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Abstract

SIRF is a powerful PET/MR image reconstruction research tool for processing data and
developing new algorithms. In this research, new developments to SIRF are presented, with focus
on motion estimation and correction.

SIRF’s recent inclusion of the adjoint of the resampling operator allows gradient propagation
through resampling, enabling the MCIR technique. Another enhancement enabled registering
and resampling of complex images, suitable for MRI. Further, SIRF’s integration with the
optimisation library CIL enables the use of novel algorithms. Finally, SPM is now supported,
in addition to NiftyReg, for registration.

Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG,
respectively. These demonstrate the advantages of incorporating motion correction and
variational and structural priors.

1. Introduction

Multi-modality imaging has enabled a leap forward in medical imaging. The combination of
information obtained from two or more physical processes can provide powerful information
for diagnosis, disease staging and/or therapy monitoring. One relatively recent example of this is
the combination of positron emission tomography (PET) and magnetic resonance (MR) systems
into one integrated device. The first modality allows for obtaining quantitative information on
function and metabolism in vivo by measuring the distribution of molecules (“radiotracers”)
labelled with positron-emitting radionuclide. The second modality measures magnetic moments
of 'H to obtain anatomical and functional information, such as blood perfusion, blood flow
velocities or diffusion. The combination of these two modalities has opened a range of new
clinical applications and research opportunities, with current emphasis on brain [1-3] and
cardiovascular [4] imaging. There is a growing number of these high-end devices (currently eight
in the UK).

It is being increasingly recognised and demonstrated that information from complementary
modalities, and from multiple time points, can be successfully combined to deliver image quality
benefits compared to conventional independent processing. One particular feature of PET/MR
is that the acquisitions can be carried out truly simultaneously, giving the opportunity to use
information from both modalities to characterise motion, see [5] and [6] for reviews. Many
methods exploit the simultaneity of MR and PET acquisitions, and the different properties of
the two modalities for mutual benefit. MR generally provides superior structural contrast and
better spatial and temporal resolution. Hence, advanced MR sequences combined with iterative
reconstruction methods are often used to obtain images for motion estimation via registration.
Such techniques allow time-resolved — or more often — gate-resolved (with a “gate” corresponding
to a motion state) images to be obtained, with recent advances for joint cardiac and respiratory
motion estimation and correction [7,8]. However, the flexibility of MR means that often additional
diagnostic acquisitions are required, precluding continuous MR motion acquisition, whereas
PET data are available throughout the acquisition. Hence, other methods build motion models
parametrised by surrogate signals derived from the PET or interlaced MR navigator data [9].
These models can be estimated on part of the data such that other MR sequences can be used
while PET data can still be collected, allowing correction for quasi-periodic motion due to
respiration [10] or head movement [11].

From a researcher perspective, implementing these methods or developing new methods is
very challenging. Although PET/MR manufacturers provide tools for data manipulation and
image reconstruction, these tools may not have all the desired capabilities and are generally not
flexible to customisation due to their proprietary nature. There is therefore strong interest in open
source software (OSS) that can be used for some or all of the data processing.

Examples of MR or nuclear medicine image reconstruction OSS are given in Table 1.
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Software Modalities reconstructed
Gadgetron [12,13] MRI
BART [14] MRI
STIR [15] PET and SPECT
NiftyPET [16] PET
RTK [17] CBCT, CT and in the future SPECT
CASToR [18] PET, SPECT and some CT support
MIRT [19] PET, CT, SPECT, MRI (simulated data)

Table 1: Examples of established OSS for biomedical tomographic image reconstruction and the
individually supported modalities.

However, none of these packages can reconstruct both PET and MR data, and although it
would be possible to use independent reconstruction frameworks, the onus would then be on
the user to deal with file types and orientation conventions, as well as potentially registration
and resampling. Furthermore, a combined framework also allows for multiple image modalities
to be optimised simultaneously for truly synergistic reconstructions, as well as the simultaneous
estimation of motion fields.

We are therefore developing an OSS framework called the Synergistic Image Reconstruction
Framework (SIRF) [20]. This development is led by the Collaborative Computational Platform on
Synergistic Reconstruction for Biomedical Imaging CCP SyneRBI www . ccpsynerbi.ac.uk.

SIRF was developed for synergistic PET/MR image reconstruction, aiming to exploit the rich
cross-modality information during the reconstruction of both the PET and MR images. SIRF
provides researchers with an enabling platform to develop and test novel algorithms on PET/MR
patient data, and aims to eliminate the significant technical challenges when interfacing with data
from different vendors and proprietary software. SIRF integrates with another OSS called the
Core Imaging Library (CIL) [21,22], which provides advanced optimisation and regularisation
methods. In addition, SIRF has capabilities for image registration and motion management,
as outlined in sec. 2, that are crucial for multi-modality data. Operator Discretisation Library
(ODL) [23] is similar in concept to CIL+SIRF, in that it provides a framework for algorithm
development relying on other OSS packages for actual computations. However, there is currently
no support for complex data (needed for MR), nor registration.

This paper briefly describes additional functionality and the enhanced integration with CIL
added to SIRF since the publication of a previous article on the software [20], and describes
an application of this work in the context of respiratory motion correction for simultaneously
acquired PET/MR. Firstly, the use of a regularised reconstruction of gated MR data is illustrated,
allowing derivation of high quality motion fields, which can then be used for a motion-
compensated image reconstruction (MCIR) of the MR data with the fast iterative shrinkage-
thresholding algorithm (FISTA) to reduce motion artifacts. These motion fields are then used in
an MCIR for the PET data together with a convex optimisation algorithm, the primal-dual hybrid
gradient (PDHG) algorithm.

2. Motion estimation and correction in SIRF

Many image reconstruction methods can be formulated as an optimisation problem:

# =argmin D(Az,d) + g(x), 2.1)

zeX
where z € X is the discretised image (represented as a vector), & is the estimated optimal
reconstruction, A is an operator modelling the system (in SIRF, the “AcquisitionModel”), d
is the measured data (represented as a vector), D is the data fidelity function that measures data
goodness-of-fit (often chosen as the negative of the log-likelihood for PET or the L2-norm for MR),

10000000 V 008 " ‘SUBL] “lud Bio-BuiysigndAiaioosiesor-els)


www.ccpsynerbi.ac.uk

and g is a regularisation function imposing desirable properties on the image. In many modalities,
the acquisition model is an affine operator:

Axr =Kz +b, (2.2)

with K the system matrix and b a background term. Details for MR and PET will be given below.

To be able to do motion correction, the data are split into several motion states, usually
called “gates”, resulting in multiple vectors d;. There are numerous techniques for performing
motion correction. Two of the most common methods are the reconstruct-transform-add (RTA)
scheme [24,25], in which correction is performed after reconstruction, and the MCIR scheme [26-
31], in which the motion is incorporated into the acquisition model, one for each gate, resulting
in the following equation:

n
mcir = argmin Y D(Aycir i, di) + 9(2), (2.3)
zeX T
with n the number of gates and Ayjcir ; the acquisition model for the i-th gate (see below) which
includes motion information between the gate and a reference position. MCIR therefore finds a
single image from all the gates.

Both of the RTA and MCIR schemes assume that the motion is known. One common way
to determine the required motion information is to reconstruct motion resolved images (i.e.,
one for each gate) and then estimate the spatial transformation between the gates using image
registration [24,32,33].

As mentioned in Ovtchinnikov et al. [20], registration and resampling in SIRF can be achieved
by using the wrapped functionality provided by NiftyReg [34,35], including estimation of
rigid, affine and non-rigid deformations (modelled via B-splines). This functionality allows the
estimation of motion from reconstructed images of one modality, and then the application
of the deformation fields on images from another modality. Since our previous publication,
SIRF functionality has progressed further, with specific focus on enabling its use with motion
estimation and correction. Some of these enhancements are described below.

A Adjoint resampling

In MCIR, the acquisition model for the motion-corrected image, ArpcIr 4, of a given gate, i, is often
computed as a composition of the acquisition model for the image at gate 4, Aacq i, and a warp
operator, W;:

AMCIR @ = Aacq i © Wi, (2.4)

where o is the composition operator (see sec. 2B). Here, W; is a resampling operator that maps an
image at the reference position to the image at gate i. The resampling uses interpolation (such as
tri-linear or cubic splines) and is a linear operation in terms of the image values.

Many iterative reconstruction techniques rely on the gradient of the data fitting term in eq. (2.1)
with respect to z. Using the chain rule, this can be computed in terms of the gradient of the data
fitting term without warping and the gradient of the warping operator. The latter is given by the
adjoint operation W;". The reader should note that this operation differs from the inverse, W;l,
which is used for the inverse transform in RTA and in many other registration applications. In the
case of motion warping, the adjoint can be thought of as the switching of the interpolation types
(from push to pull or vice versa) when reversing the motion.

The adjoint of the warp operator was implemented in SIRF according to McClelland et al. [36].
The resampling can handle images of different sizes, orientation and voxel size. For a given
deformation field, a SIRF resampler object will perform the warp using the “forward” method
and the adjoint warp using the “backward” method (in Python, aliased to “direct” and
“adjoint”, respectively, for CIL compatibility):
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Adjoint resampling with SIRF

import sirf.Reg as reg

resampler = reg.NiftyResample ()
resampler.set_reference_image (im_ref)
resampler.set_floating_image (im_flo)
resampler.add_transformation (transformation)
resampler.set_interpolation_type_to_linear ()
adjoint_im

resampler.adjoint (im_ref)

Tests were implemented in SIRF and CIL to ensure that these operators W, and Ayicig ;
(without background term) were indeed the adjoint of their forward operators. For two linear
operators A and A* to be considered the adjoint of one another, the following equality must hold:

<Am7 y> = <xv A*y>7 (2.5)

for all  and y, where (.,.) denotes the inner product in the respective space. In the case of
motion warping, x and y are both images, but in the case of the acquisition model, z is in the

reconstruction space (i.e., an image), and y is in the raw acquisition space (such as a sinogram for
PET).

B Enhanced integration with CIL

CIL provides a general optimisation framwework for imaging applications [21,22]. Many of the
provided algorithms solve the following problem:
& =argminf(K(z)) + g(=),
zeX
n (2.6)
= arg min Z fi(K;(2)) + g().

zeX T
The MCIR optimisation problem eq. (2.3) can then be implemented by taking f; and K; as the
data fidelity and MCIR acquisition model for each gate 4, respectively, and g as a regularisation
function. As discussed in the previous sec. 2A, for each motion gate of MCIR, one needs to
compose the acquisition model with the warp operator. This can be achieved by leveraging the
“CompositionOperator” from the CIL code base, an example of which is given below. The
sum over gates can be written using the block framework scheme implemented in CIL:

MCIR problem

from cil.optimisation.operators \
import CompositionOperator, BlockOperator
Ki_list = []
for i in range(n_gates):
Ki_list.append (CompositionOperator (acqg models[i], resamplers[i]))

K = BlockOperator («Ki_list)

where “BlockOperator” constructs an operator from a list that when applied to an
input image, computes the output from each operator in the list and stores the results
in a “BlockDataContainer”. Similar code can be used for the data fidelity term using
“BlockFunction”. The user can then choose the algorithm to solve the optimisation problem
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by taking into account the “smoothness” characteristics of the objective function. With this
consideration, for the MR section of this paper FISTA was used, whilst PDHG was used for the
PET component. For a detailed description of the CIL framework, please refer to [21,22].

C Registering and resampling complex images

Since MR images are reconstructed from complex data in the k-space domain, the resultant images
are also complex. To be able to perform motion estimation and correction with MR images, it was
therefore necessary for SIRF to be able to register and resample complex images. Registering MR
images is relatively straightforward — in most cases, the anatomical information is best described
by the absolute component of the image, and so SIRF was extended to use the absolute part by
default. The ability to resample complex images did not previously exist in NiftyReg, and so this
functionality was added to SIRF.

D SPM

Lastly, the rigid registration functionality of the Statistical Parametric Mapping (SPM) [37] is now
also available in SIRF. SPM is an OSS that has been designed for the analysis of brain imaging
data sequences. Since it was created to process modalities of high temporal resolution, such as
fMRY, it is capable of performing rigid registrations over many time points both quickly and to
sub-voxel accuracy. Registration with SPM requires Matlab [38], which can be cumbersome if the
rest of a workflow has been implemented in another language, such as Python. The wrapping
mechanism employed by SIRF (described in greater detail in [20]) is advantageous in this regard;
the underlying C++ SIRF code interfaces with the Matlab SPM code. This means that, as per the
rest of the SIRF code base, the wrapped SPM functionality can be accessed from Matlab, C++
and Python. Furthermore, by changing just one line of code, the user is able to switch between
NiftyReg and SPM registration routines:

Interchangeability of registration packages within SIRF

import sirf.Reg as reg
if use_niftyreg:

algo = reg.NiftyAladinSym()
else:

algo = reg.SPMRegistration ()
algo.set_reference_image (im_ref)
algo.set_floating _image (im_flo)
algo.process ()
TM = algo.get_transformation_matrix_forward/()

3. Motion correction for cardiac PET/MR

In the following, we present an example of the above-described framework using an in vivo
cardiac PET/MR scan. A non-Cartesian sampling scheme is presented, which allows for the
estimation of respiratory motion. This motion information is then utilised in MCIR to improve
simultaneously acquired MR and PET data.

The data used throughout this section consist of a 3:18 min PET /MR scan, which was carried
out in a patient 182 min after an injection of 341 MBq of '®F-FDG. The MR acquisition used
here was a 3D, three-point Dixon scan (echo times: 1.2, 2.7 and 4.2 ms) with a field-of-view of
400 x 400 x 400 mm?® and a spatial resolution of 1.9 mm along foot-head and 3.2 x 3.2 mm? in
the transversal plane. The readout was oriented along the head-foot direction and the number of
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acquired readout lines was such that the k-space was oversampled in the phase encoding plane
by approximately a factor of 2. In the following, only the first echo was used.

A Respiratory motion estimation and correction for cardiac MR

In this section, a demonstration is given of the estimation of respiratory motion from a 3D
non-Cartesian MR scan. The motion information is then used in an MCIR to improve the MR
image quality. A new acquisition model was combined with the iterative reconstruction schemes
available in CIL to ensure high image quality, even for highly undersampled data. 3D non-rigid
motion fields are obtained using spline-based image registration and then applied during image
reconstruction to minimise respiratory motion artifacts.

3D k-space Phase encoding pattern Motion binning
K 1 N

-0.1 ky 0.1 -Ol.5 ky 0.5 _0'_5 ky 05

Figure 1: Golden Radial Phase Encoding (GRPE). GRPE combines Cartesian sampling along k.
with radial sampling along ky and k.. The Golden radial sampling ensures that the k-space
data are well distributed in the ky—Fk. phase encoding space even after splitting the data into
N different motion gates (motion binning).

(i) Golden Radial Phase Encoding

Non-Cartesian MR sampling schemes are of great interest for motion-estimation and motion-
correction. Even if the data are separated retrospectively into different motion gates (e.g., different
phases of the breathing cycle), the k-space data are still well distributed in k-space covering both
high and low spatial frequencies. In addition, high image quality can be achieved even from very
few acquired k-space points (i.e., high undersampling) utilising iterative image reconstruction
schemes. The challenge of non-Cartesian trajectories is that the standard fast Fourier transform
(FFT) cannot be applied directly to the data. The non-uniform fast Fourier transform (NUFFT)
is required instead, to allow for the transformation of non-Cartesian k-space data to Cartesian
image data. Here, as illustrated in fig. 1, a golden radial phase encoding (GRPE) sampling scheme
was used [39,40]. This is a 3D acquisition scheme in which frequency encoding (k) is carried out
along parallel lines. Phase encoding points are obtained along a radial pattern in the 2D phase-
encoding plane ky—k.. All phase encoding points along a radial line are acquired and the angle
between two successive GRPE lines is calculated based on the Golden angle of 111.24°. Fig. 1 also
shows two examples of the distribution of k-space points after separating it into different motion
gates.
The acquisition model Agrpg for this non-Cartesian trajectory implemented in SIRF is,
therefore:
Agreei = FiCe, (3.1

where C'is the coil sensitivity map for each coil c and F is the Fourier transform which is used to
transform the data of each gate 7 from image to k-space. For Cartesian sampling schemes, F' can
be realised by FFT followed by a sampling mask to select the data points for each gate. For the
non-Cartesian GRPE, F' consists of FFT along the k;-direction before applying the NUFFT in the
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ky—k plane. GRPE allows for the calculation of C' from the data itself using the fully sampled
k-space centre in the phase encoding plane. The implementations used to realise this acquisition
model are wrapped in SIRF from Gadgetron [12,13].

Gate 3

(b)

Figure 2: Respiratory-resolved gates reconstructed (row a) without and (row b) with total
variation (TV) regularisation. Columns indicate various motion gates. The horizontal line
represents the superior-most diaphragm position in the reference gate.

(i) Reconstruction of respiratory gates

The k-space data were acquired during free-breathing. A self-navigator was extracted from the
central k-line (ky = k. = 0). Data were separated into eight different respiratory gates based on
the amplitude of the self-navigator [41,42]. A sliding window reconstruction with an overlap of
25% was used, leading to an undersampling factor of approximately three for each gate. Choosing
the number of gates is a trade-off between emerging undersampling artefacts and a more accurate
motion estimation. Previous studies have shown accurate respiratory motion correction of the
liver (Where the motion amplitudes exceed those expected in cardiac applications) with as few as
five gates [43]. The gates were subsequently reconstructed using the implementation of FISTA [44]
in CIL, without and with spatial TV regularisation [45]. We refer to [21] for more information on
how to use FISTA via CIL. The MR optimisation problem was mapped to eq. (2.6) using:

* K; = AGRPE i, as described in sec. 3Ai and eq. (2.4);

e the fidelity functions f;(z)=||(K;(z) — d;)||* as the least squares function due to the
Gaussian noise distribution for MR data, with d; representing the data for the i-th
respiratory gate; and

e gas the TV or total generalised variation (TGV) [46] regularisation function.

Fig. 2 shows four of these eight motion gates comparing both reconstruction algorithms.
Changes in the anatomy during the breathing cycle are clearly visible. The TV regularisation
leads to suppression of undersampling artifacts and an improved depiction of the anatomy.

(iii) Estimation of respiratory motion fields

The respiratory gates were then used in a non-rigid image registration to estimate the 3D
respiratory motion fields, i.e., for each voxel its changes during the respiratory cycle were
estimated. This was done via the SIRF wrapper to the NiftyReg spline-based registration
algorithm as described in sec. 2.

End-expiration was selected as reference motion gate. Pairwise image registration was carried
out to obtain the forward transformation from the reference gate to all other respiratory gates. An
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example of the estimated motion for a single gate is shown in fig. 3, which is superposed on top
of the reconstruction of that gate.

I

o AF

s

Figure 3: Motion fields estimated for a single gate, represented as a warped Cartesian grid,
superposed on top of the corresponding reconstruction of that gate. For emphasis, full inspiration
is shown as this has the largest motion compared to the reference state (end-expiration). Here, the
colour gradient from green to red describes increasing displacement amplitude.

MCIR + TV MCIR + TGV

Figure 4: Uncorr: image reconstruction without motion correction with blurring due to respiratory
motion clearly visible (orange arrow heads). MCIR: MCIR without regularisation. MCIR+TV:
MCIR with TV regularisation. MCIR+TGV: MCIR with TGV regularisation. Regularisation leads
to a suppression of undersampling artifacts while preserving even small image features such as
lung vessels (white arrows).

(iv) Motion-corrected MR image reconstruction

The MCIR optimisation problem was constructed as in sec. 2B and solved with FISTA.
Fig. 4 shows the final MCIR images reconstructed with FISTA without and with additional
regularisation. Compared to the uncorrected reconstruction, the minimisation of motion artifacts
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using MCIR is clearly visible. Further improvement in image quality due to the suppression of
residual undersampling artifacts using TV and TGV regularisation can also be seen.

B Incorporating estimated motion into PET reconstruction

As PET/MR acquisitions are simultaneous, the motion fields from the previous section can
be used to reconstruct a motion-corrected PET image. In practice, there can be a coordinate
transformation between the PET and MR images, for instance due to gantry misalignment. This
was estimated by performing a rigid registration between simultaneous MR and PET images,
where the PET image was reconstructed without attenuation correction (AC). The MR-derived
deformation fields were then transformed into the PET coordinate system.

As mentioned above, the GRPE acquisition was carried out as a three-point Dixon scan. This
allowed for the separation of fat and water tissue and the calculation of a segmentation-based
AC map [47]. The AC map was obtained from the MCIR MR images to ensure it was also in the
reference motion state. The construction of the MR-based AC map was not carried out in SIRF as
it required segmentation tools not yet implemented in SIRF.

In PET, Aacq is given for gate i as:

Aacqi = BiSiG + bi7 (32)

where G is the geometric projector (e.g., produced via ray tracing); S; is the acquisition sensitivity
model; b; is a background term obtained by summing an estimate for the accidental and scattered
coincidences; and f; is the relative time corresponding to gate ¢, so that > ; 3 = 1. S, is, in turn, a
product of detector and geometric sensitivity and attenuation factors. In the current experiment,
the accidental and scatter estimates were computed from the ungated data and b; = 3;b. The
reader should note this is a simplified assumption that is only approximately valid under small
deformations (validated for brain scans in [48]). In other contexts, independent scatter estimates
may become necessary. Attenuation factors depend on the motion state. Therefore, for known
motion, as is the case with MCIR, attenuation factors are computed by warping the AC maps into
the correct position prior to starting the reconstruction, such that .S; is fixed for each gate. The
implementations used to realise this acquisition model are wrapped in SIRF from the Software
for Tomographic Image Reconstruction (STIR) [15].

The warped forward model Apjcir ; is defined in eq. (2.4) and (3.2). We model the data d;
corresponding to gate i as Poisson variables. As the Poisson log-likelihood can be written in
terms of the Kullback-Leibler (KL) divergence (up to constant terms), the MCIR problem for PET
corresponds to solving eq. (2.3) with D as the KL divergence and g = ||V - ||2,1 as the isotropic TV.

In order to reformulate the problem as an instance of the general framework in eq. (2.6), let us
define Kj; as the linear part of Apjcir i, that is to say K; = 3;5;G o Wy, and f;, g as:

fi(y) =KL (d;, y + b;),
g(z) = al|Vz|2,1.

For a convex function f, the convex conjugate function is defined as f*(u) =sup(u,z) — f(z).
x
The minimisation problem eq. (2.6) can be solved via the saddle-point problem:

n
arg min sup > (Kiw,yi) — £ (i) + g(2), 3.3)
(yi) i=1

which introduces the dual variable y = (y1, ... yn). In order to solve eq. (3.3), we use the PDHG
algorithm [49]. PDHG solves eq. (3.3) by alternatively minimising with respect to the primal
variable z and maximising with respect to the dual variable y = (y1, ..., yn), which it achieves
using the proximal operators of g and of f*. While the proximal operator of the Kullback-Leibler
divergence convex conjugate admits an explicit expression, this is not the case for the proximal
operator of the TV regulariser, which is approximated with FISTA in inner iterations.
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Figure 5: Comparison of TV-regularised PDHG reconstructions with (top) and without (bottom)
motion correction for the axial (left), sagittal (centre) and coronal (right) views. Both PET
reconstructions were run for 1000 iterations with regularisation strength of o = 3. In the motion
corrected case, a sharpening of the papillary muscles can be seen.

In order to observe the effect of motion correction, we compare the reconstructions obtained
with the forward models A,cq i and Ancir i = Aacq ¢ © Wi- The reconstructions were performed
under identical algorithms schemes (PDHG with the same number of iterations, amount of
regularisation and step-size parameters). The results are shown in fig. 5. The effect of respiratory
motion correction is that the cardiac structures are sharper, particularly at the level of the papillary
muscles. However, these results are preliminary and need further optimisation of regularisation
and optimiser settings. For example, we found that the number of iterations required to obtain
images of good visual quality was higher in the MCIR context than without gating. This will be
studied in future work.

4. Conclusion and Outlook

In this paper we have presented recent improvements of SIRF regarding PET /MR, concentrating
on motion correction and in particular MCIR. We have shown how respiratory gates can be
reconstructed from a non-Cartesian 3D MR scan and how non-rigid respiratory motion fields
can be obtained using the NiftyReg integration in SIRF. These motion fields can then be used for
MCIR of both MR and PET. The integration of CIL with SIRF allowed for the use of regularised
FISTA and PDHG optimisation schemes.

The modular nature of SIRF and CIL enables rapid prototyping of algorithms. We have
demonstrated how MCIR can be implemented in a scheme that is very similar across different
imaging modalities. This allows ideas from different communities of imaging and inverse-
problem scientists to be conveniently shared. Furthermore, we showed how the consistent
interface between SIRF and CIL allows individual components, including regularisers and
optimisers, to be interchanged and compared while keeping the remaining components static.
This enables researchers to optimise methods for their application.

While we have only utilised spatial regularisation for the reconstruction of the respiratory
gates, the application of additional regularisation along the motion dimension should further
improve image quality and hence motion accuracy [50,51].
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The simultaneous data acquisition and the motion correction using the same motion
transformation for PET and MR ensures their optimal spatial alignment. Therefore, the
information of one modality could also be applied as guided regularisation for MCIR of the
other modality to further improve image quality [52-55], and ultimately joint (or “synergistic”)
reconstruction [56-59].

In this paper, motion estimation has been carried out as a separate step to MCIR and requires
the reconstruction of motion-resolved gates. Although TV regularisation ensured high image
quality even for high undersampling factors of the GRPE MR data, this approach still requires
that sufficient data are available in each gate to allow an accurate motion estimation. In addition,
the information about respiratory motion available from PET was not utilised at all for motion
estimation. Registration of multi-modal data has been shown to be beneficial when correcting for
both respiratory motion and cardiac contraction [7]. Combining MCIR and motion estimation into
a single optimisation would overcome these limitations. By carrying out the reconstruction of a
motion-corrected MR and PET image while also optimising the joint motion fields would provide
the optimal synergistic use of the simultaneous PET/MR acquisition [26,60-65]. To achieve this,
the calculation of gradients with respect to the motion field parameters (e.g., spline weights for
the spline-based motion fields used in NiftyReg) is required and will be part of future work on
SIRF.

While the use of OSS for prototyping of reconstruction algorithms provides many benefits,
there are also limitations to SIRF when compared with vendor’s proprietary software. Vendors
have often highly optimised their particular algorithms for their system. When using SIRF, the
user will need to determine appropriate parameters and hyperparameters, e.g., for regularisation
strengths but also for physical properties like system resolution if performing resolution
modelling. Similarly, the engines used by SIRF have been optimised for research exploration
rather than performance. Hence, computation time when using SIRF is longer than when using
vendor software.

There is increasing interest in integrating deep learning (DL) into PET reconstruction [66].
Common DL frameworks include PyTorch [67] and Tensorflow [68] in Python, as well as Matlab’s
deep learning toolbox [69]. Furthermore, the use DL for image registration is a field that is rapidly
expanding [70,71], and which can be leveraged by SIRF. These frameworks can all be used in
conjunction with SIRF to implement and explore state-of-the-art methods.

New multi-modality systems are now available or under development, for instance
SPECT/MR [72] and (non-simultaneous) SPECT/PET/CT such as the recent Mediso AnyScan
clinical system and pre-clinical Bruker Albira Si, enabling opportunities for multi-radiotracer
studies. At the same time, top-of-the-range multi-modality systems are expensive and combining
single-modality scans from different time-points and systems can provide more cost-effective
solutions and faster worldwide adaptation, which again demands the ongoing developments in
spatial alignment. While imaging research and software methods are both developing rapidly,
the challenging opportunity for cross-modality synergistic methods remains open. We intend
to continue to develop SIRF for researchers to be able to exploit synergy in multi-modal,
multi-contrast, multi-time point information for a greater range of applications.
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