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Abstract 

Both mild and severe epilepsies are influenced by variants in the same genes yet an 

explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 

Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected 

individuals and 15,678 controls. While prior Epi25 studies focused on gene-based collapsing 

analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, 

we compared the genetic architectures of severe developmental and epileptic encephalopathies 

(DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired 

focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-

based clustering which included broader ancestries than previously possible and revealed novel 

associations. Using the missense intolerance ratio (MTR), we found that variants in DEE cases are 

in significantly more intolerant genic sub-regions than those in NAFE cases. Only previously 

reported pathogenic variants absent in available genomic datasets showed a significant burden in 

epilepsy cases compared to controls, and the ultra-rare pathogenic variants associated with DEE 

were located in more intolerant genic sub-regions than variants associated with non-DEE 

epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in cases compared to 

controls. Finally, analysis of variants in genes without a disease association revealed a significant 

burden of loss-of-function variants in the genes most intolerant to such variation, indicating 

additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic 

and sub-genic intolerance are critical characteristics for interpreting the effects of variation in 

genes that influence epilepsy.   



Introduction 

Epilepsy is a clinical diagnosis in which the individual has an enduring predisposition to 

seizures. Although the most severe types most commonly begin in childhood with profound impact, 

epilepsies can begin at any age with a cumulative incidence approaching 4%.1-3 While the genetics 

of the epilepsies are complex, uncovering pathogenic variants can, in some cases, provide 

opportunities for targeted or precision medicines.4; 5 Whole exome sequencing case-control studies 

have led to multiple insights into the epilepsies such as the contribution of de novo variants in 

developmental and epileptic encephalopathy (DEE [MIM: 308350]), the role of the GABA pathway 

in genetic generalized epilepsy (GGE [MIM: 600669]), and the link between non-acquired focal 

epilepsy (NAFE [MIM: 604364, 245570]) with GATOR1 complex genes.6-10 DEEs are a severe 

form of early onset, intractable epilepsy associated with developmental delay.8; 11-14 In contrast, 

GGE and NAFE, characterized by generalized seizures and focal seizures, respectively, are more 

common and generally less severe.1; 2; 15-17 Yet, exome sequencing has revealed that a set of 43 

genes typically associated with DEE also harbor ultra-rare variants in milder epilepsies.7; 9  

It is unknown how these variants cause such different epilepsy phenotypes despite being 

drawn from a set of shared genes and even from within the same gene. The likelihood of a gene 

being associated with disease can be predicted in silico, in part, by a given gene’s intolerance to 

functional variation in the general population.18-20 Epilepsy causing variants tend to be rare in the 

general population and located in the least tolerant genes.7; 9; 18; 21 While genic intolerance may 

help determine the likelihood of a gene-disease association, it does not clarify the differential 

impact of variants within the same gene.22 Variants within the same gene may lead to widely 

different epilepsy phenotypes.23-29 To predict the differential effects of two variants within the same 

gene requires an understanding of sub-genic intolerance as different regions or domains will have 

varied importance for the protein’s function and may therefore contribute differentially to disease 

phenotype or severity.22 Consistent with this idea, distributions of disease mutations often cluster in 

specific genic sub-regions.30 In general, epilepsy variants cluster in the most intolerant genic sub-



regions.22; 31-33 The relationship between the severity of epilepsy caused by SCN2A variants and 

sub-genic intolerance has been explored,32 but a more systematic study of the association of sub-

genic intolerance and epilepsy severity has not been undertaken. Given that a single variant may 

lead to variable phenotypes,34-37 we do not expect sub-genic intolerance to explain all severity 

variability, but a deeper investigation will add to our understanding of the complex sequelae of a 

single variant. 

The Epi25 Collaborative (Epi25) is the largest epilepsy exome analysis to date with more 

than 200 partners from 40 research cohorts contributing exome and phenotype data from more 

than 19,000 individuals with epilepsy (see Web Resources). The aspiration of the collaborative is 

that extensive exome data combined with accurate phenotypic data will allow for well-matched 

cohorts and clarify genotype-phenotype relationships in epilepsy and has already yielded rich 

results for rare variants in the epilepsies.9 A dataset of this magnitude and detail allows us to 

examine the presence of curated variants from a clinical database such as ClinVar.38; 39 Similarly, 

we are able to test for the burden of damaging variants in the ~15,000 genes not-yet-associated 

with Mendelian disease to detect the potential for epilepsy-gene discovery. Combining expansive 

genetic data from Epi25 and recently developed sub-genic intolerance metrics, we show that in a 

set of genes harboring missense variants in both milder and more severe epilepsies, variants in 

more severe epilepsies are preferentially located in less tolerant genic sub-regions. Furthermore, 

only ultra-rare (i.e. not found in a public database) Pathogenic/Likely Pathogenic40 ClinVar variants 

are increased in our cohort, and our sub-genic intolerance finding is replicated in these ultra-rare 

variants. Finally, there likely remain undiscovered epilepsy or epilepsy-risk genes among the genes 

most intolerant to loss-of-function variation.  



Subjects and Methods 

Study Design and Participants 

As described previously, we collected DNA and detailed phenotyping data on individuals 

with epilepsy from 40 sites in Europe, North America, Australasia, and Asia (Table S1).9 Here we 

analyzed individuals with DEEs (n = 2,007), GGE (also known as idiopathic generalized epilepsy; n 

= 5,771), and NAFE (n = 7,489) accounting for the first three years of enrollment in Epi25. A 

subset of the data is available on dbGaP: phs001489. Following sample quality control, 

relatedness testing (see Sample and Variant Quality Control [QC]), and clustering (see Clustering), 

the combined epilepsy analysis included 13,171 cases (1,782, 5,048, and 6,341 subjects with 

DEE, GGE, and NAFE, respectively) along with 14,100 controls (2,048 genomes and 12,052 

exomes). In the included clusters in the individual epilepsy analyses, 1,835 subjects with DEE 

were compared to 13,978 controls, 5,303 subjects with GGE were compared to 15,677 controls 

and 6,439 subjects with NAFE were compared to 15,678 controls. Control samples were 

aggregated from local collections at the Institute of Genomic Medicine at Columbia University 

Irving Medical Center. Controls who passed the same quality control and who were not known to 

have phenotypes overlapping DEE, GGE, or NAFE, or be related to a proband with epilepsy were 

analyzed following geographic ancestry clustering (Figure S1, Table S2). 

 

Phenotyping Procedures 

As described previously, epilepsies were clinically diagnosed by epileptologists (see below 

for criteria DEEs, GGE, NAFE) in accordance with the International League Against Epilepsy 

(ILAE) classification at the time of diagnosis and recruitment.2; 9 De-identified (non-PHI [protected 

health information]) phenotyping data were entered into the Epi25 Data repository (hosted at the 

Luxembourg Centre for Systems Biomedicine) via online case record forms based on the RedCAP 

platform. De-identified data for subjects of previous coordinated efforts with phenotyping (e.g., the 



Epilepsy Phenome/Genome Project41 and the EpiPGX Project, see Web Resources) which were 

already entered into a database were accessed and transferred to the new platform. Phenotyping 

data underwent review for uniformity among sites and quality control, and inconsistencies were 

reviewed by the phenotyping committee. 

 

Case Definitions  

Epilepsy diagnoses and classification for Epi25 have been described previously.9 Briefly, 

DEE diagnosis required severe refractory epilepsy of unknown etiology with developmental plateau 

or regression and epileptiform features on EEG. Exclusion criteria included epileptogenic lesions 

on MRI. GGE diagnosis required a history of generalized seizure types with generalized 

epileptiform discharges on EEG. Exclusion criteria include focal seizures, moderate-to-severe 

intellectual disability and epileptogenic lesions found on neuroimaging (when available). Diagnosis 

of NAFE required a history of focal seizures with either focal epileptiform discharges or normal 

finds on EEG. Exclusion criteria included neuroimaging lesions (except hippocampal sclerosis), a 

history of generalized seizures, and moderate-to-severe intellectual disability.  

 

Informed Consent 

Adult subjects or the legal guardian for enrolled children signed informed consent at 

participating centers per the ethical requirements of the local rules at the time of enrollment.9 The 

consent must not exclude data sharing to be included in the study. Consent forms for samples 

collected after January 25, 2015 required specific language according to the National Institutes of 

Health’s Genomic Data Sharing policy (see Web Resources). For control individuals, protocols 

were approved by Columbia University’s institutional review board and participants provided 

informed consent for the use of DNA in genetic research. 

 



Next-Generation Sequencing Data Generation 

All Epi25 samples were sequenced at the Broad Institute of Harvard and the Massachusetts 

Institute of Technology (MIT) on the Illumina HiSeq X platform, with the use of 151 bp paired-end 

reads. Exome capture was performed with Illumina Nextera Rapid Capture or TruSeq Rapid 

Exome enrichment kit (target size 38 Mb). FastQ files were transferred to the Institute for Genomic 

Medicine at Columbia University (IGM - Columbia University, New York, NY, USA).  

Next-generation sequencing of controls was performed at the IGM and were a mixture of 

whole genome sequencing and whole exome sequencing. Exomes were captured with multiple 

capture kits and sequenced according to standard protocols on Illumina’s HiSeq 2000, HiSeq 2500 

and NovaSeq 6000 (Illumina, San Diego, CA, USA) platform with 150 bp paired-end reads. 

Genomes were sequenced according to standard protocols on Illumina’s HiSeq 2000, HiSeq 2500 

and NovaSeq 6000 (Illumina, San Diego, CA, USA) platform. 

 

Variant Calling 

Both cases and controls were processed with the same IGM bioinformatic pipeline for 

variant calling. Reads were aligned to human reference GRCh37 using DRAGEN (Edico Genome, 

San Diego, CA, USA)42 and duplicates were marked with Picard (Broad Institute, Boston, MA, 

USA). Variants were called according to the Genome Analysis Toolkit (GATK - Broad Institute, 

Boston, MA, USA) Best Practices recommendations v3.6.43; 44 Finally, variants were annotated with 

ClinEff45 and custom annotations including Genome Aggregation Database (gnomAD) v2.1 

frequencies20, regional-intolerance metrics,31; 32 in silico filters,46 and ClinVar (as of 10/20/2020)38; 

39 clinical annotation were added using the IGM’s in-house ATAV platform.47  

 



Sample and Variant Quality Control (QC) 

Only samples with at least 90% of the consensus coding sequence (CCDS release 20)48 

covered at a minimum of 10x, less or equal 2% contamination levels according to VerifyBamID49, 

and single nucleotide variants (SNVs) and indels overlapping the Single Nucleotide Polymorphism 

database (dbSNP)50 at least 85% and 80%, respectively were included. Samples with a 

discordance between self-declared and sequence-derived gender were removed to prevent 

phenotype-genotype mismatch. KING was used to detect related individuals and removed one of 

each pair that had an inferred relationship of second-degree or closer while favoring the inclusion 

of cases over controls and well-covered over poorly-covered.51  

Analyses were restricted to variants within the CCDS inclusive of two base intronic 

extensions to accommodate canonical splice variants. All included variants had to fulfill the 

following criteria to be included: i) at least 10x coverage of the site, ii) quality score (QUAL)  50, 

iii) genotype quality score (GQ)  20, iv) quality by depth score (QD)  5, v) mapping quality score 

(MQ)  40, vi) read position rank sum score (RPRS)  -3, vii) mapping quality rank sum score 

(MQRS)  -10, viii) Fisher’s strand bias score (FS) ≤ 60 (SNVs) or ≤ 200 (indels), ix) strand odds 

ratio (SOR) ≤ 3 (SNVs) or ≤ 10 (indels), x) GATK Variant Quality Score Recalibration filter “PASS”, 

and xi), alternate allele fraction for heterozygous calls  0.3. Known sequencing artifacts as 

described previously52 as well as low quality variants per Exome Aggregation Consortium53, 

gnomAD20, or the Exome Variant Server were excluded (see Web Resources).  

 

Clustering 

As previously described by Cameron-Christie and colleagues, Principal Component 

Analysis (PCA) for dimensionality reduction was performed on a set of predefined variants to 

capture population structure.54 The Louvain method of community detection using the first six 

principal components (PCs) as input was applied to identify clusters within the data that reflect the 



geographic ancestry of the samples as previously described.55; 56 To check the quality of the 

clusters, we performed further dimensionality reduction using the Uniform Manifold Approximation 

and Projection (UMAP)57 on the first six PCs (Figure S1A-C) to disentangle subcontinental 

structure, which is then reflected in the cluster membership.58; 59 A neural-network pre-trained on 

samples with known geographic ancestry generated probability estimates for each of six groups 

(European, African, Latino, East Asian, South Asian and Middle Eastern). A 95% probability cut-off 

was used to assign a geographic ancestry label to each sample. Samples that did not reach 95% 

for any of the ancestry groups were labelled “Admixed” (Figure S1).  

Clustering was performed on the combined epilepsies as previously described.56 Clusters 

containing at least 20 cases in each epilepsy type (DEE, GGE, NAFE) and 20 controls were kept 

(Figure S1C, Table S3). Each epilepsy type/control group separately underwent clustering again to 

optimize ancestry matching for each epilepsy type (Figure S1D-L). The individual epilepsy 

clustering was used for individual epilepsy QQ plots (Figure 1), the analysis of common enrichment 

among DEE genes (Figure 2), and associated supplementary figures and tables. The combined 

epilepsy analysis was used for the combined epilepsy collapsing analysis, sub-genic comparisons, 

and ClinVar Pathogenic/Likely Pathogenic analyses (Figures 3-4, control data in Figure 5) and 

associated supplementary figures and tables. The individual epilepsy clusters were also used to 

demonstrate potential for gene discovery (Figure 6) with associated supplementary figures and 

tables. The individual epilepsy type analyses were used for all other Epi25 analyses. All clusters 

underwent coverage harmonization (see Coverage Harmonization in Methods).  

Coverage Harmonization 

As described previously52, coverage differences between cases and controls introduce a 

bias because no variants can be called without sufficient coverage. To reduce the influence of 

coverage differences caused by different capture kits or sequencing depth in general, we used a 

site-based pruning approach and removed sites where the absolute difference in percentages of 



cases compared to controls with at least 10x coverage was greater than 7.0%. Each cluster (see 

Clustering above) underwent independent coverage harmonization. This resulted in four sets 

coverage maps (Figure S1). 

 

Qualifying Variant 

In the context of collapsing analyses, qualifying variants have been defined in order to 

identify a set of variants that are enriched for real variant calls and variants with strong functional 

effects.60  Here we defined a qualifying variant (QV) as a variant passing both QC filters (see 

Sample and Variant Quality Control) and model-specific filters (Table S4) such as variant effect 

filters, pathogenicity predictors, and internal and external minor allele frequency (MAF) filters. 

Variants could be drawn from three pools: i) variants from Epi25 data and matched controls 

blinded to ClinVar status (Figures 1-2, 6), ii) variants from Epi25 data and matched controls 

designated Pathogenic/Likely Pathogenic (P/LP) in ClinVar as of 10/20/2020 or iii) all published 

P/LP ClinVar variants as of 10/20/2020. For analyses of variants in Epi25 data and matched 

controls blinded to ClinVar status (i) (Figures 1, 2, 3, control data in 5 and 6, Table 1), the following 

filtering was applied in addition to the variant QC filtering (see Sample and Variant Quality Control 

[QC]): a) all variants are “ultra-rare” meaning they are not found in any non-neuro gnomAD 

population, b) all protein truncating variants (PTVs) were filtered with Loss-Of-Function Transcript 

Effect Estimator (LOFTEE) to remove likely false-positive PTVs,20 c) all variants located in region 

with highly repetitive elements were removed to reduce false-positive variants,61 d) all variants in 

regions with a proportion expression across transcripts (pext) value less than 1/10 the maximum 

pext value for that gene were removed as they are unlikely to affect translated mRNA62 and e) 

variants were excluded with an internal allele frequency greater than 0.05% applied to the 

combined case-control call set by cluster excluding one allele to allow for clusters in which one 



allele might exceed that allele frequency threshold.62 PTV effects included stop gain, frameshift, 

splice acceptor, and splice donor variants. 

For P/LP variants found in Epi25 and matched controls (Figure 4) (ii) and all published P/LP 

variants (Figure 5, non-control data) (iii), no universal filtering was applied beyond variant QC. 

ClinVar variants could additionally be filtered by ClinVar “review status”, which attempts to capture 

the level of review supporting the assertion of clinical significance for the variant with increasing 

number of “gold stars” from 0 to 4.63-65 

In addition to the filtering applied above, we defined the following categories of missense 

variants to be utilized in the study. For “damaging” missense variants, REVEL46 filter ≥ 0.5 (when 

defined) was applied. For “intolerant” missense variants, a missense tolerance ratio (MTR) filter ≤ 

0.78 (when defined) was applied which represents a variant in the most intolerant quartile of all 

regions in the exome to missense variation (see Web Resources).32 To further enhance missense 

variants for those located in intolerant genic-subregions, we utilized a separate model in which we 

added an exon-based LIMBR percentile  25. LIMBR is a sub-genic intolerance score previously 

shown to enhance selection for missense variants associated with DEEs.31  

 

Gene-Based Collapsing 

As described previously7; 52; 56, we performed gene-based collapsing to test whether there is 

a significant enrichment of cases harboring a QV in a given gene compared to controls. For each 

gene within each cluster, an indicator variable (1/0 states) was assigned to each individual based 

on the presence of at least one qualifying variant in the gene (state 1) or no qualifying variants in 

that gene (state 0) to create a gene-by-subject matrix for each cluster. From the collapsing 

matrices of the individual clusters, we extracted the number of cases/controls with and without a 

QV per gene and used the exact two-sided Cochran-Mantel-Haenszel (CMH) test66; 67 to test for an 

association between disease status and QV status (Table S4) while controlling for cluster 



membership. Finally, we created quantile-quantile (QQ) plots (described below). We defined a 

study-wide Bonferroni multiplicity-adjusted significance threshold of p < 1.6 × 10-7 (0.05 / [18650 

CCDS genes × 17 non-synonymous models]).  

The synonymous model was used as a putatively negative control (Figure S2, S3A, Tables 

S4, S6-S8, S16). Additional details for the 17 non-synonymous models can be found in Table S4. 

The top 200 ranked genes for each analysis can be found in the supplemental tables (Tables S6-

26). The membership of each gene in the following gene-sets is also indicated: (D) 43 dominant 

genes associated with DEE in the Online Mendelian Inheritance in Man (OMIM, see Web 

Resources) (see Gene-Set Enrichment Testing), (P) 101 dominant genes with epilepsy or related 

terms in its OMIM phenotype, (L) the 1,920 genes most intolerant to loss-of-function variation in the 

general population (see Gene-Set Enrichment Testing), top 200 ranked gene in prior Epi25 DEE 

(D25), GGE (G25) or NAFE (N25) association analyses,9 or top 300 ranked gene in prior GGE 

(G4K) or NAFE (N4K) Epi4K association analyses.7 Epi4K was a large WES epilepsy project 

completed prior to Epi25. 

 

Quantile-Quantile Plots and Genomic Inflation Factor λ 

Quantile-quantile (QQ) plots were generated using empirical (permutation-based) expected 

probability distributions using a previously described method.7; 52 For each collapsing model and 

cluster, the original case and control labels were randomly permuted while the rest of the gene by 

sample matrix was kept fixed. For each cluster we extracted the number of newly sampled 

cases/controls with and without a QV per gene and used the Cochran-Mantel-Haenszel (CMH) test 

to test for an association between case/control status (see Gene-Based Collapsing) and QV status 

(see Qualifying Variant) while controlling for cluster membership. This process was repeated 1,000 

times and for each permutation the p-values were ordered. The mean of each rank-ordered 

estimate across the 1,000 permutations (i.e., the average 1st order statistic, the average 2nd order 



statistic, etc.) represent the empirical estimates of the expected ordered p-values. The negative 

logarithm of the permutation-based expected distribution relative to the observed ordered statistic 

was plotted to get permutation-based QQ plots. The permutation-based expected p-values were 

also used to estimate the genomic inflation factor λ based on the regression method as described 

previously.7; 52 Genes labeled in black are known epilepsy genes based on manual review of the 

literature while genes labeled in color are candidate epilepsy genes. 

 

Gene-Set Enrichment Testing 

As described previously7, biologically informed gene-sets can reveal important pathways or 

gene characteristics by aggregated signal across related genes (Table S5). We utilized the 

following gene sets (GS-1 to GS-6) informed by their OMIM disease associations, inheritance 

patterns and genic intolerance. 

 

GS-1) 43 established dominant (e.g. autosomal dominant or x-linked dominant) DEE genes 

drawn from OMIM Phenotypic Series PS308350 and PS617711 on 10/9/2020 

GS-2) 24 genes drawn from the 43 genes in (GS-1) for which in all three epilepsies have a 

damaging missense variant 

GS-3) 101 established dominant genes associated with OMIM phenotypes containing 

epilepsy and epilepsy related terms on 02/16/2021 

GS-4) 14 genes harboring ultra-rare missense variants associated with both DEE and with 

epilepsy but not DEE in ClinVar (SZT2, SCN2A, SCN1A, HCN1, GABRA1, GABRG2, 

KCNQ3, SPTAN1, KCNT1, GRIN2B, GABRB3, CHD2, TBC1D24, KCNQ2) as of 

10/20/2020. 

GS-5) 10 gene sets representing the genes without a confirmed disease phenotype in 

OMIM on 02/16/2021 (18,852 CCDS genes – 3,964 genes =  14,888 genes) distributed into 



10 groups by their loss-of-function observed/expected upper bound fraction (LOEUF) decile 

were created.20 LOEUF is the 90% upper bound of the confidence interval of the 

observed/expected ratio of predicted loss-of-function variants in gnomAD and can be used 

to bin genes into deciles of approximately 1,920 genes each.  

GS-6) 10 gene sets representing the genes without a confirmed phenotype in OMIM on 

02/16/2021 (18,852 CCDS genes – 3,964 genes = 14,888 genes) distributed into 10 groups 

by their missense Z score were created.19; 20; 68 Missense Z score captures the number of 

observed missense variants in a gene compared to the expected number of missense 

variants in the general population. The score was used to bin genes into deciles of 

approximately 1,920 genes each.  

 

For a gene-set analysis, we extracted the number of cases/controls with and without at least 

one QV among any of the genes in the gene-set and used the exact two-sided CMH test66; 67 to 

test for an association between disease status and QV status while controlling for cluster 

membership. To examine association with LOEUF deciles (Figure 6), only controls without a 

disease association in our database (“Controls” and “Healthy Family Members”) were used (Table 

S2). We used a false discovery rate (FDR) correction for multiple comparisons. We performed 123 

CMH tests to determine odds ratios for gene-set enrichment testing, and defined a significant 

enrichment at FDR < 0.05. For forest plots, odds ratios and p-values were displayed for 

associations with an unadjusted p-value < 0.05. 

 

Sub-Genic Intolerance Comparison 

We examined sub-genic intolerance scores (MTR) in multiple ways. We compared the raw 

MTR and MTR domain percentiles scores across epilepsies and controls directly using the 

Kruskal-Wallis test by rank. For groups with p-value < 0.05, we performed pair-wise comparisons 



using the Wilcoxon signed-rank test. This method may not be an adequate comparison because, 

despite enriching for damaging missense variants with REVEL, controls with qualifying variants 

remain (which are unlikely to be true positives) indicating that some of the qualifying variants found 

in cases may also be benign. Direct comparison of sub-genic intolerance scores among epilepsies 

is therefore difficult to interpret because the QV burden is different among epilepsies (see Results) 

and the true positive rate among these QVs is unknown.  

To compare MTR among epilepsies, it was necessary to estimate and compare the “true 

positive” distribution of scores for each epilepsy. To achieve this, we created a weighted average 

of the cumulative distribution function (CDF) of MTR scores for ultra-rare damaging missense 

variants in each epilepsy (CDFDEE, CDFGGE, and CDFNAFE) and the CDF of ultra-rare damaging 

missense variants in our controls (CDFCTRL) to obtain the “true positive” CDF for each epilepsy 

(CDFDEE_TP, CDFGGE_TP, and CDFNAFE_TP). Only damaging missense variants with defined MTR 

scores were considered.  

At a given MTR value, the “true positive” CDF is a weighted average of the epilepsy and 

control CDF with the weights determined by the QV rate of the control population at that MTR 

value. For example, if, at a MTR score of 0.5, 4% of DEE cases have an ultra-rare damaging 

missense variant and 1% of control cases of have an ultra-rare damaging missense variant, then 

CDFDEE_TP(0.5) = 0.75 × CDFDEE(0.5) + 0.25 × CDFCTRL(0.5).69 We then used a Kolmogorov–

Smirnov test (statistic D) to compare the distribution of “true positive” MTR CDFs of each epilepsy 

pair. Given that we did not know the distribution of D, for each comparison, we performed a 

permutation test with 10,000 permutations. We assessed significance at p  0.05.  

To compare sub-genic intolerance scores by gene, we compared the “true positive” mean 

MTR by gene for DEE compared to NAFE and compared to GGE. In a given gene, the “true 

positive” mean MTR is a weighted average of the epilepsy mean MTR and control mean MTR 

scores with the weights determined by the QV rate of the control population in that gene. For 

example, if, in gene X, 4% of DEE cases have an ultra-rare damaging missense variant and 1% of 



control cases of have an ultra-rare damaging missense variant, then MeanDEE_TP(X) = 0.75 × 

MeanDEE(X) + 0.25 × MeanCTRL(X). For those genes with no control variants, the means were 

calculated without weighting. We measured the number of genes where DEE had a lower weighted 

mean MTR and measured significance with a binomial test with the null hypothesis that DEE 

variants had a lower MeanTP in half of the genes in the tested gene set. 

To compare the MTR values of published ClinVar variants (i.e. not drawn from our cases or 

controls), we divided the variants into those associated with DEE and non-DEE epilepsy. ClinVar 

variants with phenotypes containing “epilepsy” or “epileptic” were considered associated with 

epilepsy. Those with phenotypes containing “West”, “Dravet”, “Lennox-Gastaut“, ”infantile spasm”, 

“Ohtahara”, “myoclonic”, or “glut 1” were considered associated with DEE while the remainder 

were classified as non-DEE epilepsy. There were inadequate number of variants specifically 

associated with GEE and NAFE to further sub-divide them. For variants with multiple clinical 

associations, the most severe association was assigned. We looked at only ultra-rare variants with 

a defined MTR value. We limited our analysis to only those genes harboring variants in both 

epilepsy groups (see Gene-Set Enrichment Testing). The control variant set was drawn from the 

combined epilepsy analysis (Figure S1A-C).  We used a two-sample Wilcoxon test to assess 

significance. We measured the number of genes where DEE had a lower mean MTR and 

measured significance with a binomial test with the null hypothesis that DEE variants had a lower 

mean MTR in half of the genes in the tested gene set.  

 

Lollipop and MTR Plots 

Lollipop mutation diagrams were generated for the 24 genes analyzed for the sub-genic 

intolerance comparison (GS-2) using lollipops-v.1.5.3.70 All 614 missense variants (DEE = 100, 

GGE = 133, and NAFE = 153, Control = 228) were displayed across the linear gene structure of 

the associated gene. For each gene, the MTR distribution with missense variant locations plotted 



was juxtaposed against the lollipop mutation diagram. MTR data were downloaded from the MTR-

Viewer website (see Web Resources).71 

 

Comparison of Evolutionary Constrained Regions 

Evolutionary constraint for missense variants was assessed at three levels. For base-level 

scores, we used the GERP++ “rejected substitution” (RS) score in which higher scores correspond 

to greater constraint.72; 73 For exonic and domain constraint, we used exonic and domain subGERP 

scores, respectively.22 We compared scores across epilepsies and controls directly using the 

Kruskal-Wallis test by rank. No group reached statistical significance (p-value < 0.05) so no pair-

wise comparisons were performed. 

 

Candidate Non-OMIM Epilepsy Genes 

To ascertain additional potential epilepsy-gene associations not found in OMIM, we 

highlighted genes which are (1) in the most intolerant decile to LOF variation in the general 

population by LOEUF rank, (2) not associated with a disease in OMIM, (3) harbor PTVs with 

LOFTEE filtering in more than one case, and (4) harbor no control PTVs with LOFTEE filtering. 

 

Data Analysis and Display 

Unless otherwise noted in the methods, data analysis and visualization were performed 

using R (version 3.6.0).74 Notches in boxplots indicate 1.58 * interquartile range / sqrt(n), which 

approximates the 95% confidence interval.75  



Results 

Gene-Based Collapsing in Three Types of Epilepsies 

The results of the gene-based collapsing should be viewed through the lens of prior rare-variant 

association analyses of epilepsy data, and specifically, Epi25 data. The data in this analysis are a 

superset of the data used in prior Epi25 analyses.9 The cluster-based collapsing analysis allows for 

the inclusion of multiple ancestries as each geographic ancestry matched cluster is analyzed 

separately (Figure S1). The results are then combined using the Cochran-Mantel-Haenszel test 

(see Statistical Analyses in Methods) accounting for population sub-structure.56 The sample size 

increased in all three epilepsies (1,835 from 1,021 DEE cases, 5,303 from 3,108 GEE cases, 

6,349 from 3,597 NAFE cases) due to increased enrollment in Epi25 and the inclusion of cases 

with non-European geographic ancestry. Other differences include a different control set and 

different in silico methods of indicating qualifying variant (QV) status. We ran gene-based 

collapsing (Tables S6-S26) for gene-discovery counting PTVs and damaging missense variants for 

all three epilepsies (Figure 1, Tables S9, S12, S14) and all epilepsies combined (Figure S3B, 

Table S17). There was expected overlap among the top ranked genes from prior Epi25 analyses 

as well as the suggestion of candidate genes not previously associated with epilepsy (Tables S11 

– S26). 

In the DEE collapsing analysis (Figure 1A, Table S9), the top two ranked genes were the 

same as in the prior Epi25 analysis, but now SCN1A ([MIM: 182389] OR = 7.1, p = 4.4 × 10-8) and 

NEXMIF (previously known as KIAA2022 [MIM: 300524] OR 26.5, p = 8.6 × 10-8) both achieve 

study-wide significance. In contrast to prior Epi25 analyses, nine of the top ten ranked genes are 

known epilepsy genes76-87 demonstrating the strength of the increased sample size and clustering 

methodology. The remaining gene, AP3S2 ([MIM: 602416] OR = 70.5, p = 2.7 × 10-4), is a 

component of the AP3 complex, an adaptor-related complex with no prior association to epilepsy 

although it was a top 200 hit in the prior Epi25 DEE analysis.9; 88 Hermansky-Pudlak syndrome 10 



(MIM: 617050), which is notable for infantile onset of immunodeficiency and intractable seizures, is 

caused by biallelic mutations in AP3D1 (MIM: 607246), a different component of the same AP3 

complex.89 To highlight candidate genes, we removed DEE cases in Figure 1A that harbored a 

qualifying variant in any of the 101 dominant genes with epilepsy or related terms in the OMIM 

phenotype and re-ran the collapsing analysis (Figure S4, Table S11). The 5th ranked gene, SRCAP 

([MIM: 611421] OR = 6.8, p = 1.6 × 10-3), is highly intolerant to loss-of-function variants (LOUEF = 

0.1) and is associated with Floating-Harbor syndrome (MIM: 136140) which can include 

seizures.90; 91 In summary, this enlarged DEE analyses with cases of non-European geographic 

ancestry produced results that more consistently elevated known epilepsy genes and importantly, 

proposed genes without prior epilepsy associations (AP3S2, SRCAP).  

Four of the top ten ranked genes in the gene-based collapsing analysis for GGE (Figure 1B, 

Table S12) were previously associated with epilepsy (SLC6A1 [MIM: 137165], SCN1A, GRIN2A 

[MIM: 138253], GABRA1 [137160]).92-95 The top hit is SLC6A1 (OR = 16.6, p = 2.1 × 10-6) which 

was a top 200 gene in the prior Epi25 GGE analysis but now approaches study-wide significance.9 

SCL6A1 was initially implicated in DEE, but its role in generalized epilepsies has only been more 

recently revealed.95; 96 Among the remaining genes, there are two promising candidates. (1) 

FBXO42 ([MIM: 609109] OR = 13.6, p = 4.5 × 10-4) is a highly intolerant gene (LOEUF = 0.27) 

important in the regulation of p53 and not yet implicated in disease but was a top 200 GGE 

associated gene in the prior Epi25 analysis9, and (2) KCNK18 ([MIM: 613655] OR = Inf, p = 1.6 × 

10-3) is a potassium channel implicated in migraine pathology.97; 98 Promising candidate genes for 

GGE from the prior Epi25 analysis (CACNA1G [MIM: 604065] and UNC79 [MIM: 616884]) were 

not among the top 200 associated genes, which may be related to the different method of filtering 

missense variants.9 Further limiting missense variants to intolerant as well as damaging (Figure 

S5B, Table S13) elevated CACNA1B ([MIM: 601012], OR = 5.5, p = 3.5 × 10-4). Bi-allelic LOF 

variants in CACNA1B cause severe epilepsy.99 CACNA1B was the top gene associated with GGE 



in Epi4K7, a large WES epilepsy project prior to Epi25. No association was found in the prior Epi25 

analysis and there is limited other literature linking CACNA1B to GGE. This new GGE Epi25 

collapsing analysis did not confirm promising candidate genes from the prior Epi25 analysis but did 

provide additional support for the association between CACNA1B and GGE and proposed 

candidate genes (FBXO42 and KCNK18). 

Gene-based collapsing analysis for NAFE (Figure 1C, Table S14) showed a familiar top hit, 

DEPDC5 ([MIM: 614191] OR = 5.4, p = 1.3 × 10-6) and four additional genes (GRIN2A, SCN1A, 

SCN8A [600702], and NPRL2 [607072]), which have previously been implicated in NAFE.7; 9; 80; 84; 

92; 100; 101 Renin, the protein encoded by REN ([MIM: 179820] OR = 12.7, p = 4.2 × 10-4), is 

produced by juxtaglomerular cells of the kidney but has been implicated as a target of adjuvant 

therapy for epilepsy.102; 103 ADORA2B ([MIM: 600446] OR = Inf, p = 4.5 × 10-4), is a small gene 

encoding an adenosine receptor not associated with disease but being explored for its role in 

epileptogenesis.104; 105 DAW1 ([MIM: N/A] OR = 30.0, p = 1.8 × 10-4), a little understood gene, 

supports cilia function.106 The increased sample size did not further support promising genes from 

the prior Epi25 analysis such as TRIM3 (MIM: 605493), PPFIA3 (MIM: 603144), and KCNJ3 (MIM: 

601534).9 Further limiting missense variants to intolerant as well as damaging (Figure S5C, Table 

S15) removed all control enriched genes from the top ten ranked genes and elevated known 

epilepsy genes. Interestingly, the 7th ranked gene, TSC1 ([MIM: 605284], OR = 14, p = 1.7 × 10-3), 

is typically associated with focal epilepsy in the context of tuberous sclerosis-1 (MIM: 191100) or 

focal cortical dysplasia, type II, somatic (MIM: 607341) although the individuals with focal epilepsy 

in this study do not have a lesion on MRI.107; 108 Like the GGE collapsing analysis, the NAFE 

collapsing analysis proposed different candidate genes rather than confirming those from prior 

Epi25 analyses. 

 



Milder Epilepsies Remain Enriched for Ultra-Rare Variants in a Limited Gene-Set 

Our group has previously observed that more mild epilepsies are enriched in genes also 

associated with severe phenotypes.7; 9 To limit the degree to which individual genes in the gene-

set drove that finding and facilitate comparisons of variants across epilepsies, we recapitulated that 

analysis but narrowed the gene set of dominant DEE-associated genes to include only those 24 

genes containing at least one damaging missense variant in all three epilepsies (Figure 2, Tables 

S5, S27). DEE (CMH pooled odds ratio [OR] = 2.1, FDR-adjusted p value [adj.p] = 1.9 × 10-9) and 

NAFE (CMH pooled odds ratio [OR] = 1.3, FDR-adjusted p value [adj.p] = 1.2 × 10-3) are enriched 

for all missense variants. All three epilepsies are enriched for damaging missense variants (DEE 

OR = 3.7, adj.p = 6.8  10-17, GGE OR = 1.7, adj.p = 1.2 × 10-4, NAFE OR = 1.7, adj.p = 6.4 × 10-

5), and removing the damaging filter, all three epilepsies are also enriched for variants in intolerant 

genic sub-regions (DEE OR = 3.5, adj.p = 1.6 × 10-14, GGE OR = 1.7, adj.p = 1.2 × 10-4, NAFE OR 

= 1.6, adj.p = 3.5 × 10-4). Combining both improves enrichment in all three epilepsies (DEE OR = 

5.5, adj.p = 8.1 × 10-19, GGE OR = 2.2, adj.p = 1.0 × 10-6, NAFE OR = 2.0, adj.p = 1.8 × 10-5). Only 

DEE and GGE were enriched for loss-of-function variants (DEE OR = 12.7, adj.p = 1.9 × 10-9, GGE 

OR = 3.8, adj.p = 4.6 × 10-4), which is consistent with prior analyses.9 In summary, despite 

restricting our DEE-associated gene-set further to ensure that at least one case per epilepsy 

harbored a damaging missense variant in each gene and enlarging our samples to include 

individuals of non-European ancestry, a familiar pattern of enrichment exists in the milder 

epilepsies.  

 

Ultra-Rare DEE Variants in Epi25 are Located in Intolerant Genic Sub-Regions 

After demonstrating that more mild epilepsies (GGE, NAFE) were enriched for ultra-rare 

damaging missense variants in the same gene set as severe epilepsies (DEE) (Figure 2), we 

tested the hypothesis that variants associated with DEE were located in more intolerant sub-



regions than those associated with GGE or NAFE. Despite filtering for pathogenicity with REVEL, 

there remains a background rate of enrichment of ultra-rare damaging missense variants in the 

control population (Figure 2, Table S29). This suggests that a portion of the ultra-rare damaging 

missense variants in our epilepsy cases are also benign, which makes direct comparison of the 

sub-genic intolerance score among epilepsy subtypes (Figure S6A) difficult to interpret as the 

burden of damaging missense variants in DEE cases is higher than those of GGE or NLFE (CMH, 

DEE-GGE OR = 2.2, adj.p = 7.8 × 10-7, DEE-NAFE OR = 2.3, adj.p = 9.4 × 10-8, Table S28). 

Instead, we estimated the distribution of MTR scores of “true positive” ultra-rare damaging 

missense variants in each epilepsy and made pair-wise comparisons using a Kolmogorov–Smirnov 

(K-S) test (see Sub-Genic Intolerance Comparison in Methods, Figure 3). Consistent with our 

hypothesis, the distribution of MTR scores for DEE variants was significantly different from NAFE 

(“true positive” median MTR DEE = 0.670 vs. NAFE = 0.721, K-S, p  0.0156) while the difference 

from GGE did not achieve statistical significance (“true positive” median MTR DEE = 0.670 vs. 

GGE = 0.710, K-S, p = 0.38). On a per gene basis, the MTR scores of DEE variants are not 

uniformly more intolerant than GGE and NAFE (Figure S7). Though the above analysis 

demonstrates that DEE variants lay in more intolerant genic sub-regions than NAFE variants, it 

does not account for the possible differential contribution of specific genes to specific epilepsies 

among the 24 genes. To address this concern, we performed a second analysis which compared 

the weighted mean MTR of DEE compared to NAFE and to GGE (Table S29). The weighted mean 

MTR scores of the DEE variants was lower in 15 of the 24 genes compared to NAFE (binomial 

test, p = 0.31) and 15 of the 24 genes compared to GGE (binomial test, p = 0.31).  

No clear relationship exists between gene, protein domain, and epilepsy type (Figure S8). 

Despite the large Epi25 dataset, we likely remain underpowered to untangle the epilepsy by 

protein space relationship on an individual gene level.33 MTR is calculated on a sliding window 

making it independent of known gene structures. Domain-based MTR showed a smaller difference 

among the epilepsies (Figure S6A-B) suggesting that the sub-genic intolerance differences among 



the epilepsies is at least partially independent from gene structures.32 We also examined whether 

missense variants associated with DEE were located in more evolutionary constrained bases, 

exons or domains than milder epilepsies (Figure S6C-E). No comparison met statistical 

significance. This was true despite both evolutionary constrained and intolerant domains harboring 

pathogenic variants although differences in domains may be difficult to assess given the limited 

number per gene.22  

 

Only Ultra-Rare Pathogenic/Likely Pathogenic ClinVar Variants are Enriched in Epi25 

 The sample size of Epi25 allows us to assess the representation of variants found in 

ClinVar, a heavily used clinical database of curated variants, in our three epilepsy sub-groups and 

investigate whether sub-genic intolerance might add clinically useful information.38; 39 Using a set of 

101 genes with epilepsy or related terms in their OMIM phenotypes (Table S5), we examined the 

burden of P/LP variants in our cases compared to controls (Figure 4A, Table S30). Given the prior 

findings that epilepsy cases are enriched with ultra-rare variants but not more common variants7, 

we divided our ClinVar analysis into variants not found in the non-neuro gnomAD populations 

(ultra-rare) and variants seen in the general population (public). Consistent with prior reports, there 

was an increased burden of ultra-rare P/LP variants in our epilepsy cases compared to controls 

irrespective of epilepsy type (CMH, DEE OR = 84.5, adj.p = 8.9 × 10-38, GGE OR = 14.5, adj.p = 

1.8 × 10-11, NAFE OR = 14.4, adj.p = 6.9 × 10-13). There was no enrichment in public variants 

(Figure 4A). Epilepsy variants in ClinVar also found in gnomAD or future public datasets may 

require additional investigation to confirm pathogenicity. 

 



Severe Pathogenic/Likely Pathogenic ClinVar Variants are Located in Intolerant Genic Sub-

Regions 

Among ultra-rare ClinVar variants, we sought to determine if we could further differentiate 

epilepsy variants from control variants (Figure 4B, Table S31). ClinVar “review status” attempts to 

capture the level of review supporting the assertion of clinical significance for the variant with 

increasing number of “gold stars” from zero to four.63-65 Filtering ultra-rare P/LP ClinVar based on 

review status did not improve discrimination in a dose dependent fashion. In all three epilepsies, 

there were no zero star controls but the enrichment of variants with more than one star exceeded 

the enrichment of variants with one star (CMH, DEE OR = 47.5, adj.p = 7.8 × 10-12 → OR = 91.6, 

adj.p = 1.4 × 10-21, GGE OR = 9.1, adj.p = 5.6 × 10-4 → OR = 17.2, adj.p = 6.6 × 10-7, NAFE OR = 

8.2, adj.p = 2.0 × 10-3 → OR = 10.7, adj.p = 1.3 × 10-4). We next examined whether sub-genic 

intolerance filtering could further improve discrimination of cases compared to controls. After 

filtering with MTR, the OR of ultra-rare missense variants increased in all three epilepsies (CMH, 

DEE OR = 92.5, adj.p = 3.4 × 10-32 → OR = 335.4, adj.p = 1.4 × 10-25, GGE OR = 14.9, adj.p = 1.2 

× 10-9 → OR = 59.6, adj.p = 3.9 × 10-10, NAFE OR = 12.3, adj.p = 3.8 × 10-9 → OR = 34.7, adj.p = 

9.2 × 10-8). All three epilepsies were enriched with ultra-rare PTVs in ClinVar (DEE OR = 49.8, 

adj.p = 3.4 × 10-6, GGE OR = 11.0, adj.p = 0.045, NAFE OR = 24.7, adj.p = 1.6 × 10-4). Among the 

few public variants, only missense variants filtered with MTR were statistically enriched in NAFE 

cases, and overall, MTR filtering removed all 12 control missense variants but only four of ten 

epilepsy variants (Table S32). In summary, sub-genic intolerance filtering improved discrimination 

of both ultra-rare and public variants in ClinVar, suggesting sub-genic intolerance provides additive 

information to identify potential false-positive or variable penetrance variants in ClinVar. 

Using ultra-rare P/LP ClinVar variants, we sought to confirm our Epi25 finding (Figure 3) that 

missense variants in severe epilepsies are located in more intolerant genic sub-regions than milder 

epilepsies. We compared median sub-genic intolerance scores between DEE and non-DEE 



epilepsies (see Sub-Genic Intolerance Comparison in Methods) in genes with missense variants in 

both epilepsy groups (Figure 5, Tables S5, S33). The median MTR score was lower (more 

intolerant) for published ClinVar DEE variants compared to non-DEE epilepsy ClinVar variants 

(median DEE MTR = 0.57 vs. median non-DEE MTR = 0.70, Wilcoxon signed-rank test, p < 6.7 × 

10-3). When examined by gene, the mean MTR score for the DEE variants was lower than the non-

DEE variants in 11 of 14 genes tested, (binomial test, p = 0.057). Reassuringly, both DEE and non-

DEE variants existed in more intolerant regions than ultra-rare control variants (median control 

MTR 0.83, same control set as Figure 2). 

 

Epilepsy Genes Remain to be Discovered and are Likely Loss-Of-Function Intolerant 

There are ~3,900 genes identified in OMIM as being causative or a risk factor for disease.109 

Analyzing likely damaging variants in non-OMIM genes may give a sense of as-yet to be 

discovered epilepsy genes (Figure 6, Tables S34-S35). GGE and NAFE revealed a significant 

burden of PTVs in the intersection of non-OMIM genes with the decile of genes most intolerant to 

loss-of-function variation in the general population (GGE OR = 1.3, adj.p = 2.7 × 10-4, NAFE OR = 

1.2, adj.p = 0.013) (Figures 6B-6C). We highlighted the top four genes in the most intolerant decile 

associated with GGE and NAFE that had more than one case PTV and no control PTVs (Table 1). 

The most significant GGE candidate gene, NLGN2 (MIM: 606479, 3 cases), encodes neuroligin 2, 

which is a trans-synaptic adhesion molecules important in the synapse.110 The most significant 

NAFE candidate gene was WDR18 (MIM:N/A, 4 cases) whose protein product forms the PELP1-

TEX10-WDR18 complex important in ribosomal maturation.111 A table of potential DEE, GGE and 

NAFE genes are included in the supplement (Tables S36-S38). Finally, to investigate additional 

candidate genes, we performed rare variant collapsing analysis with only PTVs (Figure S9, Table 

S18-S20), only damaging missense variants (Figure S10, Tables S21-23) and PTVs combined with 



damaging and intolerant missense variants further limited to intolerant LIMBR exons (see 

Qualifying Variant in Methods, Figure S11, Tables S24-S26).31  

DEE cases also revealed a trend towards increased burden in the intersection of non-OMIM 

genes with the 7th most intolerant decile (DEE OR = 1.1, adj.p = 0.14, Figure 6A), which may 

reflect genes associated with recessive epilepsies.20 None of the epilepsies revealed a significant 

burden of damaging and intolerant missense variants in missense intolerant genes (Table S35).  

Discussion 

In this, the largest Epi25 exome study of epilepsies to date including individuals of non-

European geographic descent, we reaffirm that ultra-rare variants contribute to the 3 major 

epilepsy groups (Figure 1). Our collapsing analyses proposed epilepsy-genes (AP3S2, SRCAP, 

FBXO42, KCNK18, REN, and ADORA2B) requiring future confirmation. These associations reveal 

the power of increasing sample size with Epi25 and our clustering technique allowing the inclusion 

of non-European populations. The p-values in DEE analyses must be regarded in light of the 

smaller sample size of individuals with DEE (1,835 DEE compared to 5,303 GGE and 6,379 

NAFE). We were unable to confirm several promising candidate genes from the prior Epi25 

analysis which may be secondary to different control groups, different in silico filters and a larger 

sample size.9 We confirmed enrichment of ultra-rare variants in GGE and NAFE in genes 

associated with DEE even when limited to genes in which all epilepsies have a damaging 

missense variant to limit single and distinct genes driving associations with different epilepsies 

(Figure 2).  

Sub-genic intolerance has broad implications. It has been shown to help improve 

discrimination between pathogenic and benign variants and confirm the pathogenicity of new 

variants.22; 32; 112-115 Pathogenic variants may cluster in areas of regional intolerance,31; 32; 116 and 

sub-genic intolerance scores may inform biochemical exploration, yielding novel insights into 

protein function.117 To our knowledge, this is the broadest demonstration that sub-genic intolerance 



scores might not only be different between case compared to control but also affect disease 

severity (Figure 3 and 5).32 This discrepancy may broadly inform the functional similarities of 

mutations leading to more severe disease across genes or interestingly, across gene families.118 

Using the large Epi25 dataset allowed us to assess variants documented in ClinVar (Figure 

4). Allele frequency is known to be inversely associated with pathogenicity, and, among Epi25 

cases, only ultra-rare variants were enriched in cases compared to controls (Figure 4A). Previous 

analyses have used population based MAFs to reclassify variants as benign.32; 68; 119; 120 The 

evolving nature of ClinVar classifications has been noted previously as more population-wide 

control data become available.63; 64; 121 Within the ultra-rare MAF bin, review status did not provide 

additional enrichment in a dose-dependent manner in our data (Figure 4B) although it has 

indicated higher true positive value in other studies focused on more common variants.63-65; 122 One 

and two star ultra-rare pathogenic variants in ClinVar have been reported as possible false-

positives,122 although no study to our knowledge has systematically evaluated ultra-rare P/LP 

ClinVar variants for false-positivity or incomplete penetrance. Finally, four of the five ultra-rare and 

all 12 public missense P/LP variants harbored by controls were located in more tolerant regions of 

the exome (Figure 4B, Tables S31-S32). The enrichment of ClinVar variants with MTR filtering 

suggests that regional intolerance may provide additional information to clinicians assessing 

ClinVar variants.  

There likely remain genes that will ultimately be associated with a disease although the 

pace of discovery may be slowing.109 In this Epi25 cohort, GGE and NAFE contained an increased 

burden of PTVs in the non-OMIM genes most intolerant to loss-of-function variation in the general 

population (Figure 6). No increase was seen for individuals with DEE, suggesting that gene 

discovery for DEE is advanced compared to the milder epilepsies. There are several genes with 

PTVs in multiple cases but in no controls that are potential epilepsy or epilepsy-risk genes (Tables 

1, S37-S39). With increased sample size, these genes may become more prominent in future 

collapsing analyses.  



Limitations of this study are that individuals with epilepsy were enrolled at variable ages, 

leaving open the possibility that a case may evolve from one epilepsy to another. While we posit 

that variant location determines the severity of the variant and therefore determines the phenotype, 

this does not address variants which have one autosomal dominant phenotype and a different 

autosomal recessive phenotype. The sub-genic intolerance score by gene interaction (Figure S6-

S7) may be secondary to different numbers of variants per gene, MTR not completely capturing all 

sub-genic intolerance information, or other factors contribute to epilepsy severity. Examining the 

collective sub-genic intolerance scores of variants from multiple genes does not take into account 

within gene comparisons (i.e. sub-genic intolerance distributions differ per gene as do the epilepsy 

type-by-gene burdens). We attempted to address these confounds (Tables S29, S33) but were 

under-powered. Future studies will be needed to understand the gene-by-intolerance score 

interaction. Finally, segregation analysis of variants in candidate epilepsy genes (Table 1) could 

weaken or bolster the proposed relationships. Unfortunately, we do not have access to Epi25 

family member data. As the Epi25 enrollment increases, we look forward to the increased power 

allowing for the further elucidation of the genetic architectures of the epilepsies.  
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Figure Titles and Legends 

 

Figure 1. Quantile-Quantile Plots for the Protein-Coding Genes with at least One Case or 

Control Carrier 

Qualifying variants were high quality, ultra-rare variants with a predicted functional effect but 

restricting missense variants to REVEL  0.5 (when defined). P-values were generated from the 

exact two-sided Cochran-Mantel-Haenszel (CMH) test by gene by cluster to indicate a different 

carrier status of cases in comparison to controls. SCN1A (p = 4.4 × 10-8) and NEXMIF (previously 

known as KIAA2022, p = 8.6 × 10-8) achieved study-wide significance p  1.6 × 10-7 after 

Bonferroni correction indicated by dashed line (see Statistical Analyses in Methods). (A) 

Developmental and epileptic encephalopathy (DEE) cases, (B) genetic generalized epilepsy (GEE) 

cases, and (C) non-acquired focal epilepsy (NAFE) cases. Top ten case enriched genes are 

labeled. Point coloring determined by CMH odds ratio. Genes labeled in black are known epilepsy 

genes. Genes labeled in color are candidate epilepsy genes. The green lines represent the 95% 

confidence interval. 

 

Figure 2. Gene-Set Enrichment Analysis Shows Mild Epilepsies Enriched for Rare Variants 

in Genes Associated with Severe Epilepsies 

Gene-set burden testing using 24 genes drawn from the 43 OMIM epileptic encephalopathy 

phenotype series with dominant transmission by limiting to genes harboring damaging (REVEL  

0.5) missense variants in all three epilepsies (see Gene-Set Enrichment Testing in Methods, Table 

S5). All variants are ultra-rare (see Methods). Pooled odds ratio, 95% confidence intervals and 

FDR corrected p-value were generated from the exact two-sided Cochran-Mantel-Haenszel (CMH) 

test. Odds ratio and FDR-adjusted p-values displayed for comparisons with unadjusted p-value < 

0.05. X-axis displays the log10 of the odds ratio and confidence intervals. PTV = protein-truncating 



variants, “Damaging” = REVEL  0.5 (when defined), “Intolerant” = MTR ≤ 0.78 (when defined), 

DEE = developmental and epileptic encephalopathy, GGE = genetic generalized epilepsy, NAFE = 

non-acquired focal epilepsy. 

 

Figure 3. Sub-genic intolerance Analysis Reveals Variants Associated with DEE are Located 

in More Intolerant Genic Sub-Regions  

Comparison of cumulative distribution functions weighted by background control variant rate. 

Genes limited to 24 from OMIM epileptic encephalopathy phenotype series also containing 

damaging (REVEL  0.5) missense variants in all three epilepsies (see Gene-Set Enrichment 

Testing in Methods, Table S5). (A) CDF drawn directly from Epi25 data (dashed line) and weighted 

by control CDF (solid lines) to estimate “True Positive” distribution. (B) Enlarged box from (A) 

showing just “True Positive” CDFs with control CDF. “True positive” median MTR DEE = 0.670, 

GGE = 0.710. NAFE = 0.721. P-values generated by 10,000 permutations of Kolmogorov–Smirnov 

test. Plots calculated from 614 missense variants (DEE = 100, GGE = 133, and NAFE = 153, 

Control = 228). 

 

Figure 4. Burden of Pathogenic/Likely Pathogenic (P/LP) Variants in ClinVar Found in Epi25 

Cases  

Ultra-rare and intolerant P/LP variants are enriched in Epi25 cases compared to controls. (A) 

Variants divided into ultra-rare (absent from non-neuro gnomAD populations) and public (present 

in non-neuro gnomAD populations) variants showing enrichment only among ultra-rare variants. 

(B) Ultra-rare variants sub-divided to show drivers of enrichment. “Star” indicates the variant review 

status in ClinVar, which summarizes the level of review supporting the clinical significance of the 

variant with increasing number of “gold stars” from 0 to 4 (see Qualifying Variant in Methods). 

Pooled odds ratio, 95% confidence intervals and FDR corrected p-value were generated from the 



exact two-sided Cochran-Mantel-Haenszel (CMH) test. Odds ratio and FDR-adjusted p-values 

displayed for comparisons with unadjusted p-value < 0.05. X-axis displays the log10 of the odds 

ratio and confidence intervals. PTV = protein-truncating variants, “Int” = “Intolerant” = MTR ≤ 0.78 

(when defined), DEE = developmental and epileptic encephalopathy, GGE = genetic generalized 

epilepsy, NAFE = non-acquired focal epilepsy. 

 

Figure 5. Comparison of Median MTR Scores of Published Ultra-Rare P/LP ClinVar Variants  

Violin plots with box plots showing distribution of MTR scores of published missense ClinVar P/LP 

variants divided into those associated with DEE (N = 302) and non-DEE (N = 29) epilepsies. We 

considered only those genes harboring missense variants in both groups (14 genes, see Gene-Set 

Enrichment Testing in Methods, Table S2). Ultra-rare control variants (N = 335) drawn from Epi25 

analysis (see Sub-Genic Intolerance Comparison in Methods). Comparisons by Wilcoxon signed-

rank test. P values unadjusted. The middle horizontal line represents the median value and the 

lower and upper hinges represent the 1st and 3rd quartiles. The notches in the boxplot 

approximate the 95% confidence interval (see Data Analysis and Display in Methods). MTR 

median ± standard deviation: DEE 0.57 ± 0.24, Non-DEE 0.70 ± 0.18, Control 0.83 ± 0.16. ** p ≤ 

0.01, *** p ≤ 0.001, **** p ≤ 0.0001 

 

Figure 6. Burden of Protein Truncating Variants in Intolerant Non-OMIM Genes  

The burden of protein truncating variants (PTVs) in genes not associated with a disease in OMIM 

in epilepsy cases in comparison to controls was assessed. Non-OMIM genes were divided into 10 

gene-sets by their intersection with loss-of-function intolerance deciles defined by LOEUF (see 

Gene-Set Enrichment Testing in Methods, Table S5). Number of genes in each gene-set with at 

least one PTV in the case-control set is specified in the parenthesis. Pooled odds ratio, 95% 

confidence intervals and FDR corrected p-value were generated from the exact two-sided 

Cochran-Mantel-Haenszel (CMH) test for (A) developmental and epileptic encephalopathies 



(DEE), (B) genetic generalized epilepsy (GGE) and (C) non-acquired focal epilepsy (NAFE). Odds 

ratio and FDR-adjusted p values displayed in parentheses for comparisons with unadjusted p-

value < 0.05. X-axis displays the odds ratio and confidence intervals. 



Table Titles and Legends 

 

Table 1. Non-OMIM Genes Intolerant to Loss-of-Function Variants with Multiple Protein 

Truncating Variants in Genetic Generalized Epilepsy or Non-Acquired Focal Epilepsy 

GGE 

Gene 

Number of GGE 

Cases in Epi25 

GGE P-

Value 

NAFE 

Gene 

Number of NAFE 

Cases in Epi25 

NAFE P-

Value 

NLGN2 3 8.6e-03 WDR18 4 0.01 

HDLBP 4 8.9e-03 SOCS7 5 0.01 

RC3H2 4 0.01 TRIM9 3 0.05 

XPO5 3 0.02 ENAH 2 0.05 

 

Genes listed harbor protein truncating variants in the most loss-of-function intolerant decile 

of genes in more than one case but absent in controls. Only the top four gene associations are 

shown per epilepsy. Full tables can be found in the supplement (Tables S37-S38). P-values drawn 

from Ultra-Rare Protein Truncating Variants collapsing analysis (Figure S9, Tables S19-S20). 

 


