.46± 0.04 1.91± 0.03 3.23± 0.07 1.97± 0.03
Ours 1.24± 0.02 1.67± 0.03 3.14± 0.05 1.87± 0.04

Table 3: Comparison of Generalised Energy Distance on different datasets (mean± standard deviation).
The distance metric used here is Dice.

4.2 BraTS Dataset and LIDC-IDRI Dataset249

We also evaluate our model on a multi-class segmentation task, using all of the 259 high grade glioma250

(HGG) cases in training data from 2019 multi-modal Brain Tumour Segmentation Challenge (BraTS).251

We extract each slice as 2D images and split them at case-wise to have, 1600 images for training, 300252

for validation and 500 for testing. Pre-processing includes: concatenation of all of available modalities;253

centre cropping to 192 x 192; normalisation for each case at each modality. To create synthetic254

noisy labels in multi-class scenario, we first choose a target class and then apply morphological255

operations on the provided GT mask to create 4 synthetic noisy labels at different patterns, namely,256

over-segmentation, under-segmentation, wrong segmentation and good segmentation. Details of noisy257

label simulation are in Appendix A.3.258

The LIDC-IDRI dataset contains 1018 lung CT scans from 1010 lung patients with manual lesion259

segmentations from four experts. For each scan, 4 radiologists provided annotation masks for lesions260

that they independently detected and considered to be abnormal. For our experiments, we use the same261

method in [24] to pre-process all scans. We split the dataset at case-wise into a training (722 patients),262
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Figure 5: Visualisation of estimated true labels and confusion matrices on MNIST/MS datasets (Best viewed in
colour: white is the true positive, green is the false negative, red is the false positive and black is the true negative).

Figure 6: The final segmentation of our model on BraTS
and each annotator network predictions visualization.
(Best viewed in colour: the target label is red.)

Figure 7: Segmentation results on LIDC-IDRI dataset
and the visualization of each annotator contours and the
consensus.

validation (144 patients) and testing (144 patients). We then resampled the CT scans to 1mm×1mm263

in-plane resolution. We also centre cropped 2D images (180×180 pixels) around lesion positions, in264

order to focus on the annotated lesions. The lesion positions are those where at least one of the experts265

segmented a lesion. We hold 5000 images in the training set, 1000 images in the validation set and266

1000 images in the test set.267

On both BraTS and LIDC-IDRI dataset, our proposed model achieves a higher dice similarity coefficient268

than STAPLE and Spatial STAPLE on both of the dense labels and single label scenarios (shown in Ta-269

ble. 4 and Table. 5 in Appendix A.3). In addition, our model (with trace) outperforms STAPLE in terms270

of CM estimation by a large margin at 14.4% on BraTS. In Fig. 6, we visualized the segmentation results271

on BraTS and the corresponding annotators’ predictions. Fig. 7 presents three examples of the segmen-272

tation results and the corresponding four annotator contours, as well as the consensus. As shown in both273

figures, our model successfully predicts the both the segmentation of lesions and the variations of each274

annotator in different cases. Additionally, as shown in Table.3, our model consistently outperforms Prob-275

abilistic U-Net on generalized energy distance across the four test different datasets, which indicates that276

our method is better at capturing the inter-annotator variability than the baseline Probabilistic U-Net.277

5 Conclusion278

We introduced the first learning method based on CNNs for simultaneously recovering the label noise279

of multiple annotators and the GT label distribution for supervised segmentation problems. We demon-280

strated this method on real-world datasets with synthetic annotations and real-world annotations. Our281

method is capable of estimating individual annotators and thereby improving robustness against label282

noise. Experiments have shown our model achieves considerable improvement over the traditional label283

fusion approaches including averaging, the majority vote and the widely used STAPLE framework and284

spatially varying versions, in terms of both segmentation accuracy and the quality of CM estimation.285

In the future, we plan to accommodate meta-information of annotators (e.g., number of years of286

experience), and non-image data (e.g., genetics) that may influence the pattern of the underlying287

segmentation label such as lesion appearance, in our framework. We are also interested in assessing288

the downstream utility of our approach in active data collection schemes where the segmentation289

model p̂θ(x) is used to select which samples to annotate (“active learning”), and the annotator models290

{Â
(r)

φ (x)}Rr=1 are used to decide which experts to label them (“active labelling”).291
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Boarder Impact Statement292

Image segmentation has been one of the main challenges in modern medical image analysis, and293

describes the process of assigning each pixel or voxel in images with biologically meaningful discrete294

labels, such as anatomical structures and tissue types (e.g. pathology and healthy tissues). The task295

is required in many clinical and research applications, including surgical planning [39, 40], and the296

study of disease progression, aging or healthy development [41, 42, 43]. However, there are often297

cases in practice where the correct delineation of structures is challenging; this is also reflected in298

the well-known presence of high inter- and intra-reader variability in segmentation labels obtained299

from trained experts [9, 23, 5].300

Although expert manual annotations of lesions is feasible in practice, this task is time consuming.301

It usually takes 1.5 to 2 hours to label a MS patient with average 3 visit scans. Meanwhile, the302

long-established gold standard for segmentation of medical images has been manual voxel-by-voxel303

labeling by an expert anatomist. Unfortunately, this process is fraught with both interand intra-rater304

variability (e.g., on the order of approximately 10% by volume [44, 45]). Thus, developing an automatic305

segmentation technique to fix the variability among inter- and intra-readers could be meaningful not306

only in terms of the accuracy in delineating MS lesions but also in the related reductions in time and307

economic costs derived from manual lesion labeling. The lack of consistency in labelling is also308

common to see in other medical imaging applications, e.g., in lung abnormalities segmentation from309

CT images. A lesion might be clearly visible by one annotator, but the information about whether it310

is cancer tissue or not might not be clear to others. However, a potential point of criticism could be that311

our work in the current form has only been demonstrated on medical images. We would like to convince312

AC/PCs that the medical imaging domain alone offers a considerably broad range of opportunities for313

impact; e.g., diagnosis/prognosis in radiology, surgical planning and study of disease progression and314

treatment, etc. In addition, the annotator information could be potentially utilised for the purpose of315

education. Another potential opportunity is to integrate such information into the data/label acquisition316

scheme in order to train reliable segmentation algorithms in a data-efficient manner.317
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A Additional results465

A.1 Data Simulation466

We generate synthetic annotations from an assumed GT to generate efficacy of the approach in467

an idealised situation where the GT is known. We simulate a group of 5 annotators of disparate468

characteristics by performing morphological transformations (e.g., thinning, thickening, fractures, etc)469

on the ground-truth (GT) segmentation labels, using Morpho-MNIST software [19]. In particular, the470

first annotator provides faithful segmentation (“good-segmentation”) with approximate GT, the second471

tends over-segment (“over-segmentation”), the third tends to under-segment (“under-segmentation”),472

the fourth is prone to the combination of small fractures and over-segmentation (“wrong-segmentation”)473

and the fifth always annotates everything as the background (“blank-segmentation”). We create474

training data by deriving labels from the simulated annotators.475

A.2 MNIST and MS Dataset476

We examine the ability of our method to learn the CMs of annotators and the true label distribution. We477

compared the performance of our method against several baselines and the original STAPLE algorithm478

[9] and Spatial STAPLE [14]. The first baseline is the naive CNN trained on the mean labels and the479

majority vote labels across the 5 annotators. The second baseline is the separate CNNs trained on 5480

annotator labels and evaluate on their mean output. The “oracle” model is the idealistic scenario where481

CMs of the annotators are a priori known to the model while “annotators” indicate the average labeling482

accuracy of each annotator group. All the baselines and the annotator CNN, the segmentation CNN483

in our model are implemented with the NicMSlesions architecture described in [46]. We also evaluate484

on the validation set the effects of regularisation coefficient λ∈{0,0.001,0.01,0.1,0.4,0.7,0.9} of the485

trace-norm in Eq. 4 on the accuracy of segmentation and CM estimation. Results are shown in Fig. 3.486

Figure 7: Visualisation of estimated true labels and confusion matrices on MNIST datasets (Best viewed in colour:
white is the true positive, green is the false negative, red is the false positive and black is the true negative).
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A.3 BraTS and LIDC-IDRI487

We also evaluate our model on a multi-class segmentation task, using training data from 2019 Brain488

Tumour Segmentation Challenge (BraTS). In training data of BraTS 2019, there are 259 cases with489

high grade (HG) and 76 cases with low grade (LG) glioma. For each case, four MRI modalities are490

available, FLAIR, T1, T1-contrast and T2. The datasets are pre-processed by the organizers and491

co-registered to the same anatomical template, interpolated to the same resolution (1 mm3) and492

skull-stripped. We centre cropped 2D images (192× 192 pixels) and hold 1600 2D images for training,493

300 images for validation, 500 images for testing, we apply Gaussian normalization on each case of494

each modality, to have zero-mean and unit variance. Fig. 6 shows one such tumor case in four different495

modality. To create synthetic noisy labels in multi-class scenario, we first choose a target class and496

then apply morphological operations on the provided GT mask to create 4 synthetic noisy labels at497

different patterns, namely, over-segmentation, under-segmentation, wrong segmentation and good498

segmentation. Details of noisy label simulation are in Appendix A.3.499

The LIDC-IDRI dataset contains 1018 lung CT scans from 1010 lung patients with manual lesion500

segmentations from four experts. For each scan, 4 radiologists provided annotation masks for lesions501

that they independently detected and considered to be abnormal. For our experiments, we use the same502

method in [24] to pre-process all scans. We split the dataset at case-wise into a training (722 patients),503

validation (144 patients) and testing (144 patients). We then resampled the CT scans to 1mm×1mm504

in-plane resolution. We also centre cropped 2D images (180×180 pixels) around lesion positions, in505

order to focus on the annotated lesions. The lesion positions are those where at least one of the experts506

segmented a lesion. We hold 5000 images in the training set, 1000 images in the validation set and507

1000 images in the test set.508

On both BraTS and LIDC-IDRI dataset, our proposed model achieves a higher dice similarity coeffi-509

cient than STAPLE on both of the dense labels and single label scenarios (shown in Table. 4 and Table. 5510

in Appendix A.3). In addition, our model (with trace) outperforms STAPLE in terms of CM estimation511

by a large margin at 14.4% on BraTS. In Fig. 6, we visualized the segmentation results on BraTS and512

the corresponding annotators’ predictions. Fig. 7 presents three examples of the segmentation results513

and the corresponding four annotator contours, as well as the consensus. As shown in both figures, our514

model successfully predicts the both the segmentation of lesions and the variations of each annotator515

in different cases. Additionally, as shown in Table.3, our model consistently outperforms Probabilistic516

U-Net on generalized energy distance across the four test different datasets, which indicates that our517

method is better at capturing the inter-annotator variability than the baseline Probabilistic U-Net.518

BraTS BraTS LIDC-IDRI LIDC-IDRI
Models DICE (%) CM estimation DICE (%) CM estimation

(testing) (validation) (testing) (validation)
Naive CNN on mean labels 29.42± 0.58 n/a 56.72± 0.61 n/a
Naive CNN on mode labels 34.12± 0.45 n/a 58.64± 0.47 n/a
Probabilistic U-net [24] 40.53± 0.75 n/a 61.26± 0.69 n/a
STAPLE [9] 46.73± 0.17 0.2147± 0.0103 69.34± 0.58 0.0832± 0.0043
Spatial STAPLE [14] 47.31± 0.21 0.1871± 0.0094 70.92± 0.18 0.0746± 0.0057
Ours without Trace 49.03± 0.34 0.1569± 0.0072 71.25± 0.12 0.0482± 0.0038
Ours 53.47± 0.24 0.1185± 0.0056 74.12± 0.19 0.0451± 0.0025
Oracle (Ours but with known CMs) 67.13± 0.14 0.0843± 0.0029 79.41± 0.17 0.0381± 0.0021
Table 4: Comparison of segmentation accuracy and error of CM estimation for different methods with dense
labels (mean± standard deviation). (ryu): On LIDC-IDRI, it is rather surprising that our method performs better
than SpatialSTAPLE when the GT were created by SpatialSTAPLE! We should mention this clearly in the results
section.
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Figure 8: The final segmentation of our model on BraTS and each annotator network predictions
visualization. (Best viewed in colour: the target label is red.)

BraTS BraTS LIDC-IDRI LIDC-IDRI
Models DICE (%) CM estimation DICE (%) CM estimation

(testing) (validation) (testing) (validation)
Naive CNN on mean & mode labels 36.12± 0.93 n/a 48.36± 0.79 n/a
STAPLE [9] 38.74± 0.85 0.2956± 0.1047 57.32± 0.87 0.1715± 0.0134
Spatial STAPLE [14] 41.59± 0.74 0.2543± 0.0867 62.35± 0.64 0.1419± 0.0207
Ours without Trace 43.74± 0.49 0.1825± 0.0724 66.95± 0.51 0.0921± 0.0167
Ours 46.21± 0.28 0.1576± 0.0487 68.12± 0.48 0.0587± 0.0098
Table 5: Comparison of segmentation accuracy and error of CM estimation for different methods with
one label per image (mean± standard deviation).

A.4 Low-rank approximation519

In particular, we parametrise the spatial CM Â
(r)

φ (x)=B(r)
1,φ(x)·B

T,(r)
2,φ (x) where both B(r)

1,φ and B(r)
2,φ520

are smaller matrices of sizeW×H×L×l where l<<L. Two separate rectangular matrices are used521

since the confusion matrices are not necessarily symmetric. Such low-rank approximation reduces522

the total number of variables to 2WHLl and the FLOPs toWH(4L(l−0.25)−l). Still need to decide523

whether to include this paragraph depending on the results on DICE.524

Rank Dice CM estimation GPU Memory No. Parameters & FLOPS
Default 53.47± 0.24 0.1185± 0.0056 2.68GB 192×192
rank 1 50.56± 2.00 - 2.57GB

Table 6: Segmentation performance of low-rank approximation on BraTS. GPU memory is when batch
size 1 is used (mean± standard deviation).

A.5 Algorithm525

(Copy from CVPR): Here we provide pseudo-codes of our method (Algorithm 1), generalized EM [34]526

(Algorithm 2) and model-bootstrapped EM [27] (Algorithm 3) to clarify the differences between differ-527

ent methods for jointly learning the true label distribution and confusion matrices of annotators in eq. 2528

in the main text. Given the training setD={xn,ỹ(1)n ,...,ỹ
(R)
n }Nn=1, each example may not be labelled by529
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all the annotators. In such cases, for ease of notation, we assign pseudo class ỹ(r)n =−1 to fill the missing530

labels. The comparison between these three algorithms illustrates the implementational simplicity of531

our method, despite the comparable or superior performance demonstrated on all three datasets.

Algorithm 1 Our method

Inputs: D={xn,ỹ(1)n ,...,ỹ
(R)
n }Nn=1, λ : scale of trace regularizer

Initialize the confusion matrices {Â(r)}Rr=1 to identity matrices
Initialize the parameters of the base classifier θ
Learn θ and {Â(r)}Rr=1 by performing minibatch SGD on the combined loss:

θ,{Â(r)}Rr=1←−argminθ,{Â(r)}

[ N∑
i=1

R∑
r=1

1(ỹ
(r)
i 6=−1)·CE(Â(r)p̂θ(xi),ỹ

(r)
i )+λ

R∑
r=1

tr(Â
(r)

)
]

Return: p̂θ and {Â(r)}Rr=1

532
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B Proof of Theorem 2533

(Ryu): still need to change the statement of the lemma and the proof.534

Here we intend to motivate the addition of the trace regularizer in eq. (4). In the last section, we saw535

that minimizing cross-entropy loss alone encourages Â
(r)

P→A(r). Therefore, if we could devise536

a regularizer which, when minimized, uniquely ensures the convergence Â
(r)
→ A(r), then this537

would make P tend to the identity matrix, implying that the base model fully captures the true label538

distribution i.e. argmaxk[ ˆp(x)θ]k = y∀x. We describe below the trace regularizer is indeed a such539

regularizer when both Â(r) and A(r) satisfy some conditions. We first show this result assuming that540

there is a single annotator, and then extend to the scenario with multiple annotators.541

Lemma 1 (Single Annotator). Let P be the CM of the estimated true labels p̂θ and Â be the estimated542

CM of the annotator. If the model matches the noisy label distribution of the annotator i.e. ÂP=A,543

and both Â and A are diagonally dominant (aii>aij , âii>âij) for all i 6=j, then Â with the minimal544

trace uniquely coincides with the true A.545

Proof. We show that each diagonal element in the true CM A forms a lower bound to the corresponding546

element in its estimation.547

aii=
∑
j

âijpji≤
∑
j

âiipji= âii(
∑
j

pji)= âii (5)

for all i∈{1,...,L}. It therefore follows that tr(A)≤ tr(Â). We now show that the equality Â=A is548

uniquely achieved when the trace is the smallest i.e. tr(A) = tr(Â)⇒A= Â. From (5), if the trace549

of A and Â are the same, we see that their diagonal elements also match i.e. aii= âii∀i∈{1,...,L}.550

Now, the non-negativity of all elements in CMs P and Â, and the equality aii=
∑
j âijpji imply that551

pji=1[i=j] i.e. P is the identity matrix.552

First, let us set up the notations. For brevity, for a given input image x∈RW×H×C , we denote the553

estimated CM of annotator r at (i,j)th pixel by Â
(r)

:= [A(r)(x)ij ] ∈ [0,1]L×L. We also define the554

mean CM A∗ :=
∑R
r=1πrÂ

(r)
and its estimate Â

∗
:=
∑R
r=1πrÂ

(r)
where πr∈ [0,1] is the probability555

that the annotator r labels image x. Lastly, as we stated earlier, we assume there is a single GT556

segmentation label per image — thus the true L-dimensional probability vector at pixel (i,j) takes557

the form of a one-hot vector i.e., p(x) = ek for, say, class k ∈ [1,...,L]. Then, the followings result558

motivates the use of the trace regularisation:559

Theorem 2. If the annotator’s segmentation probabilities are perfectly modelled by the model560

for the given image i.e., Â
(r)

p̂θ(x) = A(r)p(x)∀r = 1, ..., R, and the average true CM A∗ at a561

given pixel and its estimate Â
∗

are diagonally dominant (a∗ii > a∗ij , â
∗
ii > â∗ij for all i 6= j), then562

A(1),...,A(R)=argmin Â(1)
,...,Â(R)

[
tr(Â

∗
)
]

and such solutions are unique up to the kth column where563

k is the correct pixel class.564

565

We note that the above result was also mentioned in [47] in a more general context of label noise566

modelling (that neglects annotator information). Here we further augment their proof by showing567

the uniqueness of solutions (i.e. tr(A) = tr(Â)⇒A = Â). In addition, the trace regularization was568

never used in practice in [47] — for implementation reason, the Frobenius norm was used in all their569

experiments. We now extend this to the multiple annotator regime.570

(Ryu): need to adapt this result too to the new setting.571

Proof. As the average CMs A∗ and Â
∗

are diagonally dominant and we have A∗= Â
∗
P, Lemma 1572

yields that tr(A∗)≤ tr(Â
∗
) with equality if and only if A∗ = Â

∗
. Therefore, when the trace of the573

17



average CM of annotators is minimized i.e. tr(Â
∗
) = tr(A∗), the estimated CM of the true label574

distribution P reduces to identity, giving Â
(r)

=A(r) for all r∈{1,...,R}.575
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