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Abstract9

Marine Autonomous Systems (MAS) operating at sea beyond visual line of
sight need to be self-reliant, as any malfunction could lead to loss or pose a
risk to other sea users. In the absence of fully automated on-board control
and fault detection tools, MAS are piloted and monitored by experts, result-
ing in high operational costs and limiting the scale of observational fleets
that can be deployed simultaneously. Hence, an effective anomaly detec-
tion system is fundamental to increase fleet capacity and reliability. In this
study, an on-line, remote fault detection system is developed for underwater
gliders. Two alternative methods are analysed using time series data: feed-
forward deep neural networks estimating the glider’s vertical velocity and
an autoncoder. The systems are trained using field data from four baseline
deployments of Slocum gliders and tested on six deployments of vehicles suf-
fering from adverse behaviour. The methods are able to successfully detect
a range of anomalies in the near real time data streams, whilst being able to
generalise to different glider configurations. The autoencoder’s error in re-
constructing the original signals is the clearest indicator of anomalies. Thus,
the autoencoder is a prime candidate to be included into an all-encompassing
condition monitoring system for MAS.
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Nomenclature13

α angle of attack [◦]14

αT glider thermal expansivity [◦C−1]15

β glide-path angle [◦]16

z̈ vertical acceleration in the inertial frame [cm/s2]17

δB buoyancy offset [N]18

δr rudder angle [◦]19

δ̇r rate of change of rudder angle [◦/s]20

φ̇ roll angular velocity [◦/s]21

ψ̇ yaw angular velocity [◦/s]22

θ̇ pitch angular velocity [◦/s]23

V̇vbd rate of change of VBD volume [cm3/s]24

ẋb rate of change of battery position [cm/s]25

ż vertical velocity in the inertial frame [cm/s]26

εc glider absolute compressibility [dbar−1]27

φ roll angle [◦]28

ρ water density [kg/m3]29

θ pitch angle [◦]30

ψ̃ yaw angle [◦]31

f1 engineered feature [kg]32

f2 engineered feature [kg]33

g gravitational acceleration [m/s2]34

m glider flooded mass [kg]35
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p water pressure [dbar]36

S glider wetted surface area [m2]37

T water temperature [◦C]38

T0 reference temperature [◦C]39

V0 glider reference volume [m3]40

Vvbd Variable Buoyancy Device (VBD) volume [cm3]41

xb battery position [cm]42

z vertical position in the inertial frame [m]43

1. Introduction44

1.1. Background and Motivation45

The pervasive adoption of Marine Autonomous Systems (MAS) is cur-46

rently constrained by the challenges of operating fully independently of sup-47

port vessels, in the demanding dynamic environment of the world’s oceans.48

MAS are piloted and monitored by experts, keeping operational costs high49

and limiting the scale of observational fleets that can be deployed simultane-50

ously (Verma and Simmons, 2006). Since a MAS can be at sea for months at51

a time, operating ‘over-the-horizon’ from human pilots and support vessels, it52

is impossible to perform reactive maintenance, i.e. maintenance when a fault53

occurs. Therefore, strategies must be developed for automated fault diagnos-54

tics and prognostics in a predictive maintenance framework, i.e. identifying55

when maintenance should be preemptively scheduled on individual compo-56

nents, by continuously monitoring conditions and MAS behaviour during57

operation. Current manual detection, diagnosis and mitigation of problems58

are limited by the experience of the individual pilot and are subject to human59

error, especially when a MAS platform requires pilot attention around the60

clock.61

In the absence of general on-board anomaly detection and diagnosis sys-62

tems, the ability to transmit sensor data in a timely manner to an off-board63

system or human operator and to receive appropriate commands in response64

becomes of critical importance for MAS safety and performance.65
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Anomaly detection is currently extremely challenging for Autonomous66

Underwater Vehicles (AUVs), as they are under-observed systems, with lim-67

ited or decimated data available via satellite for pilots to interpret when the68

vehicle comes periodically to the surface. If the underlying cause of observed69

adverse behaviour cannot be correctly diagnosed and the situation remedied70

(e.g. via the remote adjustment of piloting parameters or mission scope),71

the vehicle, their cargo or data can be lost or present a hazard to shipping72

(Thieme and Utne, 2017).73

1.2. Literature Review74

Underwater Gliders (UGs) are a type of AUV that are being used ex-75

tensively for long-term observation of key physical oceanographic parameters76

(Rudnick, 2016). The vehicles achieve vertical motion in the water column by77

changing their buoyancy through a variable buoyancy device (VBD). Wings78

generate a forward motion component from the vertical motion. Hence, UGs79

travel in a characteristic sawtooth pattern in the vertical plane. Their simple80

propulsion system, which consists of the VBD, pitch control and either roll81

control or a rudder, is highly efficient. Therefore, although they operate at82

a low surge speed (≈ 0.3 m/s), the deployments of UGs can last for sev-83

eral months. Reviews of the initial glider technologies can be found in Davis84

et al. (2003) and Wood (2009), whilst Rudnick (2016) and Testor et al. (2019)85

contain good summaries of their applications in oceanography.86

The reliability of UGs is analysed thoroughly in Brito et al. (2014), with87

the authors collecting failure data from most European operators. The most88

common failures have been observed to be leakages, failures of electrical (e.g.89

the battery, satellite communication hardware), mechanical components (e.g.90

the VBD pump and bladder, rudder and roll motor), navigation and scien-91

tific sensors, and software errors. Leaks, motor or pump malfunctions, low-92

battery voltage and sensor drop-outs or faults are also identified as problems93

in Schofield et al. (2007) Additionally, Frajka-Williams et al. (2011) have94

observed the failure of the pitch tilt sensor. Furthermore, the authors have95

investigated the loss of wing for UGs in Anderlini et al. (2020a) and the96

impact of biofouling in Anderlini et al. (2020b).97

Methods for fault detection and diagnostics can be subdivided into rule-98

based, model-based and data-driven solutions (Hamilton et al., 2007).99

Rule-based methods rely on bespoke heuristics, usually in the form of if-100

then statements, obtained from designers’ observations of the system. Model-101

based approaches rely on dynamic models of the physical systems. Hence,102
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model-based methods are highly suitable for condition monitoring of new103

systems where available data is limited. Model-based techniques are robust,104

simple and relatively inexpensive computationally, but multiple systems are105

usually run concurrently for redundancy. Specifically for AUVs, Freddi et al.106

(2013) design a system to detect faulty thrusters. Hamilton et al. (2007)107

propose an integrated fault detection and diagnosis architecture for AUVs,108

although the focus is on on-board systems.109

Data-driven solutions rely on the analysis of actual sensor data, thus110

showing significant improvements in accuracy when large data sets are avail-111

able. In particular, deep-learning-based methods can be generalised to dif-112

ferent applications and can be scaled to a large number of sensors, but need113

many samples for training.114

Data-driven condition monitoring solutions, with a focus on machine and115

deep learning, are surveyed in Ellefsen et al. (2019) for autonomous ships,116

with (Fink et al., 2020) providing an overview of present and current trends117

in data-driven fault diagnostics and prognostics. Specifically for AUVs, data-118

driven fault detection methods include radial basis function networks (Wang119

and Zhang, 2006), Gaussian particle filter (Sun et al., 2016) and artificial120

immune system (Yao et al., 2018). Raanan et al. (2018) have introduced121

an automatic fault detection system for long-range AUVs based on Bayesian122

nonparametric topic modelling techniques. Although the data set focuses on123

the identification of bottoming events, the behaviour of the analysed long-124

range AUV is similar to that of UGs. A system to develop safety indicators125

for the operation of MAS is described in Thieme and Utne (2017), with a126

case study on an AUV. An anomaly detection system for UGs specific to127

marine biofouling was presented in Anderlini et al. (2021) using ensembles128

of regression trees and K-means clustering.129

Modern deep learning solution specific to anomaly detection are sum-130

marised in Pang et al. (2021). Of the three main deep anomaly detection131

paradigms, learning the feature representations of normality is of interest132

for the UG application, i.e. being able to differentiate between normal and133

abnormal operating conditions with anomaly scoring. These methods can134

be further subdivided into generic feature learning and anomaly measure-135

dependent feature learning. Whereas the latter aims at learning feature136

representations that are optimised for one specific existing anomaly mea-137

sure, the former is more general and can deal well with imbalanced datasets138

heavily skewed towards normal operating conditions due to the low anomaly139

detection recall rate. Autoencoders are a very powerful, but simple strat-140
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egy that consists of a network that learns to reconstruct the original signals141

passing through a smaller latent space that summarises only the fundamen-142

tal information removing the effect of noise. Their generality makes them143

well suited for the application to UGs. An alternative modification specific144

to UGs consists of reconstructing only the vertical velocity signal based on145

the other sensors. This procedure is similar to the model-based anomaly146

detection strategies (Anderlini et al., 2020a), but with a model with many147

more parameters. In particular, the difference between a machine learning148

implementation that relies on engineered features from the dynamic model149

and a deep learning strategy that relies only on the raw variables should be150

investigated.151

1.3. Contribution152

The operation of MAS platforms beyond visual line of sight requires153

a suitable command and control system. For example, the UK National154

Oceanography Centre are designing a new command-and-control system for155

efficient MAS fleet management (Farley et al., 2019; Harris et al., 2020) to fa-156

cilitate the over-the-horizon operation of their ever-increasing fleet of AUVs.157

Another example is the LSTS Neptus and Dune over-the-horizon command-158

and-control environment (Sousa Dias et al., 2005; Madureira et al., 2013;159

Pinto et al., 2013) Control and command systems will require an effective160

condition monitoring tool to enable round-the-clock operations. Rule-based161

and model-based over-the-horizon fault detection methods have been intro-162

duced for UGs in Anderlini et al. (2020a) and Anderlini et al. (2020b) for163

specific faults, namely wing loss and marine growth. However, more general164

solutions are required.165

This work introduces the first data-driven fault detection system for UGs.166

In particular, two alternative methods are investigated: an autoencoder ex-167

tracting useful features in a latent space, and a deep neural network (DNN)168

regression approach estimating the UG’s vertical velocity. The systems are169

trained with the steady-state flight data from four deployments of healthy170

Slocum UGs and tested on six deployments of Slocum UGs suffering from171

adverse behaviour. The performance of the data-driven methods is assessed172

against existing rule- and model-based solutions (Anderlini et al., 2020a,b)173

to show the improvement in generality.174
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1.4. Article Organisation175

In Section 2.1, the operations of Slocum UGs and the analysed datasets176

are described. The novel data-driven anomaly detection methods are intro-177

duced in Section 3. Then, the results are presented and discussed in Section 4,178

with concluding remarks being made in Section 5.179

2. Slocum Gliders Data180

2.1. Slocum Underwater Gliders181

There are range of manufacturers of underwater gliders (Rudnick, 2016).182

This study is focused on 200m depth rated Slocum G2’s from Teledyne Webb183

Research (Webb et al., 2001; Schofield et al., 2007). An example can be seen184

in Fig. 1.185

As shown in Fig. 2, the Slocums are actuated by a VBD, which consists in186

an oil bladder that can be extended or retracted from the pressure hull. When187

the bladder is outside the pressure hull, the vehicle’s displacement increases188

and so does its net buoyancy and vice versa, resulting in their characteristic189

’yo-yo’ motion. The vehicles considered in this study are limited to changes190

in the VBD volume of ±250 cm3. Furthermore, pitch is controlled by shifting191

the position of one movable battery pack with a dedicated mechanism. Yaw192

is controlled via a rudder, which is magnetically coupled to a servo motor to193

avoid an opening in the pressure hull.194

Example time series data for a typical dive cycle can be seen in Fig. 3.195

z indicates the vertical position of the vehicle in the water column (posi-196

tive upwards), which is measured by an on-board pressure sensor. Its time-197

derivative yields ż, the vertical velocity. The actuators’ control signals are198

the volume of the VBD, Vvbd, the position of the moving battery pack, xb,199

and the rudder angle, δr. The roll, φ, and pitch, θ, angles are measured by200

tilt sensors, while a magnetic compass indicates the heading angle, ψ. In201

this article, the difference of the instantaneous yaw angle and the mean yaw202

angle over the whole dive cycle, ψ̄, is used to favour the body-fixed over the203

inertial reference frame.204

As shown in Fig. 2 and Fig. 3a, Slocums can perform multiple ‘yos’ per205

dive (two in this particular case). This means that the vehicle can sample206

the water column multiple times before returning to the surface to send and207

receive data by satellite and get a new position fix via GPS (Teledyne Webb208

Research, 2012). The data sent ashore needs to be decimated to reduce the209

time that the vehicle spends on the surface to lower a) the risk of damage210
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Figure 1: Slocum G2 operated by the NOC.

Glider reduces its buoyancy through 
the VBD and obtains a negative pitch 
angle by shifting the battery forward 

to initiate the descent. 

At the apogee, the glider extends the 
VBD to increase its buoyancy and shifts 
the battery aft to initiate the climb. 

Slocum gliders can perform 
multiple “yos” per dive. This 
means that they do not have 
to emerge after every yo. After the dive, the vehicle emerges to 

get a position fix via GPS, send the 
decimated data back to shore and 
receive a new mission command from 
the remote pilot. Before a new dive, a 
new GPS fix is obtained to better 
estimate surface currents.

Wings provide a 
horizontal motion 

component.

Dive

Yo Yo

Figure 2: Diagram showing the concept of operation of a Slocum UG. The drawing is not
to scale: the analysed vehicles reach their apogee at 200-m-depth and and have glide path
angles with a magnitude in the range (15◦, 30◦).

from collisions with other sea users and wave loads, b) the power expenditure211

and c) the actual financial cost associated with the transmission of the data212

by satellite (specifically, via Iridium). The data usually includes the vehicle’s213

orientation, its depth (from which the vertical velocity can be obtained),214

the actuator’s signals, the capacity and voltage of the battery, the estimated215

position, samples of the scientific data of interest and warnings from on-board216

health monitoring systems. The decimation means that the samples have a217
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low rate, typically with a time step of 30-60 s for signals that are considered218

of least importance (e.g. the roll angle) and 10 s for the signals that are of219

most interest, e.g. the scientific data. In the analysed data sets, each dive220

consisted of up to 14 yos and lasted up to four hours.221

Fig. 3b, Fig. 3c and Fig. 3e show the control input and output for the222

VBD, battery linear actuator and rudder. From a comparison with Ander-223

lini et al. (2019b), it is possible to notice that the rudder enables Slocums224

to exhibit a much smoother response than other UG technologies, even for225

shallower dives where disturbances are stronger. In Fig. 3c, it is also inter-226

esting to note that the direction of travel of the battery is opposite to the227

pitch angle, which is due to the actuator’s reference frame.228

To control UGs, pilots rely on the surface dialogue, with a user-friendly229

interface providing information on the vehicle’s health status, current mission230

plan, last GPS position and the decimated data from past dives. Typically,231

during normal operation, the remote pilots will first check the surface dia-232

logue for errors, warning and oddities from the glider, along with the dive233

profile to ensure it is symmetrical and the glider is reaching the target depth.234

The most common errors identified on-board are relatively mild aborts, e.g.235

glider stalls, behaviour errors, and communication interruptions (Schofield236

et al., 2007). Progress towards the target waypoint is also considered, along237

with a check of the battery health and consumption. This full check is usu-238

ally performed once per day, with the pilot making smaller observations more239

regularly after each dive. Therefore, pilots are only likely to look into the240

flight parameters in detail if the glider is reporting errors, is failing to dive241

correctly or is not making progress towards a waypoint. Hence, issues with242

roll, for instance, can go unnoticed.243

2.2. Dataset Description244

This study uses the data measured by Slocum G2 gliders over ten deploy-245

ments operated by the NOC (BODC, 2021). A summary of the missions,246

including unit (or UG) ID, mission date and location, can be found in Ta-247

ble 1. As can be seen, the vehicles were operated in either the Celtic or North248

Seas between 2014 and 2019.249

The missions in the Celtic Sea were run as part of project AtlantOS250

(EC/633211), with the work extended and complemented by project CaN-251

DyFloSS: ‘Carbon and Nutrient Dynamics and Fluxes over Shelf Systems’252

(NE/K001701/1). The project relied on multiple deployments of UGs to test253
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descent ascent

Figure 3: Example dive cycle of an intact Slocum glider.

the capability of MAS to synoptically assess physical and biogeochemical254

functioning in shelf sea systems (Palmer et al., 2018).255

The missions in the North Sea were part of project ALTERECO: ”An Al-256

ternative Framework to Assess Marine Ecosystem in Shelf Seas” (NE/P013902/2).257

In this project, the UGs were used to validate a novel monitoring framework258
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Table 1: Summary of the analysed deployments (BODC, 2021), including the hydrostatics
of the UGs.

No. Unit Date Location Duration [days] m [kg] V0 [cm3] T0 [◦C]
1 345 2014 Celtic Sea 123.9 58.863 57398.8 19.98
2 345 2019 North Sea 76.8 64.587 63017.6 19.64
3 397 2015 Celtic Sea 45.9 59.400 57990.4 15.90
4 419 2015 Celtic Sea 11.0 65.236 63682.0 15.88
5 194 2017 North Sea 83.9 58.631 57226.0 20.83
6 399 2015 Celtic Sea 84.6 65.258 63665.8 16.80
7 423 2015 Celtic Sea 6.8 65.850 64303.2 16.13
8 424 2015 Celtic Sea 20.8 66.026 64435.3 16.13
9 304 2019 North Sea 76.9 59.044 57615.8 19.23
10 436 2019 North Sea 89.8 65.281 63716.5 19.45

to deliver improved understanding in time and space shelf sea ecosystem259

health and functioning (Matthew R. Palmer et al., 2020).260

Gliders were deployed and recovered from a mixture of large and small261

research vessels as well as fishing boats. Once deployed, gliders undertook262

sustained observations for multi-month periods, undertaking repeated tran-263

sects in the relevant operating area. The only human intervention was via264

remote pilots, up until the point of recovery. By cycling the gliders sustained265

observations can be extended to multiple years.266

3. Anomaly Detection267

Here, a novel data-driven anomaly detection system for UGs is developed268

to identify adverse behaviour over the horizon, as summarised schematically269

in Fig. 4. The method is developed and tested off-line using the deployment270

data sets shown in Table 1. The system is trained using baseline data from271

deployments where the vehicle exhibited healthy status and tested with de-272

ployments datasets exhibiting adverse vehicle behaviour. Once the efficacy273

of the system is established, the trained anomaly detection schemes can be274

used on-line from the remote control centre to notify pilots of possible faults275

with the UG after each surfacing and satellite connection, as shown in Fig. 2.276

It is important to note that vehicles store on-board all data samples, whilst277

they send by satellite only decimated data due to the associated cost and278

power loss. Hence, the training data can be subjected to deeper cleaning279

than the decimated real-time data.280
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Database
• Non-decimated 

glider data from 
available 
deployments

Preprocessing
• Data cleaning
• Data standardisation
• Feature engineering
• Feature selection
• Data subdivision into 

training, validation & 
test sets

Training
• Deep learning 

regression
• Autoencoder

Evaluation
• MAE & RMSE
• Thresholds for 

anomaly detection

Input Data

• Decimated data from 
each glider after each 
surfacing

Preprocessing
• Data cleaning
• Data standardisation
• Feature engineering
• Feature selection

Anomaly Detection
• Deep learning 

regression
• Autoencoder

Outcome
• Anomaly?
• Pilot Notification

Offline Training

Online Deployment

Figure 4: Diagram of the new fault detection system for Slocum underwater gliders.

Two alternative data-driven solutions are investigated: an autoencoder281

extracting useful features in a latent space, and a deep neural network (DNN)282

regression approach estimating the UG’s vertical velocity. In the following283

sections, the preprocessing step and the development of the individual fault284

detection schemes are treated in detail.285

3.1. Steady-State Flight Model of a UG286

As described in Sec. 2.1, UGs operate in steady-state conditions for most287

of the descent and ascent of each yo. The free-body diagram of the equilib-288

rium condition for the steady-state flight is shown schematically in Fig. 5a289

and Fig. 5b for descents and ascents, respectively. B indicates the net buoy-290

ancy, L the lift and D the drag force. U is the surge velocity component in291

the body-fixed frame, θ the pitch, α the attack and β the glide-path angles.292

The glide-path angle indicates the angle of the flight path in the inertial ref-293

erence system and is obtained from the sum of the pitch and attack angles:294

β = θ + α.295

In both descents and ascents, the balance of forces in equilibrium resulting296

in steady state flight yields (Merckelbach et al., 2019)297

B − L cos β −D sin β = 0. (1)
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Figure 5: Free-body diagram of the intact glider in dives (a) and climbs (b) (profile view).

This persists over the majority of a dive cycle. The drag and lift forces can298

be modelled as299

L =
1

2
kLαρSU

2, (2)

300

D =
1

2

(
kD,0 + kD,Lα

2
)
ρSU2, (3)

where ρ is the water density, S is the wetted surface area, kL, kD,0 and kD,L301

are constants used to compute the lift, drag and induced drag coefficients.302

The water density is obtained from the water pressure, salinity and tem-303

perature (and the derived conductivity) using the Gibbs Seawater Toolbox304

(McDougall and Barker, 2011). These properties are measured by a Conduc-305

tivity, Temperature and Density (CTD) sensor.306

The net buoyancy force can be computed as307

B = g {−m+ ρ [V0 (1− εcp+ αT (T − T0)) + Vvbd]}+ δB, (4)

where g is the gravitational acceleration, m is the UG mass, V0 its reference308

volume, εc the absolute compressibility of the pressure hull and αT its thermal309

expansivity, with the reference temperature T0. p is the water pressure and T310

its temperature. The offset in buoyancy δB is added to account for possible311

changes in the net buoyancy of the vehicle after faults.312
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3.2. Preprocessing313

3.2.1. Data Cleaning314

As UGs are in steady-state flight for most of their deployment, the devel-315

opment of data-driven anomaly detection strategies can be greatly simplified.316

However, data cleaning is necessary to discard transient effects. In this study,317

the recovery-mode data stored on-board the gliders in the .DBD and .EBD318

files is used for the training and evaluation of the fault dection schemes (Tele-319

dyne Webb Research, 2012). The data is converted from binary to ASCII320

format using the Python dbdreader module1. Subsequently, the points are321

imported into the MATLAB environment.322

Due to the large size of the available datasets (more than 8 million points323

for all combined deployments), all dive cycles for which any of the signals324

of interest are unavailable are removed. Additionally, a time vector starting325

from 0 s is created for every cycle. In a further cleaning sweep, all cycles with326

either a maximum depth shallower than 25 m or less than 10 time stamps327

are removed.328

The greatest challenge for the cleaning process is represented by the time329

synchronisation: all sensors sample at slightly different time stamps. Fur-330

thermore, the navigation and scientific (for the CTD) Central Processing331

Units (CPUs) are synced only at the surface, so that a time drift is notice-332

able (with a mean drift of 3 s over 4 hr). Hence, all signals are resampled333

by linear interpolation for exactly the same time stamps, with a time step of334

5 s. The navigation and scientific computers are synced through the pressure335

signal, which is measured by both units.336

Afterwards, the variables of interest, such as vertical velocity and water337

density, are computed from the raw signals. Furthermore, the signals are338

modified to reflect the units shown in the nomenclature. Additionally, the339

data is split into individual yo and their dive and climb stages. In Fig. 3b,340

the vertical velocity signal is noisier than the VBD volume signal. Hence,341

changes in sign of the difference between values of Vvbd for neighbouring time342

stamps are used to identify individual dives and climbs.343

To reduce the transient effects caused by operations on the surface and344

apogee, points within 15 m from the surface (or the highest point of the345

climb) and the maximum depth are ignored. Furthermore, only steady-state346

data are kept by removing points which present significant changes in the347

1https://pypi.org/project/dbdreader/
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Table 2: Upper limits used in the data cleaning.

Variable Upper Limit
|z̈| 5 cm/s2

|φ̇| 0.2◦/s

|θ̇| 0.2◦/s

|ψ̇| 0.5◦/s

|V̇vbd| 0.05 cm3/s
|ẋb| 0.01 cm/s

|δ̇r| 2◦/s

actuators’ values, high vertical acceleration or high rotational velocities, as348

shown in Table 2. All points which present a non-numeric value for any349

signals are removed. The data are then merged once again for each cycle and350

any empty cells at this stage are cleared.351

3.2.2. Data Standardisation, Feature Selection and Engineering352

For the data-driven strategies, using the data values expressed in the353

physical units may result in bias towards values with much higher mean or354

standard deviation values, e.g. the VBD volume. Hence, for these data-based355

solutions, the input data is standardised (Goodfellow et al., 2016), as this356

has been found to be more effective than normalisation for this particular357

case.358

Feature selection and engineering are specific to each method and will359

thus be covered in the following individual sections.360

3.3. Deep Learning for Vertical Velocity Prediction361

Machine and deep learning strategies are increasingly being used for con-362

dition monitoring applications (Fink et al., 2020). Similarly to the model-363

based diagnostics, the error between the predicted and actual vertical velocity364

can be used to indicate anomalies. Hence, for UGs it is possible to simplify365

the anomaly detection system to the tracking of the loss of the predicted366

vertical velocity in steady-state flight. The system can then be trained using367

data coming from deployments representing healthy baseline conditions. By368

tracking the prediction error, which is expected to rise for damaged gliders,369

it is possible to identify faults. Limiting the analysis to steady-state data370

greatly reduces the complexity of the problem, as simpler feedforward DNNs371
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Figure 6: Diagram of the ANN used for fault detection for UGs.

may be used instead of more complex recurrent or convolutional architectures372

(Fink et al., 2020).373

LeCun et al. (2015) define a deep neural network as a network with more374

than one hidden layer. However, other than training algorithms and activa-375

tion functions, the main difference between classical machine learning and376

deep learning consists in the size of the dataset analysed (Goodfellow et al.,377

2016). Machine learning algorithms require significant levels of feature en-378

gineering and their performance does not improve after a specific dataset379

size. With deep learning solutions, even raw signals can be directly used as380

features. Deep learning solutions are better scalable, thus presenting much381

higher prediction accuracy than conventional machine learning strategies for382

extremely large datasets (i.e. with more than approximately 106 points).383

Here, two neural networks are considered and will be labelled as artificial384

neural network (ANN) and deep neural network (DNN) despite both of them385

having more than one hidden layer. Both will analyse the same cleaned data386

as for the dynamic model. However, while for the ANN additional feature387

engineering is performed, the DNN relies on the unmodified features.388

From the dynamic model, the features of interest to predict the vertical
velocity of the vehicle are identified to be the VBD volume, the pitch angle,
the battery position, the water density, pressure and temperature. Hence,
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the following two engineered features are obtained for the ANN:

f1 = Vvbdρ, (5a)

f2 = ρV0 (1− εcp+ αT (T − T0)) . (5b)

The first feature, f1, is expected to be dominant. To understand whether389

the second feature, f2, should also be selected, a hypothesis test is run on the390

root mean square error (RMSE) values of the test set for the ANN both with391

and without f2 to assess whether the results are statistically different. Firstly,392

the Lilliefors test is run to check whether the RMSE values are normally393

distributed. As the error distribution does not belong to the normal family,394

the non-parametric Wilcoxon signed rank test is used to assess whether the395

difference of the two distributions has zero median. For both hypothesis tests,396

a significance value of 5% is employed (Gibbons and Chakraborti, 2011). The397

results of the tests can be found in Section 4.3.398

Additionally, the training set of the standardised data is subdivided into399

training, holdout and test sets in the following proportions: 85%, 10% and400

5%. The training set contains examples used to fit the model parameters401

during learning. The holdout set is employed to tune hyperparemeters during402

training. The test set enables an evaluation of the final, fully trained system403

(Goodfellow et al., 2016).404

The neural networks used for the fault detection are shown in Fig. 6405

and Fig. 7, respectively. To detect faults, the RMSE and mean absolute406

error (MAE) of the predicted vertical velocities as compared with the actual407

measured ż are tracked. Both networks have a number of hidden layers with a408

number of neurons that needs to be optimised. Whilst the hidden layers have409

ReLu activation functions (Goodfellow et al., 2016), the output layer has a410

hyperbolic tangent activation function. The Adam optimisation algorithm411

is used for training (Kingma and Ba, 2015), with L2 regularisation to avoid412

overfitting and using the loss (or MAE) to assess convergence (Goodfellow413

et al., 2016).414

3.4. Autoencoder415

Autoencoders are a successful unsupervised learning strategy for fault de-416

tection (Reddy et al., 2016; Fink et al., 2020). An autoencoder is a DNN that417

comprises a dimensionality reduction step followed by a data reconstruction418

step. The input and output features are thus identical for the autoencoder.419

By compressing and reconstructing the data, the autoencoder is able to learn420
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Figure 7: Diagram of the DNN used for fault detection for UGs.

a low-dimensional representation by identifying correlated variables and ig-421

noring signal noise (Goodfellow et al., 2016). For fault detection, training422

the autoencoder on a dataset of a fully operational system enables the identi-423

fication of anomalies by tracking the autoencoder error in its reconstruction424

of the baseline features.425

For the anomaly detection system for UGs, the autoencoder shown in426

Fig. 8 is adopted. The selected features are the vertical velocity, the product427

of the VBD volume and the water density, the pitch angle and the battery428

position. Adding the water temperature and pressure was found to cause high429

levels of noise with little benefit on the overall prediction. Adding the roll430

angle would cause the response of the autoencoder at predicting anomalies431

to improve. However, the roll tilt sensor is not fundamental for the operation432

of the vehicle. Hence, it has been preferred to only use signals fundamental433

for the operation of the UGs in the autoencoder.434

As only four features are used, a single hidden layer is sufficient. To435

select the number of hidden neurons, a principal component analysis (PCA)436

(Jollife and Cadima, 2016) is run. Both hidden and output neurons present437

a hyperbolic activation function. The scaling layer in the output layer is438

required because the output data (like the input) is standardised rather than439

normalised, i.e. it goes beyond the range (0, 1). By tracking the average440
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RMSE of the prediction of the output features, it is possible to identify441

anomalies.442

Similarly to the DNNs, the training data set is subdivided into training,443

holdout and test sets in the following proportions: 85%, 10% and 5%. The444

Adam optimisation algorithm is used for training (Kingma and Ba, 2015),445

with L2 regularisation to avoid overfitting and using the loss (or MAE) to as-446

sess convergence (Goodfellow et al., 2016). Most often the Kullback-Leibler447

divergence is employed, especially in image recognition tasks (Goodfellow448

et al., 2016), but here the selected architecture has been found to be partic-449

ularly effective.450

4. Results and Discussion451

In this section, the deployment data is firstly analysed and visualised to452

gather insights into the UG dynamics. From this study, the data from specific453

deployments is selected for the training and testing of the deep learning454

solutions. Finally, the performance of the new anomaly detection system is455

discussed.456
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4.1. Data Averaged over each Dive Cycle457

Figures 9-11 show the variation in the mean vertical velocity, VBD vol-458

ume, pitch angle, battery position, roll, and rudder angles with mission du-459

ration for all Slocum UGs in the study only up to 80 days after the start of460

each deployment. The yaw angle is not shown, as its signal is very noisy due461

to ocean currents.462

From Fig. 9-11, the following observations can be made of the deploy-463

ments:464

– Unit 345 (2014 deployment) presents a significant gap in the data,465

which may have been caused by retrieval and reset at sea.466

– Unit 345 (2019 deployment) exhibits interesting changes in roll of small467

magnitude throughout the mission probably due to strong disturbances,468

such as transverse ocean currents.469

– Unit 194 presents an abrupt change in vertical velocity, VBD volume,470

pitch angle and battery position for the last few dive cycles (Fig. 9-10).471

As the changes affect all variables in the correct direction, this effect is472

possibly to be due to the pilot’s decision.473

– Unit 194 presents a significant angle of list of approximately 9◦. The474

list angle can be identified in Fig. 11, as the roll angle has the same475

value in descents and ascents. Although the high roll angle may be476

caused by a sensor failure, which can happen on UGs (Brito et al.,477

2014), the corresponding rudder angle with an opposite sign indicates478

the effect is real. The UG is compensating for the list angle and thus479

asymmetric drag and lift forces with a constant rudder angle, which480

causes additional parasitic drag and thus energy expenditure.481

– Unit 399 shows a decrease in the magnitude of the vertical velocity with482

time in both descents and ascents despite an increase in VBD volume483

in climbs. This behaviour is likely to be associated with marine growth484

(Haldeman et al., 2016), although no evidence of this is available from485

the records.486

– Units 423 and 424 present much greater input VBD volume for the487

same mean vertical velocity than the other UGs. After obtaining the488

drag coefficient using the steady-state dynamic model as described in489

(Anderlini et al., 2020a), it is obvious that the behaviour is caused490
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by a much greater drag coefficient (approximately 0.3 as compared491

with 0.15). After a closer inspection, both devices are found to be492

ocean microstructure gliders (OMG) equipped with Rockland Scientific493

turbulence sensors.494

– For units 304 and 436, wing loss is clearly recognisable as a sudden event495

after 57.6 and 24.5 days from the start of the deployment, respectively.496

In particular, from Fig. 11, it is possible to recognise that Slocum 304497

has lost the right wing, while Slocum 436 has lost its left wing as498

described in (Anderlini et al., 2020a). In Fig. 9, Slocum 436 presents499

further clear changes in the mean vertical velocity, VBD volume and500

roll angle at some point after failure, which is probably caused by the501

pilot to match a new mission objective. Additionally, after the loss of502

the wing, both units 304 and 436 either present higher upwards vertical503

velocity in ascents for the same VBD setting or a lower VBD volume504

for the same vertical velocity and vice versa in descents. In particular,505

the VBD needs to be fully retracted to enable the glider to dive. This506

behaviour is caused by the increase in positive buoyancy due to the507

wing loss.508

4.2. Data Selection509

After the analysis of the averaged signals and the parameters of the dy-510

namic model, the deployments have been subdivided into training and vali-511

dation datasets as shown in Table 3. The table also summarises the status of512

the UG during the deployment. Hence, it is clear that only healthy baseline513

deployments have been used in the training set, with the test subset used to514

assess the methods’ accuracy on the baseline data. The validation datasets515

are used to assess the ability of the anomaly detection schemes to detect516

previously unseen anomalies on new real UG deployments..517

Additionally, Fig. 12 shows the subdivision of the dataset into each cate-518

gory of glider status for the cleaned data points. As can be seen, the dataset is519

unbalanced and skewed towards healthy baseline operations. This is common520

for condition monitoring problems, where engineering systems are designed521

to have high reliability (Fink et al., 2020). As the anomaly detection system522

presented here is based on unsupervised learning solutions that are trained523

only from healthy baseline gliders, the methods are not negatively impacted524

by the imbalance. Conversely, the limited data corresponding to anomalous525
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Greater input

Lower velocity

Decreasing velocity

Sudden change in input

Figure 9: Mean vertical velocity and VBD volume in dives (a,c) and climbs (b,d), respec-
tively.

behaviour will pose significant challenges for future fault diagnostics studies526

relying on a classification task.527
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Sudden change in pitch control

Gap in timeseries datal

Figure 10: Mean pitch angle and battery position in dives (a,c) and climbs (b,d), respec-
tively.
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Constant roll angle Sudden change in roll angle

Sudden change in rudder angle

Small changes in roll

Figure 11: Mean roll and rudder angles in dives (a,c) and climbs (b,d), respectively.

4.3. Anomaly Detection Results528

From hyperparameter optimisation, three hidden layers with eight neu-529

rons each are selected for the ANN and four hidden layers with twelve neurons530
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Table 3: Subdivision of the deployments into training (further subdivided into training,
holdout and test subsets) and validation data sets.

No. Unit Status Dataset No. points
1 345 healthy training 380,236
2 345 strong disturbances training 325,279
3 397 healthy training 287,139
4 419 healthy training 68,615
5 194 angle of list validation 492,585
6 399 possible biofouling validation 592,680
7 423 OMG validation 22,400
8 424 OMG validation 122,366
9 304 wing loss validation 275,103
10 436 wing loss validation 555,774

healthy: 49%

list angle: 12%

OMG: 4%

biofouling: 15%

wing loss: 20%

Figure 12: Share of the cleaned dataset corresponding to different types of glider behaviour.
The total number of points after cleaning is 4,067,957.

each for the DNN. The PCA returned percentage total variance of 95.59%,531

3.25%, 0.93% and 0.24% for the first four principal components for healthy532

baseline gliders. Hence, two neurons are selected for the hidden layer of the533

autoencoder.534

For the ANN, the Wilcoxon signed rank test on the RMSE in the test535

set with and without f2 presents a probability of 5.3× 10−7 � 0.05. Hence,536

adding the feature results in a significant change. Similarly, the Lilliefors537

test results in a probability of 0.001� 0.05, so that the data is not normally538
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distributed.539

The algorithms are implemented in MATLAB using the Deep Learning540

toolbox, selecting the default settings for training. Due to the large dataset,541

a minimum batch size of 512 were selected and four epochs were found to542

be sufficient for convergence for the ANN and DNN (corresponding to ap-543

proximately 10,400 steps) and five for the autoencoder (corresponding to544

approximately 12,800 steps).545

Fig. 13 shows the time variation of the RMSE of the trained deep learning546

solutions for the six test datasets selected in Table 3. In this work, the RMSE547

of the data-driven methods represents the anomaly score that can be used548

to inform classification algorithms for fault diagnostics in the future; hence,549

accuracy values will not be presented. Additionally, for units 304 and 436550

the rule- and model-based measures to detect wing loss from Anderlini et al.551

(2020a) are included, namely the difference in the mean roll angle in ascents552

and descents and the buoyancy offset, respectively. For unit 399, the drag553

coefficient is the model-based metric to detect marine growth as in Anderlini554

et al. (2020b).555

As can be seen in Fig. 13, all methods are effective in detecting wing loss556

for units 304 and 436. In particular, all schemes present a clear separation557

from the initial healthy baseline conditions and a sudden increase in the558

anomaly detection metric after the event, even though the RMSE of the559

autoencoder presents a more clearly defined change than that of the ANN and560

DNN. For the initial dives, the anomaly detection metrics present significant561

oscillations, as these are shallow, highly dynamic dives.562

For unit 399, the autoencoder RMSE and the drag coefficient are the563

clearest indicators of growing levels of biofouling. Conversely, the RMSE of564

the ANN and DNN do not grow significantly.565

The mean and standard deviation of the anomaly score for the three566

methods for the different anomalies can be seen in Table 4. The wing loss567

data in the table has been split before and after the event. Note that the568

absolute magnitude of the anomaly score is not important and varies with the569

method; conversely, the relative change in anomaly score between anomalous570

UGs and the healthy baseline is critical.571

For units 194 (angle of list) and 424 (OMG), the mean anomaly score is572

not dissimilar from the mean values for the baseline value. This indicates573

that without the roll sensor input, the data-driven methods struggle to detect574

an angle of list, as it does not negatively impact the dynamics of the UG.575

Additionally, while the methods are able to generalise well to higher drag576

26



Figure 13: Anomaly detection metrics from the ANN, DNN and autoencoder for the six
verification deployments. The model-based metric is the buoyancy offset (divided by 4)
[N] and the rule-based metric the difference between the mean roll angle in ascents and
descents (divided by 50) [◦] for units 304 and 436 and the drag coefficient for unit 399.

levels caused by large appendages for the OMG unit 424, the anomaly detec-577

tion metric are higher by 30%-50% than for the baseline for unit 423. The578

much shorter deployment for unit 423 hints at possible problems, but further579

investigation is required to confirm the ability of the methods to generalise580

to different platforms.581

It is clear that the autoencoder and deep learning methods are more582

general than the bespoke rule- or model-based heuristics and can help detect583

a good range of anomalies. In particular, the dynamic model is specific584

to Slocum UGs, especially the model for the compressibility and thermal585

expansivity of its hull, and even differs from other UGs, like Seaglider UGs586
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Table 4: Mean (µ) and standard deviation (σ) of the anomaly score for each data-driven
method for the analysed subsets. Note that only the test set has been used for the training
data. The wing loss data has been split before and after the event.

Unit Status µANN σANN µDNN σDNN µauto σauto
345, 397, 419 healthy 0.0137 0.0127 0.0131 0.0120 0.0978 0.0422

194 angle of list 0.0210 0.0047 0.0201 0.0045 0.1399 0.0193
399 biofouling 0.0154 0.0035 0.0153 0.0033 0.1031 0.0185
423 OMG 0.0358 0.0075 0.0401 0.0075 0.2020 0.0138
424 OMG 0.0241 0.0020 0.0302 0.0018 0.1347 0.0045
304 healthy 0.0119 0.0041 0.0127 0.0049 0.1274 0.0229
304 wing loss 0.0465 0.0055 0.0589 0.0050 0.2981 0.0194
436 healthy 0.0191 0.0081 0.0160 0.0083 0.1334 0.0263
436 wing loss 0.0384 0.0049 0.0364 0.0040 0.2630 0.0205

as described in Anderlini et al. (2019a), let alone other MAS technologies.587

Hence, the autoencoder is the most promising method for the fault detection588

of UGs thanks to its generality and superior performance in detecting wing589

loss clearly over the ANN and DNN.590

However, the detection of some anomalies, like the angle of list, would591

need the inclusion of additional sensory or virtual signals, e.g. the angle of592

roll. As the roll sensor is non-critical for the operation of the UG, the roll593

signal is seldom sent to shore via satellite from operators. Hence, changes in594

operational practices may be required for a fuller anomaly detection system.595

Finally, the similar performance of the ANN and DNN methods indicates596

that high effort in feature engineering is not necessary when the dataset is597

large.598

5. Conclusions599

Increasing the use of MAS over the horizon requires on-line remote anomaly600

detection, since adverse behaviour may result in the loss of the vehicle or rep-601

resent risk to other sea users. Currently, vehicles are monitored by expert602

pilots, thus limiting the scale of fleets of MAS that may be deployed simulta-603

neously. In this study, different data-driven solutions including feedforward604

DNN and autoencoders have been introduced that are able to successfully605

detect a range of anomalies, including wing loss and marine growth. The606

data-driven methods are more general than physics-induced bespoke heuris-607

tics of rule- and model-based solutions, and are able to generalise to different608
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sensor configurations for UGs, including OMG. The autoencoder RMSE pro-609

vided the clearest indicator for wing loss, while the change in the ANN and610

DNN RMSE after the sudden event was detectable, but not as clear.611

In this work the fault detection system was developed off-line using data612

collected over past field experiments. The system is being incorporated613

within the NOC’s command and control architecture for MAS over the hori-614

zon. Hence, it will provide remote, on-line condition monitoring of MAS615

during future deployments. The inclusion of additional signals and the con-616

sideration of dynamic effects will be key to extend the system to the detection617

of additional anomalies, e.g. angle of list and sensor loss. Field tests will need618

to be undertaken to collect data for additional anomalies to fully validate the619

efficacy and generality of the data-driven solutions. Furthermore, anomaly620

detection will need to be extended into full fault diagnostics to identify the621

affected subsystems.622
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