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Abstract—A real-time discrete wavelet transform-based 
adaptive voice activity detector and sub-band selection for 
feature extraction are proposed for noise classification, which 
can be used in a speech processing pipeline. The voice activity 
detection and sub-band selection rely on wavelet energy features 
and the feature extraction process involves the extraction of mel-
frequency cepstral coefficients from selected wavelet sub-bands 
and mean absolute values of all sub-bands. The method 
combined with a feedforward neural network with two hidden 
layers could be added to speech enhancement systems and 
deployed in hearing devices such as cochlear implants. In 
comparison to the conventional short-time Fourier transform-
based technique, it has higher F1 scores and classification 
accuracies (with a mean of 0.916 and 90.1%, respectively) across 
five different noise types (babble, factory, pink, Volvo (car) and 
white noise), a significantly smaller feature set with 21 features, 
reduced memory requirement, faster training convergence and 
about half the computational cost.  

Keywords—Discrete wavelet transform, mel-frequency 
cepstral coefficients, multilayer perceptron, noise classification, 
sub-band selection, voice activity detection. 

I. INTRODUCTION 
Speech enhancement algorithms such as those employed 

in cochlear implants have been shown to perform well in noisy 
conditions to a limited extent. Conventional speech 
enhancement algorithms that utilize spectral subtraction [1] 
and statistical-models [2] generally achieve significant 
improvement in speech intelligibility in stationary noise, but 
only modest improvement in non-stationary noise. The 
success of these algorithms has been limited partly because 
although they have been created to accommodate all acoustic 
environments, they only show optimal speech enhancement 
over a limited range of background noise scenarios [1]. Real-
world auditory environments exhibit a large variety of 
temporal and spectral characteristics that require a more 
adaptable approach to speech enhancement. This has been 
demonstrated by noise adaptive speech processing pipelines 
using supervised learning such as in [3], where speech 
enhancement performance was improved by adjusting the 
denoising requirement according to different acoustical 
conditions.  

In this paper, a method is proposed as shown in Fig. 1 for 
achieving a compact and robust acoustic noise classification 
system that could potentially be implemented in hearing 
devices, where a small, low-power and robust system is 
desired. This study extends [4] by proposing an adaptive 
wavelet-based voice activated detector (VAD) which uses a 
more computationally efficient method for wavelet sub-band 
selection through energy examination of the sub-bands instead 

of Hurst exponents and ℓ! -norm. Mel-frequency cepstrum 
coefficients (MFCCs) extracted from the selected sub-bands 
are used in combination with mean absolute values (MAVs) 
from all sub-bands for feature extraction to further account for 
the global variation across the sub-bands for classification 
training and testing.  

In the proposed method, 25-ms frames of the audio signal 
obtained by using a Hamming window are distinguished either 
as noisy speech or noise-only frames through a wavelet-based 
VAD system. The wavelet-based VAD employs thresholds 
that are adaptively tuned according to the sound and noise 
level variations over time to more accurately track speech with 
noise and noise-only segments. Thereafter, energy 
examination of wavelet decomposed noise-only frames is 
used to identify the most informative sub-bands for feature 
extraction. MFCC extraction is employed to obtain useful 
signatures from the selected sub-bands and the MFCCs are 
then combined with a vector of MAVs of the wavelet 
coefficients of all sub-bands to form the overall feature vector 
used for classification training and testing. With the MAVs, 
an insight into the global variation between sub-bands is 
obtained whereas the MFCCs further decompose the localized 
energy to provide important signatures of the selected sub-
bands with only 13 coefficients. Audio signal frames and sub-
band level features are selectively used for the classification 
training and testing using a 4-layer perceptron neuron 
network. The simulation results obtained using clean speech 
utterances mixed with different types of noise show that the 
proposed method is capable of accurately distinguishing 
between speech and non-speech frames. This achieves high 
classification accuracy for the trained noise types, providing 
more discriminative features for training and smaller memory 
requirement with a small set of features. 

This work was supported by the Engineering and Physical Sciences 
Research Council (EPSRC) under grant EP/R512400/1.  

 
Fig. 1. Architecture of the proposed pre-enhancement system within a 
speech processing pipeline that uses wavelet parameters for VAD and 
sub-band selection, resulting in more effective feature extraction.  
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II. PROPOSED NOISE CLASSIFICATION AND VOICE ACTIVITY 
DETECTION METHOD 

A. Discrete Wavelet Transform 
Discrete wavelet transform (DWT) [5] represents a signal 

as series-approximations where the low pass version of the 
decomposition corresponds to the coarse approximations and 
the high pass version corresponds to the detail information. In 
this paper, the Daubechies wavelet of order 4 (db4) is used as 
the mother wavelet as it is shown in [6] to optimally capture 
key information present in speech. The number of 
decomposition levels is chosen to be 7 based on the log energy 
entropy assessment, of which sample results are presented in 
Fig. 2, conducted to find the optimal number of decomposition 
levels for use that would provide a desirable balance between 
classification accuracy and computational cost. Fine 
frequency resolution for low frequencies is required since 
most of the noise types used in the experiment exhibit greater 
energy in frequencies below 500 Hz. However, fine frequency 
resolution at low frequencies would mean a greater number of 
decomposition levels, thus demanding more computations. In 
Fig. 2, the sample entropy assessment results show that with a 
speech utterance contaminated with white and pink noise at 0, 
5 and 10 dB SNR, the resulting entropy begins to saturate 
when a decomposition level of 7 is used. Therefore, utilizing 
7 decomposition levels is a reasonable compromise, where a 
sufficiently fine frequency resolution is achieved without 
introducing a significantly greater computational cost. Table 
1 lists the frequency range for each sub-band for a 7-level 
decomposition on signals sampled at 8 kHz. 

B. Voice Activity Detection  
 To increase the robustness of the noise classifier, the 
captured audio frame is identified as speech plus noise or 
noise-only. Feature extraction is activated for a noise-only 
frame, and the resulting features are fed to the classifier to 
establish the noise class of the noise signal. Enhancement 
settings can be then be adjusted accordingly to reduce the 
noise present in the subsequent noisy speech frames. The 
VAD is also used to ensure that the latter stages of the speech 
processing pipeline are deactivated for silent frames. In this 
paper, a VAD based on DWT is considered since this 
transform is already computed as part of the noise 
classification pipeline, thus limiting the computational burden 
on the overall system. DWT-based VADs have been explored 
in the literature such as [7] but in this work, it is demonstrated 
that a fairly robust VAD can be achieved from simple energy 
comparisons at the frame and sub-band levels. 

Wavelet energy is useful in emphasizing the amplitude 
variation between regions and the presence of homogeneity 
within a region. Therefore, wavelet energy features are 
extensively used in this work. For silence detection, the total 
sub-band energy 𝐸"#" is 

𝐸"#" =$𝐸$

%&'

$('

,																																(1) 

where 𝐸$  is the total energy of one sub-band and 𝐿  is the 
number of decomposition levels. The frame will be classified 
as silent by setting the binary flag 𝑓)*$+,-+ to 1 if the 𝐸"#" is 
smaller than a fixed threshold, 𝑇' 

𝑓)*$+,-+ = -
1,			𝑖𝑓	𝐸"#" < 𝑇'									

	
0,			otherwise.										

. 																					(2) 

 A non-silent frame will then be classified as either noisy 
speech or noise-only. A noisy speech frame usually contains 
a 𝐸"#"  greater than a noise-only frame. An unvoiced, noise-
only segment often shows some energy concentration in 
relatively higher frequency sub-bands, while a noisy speech 
segment shows energy concentration in lower frequency sub-
bands. Clean speech in particular was found to exhibit 
significantly higher energy in the 5, 6 and 7 detail sub-bands 
(D5, D6 and D7), representing the 62.5 – 500 Hz frequency 
range. This is related to the sound pressure level and vocal 
loudness that are often higher in the fundamental frequency 
and lower formants of speech [8]. Therefore, a frame is 
classified as noisy speech if 𝐸"#" is greater than another fixed 
threshold, 𝑇!, and the accumulated average energy of D5, D6 
and D7 makes up more than a fixed ratio, 𝑅' , of the 
accumulated average energy of all sub-bands. Thus, the flag 
for indicating a noise-only frame (𝑓,#*)+) is set according to 
the following conditions: 

𝑓,#*)+ =

⎩
⎨

⎧1,			𝑖𝑓	(𝐸"#" < 𝑇!)	&	 @$𝐸$
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0,			otherwise																																					

	.			(3) 

 In this study, thresholds 𝑇' , 𝑇!  and 𝑅'  are adaptively 
tuned to provide the optimal VAD performance according to 
the sound and noise level variations over time. 𝑇'  ranges 
between 0.001 and 0.01, with an increment of 0.001, and it 
becomes larger when the average 𝐸"#" is found to be relatively 
larger for a prolonged period of time (2500 × 25 ms frames 
long). Similarly, values between 0.01 and 0.1, with an 
increment of 0.005 are used for 𝑇! and values between 0.1 to 
0.8, with an increment of 0.05 are used for 𝑅'. 𝑅' is tuned 
according to 𝐸$(.	"#		%  variation over time. However, larger 
average 𝐸$(.	"#		% over time often comes with a larger 𝐸"#". It 
was found that for noisy speech samples presented at 10 dB 
SNR, values 0.005, 0.055 and 0.25 for 𝑇', 𝑇! and 𝑅', are often 
employed for the optimal VAD output.  

 
Fig. 2. Normalized log energy entropy obtained from wavelet 
decomposition levels 1 to 12 when speech utterances contaminated with 
white and pink noise at 0, 5 and 10 dB SNR were assessed. 
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TABLE 1. FREQUENCY RANGE FOR EACH SUB-BAND (DETAIL SUB-BANDS 
D1-D7 AND APPROXIMATION SUB-BAND A7)  

Sub-band Frequency Range (Hz) 
D1 4000 – 8000 
D2 2000 – 4000 
D3 1000 – 2000 
D4 500 – 1000 
D5 250 – 500 
D6 125 – 250 
D7 62.5 – 125 
A7 0 – 62.5 

 



C. Feature Extraction of Informative Sub-bands 
The sub-band selection also exploits wavelet energy 

features because energies of different types of noise are often 
concentrated on different frequency bands. The sub-band 
selection process compares the sub-band energy ratio (SER), 
which identifies the relative energy distribution in the sub-
bands, and selects the top 3 sub-bands with the highest 
normalized SER for feature extraction. The SER is given by 

SER =
∑ (𝐶,)!0
,(' 	

∑ ∑ (𝐶,$ )!0
,('

%&'
$('

	,																							(4) 

where 𝐶, represents the coefficient vector of a sub-band, 𝑁 is 
the length of the coefficient vector and 𝐿 is the number of 
decomposition levels. The SERs are then normalized 
according to the bandwidth of each sub-band. 

The feature vector used for classification training and 
testing is a combination of MAVs calculated from the 
coefficients of each wavelet sub-band and MFCCs extracted 
from the three selected sub-bands. The MAVs can provide an 
insight into the global variation between the sub-bands 
whereas the MFCCs can further decompose the localized 
energy and provide more important signatures of the selected 
sub-bands. The MAV is given by 

MAV =
1
𝑁$

|𝐶,|
0

,('

	,																									(5) 

where, 𝐶, is the coefficient vector of a sub-band and 𝑁 is the 
length of the coefficient vector. The resulting MAV feature 
vector will contain a total of 8 features since there are 7 detail 
sub-bands and 1 approximation sub-band. In the calculation of 
the MFCC features, a 24-channel mel-scale was used to obtain 
13 MFCCs from the selected sub-bands that were 
concatenated together prior to the extraction. The decision to 
use 24 channels was predicated from conventional cochlear 
implants having between 12-24 electrodes (i.e., stimulation 
channels) [9] and only lower-order coefficients, in this case 13 
coefficients, are kept because they contain the most 
information about the overall spectral shape of the signal. 

D. Classification 
 The multilayer perceptron (MLP) employed in this work 
is a 4-layer perceptron neuron network (including 1 linear 
input and output layer) consisting of 2 hidden layers with 10 
neurons each. The neurons employ the sigmoid activation 
functions, and the network uses the mean square error as a cost 
function and is trained with the Levenberg-Marquardt [10, 11] 
learning algorithm. The training is stopped when the 
magnitude of the gradient used to adjust the network weights 
and biases is less than 1e-5 or when the maximum training 
epoch, a measure of the number of times all training data are 
used once to update the network weights, of 1000 is reached.  

III. SIMULATIONS 

A. Datasets 
1000 randomly chosen utterances from the TIMIT [12] 

training set were used as the training utterances and 100 
utterances from the TIMIT core test set, consisting of 192 
utterances from unseen speakers of both genders, were used 
as the test utterances. For the training and testing noises, 5 
noises from the NOISEX [13] dataset were used. The noises 

are a mix of 4-minute long stationary and nonstationary noises 
that include a babble noise, factory noise, pink noise, Volvo 
(car) noise and white noise. A sampling frequency of 8 kHz 
was used throughout the experiment. For the training sets, 
random cuts of the first 2 minutes of each noise were used to 
mix with the training utterances at 10, 5 and 0 dB SNR. The 
test mixtures were in turn a mix of random cuts of the last 2 
minutes of each noise and the test utterances at same SNRs.  

B. Evaluation Methods 
To assess the efficacy of the proposed VAD, the outcome 

from the VAD was visually compared with the unsupervised 
robust voise activity detection (rVAD) proposed in [14]. For 
the evaluation metric for the task of noise classification, the 
classic classification accuracy (CAcc) and F1 [15] score were 
used. The CAcc is higher every time the trained DNN model 
correctly predicts the noise label for the test set. The F1 score 
is calculated from the precision and recall of the test where the 
precision is the ratio of true positive (TP) detections over all 
positive detections including those not correctly identified 
(TP+FP); and the recall is ratio of TP detections over all 
detections that should have been identified as positive 
(TP+FN). The F1 score is obtained by 

𝐹'	score =
𝑇𝑃

𝑇𝑃 + 12 (𝐹𝑃 + 𝐹𝑁)
.																							(6) 

The computational cost was estimated in terms of the 
number of additions (or subtractions) and the number of 
weighted multiplications (or divisions) needed to execute the 
algorithm. The computational cost of the DWT, VAD, sub-
band selection, feature extraction and MLP were combined to 
give the approximate overall cost for executing the proposed 
pre-enhancement pipeline within speech processing. The 
approximate inference time to process a single frame of 25-ms 
and the time taken to train an epoch were also evaluated on a 
CPU. The results obtained from the proposed method were 
compared with the results obtained when the following feature 
extraction methods were used: (1) STFT; (2) multi-resolution 
cochleagram (MRCG) [16], which encodes power 
distributions of an audio signal also in the time-frequency 
representation at different resolutions; and (3) MAVs 
combined with MFCCs extracted from all frames and wavelet 
decomposition levels (i.e., without VAD and sub-band 
selection).  

C. Results and Discussion 
An example result from the proposed wavelet-based 

adaptive VAD is shown in Fig. 3. It shows that the proposed 
VAD is more robust in noisy conditions when compared to the 
rVAD. When the VADs were tested on a speech sentence 
contaminated with babble noise at 10 dB SNR, the rVAD 
failed to distinguish between noisy speech and noise-only 
segments. In contrast, the proposed adaptive VAD was able to 
do the segmentation effectively albeit with some slight 
truncation and extended error, where noisy-speech frames are 
misjudged as noise-only and noise-only frames are misjudged 
as noisy speech. The proposed method continued to 
outperform the rVAD at lower SNRs (i.e., 5 dB and 0 dB 
SNR). 

Fig. 4 shows the average CAcc achieved by the different 
feature extraction methods described in Section III.B when 
three different SNR values (10, 5, and 0 dB) were used for 
testing. The proposed method led to a higher mean 



classification accuracy of 90.1% than when STFT (80.1%) or 
MAVs + MFCCs without VAD and sub-band selection 
(81.0%) is used for feature extraction. This implies that the 
addition of the VAD and sub-band selection, and the feature 
extraction in the wavelet domain have significantly 
contributed to improving the noise CAcc. The CAcc obtained 
with MRCG + D + DD is the highest for every SNR scenario 
tested. However, the high classification accuracy of the 
MRCG has a much higher computational cost, and its feature 
size (288 features as shown in Table 2) for a single frame is 
larger than that needed by the proposed method by a factor of 
17.1.  Such a large feature size, when fed into the same neural 
network configuration means having more nodes at the input 
layer and thus, more parameters to take into consideration 
during training and testing. In addition to a wider network 
structure, this will lead to much longer training times and 
larger hardware memory. The observation that all the feature 
extraction methods assessed performed better when tested 
with 0 dB SNR than when tested with 5 dB or 10 dB SNR 
demonstrates their ability to learn from the noise components 
rather than the speech. The F1 scores obtained were in 
agreement with the CAcc scores. A higher number of false 
negatives and false positives were obtained in higher SNR 
conditions. This again indicates that the systems have been 
conditioned to better classify noises when they are prevalent. 

Similar to the CAcc results, the MRCG method gave the 
highest mean F1 score of 0.916. This is followed by the 
proposed approach with the VAD and sub-band selection 
(mean F1 score of 0.916).  

Table 2 lists the estimated computational cost, inference 
time and training time per epoch of each feature extraction 
method. The proposed classification method is the second 
most efficient to compute and the addition of the VAD and 
sub-band selection did not significantly increased the 
computational cost. The computational cost for the proposed 
method is only around 1.4% more than the computational cost 
for the MAVs + MFCCs without VAD and sub-band 
selection. The increment in inference and train time 
introduced from the addition of the adaptive VAD and sub-
band selection is also negligibly small. Overall, the proposed 
method is effective for reducing inference and training time, 
computational cost, and memory requirement whilst boosting 
the robustness of acoustic noise classification in comparison 
to the STFT method. Future work will include assessing the 
generalization performance of the proposed method and 
improving its VAD performance in much lower SNR, and 
CAcc and F1 scores in higher SNR conditions.  

IV. CONCLUSION  
In this paper, a wavelet-based adaptive VAD has been 

explored and selection criteria have been formulated for 
efficient selection of the wavelet sub-bands for feature 
extraction. A simple feedforward MLP has been used for the 
recognition process. Results show that classification 
accuracies are improved with the VAD and sub-band selection 
by a mean of 9.1% (mean CAcc of 90.1% for the proposed 
method versus mean CAcc of 81.0% when VAD and sub-band 
selection were not used). The proposed approach led to a mean 
F1 score of 0.916, indicating an acceptable proportion of false 
positive and false negative assignments. This is accompanied 
by a decrease in computational cost by a factor of around 1.95 
and 17.1 when compared to a conventional STFT-based and 
the MRCG classification method, respectively. The low-
computation wavelet and neural network-based framework 
are suitable for implementation in compact speech 
enhancement algorithms.  

  

 
Fig. 3. Evaluation of the proposed VAD: (a) waveform of the original 
clean speech, (b) the rVAD output when tested on the clean speech 
contaminated with babble noise at 10 dB SNR and (c) the proposed 
wavelet-based VAD output on the same noisy speech with thresholds 
T1 = 0.005, T2 = 0.055 and R1 = 0.25. 1’s on the solid red line represent 
noisy speech segments. 0’s represent either silent or noise-only 
segments. 
 

 

Fig. 4. Classification accuracy comparison. The addition of D and DD, 
(first and second-order derivatives, respectively) to yield the MRCG + 
D + DD feature set was suggested in [16] to better capture temporal 
dynamics of the signal. A 24-channel MRCG + D + DD feature set 
resulted in a dimensionality of 288 (24×4×3) for each frame. 

TABLE 2. COMPUTATIONAL COST, INFERENCE AND TRAINING TIME 
COMPARISON. 

Feature 
Feature 
vector 

size 

Comp. 
Cost* 

Inference 
time ** 

Train 
time*** 

STFT 101 72 053 186.79 29.39 

MRCG + D + DD 288 628 590 1475.00 135.02 

MAVs + MFCCs 
without VAD and 

Sub-band Selection 
21 36 347 106.81 3.73 

MAVs + MFCCs 
with VAD and 

Sub-band Selection 
21 36 857 106.96 3.74 

* Estimated cost per 25-ms frame based on ComputComp = 𝑁!""($%&) + 10𝑁(%)*("+,), where 
𝑁!""($%&)  is the number of additions (or subtractions), and 𝑁(%)*("+,)  is the number of 
multiplications (or divisions) [17]. 
** Approximate time taken in milliseconds (ms) to obtain the output from the trained model 
given an input. This includes the time needed to extract the relevant features.  
*** Approximate time taken in seconds (s) to train one epoch in MLP with 20,000 frame 
samples. 
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