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 1 

ABSTRACT 1 

Humans are uniquely capable of adapting to highly changing environments by updating 2 

relevant information and adjusting ongoing behaviour accordingly. Here we show how this 3 

ability —termed cognitive flexibility— is differentially modulated by high and low arousal 4 

fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants 5 

as they transitioned towards sleep or physical extenuation. The results revealed, in line with 6 

our pre-registered hypotheses, that low arousal leads to diminished behavioural performance 7 

through increased decision volatility, while performance decline under high arousal was 8 

attributed to increased perseverative behaviour. These findings provide evidence for distinct 9 

patterns of maladaptive decision-making on each side of the arousal inverted u-shaped curve, 10 

differentially affecting participants' ability to generate stable evidence-based strategies, and 11 

introduces wake-sleep and physical exercise transitions as complementary experimental 12 

models for investigating neural and cognitive dynamics. 13 

 14 

 15 

INTRODUCTION 16 

Making mistakes is inherent to learning and the accomplishment of any task. We make 17 

mistakes every day, even when faced with the same task repeatedly. Our ability to learn from 18 

these errors and flexibly adapt ongoing behaviour according to changes in the environment is 19 

critical for our survival. This ability —termed cognitive flexibility— depends on our innate 20 

capacity to establish associations between stimuli (S), responses (R), and outcomes (O), as well 21 

as to integrate previously acquired knowledge and skills into effective strategies for coping 22 

with similar future demands.1 Here, we implement a Probabilistic Reversal Learning (PRL) 23 

task to study the modulatory effect of low and high arousal on cognitive flexibility —24 

participants continue to perform as they fall asleep or with increasing physical exercise— to 25 

map either side of the Yerkes-Dodson Curve (1908).2 26 

Cognitive flexibility is often studied using PRL tasks, typically assigning probabilistic 27 

reinforcement contingencies to abstract S-R associations, that are later abruptly reversed, 28 

requiring participants to learn new S-R reinforcement contingencies by trial and error to 29 

overcome prepotent ones3. Efficient performance relies on learning from the reinforcement 30 

received4, the estimation of the likelihood that a reversal may occur,5,6 and the continuous 31 

integration of a history of choices and reinforcements.7 Indeed, evidence from both human and 32 

animal studies suggests that different high- and low-order strategies or series of rules are 33 

adopted during reversal learning, leading to maladaptive response patterns when the external 34 

pressures change or when the internal milieu varies.7,8 Parsing the microstructure of learning 35 

derived from trial-by-trial responses enables the dissociation of the cognitive processes and 36 

behavioural strategies that drive subjects’ choices during reversal learning. Here we propose 37 

that arousal fluctuations may differentially modulate cognitive flexibility leading to distinct 38 

maladaptive behavioural patterns of performance.9 39 

Fluctuations in arousal and alertness (hereafter described jointly as “arousal”) occur 40 

constantly across the day but are exacerbated during transitions toward strained states such as 41 

sleep10 or physical extenuation,11 where arousal levels change drastically in a progressive and 42 

nonlinear manner.12,13 These arousal fluctuations play a crucial role in modulating cognition, 43 
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 2 

facilitating or hindering certain cognitive processes and performance to internal and external 44 

stimuli. 14,15,16,17,18  45 

The interaction between arousal and cognition has been traditionally approached from 46 

the perspective proposed by Yerkes and Dodson in 1908.2 According to their famous inverted 47 

U-shaped law, the optimal level of cognitive performance in complex tasks is reached at 48 

moderate levels of arousal, whereas deviations from this optimal arousal point, below or 49 

beyond, result in cognitive performance impairments. Though reductionist, the inverted U-50 

shaped law represents a useful minimal framework to characterize the neural and cognitive 51 

dynamics of many physiological states across the arousal spectrum. Among these physiological 52 

states, researchers have paid special attention to reduced arousal states, including sleep stages,19 53 

sedation,20 sleep deprivation,21 motivation22 and fatigue.23 54 

Sleep can be used as the gold standard model of transition toward low arousal.10 This 55 

area looking at the interaction between homeostasis and cognitive function is understudied due 56 

to the complexity of capturing dynamically metastable states like mild sedation24,25 and 57 

drowsiness.17 When falling asleep, individuals manifest a wide range of changes, from 58 

physiological to phenomenological, that are categorized into several well-described sleep 59 

stages.26 One of these stages is drowsiness, a transitional stage of consciousness between 60 

attentive wakefulness and light sleep, characterized by a progressive and nonlinear loss of 61 

responsiveness to external stimuli which does not immediately imply unconsciousness.,27,28,29 62 

Drowsiness, as well as similar reduced arousal states, has been repeatedly associated with an 63 

impairment of cognitive processing, and particularly the capacity to deal with conflicting 64 

information,18 attentional performance,30 and perceptual decision-making.31 However, in 65 

drowsiness, and even during highly reduced arousal states, pre-attentive and early bottom-up 66 

attentive processing can still be accomplished with and without conscious awareness. 17,32,33 67 

 The transition towards the other side of the arousal spectrum (i.e., heightened arousal 68 

states) has received even less attention.34 The absence of a theoretical model for progressive 69 

physiological transitions towards high arousal states, has also contributed to a lack of advance 70 

in the field. Here, we consider endurance physical exercise as a useful experimental model of 71 

arousal transition upwards, with many commonalities with sleep transition. A single bout of 72 

endurance physical exercise (e.g., running or cycling) up to physical extenuation involves a 73 

complex transition encompassing a wide range of changes (e.g., neural, motor, endocrinal, 74 

phenomenological, etc.), that are also categorized into several well-described stages, from 75 

resting, through the aerobic and the anaerobic thresholds, up to the limit where the individual 76 

has to stop.35 This highly fluctuating transition has been also associated with changes in 77 

cognitive processing to internal and external stimuli.36,37,38 In particular, high-order top-down 78 

processes that govern goal-directed behaviour in changing environments (i.e., cognitive 79 

control) appear to benefit from increases in the level of arousal39 up to a certain exercise 80 

intensity. Further intensity increments approaching and exceeding the anaerobic threshold 81 

seem to hinder cognitive performance,36,37,38,40 in line with the Yerkes-Dodson law prediction.  82 

Sleep and physical exercise provide complementary perspectives on the cognitive 83 

dynamics, and experimental models, when the arousal level is altered. However, and despite 84 

the fact that both sides of the arousal spectrum exhibit similar cognitive performance 85 

impairments, they cannot be treated as mirroring states in terms of cognitive performance 86 

without a fine-grained differentiation of the behavioural dynamics that lead to these global 87 
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impairments. Furthermore, the theoretical differences in the transitions towards sleep or 88 

complete (physical) exhaustion have to be considered in the assumptions and interpretations of 89 

this and future studies. Thus, it is crucial to ask when arousal is altered (increased or decreased), 90 

which specific processes of cognitive flexibility and information processing are affected, and 91 

whether low and high arousal states are characterized by different strategic behaviours 92 

underlying decision-making. It should be understood that the physiological processes 93 

underlying the change in performance seen in different Dodson-Yerkes experiments since 1908 94 

are different at each side of the curve, and it should be expected that these changes in arousal 95 

modulate differently the cognitive abilities. Here, we use a PRL task to disentangle the 96 

behavioural dynamics of cognitive flexibility as they get modulated by ongoing fluctuations in 97 

arousal levels and to further delineate the microstructure of learning derived from trial-by-trial 98 

responses to conflicting evidence. In particular, we manipulated arousal level to facilitate 99 

natural transitions to low alertness, from awake to asleep; or to elicit high arousal, instructing 100 

participants to exercise during 60 minutes at the highest intensity and effort possible without 101 

reaching premature exhaustion. During both arousal modulations, participants performed a 102 

PRL task, requiring the adaptation of behaviour following changes in reinforcement and 103 

punishment, as well as the maintenance of strategic response patterns in the face of misleading 104 

(probabilistic) feedback.  105 

Based on the premises that (1) drowsiness hinders the extraction of task-relevant 106 

information from external stimuli and its integration, fragmenting specific aspects of cognition 107 

while preserving crucial executive control processes;18,31,33,41 (2) drowsiness has been 108 

associated with more liberal decision-making;17,30,31 (3) moderate-to-high intensity endurance 109 

exercise leads to a selective enhancement of executive control processes while lower and higher 110 

intensities result in an impairment or minimal effect;40,42,43 and (4) high arousal promotes 111 

habitual responding and reduced engagement of complex cognitive strategies;44,45,46 predicted 112 

that behavioural performance would be enhanced in moderate-intensity physical exercise, 113 

while drowsiness and high-intensity exercise would lead to diminished performance in light of 114 

the inverted U-shaped Yerkes-Dodson Law. Specifically, we hypothesized that reduced arousal 115 

states would be associated with an impairment of performance (compared to baseline), which 116 

would be attributed to a tendency to apply a simple strategy (win-stay/lose-shift) instead of 117 

using an integrated history of choices and outcomes to drive performance (probabilistic 118 

switching behaviour). In contrast, while we also expected an impairment of performance during 119 

heightened arousal states, we hypothesized it would be attributed to a failure to disengage from 120 

ongoing behaviour (perseveration). In addition, we hypothesized that altered arousal states 121 

might reduce the ability of participants to apply a proper higher order strategy, resulting in wide 122 

periods of time-on-task in which participants would perform the task simply responding to the 123 

tones (i.e., automatic rule) but without applying any strategy (i.e., higher order rule). All these 124 

hypotheses, together with the analysis plan, were pre-registered after data collection.9  125 

 126 

RESULTS 127 

To investigate the modulatory effect of arousal fluctuations on cognitive flexibility, a PRL task 128 

was carried out with human participants (n=100) while they were transitioning towards 129 

drowsiness or physical extenuation. Participants were instructed to associate an auditory 130 

stimulus (S) —high pitch sound or low pitch sound— with a response (R) button —left or right. 131 
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In this auditory version of the PRL task, each S-R association leads to an auditory outcome (O) 132 

—correct (ding sound) or incorrect (white noise)— which participants use to assess their 133 

choice, and apply this knowledge to guide the next choices. Indeed, participants were explicitly 134 

told that there was a rule connecting each of the auditory sounds to a corresponding button 135 

(e.g., the low pitch sound could correspond to the left button, and the high pitch sound to the 136 

right button or vice-versa), which they had to figure out based upon instructive feedback they 137 

would receive after each R. Additionally, they were instructed on two key issues: 1) the S-R 138 

rule might switch after a certain amount of time —becoming the opposite of what it was 139 

previously—  and that no specific indication whether such a switch had occurred would be 140 

provided; 2) although the majority of the time the feedback would be truthful, sometimes it 141 

could be false and in essence mislead to them. Therefore, the task entails the use of, at least, 142 

two rules to success, as participants have to press a button after each auditory stimulus (i.e., 143 

automatic rule) and to use an integrated history of S-R-O associations to determine the correct 144 

S-R association (i.e., high order rule). Once participants reach 90% accuracy or greater on the 145 

latest 10 trials, the implicit abstract S-R association is reversed, and participants have to infer 146 

the new association from the feedback received. The number of responses needed to attain a 147 

reversal (RAR) of the abstract association is used as the main index of performance. We 148 

hypothesized9 that reduced arousal states would lead to reductions in behavioural performance 149 

compared to baseline arousal state; while heightened arousal states would lead to improved 150 

performance relative to baseline, but only to an optimal point (i.e., moderate arousal) after 151 

which the performance will be deteriorated with further increases in arousal level (see figure 152 

1A). These hypotheses were formulated in line with the famous psychology inverted u-shaped 153 

law originally attributed to Yerkes and Dodson (1908)2 relating arousal modulation 154 

performance in complex tasks, but later more formally defined by Broadhurst (1958)47 and 155 

Brown (1961).48 156 

Note that, as a probabilistic task, the feedback provided is not always truthful nor 157 

reliable and misleads the participant 20% of the time (see figure 1B). Thus, the participant 158 

could correctly apply the S-R association and press the correct button in response to the 159 

auditory stimulus, and still receive negative feedback, thus indicating an incorrect choice. This 160 

scenario of conflicting evidence can lead participants to two different maladaptive response 161 

patterns (see figure 1C) while performing the task: 1) switching the pattern choice across trials 162 

with little (i.e., one negative feedback against the choice) or no evidence (i.e., no feedback 163 

against the choice) of an actual rule change (probabilistic switching); or 2) sticking with the 164 

previous choice despite having strong evidence (i.e., two or more negative feedbacks against 165 

the choice) of an actual rule change (perseveration). Relying on these response patterns lead to 166 

poor performance,7 as the optimal strategy in this task is to stick with the previous choice with 167 

zero or one negative feedback against the choice, and to switch the pattern choice if two or 168 

more consecutive negative feedbacks against the choice happen.  169 
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 170 
Figure 1. Experimental design and arousal level classification: A) Schematic representation of the 171 

experimental design and main hypotheses. Arousal level was endogenously manipulated by facilitating the natural 172 

transition of participants from awake to sleep, or instructing them to exercise during 60’ at the highest intensity 173 

and effort they could maintain without reaching premature extenuation. Notice that half of the participant 174 

transitioned towards drowsiness, while the other half transitioned towards physical exertion. A probabilistic 175 

reversal learning task was assessed continuously during the arousal modulation. Optimal performance of the task 176 

was expected at moderate arousal state (exercising at moderate intensity), while lower (drowsiness) and higher 177 

(exercising at high-intensity) arousal state were expected to result in task performance deterioration. B) In this 178 

auditory version of the probabilistic reversal learning paradigm, an auditory stimulus was presented on each trial, 179 

and participants had to associate the sound with a response button, left or right. After that, auditory feedback was 180 

provided according to the ongoing implicit rule. Notice that the feedback provided was not always truthful nor 181 

reliable, and attempted to mislead the participant 20% of the time. C) Task trials were grouped into sequences of 182 

trials following a particular rule (trend) where a particular sound was implicitly associated with a response button 183 

(e.g., high pitch sound with the left button, and low pitch sound with the right button). Participants were instructed 184 

to infer the rule from the provided feedback to assess their previous choice and apply the knowledge of their 185 

accuracy to guide the next choices, knowing that the rule might change after a certain time. Based on the feedback 186 

received, participants could make probabilistic or perseverative errors in the following trials. D) Automatic 187 

classification of arousal during a drowsy session (representative participant). The pink line depicts changes in the 188 

theta:alpha ratio (occipital electrodes cluster) during the pre-trial period (2 seconds before the auditory stimulus 189 

onset). The horizontal bars on top represent trials classified as baseline (grey) or low arousal (blue). The variability 190 

in the reaction times (green circles) closely follows the changes in theta:alpha ratio. Notice that circles on the 191 

horizontal axis (reaction time equal to zero) were non-responsive trials, usually during low arousal (drowsy) 192 

periods but also observed during exercise periods. E) Automatic classification of arousal during a physical 193 

exercise session (representative participant). The red line depicts changes in the heart rate during the pre-trial 194 
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 6 

period (2 seconds before sound onset), and the horizontal bars on top represent trials classified as baseline (grey), 195 

moderate (yellow) or high arousal (red). Similar to the low arousal session, the reaction times (green circles) 196 

fluctuates with the changes in heart rate. 197 

 198 

Arousal modulates probabilistic information during a stream of conflicting evidence. 199 

First, we calculate the average RAR per participant in each arousal state (low, baseline sitting, 200 

baseline cycling, moderate, high). To account for the dependencies potentially generated by 201 

any procedural differences between Experiments, we fitted RAR using hierarchical linear 202 

mixed-effects modelling, with arousal as fixed effect, and participant nested into Experiment 203 

as random effects. The model showed a strong effect of arousal on RAR, F (3,113.02) = 11.59, 204 

p < 0.001, β = 0.61 (details on testing model assumptions can be found in the supplementary 205 

material), indicating that the processing of probabilistic information that allows the detection 206 

of changing patterns in a stream of conflicting evidence was modulated by the arousal level. 207 

Next, we checked for non-linearity in the relationship between arousal and RAR, to test the 208 

famous u-shaped curve. As expected, we found that the quadratic (AIC = 1243.6; BIC = 1262.3; 209 

R² = 0.40) outperformed linear fitting (AIC = 1264.8; BIC = 1280.4; R² = 0.23), confirming a 210 

possible curvilinear pattern (U shaped) of the effect of arousal on RAR (see figure 2), with a 211 

reliable increase in the number of responses required by the participants to complete a trend 212 

reversal (i.e., decrease of performance) as the level of arousal progress towards the extremes 213 

of the defined arousal range, confirming, for reversal learning, convergence with the Yerkes-214 

Dodson law, later reformulated by Broadhurst in 1958.47 215 

Splitting the comparisons to its specific baselines per arousal condition (i.e., sitting 216 

baseline compared to low arousal in the drowsiness condition; cycling baseline compared to 217 

moderate and high arousal in the exercise condition) yielded a reliable increase of RAR in low 218 

arousal, t (124.62) = 5.67, p < 0.001, β = 1.02, and high arousal state, t (117.93) = 2.57, p = 219 

0.011, β = 0.45, compared with their corresponding baselines. Notably, baseline performance 220 

did not differ across arousal conditions (see supplementary figure 1). Contrary to what we 221 

expected, moderate arousal state was not associated with a decrease of RAR (the expected peak 222 

in performance), relative to baseline (t (114.85) = 1.61, p = 0.11, β = 0.25,). Moreover, we did 223 

not find evidence for a potential dual-task confounding effect in the heightened arousal 224 

conditions (see supplementary material). In sum, these findings provide evidence for an 225 

impairment in the processing of probabilistic information when the arousal level is altered, 226 

regardless of the side of the arousal spectrum. 227 

Jo
urn

al 
Pre-

pro
of



 7 

 228 
Figure 2. Number of responses needed to attain a trend reversal as a function of the arousal state. A) Violins 229 

and overlaid box plots of mean responses to reverse across arousal states. In box plots, middle black mark indicates 230 

the median, and bottom and top edges indicate 25th and 75th percentiles, respectively. The upper and lower 231 

whiskers indicate the maximum value of the variable located within a distance of 1.5 times the interquartile range 232 

above the 75th percentile and below the corresponding distance to the 25th percentile value. Surrounding the 233 

boxes (shaded area) is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin 234 

sizes. Jittered dots represent the averaged response to reverse score for each participant in each arousal state. 235 

Linear mixed-effects model analysis revealed a reliable quadratic fitting between arousal and task performance, 236 

outlined by the dashed line. Low and high arousal states were associated with a worse task performance relative 237 

to their own baseline arousal states. Moderate arousal state was not associated with the expected optimal 238 

performance as no differences were found with the baseline arousal state. B) Baseline differences of each 239 

participant across altered arousal states are represented by the bars (grey bars indicate that these participants 240 

needed more trials to attain a trend reversal in the baseline compared with the altered arousal states; blue, yellow 241 

and red bars depict that these participants needed more trials to attain a trend reversal when arousal level was 242 

altered -increased or decreased- compared with baseline arousal state). Participants are sorted by performance 243 

difference between baseline and the arousal state. Upper and bottom panels show a consistent impairment of task 244 

performance across participants in low and high arousal states. Non-reliable differences were found between 245 

moderate and baseline arousal. 246 

 247 

Different underlying mechanisms explain decreased performance in low and high arousal 248 

states 249 

In the analysis above, performance under high and low arousal states was compared 250 

irrespective of the strategy participants may have used to solve the task. To test for the 251 

hypotheses of the differential mechanism driving changes in performance for each arousal side 252 

of the u-shaped curve, we calculated: a) probabilistic switching, as the proportion of trials when 253 

the participants change the pattern choice with little or no evidence (i.e., zero or one negative 254 

feedback against the choice); and b) perseveration, the likelihood of sticking with the previous 255 

choice despite strong evidence (i.e., receiving two or more negative feedbacks in a row) that 256 

the pattern has changed. Probabilistic switching and perseveration are proportion indices of 257 
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strategic behaviour based on the probability of switching when negative feedback is provided. 258 

Thus, they range between 0 and 1, allowing comparison across arousal states while accounting 259 

for potential experimental differences (e.g., number of trials). We hypothesized that the 260 

impairment of performance in low arousal would be primarily attributed to an increase in 261 

probabilistic switching, relative to the baseline arousal state; and in contrast, the observed 262 

impairment of performance in high arousal state will be primarily due to an increase in 263 

perseverative behaviour. To test these hypotheses, we fitted probabilistic switching and 264 

perseveration (separately for low and high arousal states) using the hierarchical linear mixed-265 

effects model structure defined previously. The analyses revealed that, while the probabilistic 266 

switching increased consistently across subjects during low arousal state compared with 267 

baseline arousal, F (1,56) = 14.78, p < 0.001, β = 1.01, R² = 0.21, no reliable differences were 268 

observed in perseveration between these arousal states (F < 1). On the other hand, high arousal 269 

states led to a reliable increase in perseverative behaviour compared to the baseline state, F 270 

(1,67) = 9.12, p = 0.035, β = 0.34, R² = 0.12, with no reliable differences observed in 271 

probabilistic switching (F < 1). These results suggest that altered arousal states lead to distinct 272 

maladaptive decision-making patterns that affect participants' ability to generate stable 273 

evidence-based strategies, although evidence-driven responses were present (see figure 3A). 274 

To further prove that the impairment in performance in low and high arousal states 275 

could be attributed to the different maladaptive behavioural patterns, we carried on a mediation 276 

analysis separately for each arousal state (low, high). We first confirmed that probabilistic 277 

switching and perseveration have an effect on the RAR, while controlling for the arousal state 278 

(see figure 3B). These results, together with the previous analyses where we found an effect of 279 

arousal state on probabilistic switching and perseveration, revealed a full mediation between 280 

these variables. As figure 3B illustrates, the regression coefficient between arousal and RAR, 281 

and the regression coefficient between probabilistic switching and RAR were statistically 282 

reliable, showing a full mediation of probabilistic switching on the effect of low arousal on 283 

RAR. The bootstrapped standardized indirect effect of low arousal on RAR, mediated by 284 

probabilistic switching, was 0.65 (p < 0.001), and the 95% confidence interval ranged from 285 

0.29 to 1.07. A similar fully mediation effect was observed in high arousal state, showing that 286 

the effect of high arousal on behavioural performance was fully mediated via the perseverative 287 

behaviour. The bootstrapped standardized indirect effect was 0.10 (p = 0.014), and the 95% 288 

confidence interval ranged from 0.14 to 0.24. As predicted, participants showed an impairment 289 

of performance during low arousal state, relative to baseline arousal, which was primarily 290 

attributed to an increase of probabilistic switching (i.e., changing pattern choice with little or 291 

no evidence of an actual rule change). In contrast, while participants also showed an 292 

impairment of performance during high arousal state, relative to the baseline arousal, it was not 293 

attributed to an increase in probabilistic switching, but to an increase in perseverative behaviour 294 

(i.e., sticking with the previous choice despite consecutive negative feedbacks). 295 

 296 
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 297 
Figure 3. Maladaptive behavioural patterns across participants in low and high arousal states. A) Violins 298 

and overlaid box plots of the percentage of change from baseline to low (blue) and high (red) arousal states in 299 

probabilistic switching and perseveration. In box plots, middle black mark indicates the median, and bottom and 300 

top edges indicate 25th and 75th percentiles, respectively. The upper and lower whiskers indicate the maximum 301 

value of the variable located within a distance of 1.5 times the interquartile range above the 75th percentile and 302 

below the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded area) is a rotated 303 

kernel density plot, which is comparable to a histogram with infinitely small bin sizes. Jittered dots represent the 304 

averaged response to reverse score for each participant in each arousal state. B) Mediation model diagram to 305 

illustrate that the general impairment in task performance found in low and high arousal states was mediated by 306 

different maladaptive behavioural patterns. Dashed lines (indirect effects) represent the effect of low (blue) and 307 

high (red) arousal on task performance (indexed by the averaged responses to attain a trend reversal) through 308 

probabilistic switching and perseveration, respectively. Solid lines depict direct effects between variables. Grey 309 

lines represent the absence of a direct effect of low arousal on perseveration and high arousal on probabilistic 310 

switching. Notice that a direct effect of an independent variable (arousal) onto the mediator (probabilistic 311 

switching, perseveration) is a prerequisite for mediation being possible. Standardized β regression coefficients are 312 

indicated in each effect (* depicts p < 0.05). Accordingly, the values of all effects are expressed as the number of 313 

standard deviations from the mean. For example, the direct effect of high arousal on RAR (β = 0.22) implies that 314 

a standard deviation change of 1 in the arousal variable would result in a standard deviation increase of 0.22 in 315 

RAR. 316 

 317 

Arousal disrupts the reversal strategy  318 

To maximise performance in the task, a good strategy is to not fall for the false feedback and 319 

stand your ground until the next feedback, as well as switch to the second consecutive feedback. 320 

The fact that participants sometimes needed an unreasonable high number of responses to attain 321 

a reversal in low and high arousal states suggests the existence of sections of time on task in 322 

which they responded to the tones but could not apply the strategy rules (see fig 4A). These 323 

sections without clear strategic behaviour, that we call breakdowns, have been often neglected 324 

in previous studies using PRL tasks as failures of compliances or “bad participant”. The 325 

transient on/off nature of these breakdowns may provide valuable insight into the behavioural 326 

dynamics of participants in different states of arousal. We hypothesized that breakdowns 327 

sections would increase in low and high arousal states, relative to a baseline arousal state. First, 328 

we traced the sections of the task (more than 20 trials) in which participants did not attain a 329 

reversal. Second, we calculated the proportion of time these sections represented to the total 330 

time-on-task, and finally, we implemented a hierarchical linear mixed-effects model with the 331 
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 10 

structure defined in previous analyses, separately for each arousal state (low, high), with the 332 

number of breakdowns as the index of performance. As hypothesized, low and high arousal 333 

states lead to longer breakdown sections compared with baseline arousal state (t (127.99) = 334 

3.40, p < 0.001, β = 0.13; t (121.69) = -2.97, p = 0.003, β = 0.11). Subject-by-subject results 335 

(fig 4C) show a consistent increase of breakdowns across participants in low arousal state. 336 

Although high arousal states also showed a reliable increase of breakdowns as a group, this 337 

effect was less systemic, with half of the participants showing the opposite effect, no difference 338 

or no breakdowns. 339 

 340 

 341 
Figure 4. Behavioural strategy breaks as arousal changes. A) Automatic classification of a section of time 342 

where a representative participant responded without a clear behavioural strategy. The green circles show RTs 343 

and the blue line shows the ongoing accuracy of the task (10-points moving average). The grey shaded area flanked 344 

by the zigzagging vertical lines depicts the section of time classified as a breakdown. B) Violins and overlaid box 345 

plots of the averaged percentage of time-on-task without strategy across participants in low and high arousal states, 346 

compared with their respective baselines states. In box plots, the middle black mark indicates the median, and 347 

bottom and top edges indicate 25th and 75th percentiles, respectively. The upper and lower whiskers indicate the 348 

maximum value of the variable located within a distance of 1.5 times the interquartile range above the 75th 349 

percentile and below the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded area) 350 

is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin sizes. Jittered dots 351 

represent the averaged percentage of time-on-task without a strategy of each participant in each arousal state. 352 

Linear mixed-effects model analyses revealed that low and high arousal states lead to longer periods of breakdown 353 

relative to the baseline arousal state. Interestingly, violin plots show a considerable number of participants who 354 

had no breakdowns at baseline arousal states, something that completely disappears in low arousal state (all 355 

participants had breakdowns), and that is reduced in high arousal state. C) Baseline differences of each participant 356 

in low and high arousal states represented by horizontal bars (grey bars indicate that these participants spent more 357 

time performing the task without a particular strategy in the baseline arousal state compared with the altered 358 
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arousal states; blue and red bars depict that these participants were applying behavioural strategies less time when 359 

arousal level was altered (increased or decreased) than in baseline arousal state. Participants are sorted by 360 

performance difference between baseline and the arousal state. Both panels show a consistent impairment of task 361 

performance across participants in low and high arousal states.  362 

 363 

DISCUSSION 364 

In the present study, we facilitated natural transition of healthy participants towards the borders 365 

of non-pharmacological arousal states (drowsiness, physical exertion) to investigate the 366 

behavioural dynamics of cognitive flexibility. In line with our pre-registered hypotheses,9 the 367 

findings revealed a quadratic-like pattern (inverted U-shape) of the effect of arousal 368 

fluctuations on cognitive performance. As the level of arousal progressed towards the extremes 369 

of the defined arousal range reversal learning performance decreased, in agreement with the 370 

predictions of the Yerkes-Dodson law (1908).2 Although cognitive flexibility diminished in 371 

both under high and low arousal states, different maladaptive behavioural patterns drove this 372 

performance impairment. As predicted, the performance decline exhibited by our participants 373 

under drowsy states was primarily attributed to a more decision volatility (i.e., shifting pattern 374 

choice with little or no evidence of reinforcement contingencies change). In contrast, 375 

participants also showed a decline in performance during high arousal state but attributed to 376 

increased perseverative behaviour (i.e., sticking with a particular pattern choice despite having 377 

strong evidence that the contingencies have changed). Our findings also revealed that most 378 

participants undergo prolonged periods of time-on-task in which they seem unable to apply any 379 

specific higher order strategy. These breakdown periods, which can last for several minutes, 380 

are more frequent and sustained during high or low arousal. In short, our results provide solid 381 

evidence for distinct maladaptive decision-making patterns under altered arousal states, 382 

differentially affecting the participants' ability to generate stable evidence-based strategies. 383 

 Arousal fluctuations thus seem to elicit a distinctive behavioural distortion of cognitive 384 

flexibility as further indicated by the microstructure of learning derived from trial-by-trial 385 

responses to negative feedback. Healthy participants under high arousal exhibited normal 386 

acquisition of S-R reinforcement contingencies but perseverative response patterns when 387 

contingencies were reversed. This failure to disengage from ongoing behaviour is a 388 

translational phenomenon strongly linked to impulsivity and compulsivity,49 and prevalent in 389 

numerous neuropsychiatric and medical conditions.7,50,51 For instance, patients with lesions that 390 

include ventral prefrontal cortex and orbitofrontal cortex,52 as well as chronic cocaine users53 391 

and patients with schizophrenia,54 show normal acquisition of S-R contingencies but are 392 

severely impaired when those S-R reinforcement contingencies are abruptly reversed, 393 

exhibiting perseverative responding to the previously reinforced S-R contingency. Altogether, 394 

these findings suggest that high arousal undermines healthy individuals’ capacity to engage in 395 

complex cognitive strategies driving them to rely on habitual response patterns, which, 396 

paradoxically, might also enhance behavioural control in terms of response inhibition.46 Our 397 

findings not only further the understanding of the processes underlying automatized behaviour 398 

and habitual response tendencies, but high arousal may be used as a model to inform both 399 

impulsive and compulsive aspects of psychopathology. 400 

In contrast, healthy participants under low arousal seemed unable to maintain the 401 

learned S-R reinforcement contingency and started to deviate from the evidence, revealing a 402 
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volatile pattern of behaviour. Since a crucial aspect of the PRL experimental design was the 403 

existence of a 20% of misleading feedback, to maximise performance, individuals should not 404 

fall for the false feedback and —ideally— stand their ground until the next feedback. Further 405 

and as part of a successful strategy, they should switch if two or more consecutive feedbacks 406 

are given against the previously reinforced choice pattern. Consequently, adaptive behaviour 407 

during the task requires a balance between both types of behaviour (stability and flexibility). 408 

Those participants under low arousal fell repeatedly for the misleading feedback, switching 409 

prematurely after negative feedback. Furthermore, they showed increased decision volatility 410 

by spontaneously switching even without any negative feedback. This volatile pattern of 411 

cognitive flexibility has been linked to serotonin55 and dopamine systems,56 and is observed in 412 

patients with major depression,57,58,59 often linked to either an oversensitivity to punishment or 413 

an impaired control over negative feedback.60,61 It is reasonable to speculate that low arousal 414 

levels render individuals more sensitive in updating S-R reinforcement contingencies, rather 415 

than increase sensitivity to punishment as in major depression. Moreover, low arousal may 416 

increase volatility by decreasing attentional resources, leading to spontaneous explorations, 417 

higher RT variability and periodic omissions (see supplementary figure 2). 418 

The fragmentation of cognitive control due to changes in arousal has been primarily 419 

shown in sleep deprivation62,63,64,65,66 and not in spontaneous fluctuations of alertness as we 420 

show in this study. The increased volatility in the PRL with low arousal suggests a decrease in 421 

cognitive control that is different from an increase in perseverative behaviour seen in high 422 

arousal. Indeed, we have previously shown that decreased levels of arousal can fragment or 423 

reconfigure specific aspects of cognition while preserving crucial executive control processes 424 

such as the capacity to detect and react to incongruity,18 the efficiency in perceptual decision 425 

making,31 and the precision of conscious access.17 Here, we add further evidence showing that 426 

individuals under reduced arousal state, although struggling to maintain stable evidence-based 427 

decision-making patterns, are able to learn new S-R reinforcement contingencies, 428 

demonstrating flexibility of the human brain to adapt to increasing levels of endogenous 429 

(arousal) noise. The evidence of cognitive and —indirectly— neural reconfiguration of 430 

cognitive control networks suggests compensatory mechanisms elicited by the change in 431 

arousal. 432 

Upon further examining the microstructure of learning derived from trial-by-trial 433 

performance of the PRL task, we uncovered the existence of prolonged periods of time-on-task 434 

in which participants did not seem to apply any particular high-order behavioural strategy. 435 

Although these breakdown periods emerged regardless of the arousal level, they were prevalent 436 

under low and high arousal states, lasting from few to several minutes. Remarkably, the 437 

transient on/off nature of these breakdowns suggests that extreme arousal levels alternate 438 

between different metastable cognitive states. The first state can be defined by a relatively 439 

successful application of the reinforcement information where participants can navigate the 440 

uncertainty of the PRL, while in the other metastable state they seem to only apply the simple 441 

auditory-motor S-R rule to respond to the auditory tones but are unable to use choice history 442 

to develop a successful strategy. 443 

In the context of this study, arousal as a biological construct defined by the homeostatic 444 

regulatory capacity of the system and its responsiveness,67 helps to link drowsiness and 445 

increased alertness during physical exercise in a common framework where the predictions of 446 
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the Yerkes-Dodson inverted U-shaped law can be experimentally tested. Despite the obvious 447 

difference at the biological, neural and psychological level between both sides of the curve, the 448 

common decrease in performance highlights the commonalities between the extremes in human 449 

performance, adding to the fact that both —sleep and physical exertion— emerge as natural 450 

transitions from a similar state (resting) traversing different stages, and exhibit nonlinear 451 

dynamics and hysteresis processes in their transitions.12 Thus, drowsiness and physical exertion 452 

provide complementary perspectives on cognitive dynamics when the arousal level is altered. 453 

The present findings point out their differences in the cognitive fragmentation leading to a 454 

general decline in task performance.  455 

Transitions towards drowsiness or physical exertion entail changes in levels of arousal, 456 

which are in turn associated with a wide range of alterations (e.g., neural, motor, endocrinal, 457 

phenomenological, etc.) that might cause the cognitive fragmentation described in the present 458 

study. For instance, during a single bout of aerobic exercise, as intensity increases from low to 459 

high, there is a release of epinephrine and, to lesser extent norepinephrine, into the blood from 460 

the adrenal medulla.15 This exercise-induced increase in brain concentrations of 461 

catecholamines has been proposed as a physiological mechanism underlying cognitive 462 

performance during and after physical exercise.15 Similarly, when falling asleep, we experience 463 

a cascade of changes in almost every system of the organism, including the somatic and 464 

autonomic nervous systems,12 which might be playing a crucial role in cognitive processing. 465 

The extent to which each of the changes that occur during these transitions (drowsiness and 466 

physical exertion) are responsible for the cognitive adaptations we report here is something 467 

that future studies might reveal, for example, combining measurements of the autonomic 468 

nervous system and brain functioning, which would make it possible to gain more insight into 469 

the underlying physiological mechanisms involved in arousal-related changes in cognition. 470 

These inferences of this study are hence mediated by physiological processes that might 471 

partially explain the cognitive modulations in an independent manner if dissociated from 472 

arousal changes. 473 

Though the Yerkes-Dodson law was not initially formulated to be a general rule to 474 

apply to all psychology subfields (learning, motivation, emotion, etc.), through the years, and 475 

with the pressure to find common mechanisms in psychology, the findings initially defined for 476 

learning were further extended and reinterpreted as a law about the relationship between 477 

arousal and other physiological constructs to perceptual and cognitive performance.68 Despite 478 

this overgeneralization from its genuine formulation and its reductionist nature, our findings 479 

rely on such inverted U-shaped law as a basic useful theoretical framework, providing an 480 

attractive theoretical model to characterize the neural, cognitive and behavioural dynamics 481 

involved in the impact of arousal fluctuations in a wide range of physiological states and 482 

neuropsychiatric conditions. 483 

 Our findings bring some generalizations about the need to extend the traditional 484 

framework of understanding the interplay between cognitive dynamics and arousal through the 485 

prism of the homeostatic steady-state dynamics using pharmacological interventions34 or 486 

transient alterations of emotional state.69 In addition to this classical approach, we believe that 487 

drowsiness and physical exertion provide fruitful —naturally occurring— alterations of the 488 

arousal level with a preserved capacity to behaviourally respond, which can be utilized to study 489 

the modulation of neural function and cognitive processing. In the traditional steady-state 490 
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approach, such natural fluctuations of the arousal level may be undetected,70 hindering or 491 

distorting cognitive and neural markers of crucial aspects of information processing.17 492 

Pharmacological and lesion perturbations of the brain are regarded as causal in cognitive 493 

neuroscience and regarded as stronger in their explanatory power than conditions relying on 494 

stimuli or psychological modulations. Arousal is an internally modulated change that can be 495 

used to study cognition and may be regarded in the strong causality range due to its partial 496 

independence from psychological processes.18 The cases of drowsiness and physical exertion 497 

as causal models to study the neural mechanism of cognitive flexibility may prove to be very 498 

useful in the exploration of how cognition is fragmented or remain resilient under (reversible) 499 

perturbations of arousal17,33,71 Our findings highlight that further research should focus on the 500 

rapidly changing dynamics of brain function and cognitive processing that appear to capture 501 

key dynamics relevant to our behavioural and perhaps even phenomenological experience, as 502 

we drift into strained physiological states. 503 

 504 

MATERIALS AND METHODS 505 

Participants 506 

A total sample of 100 participants of an age range between 18 and 40 years old was included 507 

in the present study. All participants reported normal binaural hearing, no visual impairment 508 

and no history of cardiovascular, neurological or psychiatric disease. They were asked to get a 509 

normal night rest on the day previous to testing, and not to consume stimulants like coffee or 510 

tea on the day of the experiment. We report how we determined our sample size, all data 511 

exclusions, all inclusion/exclusion criteria, whether inclusion/exclusion criteria were 512 

established prior to data analysis, all manipulations, and all measures in the study. 513 

 The first experiment (herein Experiment#1) consisted of 35 participants (15 female; age 514 

range 18-40). In addition to the general aforementioned inclusion criteria, only easy sleepers, 515 

as assessed by the Epworth Sleepiness Scale (ESS),72 were selected to increase the probability 516 

that participants fell asleep. Recruited participants were considered healthy with relatively high 517 

ESS scores but not corresponding to a condition of pathological sleep such as hypersomnia 518 

(i.e., scores 7–14). They were recruited via the Cambridge Psychology SONA system. Note 519 

that the target sample size was 50 participants transitioning towards drowsiness. However, after 520 

collecting the first 35 we decided to make slight modifications to the experimental protocol by 521 

increasing the time of the drowsy blocks to obtain a higher proportion of trials in low arousal. 522 

For this reason, we decided to collect a second sample (Experiment#2) which consisted of 15 523 

participants (11 female; age range 18-40), where we included these key modifications to the 524 

experimental protocol (see Procedure section for more details). Inclusion criteria and 525 

recruitment processes were similar to Experiment#1.  526 

The third experiment (herein Experiment#3) consisted of 50 participants (6 female; age 527 

range 19-39). Additionally to the common inclusion criteria, only individuals who reported at 528 

least 8 hours of cycling or triathlon per week were selected. Well-trained cyclists were selected 529 

because they are used to maintaining the pedalling cadence at high intensity during long periods 530 

of time. Furthermore, they are able to keep a fixed posture over time, which notably reduces 531 

movement artefacts. They were recruited from the University of Granada (Spain) through 532 

announcements on billboards and previous databases. 533 
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All participants from the three experiments gave written informed consent to participate 534 

in the study and received a remuneration of 10€ per hour (i.e., approximately 30€ per 535 

participant). The Cambridge Psychology Ethics Committee and the University of Granada 536 

Ethics Committee approved the study (CPREC 2014.25; 287/CEIH/2017). 537 

 538 

Experimental task 539 

A modified version of the probabilistic reversal learning paradigm was used in all three 540 

experiments, which was characterized by employing auditory stimuli and an abstract rule (see 541 

figure 1B-C). In this task, participants learnt to choose one of two randomly presented tones 542 

by receiving instructive auditory feedback tones after each response, indicating either a correct 543 

or incorrect choice. When participants reached a 90% accuracy in the last 10 trials, 544 

reinforcement/punishment contingencies were reversed so that the previously reinforced tone 545 

was punished and vice versa. Within each reversal trend, a 20% probabilistic error trial was 546 

included in which “wrong” feedback was given for correct choices, even though the 547 

reinforcement contingencies had not changed. Participants were instructed to infer the rule 548 

from the feedback received, knowing that sometimes it might be misleading and that the rule 549 

might change after a certain time (see supplementary material for more details on the task 550 

instructions). The stimuli were binaurally presented at a random time interval (between 1000 551 

and 1500 ms) during 500 ms. They had to respond to both targets by pressing a button with 552 

their right or left hand.  553 

 554 

Procedure 555 

In Experiment#1, participants were fitted with an EGI electrolyte 129-channel cap (Electrical 556 

Geodesics, Inc. systems) after receiving the task instructions and subsequently signing the 557 

informed consent. The whole session was completed in a comfortable adjustable chair with 558 

closed eyes. Task instructions were to respond as fast and accurately as possible, reducing body 559 

movements as possible and keeping the eyes closed. In the beginning, the back of the chair was 560 

set up straight and the lights in the room were on. Participants were asked to remain awake 561 

with their eyes closed whilst performing the first block (awake block) of the task which 562 

consisted of 480 trials, lasting 30 min approximately. Then, the chair was reclined to a 563 

comfortable position, the lights were turned off and participants were offered a pillow and a 564 

blanket. They were explicitly told that they were allowed to fall asleep during this part of the 565 

task and that the experimenter would wake them up by making a sound (i.e. knocking on the 566 

wall) if they missed 5 consecutive trials. This block (drowsy block) also consisted of 480 trials. 567 

Then, the sequence of two blocks (awake-drowsy) was repeated. In total, participants 568 

completed 1920 trials divided into 4 blocks of 480 trials each one. The whole session lasted for 569 

3 hours approximately.  570 

In Experiment#2, the procedure was similar to the Experiment#1 except for the time to 571 

fall asleep that was increased to get a higher amount of low-arousal (i.e., drowsy) trials. 572 

Participants completed a total of 2120 trials, divided into 4 blocks. The order of the blocks was 573 

the same for all participants and followed the same sequence as in Experiment#1: awake-574 

drowsy-awake-drowsy. Awake blocks had 100 trials each one, while drowsy blocks consisted 575 

of 960 trials each one. The session lasted for 3 hours approximately.  576 
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In Experiment#3, upon arrival to the laboratory, participants were seated in front of a 577 

computer in a dimly illuminated, sound-attenuated room with a Faraday cage. They received 578 

verbal and written instruction about the experiment and were prepared for electrophysiological 579 

measurement. They were fitted with a 64-channel high-density actiCHamp EEG system (Brain 580 

Products GmbH, Munich, Germany) and a Polar RS800CX heart rate (HR) monitor (Polar 581 

Electro Öy, Kempele, Finland). Notice that EEG data was acquired but was not used to test the 582 

hypotheses of this study, and will be reported elsewhere. The whole session consisted of 4 583 

different blocks. The first one was an adaptation (non-exercise) block in which participants 584 

performed 100 trials while resting in a comfortable chair. Then, they got on a cycle-ergometer 585 

and completed 100 trials while warming-up at light intensity. Subsequently, they completed a 586 

self-paced 60’ time-trial (i.e., high-intensity exercise) while performing the task, resulting in 587 

850 trials approximately (the number of trials slightly varied as a function of the reaction time 588 

of participants). In line with previous experiments from our laboratory,73,74,75 in the self-paced 589 

time-trial participants were instructed to achieve the highest average power (watts) during the 590 

60’ time-trial exercise, and were allowed to modify the power load during the exercise. They 591 

were encouraged to self-regulate effort in order to optimize physical performance without 592 

reaching premature exhaustion. That self-regulation yielded fluctuations of effort during the 593 

60’ exercise period, which allowed us to study the effect of arousal on the management of 594 

probabilistic information. Once the 60’ time-trial block was finished, participants completed 595 

the last block while cooling down at light intensity, which was also composed of 100 trials. All 596 

participants completed the blocks in the same order, lasting around 3 hours.  597 

 598 

Arousal classification 599 

To capture the arousal fluctuations during the transitions towards drowsiness or physical 600 

exertion at the single-trial level, we implemented two different analytical approaches which 601 

were pre-registered after data collection.9 602 

In Experiment#1 and Experiment#2, the arousal level was endogenously manipulated 603 

by facilitating the natural transition from awake to sleep. This transition reduces arousal and 604 

yields a considerable proportion of drowsy yet responsive trials as seen in previous experiments 605 

from our laboratory.17,30,71 This way, we were able to study the effect of arousal (i.e. baseline 606 

arousal [awake] trials vs. low-arousal [drowsy] trials) on the management of probabilistic 607 

information. Given that awake-sleep transition is characterized by a decreasing alpha range 608 

activity, together with an increasing theta range activity (Hori et al., 1994), progression of 609 

drowsiness was quantified by the spectral power of respective EEG frequency bandsi. We 610 

computed the spectral power of EEG frequency oscillations for each trial from -2000 ms to 0 611 

ms in respect to the onset of a target tone using continuous wavelet transform, set from 3 cycles 612 

at 3 Hz to 8 cycles at 40 Hz. Theta (4-6 Hz) and alpha (10-12 Hz) power were then averaged 613 

                                                
i Deviation from pre-registration. Originally, we aimed to use the automated offline method developed by 

Jagannathan and collaborators based on frequency and sleep grapho elements to detect EEG micro variations in 

alertness and characterize awake and drowsy trials.76  However, our PRL task design, especially the pretrial 

duration, which was limited to 2 seconds, did not fit the task features recommended by Jagannathan and 

collaborators (e.g., 4 seconds pretrial duration) for a reliable characterization of awake and drowsy trials. So we 

decided to classify awake/drowsy trials based on theta:alpha ratio, as seen in previous experiments from our 

laboratory.17,30,71 
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individually for each trial across central (E36, E104) and occipital (E75, E70, E83) electrodes 614 

for theta and alpha rhythms respectively. Finally, theta/alpha ratio was computed and smoothed 615 

with a 4-point moving average resulting in a single “sleepiness” value per trial. Visual 616 

inspection of theta/alpha ratio and RT dynamics of each participant confirmed the presence of 617 

clear sleepiness-related fluctuations during the experimental session, especially during drowsy 618 

blocks. Those participants who did not show clear fluctuations of the theta:alpha ratio were 619 

removed from final analyses (5 subjects). Then, each trial for each participant was initially 620 

categorized as drowsy (top 33% of lower theta-upper alpha ratio scores) or alert (lowest 33%). 621 

Further, following the sleep hysteresis physiology criteria77 isolated awake trials within 622 

prolonged periods of drowsy (≥10 trials) were considered as drowsy to account for the gradual 623 

homeostatic change during the sleep transition. In addition, the first 100 trials of each block 624 

(awake and drowsy) were considered as awake trials. 625 

In Experiment#3, the arousal level was endogenously manipulated by facilitating the 626 

natural transition from a resting state to high-intensity physical exercise. This transition 627 

increases the arousal level progressively, with continuous fluctuations that affect cognitive 628 

performance as seen in previous studies from our laboratory.40,75,78,79 We captured these arousal 629 

fluctuations at a single trial level (moderate arousal trials, high arousal trials) by using the HR 630 

response. To address the intersubject variability, HR data were transformed into differential 631 

scores relative to the HRmax estimated using the equation of Tanaka et al., (2001)80, a reliable 632 

and well-established method to calculate HRmax in healthy individuals. Then, moderate and 633 

high arousal trials were characterized based on percentage relative to HRmax. HR between 634 

60% and 80% of HRmax were considered as moderate arousal, while HR higher than 80% 635 

HRmax were considered as high arousal. Due to technical issues with HR monitoring, 4 636 

subjects were removed for further analyses. 637 

 638 

Behavioural data analysis 639 

In probabilistic reversal learning paradigms, participants are instructed to infer an abstract rule 640 

form the feedback they receive, knowing that sometimes it might be misleading and that the 641 

rule might change. Since a reversal is triggered when a high-level accuracy is reached, the 642 

number of responses needed to attain a reversal is considered one of the main indices of 643 

performance. To delineate the microstructure of learning derived from trial-by-trial responses 644 

we considered the likelihood of switching the pattern choice across trials as a function of the 645 

amount of consecutive negative feedback received. The likelihood of switching was considered 646 

the main index of strategic behaviour, and was divided into 2 different strategies: i) 647 

Probabilistic switching: the proportion of trials when the participants change the pattern choice 648 

with little (one negative feedback against the choice) or no evidence (no feedback against the 649 

choice) of an actual rule change; ii) Perseveration: likelihood that participants stay with the 650 

seemingly incorrect choice even after receiving two or more negative feedbacks in a row).  651 

The number of breakdown sections was also used as an index of performance. We 652 

defined a breakdown as a section of time in which participants ‘lose’ the task, and do not follow 653 

any strategy, being unable to reach a change of trend during more than 20 consecutive trials. 654 

RT, accuracy, and omissions were also checked as secondary indices of behavioural 655 

performance. 656 
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Participants with overall accuracy under 60% or less than 3 reversals attained during 657 

the baseline period were excluded (i.e., 4 subjects from Experiment 1; 2 subjects from 658 

Experiment 2; 6 subjects from Experiment 3). 659 

 660 

Statistics 661 

Single-subject analysis  662 

In order to test the hypotheses, we took a set of strategies. We first captured the direction of 663 

effects for each of the key performance variables (i.e., RAR, RT, accuracy, omissions, and 664 

switching likelihood), and contrasted them for each participant, obtaining an indication of the 665 

direction and strength of the effects per participant. Descriptive and distribution measures, as 666 

well as single-subject statistics, were used as guidance of the variability of effect size in single 667 

variables, and for guiding the previously defined exploratory hypotheses. Per participant, effect 668 

sizes were calculated and depicted for each of the key performance variables to check the effect 669 

size of individual differences across arousal states.ii 670 

 671 

Group analysis 672 

To investigate the management of probabilistic information as a function of arousal, we 673 

conducted mixed-effects analyses including data from the three experiments collapsed into a 674 

single dataset with RAR as the main index of performance. In face of the diversity of samples’ 675 

characteristics and experiment features, we fit RAR using hierarchical linear mixed-effects 676 

modelling, as implemented in the lme4 R package.81 We treated RAR as obeying to a 677 

hierarchical data structure with arousal as fixed effect, and participant (level 2) nested into 678 

experiment (level 1) as random effects. This random part was common to all models. We tested 679 

the specific hypothesis by using the same approach based on multilevel linear mixed-effects 680 

modelling. Different variables (i.e., probabilistic switching, perseveration, breakdowns, RT 681 

variability and omissions) were analysed in a multilevel data structure, with the fixed (arousal) 682 

and random effects (experiment/participant) adjusted to the specific hypothesis tested. 683 

Models were compared using the Akaike Information Criterion (AIC), and a likelihood 684 

ratio test. Notice that AIC does not assume that the true model is among the set of candidates 685 

(and is just intended to select the one that is closest to the true one). In our case, fitting decisions 686 

were not about the truthiness of models, but to include or not a given factor. For model 687 

comparisons performed to identify the best-fitting model, a relatively lenient 0.010 p-value 688 

criterion was adopted.  689 

Causal mediation analyses were conducted to estimate the proportional direct and 690 

indirect effects of arousal on task performance through probabilistic switching and 691 

perseveration strategies (mediators) using the “mediation” package in Riii.82 This method 692 

allowed us to assess a confidence interval of the mediation effect itself using rigorous sampling 693 

techniques with fewer assumptions of the data. The average causal mediation effect was 694 

                                                
ii Deviation from pre-registration. Spearman rank-order correlation tests and Bayes factors were finally not 

performed to estimate the degree of association between switch likelihood as a function of consecutive negative 

feedbacks and arousal states. We will check the slope and effect. 
iii Deviation from pre-registration. The mediation analysis was not initially included in the pre-registration, 

however, we decided to run it in order to test whether the impairment in performance in low and high arousal 

states could be attributed to the different maladaptive behavioural patterns. 
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determined using a nonparametric bootstrapping method (bias-corrected and accelerated; 1000 695 

iterations) and reported as standardized β regression coefficients for direct comparison with 696 

each other. Confidence intervals were obtained using a quasi-Bayesian approximation. 697 

 698 

Pre-registration 699 

The hypotheses and analyses plan were pre-registered in the OSF repository after data 700 

collection but prior to data observation and analysis (https://osf.io/tzw6d). All deviations from 701 

the pre-registered procedures and analysis plans are transparently identified in the manuscript. 702 

 703 

Data and code 704 

Data and codes used for the analyses presented here are available at the OSF repository 705 

(https://osf.io/xk379/). Raw data may be found at http://doi.org/10.5281/zenodo.4559813. 706 
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