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Abstract

Nanoparticles have the potential to increase the efficacy of anticancer drugs whilst reducing

off-target side effects. However, there remain uncertainties regarding the cellular uptake

kinetics of nanoparticles which could have implications for nanoparticle design and delivery.

Polymersomes are nanoparticle candidates for cancer therapy which encapsulate chemo-

therapy drugs. Here we develop a mathematical model to simulate the uptake of polymer-

somes via endocytosis, a process by which polymersomes bind to the cell surface before

becoming internalised by the cell where they then break down, releasing their contents

which could include chemotherapy drugs. We focus on two in vitro configurations relevant to

the testing and development of cancer therapies: a well-mixed culture model and a tumour

spheroid setup. Our mathematical model of the well-mixed culture model comprises a set of

coupled ordinary differential equations for the unbound and bound polymersomes and asso-

ciated binding dynamics. Using a singular perturbation analysis we identify an optimal num-

ber of ligands on the polymersome surface which maximises internalised polymersomes

and thus intracellular chemotherapy drug concentration. In our mathematical model of the

spheroid, a multiphase system of partial differential equations is developed to describe the

spatial and temporal distribution of bound and unbound polymersomes via advection and

diffusion, alongside oxygen, tumour growth, cell proliferation and viability. Consistent with

experimental observations, the model predicts the evolution of oxygen gradients leading

to a necrotic core. We investigate the impact of two different internalisation functions on

spheroid growth, a constant and a bond dependent function. It was found that the constant

function yields faster uptake and therefore chemotherapy delivery. We also show how

various parameters, such as spheroid permeability, lead to travelling wave or steady-state

solutions.
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1 Introduction

Over one quarter of cancer patients undergo chemotherapy [1]. Unfortunately, the systemic

nature of drug delivery and lack of biological specificity of chemotherapeutic agents can result

in severe side effects, thus reducing the dose that can be administered [2]. However, in recent

years nanoparticle-mediated drug delivery has been developed to target cancer cells, and has

shown potential in reducing side effects, whilst increasing intratumoural drug concentration

in comparison to traditional chemotherapy [3].

Numerous nanoparticle formations have been investigated for use with anticancer

drugs [3]; here we focus on polymersomes which have been shown to have therapeutic

potential for head and neck squamous cell carcinoma (HNSCC) patients, among others [4].

HNSCC has extremely poor prognosis outcomes, partly because the chemotherapy dose

required to treat the cancer results in significant toxicity to the patient. Therefore new treat-

ment strategies are desperately needed which target the cancer cells and minimise damage

to the rest of the body. We previously found that polymersomes bind to and are preferen-

tially taken up by HNSCC cells via class B scavenger receptors that are exposed on their cell

surface [5].

Polymersomes are pH-sensitive synthetic diblock copolymers that self assemble into nano-

metre-sized vesicles at a neutral pH and disassemble at an acidic pH (below 6.4) [6]. During

assembly the polymersomes can encapsulate compounds, such as anticancer drugs, within

their core [5, 7]. They are taken up by cells via receptor-mediated endocytosis [8], a process

by which the nanoparticles bind to receptors on the cell surface. Once sufficient bonds have

formed between the polymersome and cell surface receptor, the polymersome is internalised,

becoming surrounded by the plasma membrane that forms an endosome. Endosomal pH is

highly acidic which causes the nanoparticle to rapidly disassemble. In turn this causes the

endosome to rupture, releasing the anti-cancer drug into the cell cytosol [6]. This process is

visualised in Fig 1.

At present, there are still many unknowns around the factors that determine the kinetics of

nanoparticle binding, uptake and subsequent chemotherapy release. A more complete under-

standing of these kinetics will help to enable the optimisation of nanoparticle design and treat-

ment strategies. Here we use mathematical and computational modelling as a complementary

tool to existing experimental studies (for example see Murdoch et al [9]) to explore the mecha-

nisms which underpin the process of binding, internalisation and drug release in order to elu-

cidate optimal polymersome design. Computational modelling of chemotherapy delivery to,

and distribution within, tumours is a large field of research [10–14].

Previously we developed a mathematical model to describe polymersome uptake via recep-

tor-mediated endocytosis (RME) in a well-mixed culture model [15]. We parameterised the

model using in vitro experiments and subsequently performed an investigation into the

parameters that affect nanoparticle uptake by HNSCC cells. In this study we apply the model

to two systems that mimic in vitro experimental setups often used in the preclinical stages of

drug development. Firstly, we model polymersome uptake in a spatially invariant system that

mimics cells cultured in 2D monolayers and focus on key uptake parameters and behaviours

when there is abundant polymersome supply. We nondimensionalise the model and perform

a singular perturbation analysis to find analytical solutions for the fast binding kinetics of the

system. This provides insights into key system behaviours, including the number of binding

events that take place before internalisation, which is important because this affects uptake

rates, as well as the optimal number of ligands on the particle surface. In an extension to our

previous model we also include cells, including their proliferation and death, which impacts

uptake, and therefore concentrations of free nanoparticles.

PLOS ONE A mathematical investigation into the uptake kinetics of nanoparticles in vitro

PLOS ONE | https://doi.org/10.1371/journal.pone.0254208 July 22, 2021 2 / 35

not contribute to study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: RJS and SWS would like to

acknowledge generous support form the Rosetrees

Trust (https://rosetreestrust.co.uk) (M601). SDW’s

commercial affiliation did not play a role in the

study (he only moved to this role when all work

was complete). The commercial affiliation of SDW

does not alter the authors’ adherence to PLOS ONE

policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0254208
https://rosetreestrust.co.uk


It is important to extrapolate in vitro parameters to more physically realistic systems. There-

fore we also apply our model to 3D tumour spheroids as they are a more realistic representa-

tion of in vivo tumour tissue [16] than typical 2D monolayer cultures, yet are a controllable in
vitro model in which to include the effects of spatial variations in treatment. Due to diffusion

limitations of oxygen, tumour spheroids form a necrotic core with a viable outer rim of prolif-

erating cells. This behaviour reflects in vivo conditions where heterogeneous vasculature in

solid tumours results in hypoxic and ultimately necrotic intra-tumour regions forming. Fur-

thermore, when delivering polymersomes to the spheroid surface we can gain insights into

how cells will be impacted at varying distances from a polymersome source, such as a blood

vessel. Using spheroids to investigate drug delivery is a common experimental approach for

investigating chemotherapy drug delivery [5], as well as a common area of research in compu-

tational modelling [17–19].

We use a multiphase model to investigate the effects of various parameters on spheroid

growth and we investigate the long term growth of spheroids by exploring travelling wave and

steady state behaviours for the tumour boundary. Despite the wealth of literature, as far as we

are aware, there are no models published that account for polymersome uptake in a spheroid

model which accounts for cell surface receptor recycling and internalisation rates that are poly-

mersome-cell bond dependent, as well as time dependent, which our model is. The goal of our

investigation is to identify controllable parameters that could be fed into experimental design

of polymersomes in the future.

In the next section, we present the mathematical formulation of our well-mixed system, fol-

lowed by parameterisation and nondimensionalisation of the model and then a perturbation

Fig 1. A schematic of the ligand-receptor binding process and internalisation via receptor-mediated endocytosis of polymersomes. (A) The structure

of polymersomes. (B) Receptor-ligand binding, cell surface receptors bind with ligands on the polymersome surface. (C) Cell membrane deformation (D)

The polymersome becomes enclosed by the cell membrane, which breaks away to form an endosome. (E) The polymersome ruptures due to the acidic

environment of the endosome and releases its contents. Changes in the osmotic pressure with the endosome causes it to rupture, releasing the

polymersomes encapsulated chemotherapy drug into the cell. The cell surface receptors that were encapsulated with the polymersome are recycled to the

cell surface.

https://doi.org/10.1371/journal.pone.0254208.g001
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analysis of the early time periods in the model. Next we present the spheroid model formula-

tion, again followed by parameterisation and nondimensionalisation. We develop numerical

solutions for both the well-mixed and spheroid systems, and use them to determine the maxi-

mum number of bound and internalised polymersomes as well as the impact of various inter-

nalisation functions, all of which play a key role in determining the amount of chemotherapy

drug delivered to the tumour cells.

2 Well-mixed model

Our first step in cancer drug treatment development with real tissue was to adminster the drug

to 2D cell monolayers. This is in order to determine dosing, mechanisms of action, effective-

ness compared with established drugs and interactions with other drugs. Here, the polymer-

somes are assumed to be well-distributed throughout the system, and so we treat this as a

spatially invariant system. A simple schematic of this experimental set up is shown in Fig 2.

This is a very common and simple experimental set up, used not just in cancer research but

in many applications for other diseases. Mathematical modelling can be used to aid experi-

ments since a large parameter space can be explored quickly. For example, here the number of

ligands on the polymersome surface can be quickly varied in order to determine the optimal

number for effective treatment. Once key parameters have been identified through modelling

these can then be used in experimental systems, thus reducing the time required for these

experiments.

2.1 Mathematical formulation

The mathematical framework for polymersome uptake in a well-mixed culture model pre-

sented here closely follows that of our previously published model. Here we extend the model

[15] to include time-varying cell concentration, which we previously assumed to be constant.

We use a system of n+ 5 ordinary differential equations to describe the uptake of polymer-

somes (see Fig 1), where n is the maximum number of bonds that can form between the

Fig 2. A schematic of the experimental setup of cancer cells and polymersomes in a 2D monolayer cell culture. Cells and seeded in the dish and grown

until they have reached optimal capacity. Then therapy is added in order to determine the treatment dosing, mechanisms of action, effectiveness compared

to established drugs and interactions with other drugs in a biological environment. The schematic shows the addition of polymersomes to the 2D

monolayers. D = diameter.

https://doi.org/10.1371/journal.pone.0254208.g002
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polymersome and receptors on the cell surface. We use the same assumptions in our model set

up as we did previously. We assume that the system is well-mixed, i.e cells and particles are

evenly distributed in space which is representative of in vitro conditions, and so ignore any

spatial effects. Furthermore we assume that there are a fixed number of available ligands on

the polymersome surface that can bind to free cell surface receptors.

Step 1 of RME is the binding of receptors to ligands (see Fig 1a), and therefore the number

of free ligands on a polymersome changes over time due to binding with cell surface receptors.

We describe the change in the number of free ligands over time, t, by

dL
dt
¼ � kaLF

zffl}|ffl{

first binding
event

þ kdB1;

zffl}|ffl{

dissociation of
complex

ð1Þ

where L is the moles of free vesicle ligands per cm3, ka is the rate of receptor-ligand binding

per minute and kd is the dissociation rate per minute, F is the moles of cell receptors per cm3

and B1 is the moles of receptor-ligand complexes bound with one bond per cm3. Here the first

term on the RHS of Eq (1) accounts for binding of a free polymersome to a single cell receptor

and the second term accounts for dissociation of that bond such that particles are no longer

bound to the cell.

From Eq (1) we can calculate the number of free polymersomes per cm3, V, by

VðtÞ ¼ L=l; ð2Þ

where l is the fixed moles of free ligands per polymersome. We use the law of mass action to

describe the binding kinetics so receptor-ligand complexes with one bond change over time

through,

dB1

dt
¼ kaLF

zffl}|ffl{

first binding
event

� kdB1

z}|{

dissociation of
complex

� kaðrllNA � 1Þrf FB1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

association of
1! 2 complexes

þ 2kdB2

zfflffl}|fflffl{

dissociation of 2! 1

complexes

� kinB1;

zffl}|ffl{

internalisation of
complex with 1 bond

ð3Þ

where NA is Avogadro’s constant, B2 is the moles of receptor-ligand complexes bound with

two bonds per cm3, kin is the polymersome internalisation rate per minute and ρl and ρf are the

fraction of ligands and receptors respectively that are available for 2-D binding, i.e only ligands

and receptors within a certain range can form bonds. The term 2-D binding is used to describe

the subsequent binding after one initial receptor-ligand bond had formed.

Eq (3) involves terms that are functions of ρl and ρf. In the third term on the RHS of Eq (3),

(ρl lNA − 1) represents the ligands available on the polymersome for subsequent binding after

the initial binding event. The term describes that there is one less ligand available for subse-

quent binding, in which the polymersome would become bound to the cell with two bonds

(for example see Fig 1B). The fourth term on the RHS represents dissociation of a bond, mean-

ing that a new receptor and ligand are now free binding at a rate 2kd (where the factor 2 repre-

sents that any one of the two bonds can dissociate). Internalisation of polymersomes occurs at

a constant rate kin; in this well-mixed model we assume that the binding rate and internalisa-

tion rate are independent of the number of bonds that have already formed following our pre-

viously published model [15]. Bond dependent internalisation is explored later in this paper.
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Generalising, the number of receptor-ligand complexes bound by i bonds changes over

time by

dBi

dt
¼ kaðrl lNa � ði � 1ÞÞrf FBi� 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

association of
ði � 1Þ ! i complexes

� ikdBi

zffl}|ffl{

dissociation of i! ði � 1Þ

complexes

� kaðrllNa � iÞrf FBi

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

association of
i! ðiþ 1Þ complexes

þ ðiþ 1ÞkdBiþ1

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

dissociation of ðiþ 1Þ ! i
complexes

� kinBi;

zffl}|ffl{

internalisation of
complex with i bonds

ð4Þ

where 2� i� n − 1 and n is the maximum number of ligand-receptor bonds that can form.

The number of receptor-ligand complexes bound by n bonds change over time by,

dBn

dt
¼ kaðrllNa � ðn � 1ÞÞrf FBn� 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

association of
ðn � 1Þ ! n complexes

� nkdBn

zfflffl}|fflffl{

dissociation of n! ðn � 1Þ

complexes

� kinBn;

zfflffl}|fflffl{

internalisation of
complex with n bonds

ð5Þ

When a maximal number of bonds, n, is reached, polymersomes are internalised into endo-

somes (see Fig 1D.ii). The acidic environment of the endosome causes polymersomes to break

down and release the encapsulated drug. The rate of change of internalised polymersomes

over time is then given by,

dBin

dt
¼

kin

l

Xn

i

Bi

zfflfflfflffl}|fflfflfflffl{
total internalised polymersomes

� dbBin:

zfflffl}|fflffl{
polymersome breakdown

ð6Þ

Internalised polymersomes are lost due to polymersome rupture at an assumed constant rate,

the rupture rate db. When polymersomes rupture within the cell they release the encapsulated

chemotherapy drug (see Fig 1E), giving the rate of change of intracellular drug as,

dP
dt
¼ ndbBin

zfflffl}|fflffl{
drug released by polymersome breakdown

� dpP;
z}|{

drug half‐life

ð7Þ

where P is the concentration of intracellular drug per cm3. The release of the drug is propor-

tional to the rupture of the polymersome, ν, and we also include a decay in drug activity which

we assume occurs at constant rate, dp, which corresponds to uptake or removal of the chemo-

therapy drug.

During the process of binding there is a change in the number of free receptors, F, on the

cell surface. This is because once a receptor binds with a ligand it is no longer free to bind to

other ligands, and becomes internalised in the process of endocytosis. Once inside the cell, the

receptors are recycled back to the cell surface [20] (see Fig 1E). We describe this rate of change
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of free receptors by,

dF
dt
¼ � kaFL

zffl}|ffl{

initial receptor�
ligand binding

� ka

Xn

i

ðrllNa � iÞrf FBi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
subsequent binding with ligands

þ kd

Xn

i

iBi

zfflfflfflffl}|fflfflfflffl{
dissociation of i bonds

� df F
z}|{

receptor half� life

þ RðbtotÞm;
zfflfflfflfflffl}|fflfflfflfflffl{

receptor production

ð8Þ

where we have assumed that receptors have a limited life on the cell surface, with the constant

linear decay rate df. We assume that receptor production occurs on the cell surface and that

receptors are recruited to the cell surface at a rate proportional to the number of bound recep-

tors. We base these assumptions on the similar model of Ghaghada et al [21] who investigate

receptor recycling and nanoparticle-cell bonds through receptor-mediated targeting for lipo-

somes. We describe receptor recycling using a function of the total number of bound recep-

tors, R(btot), where btot is the total number of bound complexes per cell. We assume R(btot) is

constant if there are no bound receptors (btot = 0), otherwise we assume an increasing saturat-

ing function dependent on the total number of bound complexes per cell. R(btot) is given by

RðbtotÞ ¼ c1 þ
c2batot

ca
3
þ batot

where btot ¼
1

m

Xn

i

iBi; ð9Þ

m is the number of tumour cells per cm3, α is the Hill exponent, c1 is the rate of receptor pro-

duction and c2 and c3 characterise the hill equation. Here c2 is the maximum recycling rate and

c3 is the value at which the half maximum of the function R(btot) is reached.

In an extension to our previous model we describe how the tumour cell density changes

over time due to the balance of proliferation and death through

dm
dt

¼ rm 1 �
m
K

� �
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

growth

� gð�Þm;
zfflfflffl}|fflfflffl{

death

ð10Þ

where m is the number of cells per cm3, the carrying capacity of the system is K and we assume

that the cells undergo logistic proliferation at constant rate, r. We include cells in our model

since the number of cells directly correlates to the uptake amount of nanoparticles and there-

fore the number of remaining free polymersomes. Cell death is described by the function g(ϕ),

which we assume is constant when there is no intracellular drug present due to natural cell

death, otherwise it is an increasing saturating function of the intracellular drug concentration

[22]. Cell death is then described through

gð�Þ ¼ dm þ
m�

b

Pb0 þ �
b
; ð11Þ

where �ðtÞ ¼ P
m describes the mole of drug per cell, P is the moles of drug per cm3, P0 is the

drug concentration that produces a 50% maximal response, dm is the natural cell death, β is the

Hill exponenent and μ is the cell death rate due to drug delivery. The functions of cell death,

g(ϕ), and receptor recycling, R(btot) are generalised hill equations which are commonly used to

model cell kinetics and nutrient consumption, for example see references [22–24].

We further impose the following initial conditions,

mð0Þ ¼ M0; Vð0Þ ¼ V0; Fð0Þ ¼ F0;

Bið0Þ ¼ 0; Binð0Þ ¼ 0 and Pð0Þ ¼ 0;

PLOS ONE A mathematical investigation into the uptake kinetics of nanoparticles in vitro

PLOS ONE | https://doi.org/10.1371/journal.pone.0254208 July 22, 2021 7 / 35

https://doi.org/10.1371/journal.pone.0254208


where i = 1, . . ., n, M0 is the initial cell concentration, V0 is the initial polymersome concentra-

tion, F0 is the initial cell surface receptor concentration, Bi(0) is the concentration of polymer-

somes bound with i complexes, Bin(0) is the internalised polymersome concentration and P(0)

is the released drug concentration, all at time t = 0. These conditions state that initially there

are no bound or internalised polymersomes present when the cells and particles are mixed

together and therefore there is no released drug.

2.2 Parameterisation

The parameterisation of the system proved difficult since the majority of the parameters for

specific polymersome binding are unknown due to a lack of relevant experimental data. Hence

we look to a similar system of liposomal targeting which has similar dynamics to those of poly-

mersome targeting and is more well understood experimentally. Specifically we look to use

parameters from a liposomal modelling study by Ghaghada et al. [21], in which targeted lipo-

somes bind to folate receptors of C6 glioma cells. The parameter values used in the subsequent

analysis are shown in Table 1. Further information on how the parameters were chosen is pro-

vided in the S1 File.

2.3 Nondimensionalisation

We non-dimensionalise the model in order to understand the dominant terms in the system

and to enable prioritisation of the parameters needed for future experiments. We rescale the

Table 1. Model parameter values. Where no data were available in the literature we estimated parameters values to match experimental observations. See S1 File.

Parameter Dimensional Value Dimensionless Values Reference

Initial cell concentration, M0 5 × 107 cell cm−3 1 [25]

Initial polymersome concentration, V0 1010 polymersome cm−3 1 estimate

Initial cell surface receptor concentration, F0 1.66 × 10−20 mol cell−1 1 [21]

Half maximal drug concentration, P0 4.15 × 10−14 mol cell−1 - estimate

Cell proliferation rate, r 6 × 10−5 min−1 - [25]

Tissue carrying capacity, K 5 × 107 cells cm−3 - estimate

polymersome binding rate, ka 3.7010 × 108 mol−1min−1cm3 0.4451 [21]

polymersome dissociation rate, kd 3.7010 × 10−5 min−1 0.0533 [21]

polymersome internalisation rate, kin 0.6124 min−1 887.5 [21]

Avogadros constant, Na 6.022 × 1023 molecules - -

Ligands per polymersome, l � Na 1200 ligands polymersome−1 - estimate

Receptor decay rate, df 0.03 min−1 43.203 [26]

Fraction of receptors available for binding, ρf (0, 1] - estimate

Fraction of ligands available for binding, ρl (0, 1] - estimate

polymersome rupture rate, db 2.3 min−1 3.3122 [8]

Drug decay rate, dp 1.2 min−1 1739 estimate

Natural cell death rate, dm 0.01min−1 724.6 [27]

Cell death due to drug, μ 1.2 min−1 1739 [8]

Receptor production rate, c1 4.98 × 10−22 mol cell−1 min−1 43.478 estimate

Maximum receptor recycling rate, c2 4.98 × 10−22 mol cell−1 min−1 43.478 estimate

Half maximum receptor recycling concentration, c3 2.76 × 10−20mol cell−1 83.28 estimate

Hill exponent (receptor recycling), α - 1 estimate

Hill exponent (cell death), β - 1 estimate

Receptor scaling factor, ν - 8.414 × 10−5 estimate

Scaling parameter, η - 0.02 estimate

https://doi.org/10.1371/journal.pone.0254208.t001
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system as follows:

m ¼ m̂K; V ¼ V̂V0; F ¼ F̂F0KNA; Bi ¼ B̂iV0;

Bin ¼ B̂inV0; P ¼ P̂P0K t ¼
t̂
r
;

where i = 1, . . ., n and the non-dimensional variables are denoted by hats. Removing the hats

for notational convenience the rescaled system then reads

dm
dt

¼ mð1 � mÞ � ~gð~�Þm; ð12Þ

dV
dt

¼ � ~kaVF þ
~kdB1

l
; ð13Þ

dB1

dt
¼ ~kaLF � ~kdB1 �

~kinB1

� ~kaðrll � 1Þrf FB1 þ 2~kdB2;

ð14Þ

dBi

dt
¼ ~kaðrll � ði � 1ÞÞrf FBi� 1 � i~kdBi �

~kinBi

� ~kaðrll � iÞrf FBi þ ðiþ 1Þ~kdBiþ1;

ð15Þ

dBn

dt
¼ ~kaðrll � ðn � 1ÞÞrf FBn� 1 �

~kinBn � n~kdBn; ð16Þ

dF
dt
¼ � Z~kaFL � Z~ka

Xn

i

ðrll � iÞrf FBi þ Z
~kd

Xn

i

iBi

� ~df F þ ~Rð~btotÞm;

ð17Þ

dBin

dt
¼

~kin

l

Xn

i

Bi �
~dbBin; ð18Þ

dP
dt
¼ ~n~dbBin �

~dpP; ð19Þ

with

~gð~�Þ ¼ ~dm þ
~m�b

Pb0 þ �
b

and ~Rð~btotÞ ¼ ~c1 þ
~c2

~batot
~ca

3
þ ~batot

; ð20Þ

where

~btot ¼
1

m

Xn

i

iBi:
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The rescaled parameters, denoted by tildes, are defined as

~ka ¼
kaf0K

r
; ~kd ¼

kd

r
; ~kin ¼

kin

r
; ~dm ¼

dm

r
; ~m ¼

m

r
;

Z ¼
V0

NAf0K
; ~df ¼

df

r
; ~db ¼

db

r
; ~dp ¼

dp

r
; ~n ¼

V0n

P0K
;

~c1 ¼
c1

f0r
; ~c2 ¼

c2

f0r
; ~c3 ¼

c3K
V0

; ~l ¼
l

NA
:

The rescaled system is then subject to the following initial conditions,

mð0Þ ¼ 1; Vð0Þ ¼ 1; Fð0Þ ¼ 1; Bið0Þ ¼ 0; Binð0Þ ¼ 0; Pð0Þ ¼ 0; ð21Þ

for i = 1, . . ., n. The values of the rescaled parameters are given in Table 1. We see that in the

rescaled system the larger parameters (on the order of or close to 103) are the internalisation

rate, kin, the polymersome rupture rate, db, the drug decay rate, dp, the natural cell death rate,

dm, and cell death due to drug, μ, so we expect that these will have large influences on the sys-

tem. On the other hand the initial binding rate, ka, and the dissociation rate, kd, are small (less

than one) so we expect these to have a negligible impact on the system.

We solve the system numerically using the ODE solver ode45 in Matlab, which is based

on the explicit Runge-Kutta 45 method. Fig 3 shows representative results for a typical set of

parameter values, given in Table 1. Initially there is a quick decrease in free receptors due to

the fast initial binding with ligands on the polymersome surfaces, then a more gradual decline

is observed as the number of tumour cells, and hence, cell surface receptors decrease. With the

maximum number of complexes being set to twenty, the majority of polymersomes only create

a small number of bonds with the cell surface before being internalised, with the maximum

number of internalised polymersomes occurring after around one hour. The intracellular drug

concentration exhibits a similar behaviour as the internalised polymersomes. This is to be

expected as the drug release is assumed to be proportional to the rate of internalisation of poly-

mersomes. The simulations show that, for this specific set of parameter values, the tumour cell

population decreases to zero over time after polymersomes are introduced. The decrease is

rapid over approximately the first 10 hours and then slows as the population approaches zero.

2.4 Singular perturbation analysis

The results of the numerical system show rapid changes in the system at early time points.

This is to be expected based on the large coefficients we find in our nondimensionalisation.

To get an analytical handle on this we carry out a singular perturbation analysis of early time

points in the system. We use the non-dimensional system given in the previous section 2.3

with the hats and tildes dropped for convenience.

For simplicity, we first consider a single binding interaction, where only one complex

between a ligand and receptor has to form for the drug-loaded polymersome to be internalised

(n = 1). We justify this by observing that the binding rate is much smaller than the internalisa-

tion rate so that a polymersome will likely be internalised after one bond has formed and

before other bonds form. We do this by setting ρl = l−1 and ρf = 0 so that Bi(t) = 0 for 2� i� n.

For further simplification of the model we look at the parameters involved in the kinetics of

receptors and ligands. Note that, with the parameter values described in the previous section,

we have the dimensionless values, kd� O(10−2),
kd

l
� Oð10� 5Þ and ηkd� O(10−4) and so we

set the dissociation rate kd = 0. Hence we can write Zl ¼
Ẑl
ε

, df ¼
d̂f

ε
and c1 ¼

ĉ1

ε
where ε� 1 is
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a scaling parameter. We also look to simplify the saturating functions for receptor recycling,

R(btot), and cell death, g(ϕ), given by (20). The total cell death rate, g(ϕ), can be linearised

since Pb0 is neglible thus ~gð~�Þ ¼ ~dm þ
~m�b

Pb
0
þ�b

reduces to ~gð~�Þ ¼ ~dm þ ~m. To simplify Rð~btotÞ, we

assume that c3 is small compared to ~btot, so that R(b)� c1 + c2 ≔ R.

Before performing the analysis we make one further assumption in order to simplify the

system, assuming t = τε where τ represents short time behaviour. Using these assumptions the

system then becomes

dm
dt

¼ εmð1 � mÞ � εgð�ÞP; ð22Þ

dV
dt

¼ � εkaVF; ð23Þ

Fig 3. Predictions of the model (Eqs 12–19) for the parameter values given in Table 1. The nondimensional system and parameters were used for the

simulations and the results were converted to dimensional values. The maximum number on bons, n = 20.

https://doi.org/10.1371/journal.pone.0254208.g003
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dF
dt

¼ � kaZlVF � df F þ Rm; ð24Þ

dB
dt

¼ εkalVF � εkinB; ð25Þ

dBin

dt
¼ ε

kin

l
B � εdbBin; ð26Þ

dP
dt

¼ εndbBin � εdpP; ð27Þ

whilst initial conditions remain the same as those given in Eq (21).

Using this reduced system we look to find the inner solutions of the system. We propose

asymptotic solutions of the form P(τ; ε) = ∑n = 0 ε
n Pn, m(τ; ε) = ∑n = 0 ε

n mn, V(τ; ε) = ∑n = 0 ε
n

Vn and F(τ; ε) = ∑n = 0 ε
n Fn and equate coefficients of powers of epsilon to look for the inner

solutions for free polymersomes and free receptors at early time points. For coefficients of ε0,

the solutions for m and P are m = 1 and P = 0, as given by the initial conditions. These solu-

tions allow us to solve the leading order solution for free receptors, F, and free polymersomes,

V, with the equations for bound polymersomes (B) and internalised polymersomes (Bin)

decoupling from the rest of the system. For coefficients of order zero the equation for free

polymersomes, (23), yields

dV0

dt
¼ 0: ð28Þ

Solving this with the initial condition V(0) = V0, the leading order solution is then given simply

by

V0ðtÞ ¼ V0: ð29Þ

Using this solution, we now look for the leading order solution for free receptors. Eq (24)

becomes

dF0ðtÞ

dt
¼ � ðZlkaV

0ðtÞ � df ÞF
0ðtÞ þ Rm; ð30Þ

which is easily solved using the integration factor method with initial condition F0(0) = F0 to

give

F0ðtÞ ¼
R
b
þ C1e

� bt; ð31Þ

where

b ¼ kaZlV0 þ df ; ð32Þ

and C1 is a constant of integration,

C1 ¼ F0 �
R
b
: ð33Þ

During this time period free polymersomes become bound to cells (see Fig 3). Thus the

number of free polymersomes V0(t) should not be equal to a constant. Equating coefficients of
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powers of ε for the free polymersome equation gives

dV1ðtÞ

dt
¼ � kaV0

R
b
þ C1e

� bt

� �

; ð34Þ

which can be easily solved to give

V1ðtÞ ¼ � kaV0

R
b
þ C1e

� bt

� �

þ C2; ð35Þ

where C2 is a constant of integration, given by

C2 ¼ �
kaV0C1

b
: ð36Þ

Next we find solutions for bound and internalised polymersomes. Recalling the solutions

for free polymersomes and receptors, (29) and (31), and the equation for bound polymersomes

(25) we have

dB0

dt
¼ kalV0

R
b
þ C1e

� bt

� �

� kinBðtÞ: ð37Þ

Again we can solve for B(t) using the integration factor method to give,

B0ðtÞ ¼ kalV0

R
kinb
þ

C1

kin � b
e� tb

� �

þ C3e� kint ð38Þ

where C3 is a constant of integration,

C3 ¼ � kalV0

R
kinb
þ

C1

kin � b

� �

: ð39Þ

We now use the solution for bound polymersomes, (38), to solve for internalised

polymersomes.

By combining the equation for Bin(τ) (26) and by using (31), leads to

dBin

dt
¼ g1 þ g2e

� bt þ g3e
� kint þ C3e

� kint � dbBin ð40Þ

where the following parameter groupings have been used,

g1 ¼
kaV0R
b

; ð41Þ

g2 ¼
kinkaV0C1

kin � b
; ð42Þ

g3 ¼
kinC3

l
: ð43Þ

Again this can be solved using the integration factor method, which yields

Bin ¼
g1

db
þ
g2e� bt

db � b
þ

ge� kint

db � kin
þ C4e

� dbt; ð44Þ
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where C4 is a factor of integration,

C4 ¼ �
g1

db
�

g2

db � b
�

g3

db � kin
; ð45Þ

The numerical and analytical results for bound and internalised nanoparticles are shown in

Fig 4(A) and 4(C) along with the relative error between the solutions (B,D). We find a good

match between the dimensionless numerical and analytical solutions at early time points

which is demonstrated by the relative error between the solutions. The numerical and analyti-

cal solutions are shown for up to seven minutes in order to capture the key behaviour at early

time points, that is that the maximum number of bound polymersomes occurs at a turning

point, but the relative error is shown for a longer time period to demonstrate the validity of the

results.

The relative error for bound and internalised polymersomes is shown in Fig 4 for the time

period 0� t� 60 minutes. For the bound polymersomes we see that for the first twenty min-

utes of the simulation the relative error is a few percent, after which the error grows with time.

Fig 4. Numerical and analytical solutions for (A) bound and (C) internalised polymersomes for up to seven minutes and (B,D)

the relative error in the numerical and analytical solutions for bound and internalised polymersomes respectively for up to one

hour. The numerical solution is the original model but with some simplifying assumptions, given by Eqs 25 and 26, and the analytical

solutions are derived from these via a perturbation analysis. The analytical solutions are given by Eqs 38 and 44. The nondimensional

system and parameters were used for the simulations and the results were converted to dimensional values. The parameters used are

given in Table 1.

https://doi.org/10.1371/journal.pone.0254208.g004
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For the internalised polymersomes the relative error remains below 0.5%. Therefore, we take

the analytical solutions to be acceptable for early time periods, less than ten minutes, in the

model.

2.5 Maximising polymersome uptake

In Fig 4 we observe that the maximum number of bound polymersomes occurs at a turning

point so now we look for an approximated analytical value of this maximum.

Differentiating (38) and solving at zero, the turning point occurs at t = t�, where

t ¼ t� ¼
1

b � kin
ln

bkalV0C1

kinC3ðb � kinÞ

� �

: ð46Þ

therefore the maximum of number bound polymersomes, Bmax, is then given by

Bmax ¼ Bðt�Þ ¼ kalV0

R
kinb
þ

C1

kin � b

kinC3ðb � kinÞ

bkalV0l

� � b

b� kin

 !

þ C3

kinC3ðb � kinÞ

bkalV0C1

� � kin
b� kin

: ð47Þ

Similarly, we can find the maximum of internalised polymersomes. We see from Fig 4 that

at early time points the concentration of internalised polymersomes increases with time.

Therefore we find the solution for internalised polymersomes as τ!1

Bmax
in ¼

g1

db
ð48Þ

We use this result to investigate the importance of different parameters on polymersome

internalisation which subsequently affects the delivered chemotherapy drug concentration.

2.6 Parameter dependency of maximum bound and internalised

polymersomes

Fig 3 reveals rapid system dynamics at early time points. To understand this behaviour in

more detail we performed a singular perturbation analysis, the predictions for which are

shown in Fig 4. From the analytical results we derived expressions for the maximum bound

and internalised polymersomes. Fig 5 shows the behaviour of these quantities when we vary

key parameters. In Fig 5, we observed that Bmax is an increasing function of l, the fixed number

of ligands per polymersome. The internalised polymersomes initially increases as l increases to

reach a peak at approximately 500 ligands per polymersome before decreasing. As l continues

to increase the internalisation rate by tumour cells slows, indicating that there is an optimal

number of ligands to maximise polymersome internalisation. This is in agreement with the

work of Ghaghada et al. [21] who also found that a specific number of ligands maximises poly-

mersome uptake. Bmax and Bmax
in are both increasing saturating functions of ka, meaning with

increasing ka more polymersomes become internalised. On the other hand Bmax is a decreasing

saturating function of the scaling factor, η. The maximum number of internalised polymer-

somes increases rapidly with η before decreasing, indicating an optimal value.

Next we apply our model to a spheroid system in order to incorporate spatial effects of poly-

mersome delivery and to explore the impact of various internalisation factors on tumour

growth, as well as tissue properties such as permeability.

3 Spheroid model

Tumour spheroids are an alternative in vitro preclinical screening tool for cancer drug

development in addition to 2D monolayer experiments. Cells are seeded in a specially
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designed well; the cells cannot bind to the surface of the well so bind to each other and as

they multiply they grow in a spheroid shaped mass. Initially the seeded cells have plenty of

oxygen and nutrients to proliferate. However, oxygen and nutrient supply is diffusion-lim-

ited, so as the cell mass increases, some cells in the centre of the spheroid become located

beyond the supply of nutrients and oxygen required for respiration. This leads to a forma-

tion of a quiescent layer of cells that receive enough nutrients and oxygen to survive but not

to proliferate and at the centre of the spheroid no such supply is received and so cells die,

forming a necrotic core. The spheroid geometry also limits drug penetration. The growth

of the spheroid therefore leads to gradients in oxygen, nutrients and drugs from the surface

towards the core.

Fig 5. Sensitivity of the analytical solution of the maximum bound polymersomes and maximum internalised polymersomes, given by Bmax (first

column) and Bmax
in (second column), to variations in ligand number, l (first row), binding rate, ka, (second row) and the dimensionless scaling

parameter, η, (third row). The nondimensional system and parameters were used for the simulations and the results were converted to dimensional

values. The parameters used are given in Table 1.

https://doi.org/10.1371/journal.pone.0254208.g005
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Fig 6 shows a schematic of tumour spheroid growth with oxygen, nutrient and drug gradi-

ents as well as some example experimental results of nanoparticle penetration into tumour

spheroids over a period of 120hrs. It can been seen that it takes almost 24 hours for drugs to

penetrate the outer layer of the spheroid. At 120 hours the outer and middle layer of the spher-

oid are permeated with nanoparticles but the centre is mostly void of them.

Here we extend our monolayer model of nanoparticle delivery to cells to describe uptake in

a tumour spheroid, thus incorporating spatial effects. First we present the model, then explain

the basis of the functional dependencies in the constitutive relationships. We then present the

initial and boundary conditions of the model as well as any additional parameter values (see

Table 2) followed by nondimensionalisation. This allows us to study the impact of various

internalisation functions on spheroid growth over various time periods and various tissue

properties, such as permeability.

3.1 Mathematical formulation

We develop the model to describe radially symmetric avascular tumour growth with infiltrat-

ing polymersomes. The space is multiphase, accounting for cells and the surrounding material

such as water and cell debris, which is reflective of experimental conditions. The model incor-

porates the binding kinetics and release of polymersome carried chemotherapy drug and so

we can predict its associated impact on tumour growth.

In this model we do not account for certain physiochemical aspects of the nanoparticles,

such as the variability in size, and the electric or magnetic properties. Sorrell et al [15]

accounted for the variable sizes of the polymersomes, which occurs as a result of the

Fig 6. (A) Tumour spheroids grow from proliferating cells. As they grow over time quiescent and necrotic layers form due to gradients in oxygen and

nutrients. (B) An example of nanoparticle penetration over time in tumour spheroids. The images shown are slices through a HNSCC tumour spheroid.

Nanoparticles are rhodamine labelled PMPC-PDPA polymersomes. (left) 1 hour (middle) 24 hours, (right) 120 hours. Rhodamine fluorescence (red) and

DAPI counterstained cell nuclei (blue). Scale bar = 100μm.

https://doi.org/10.1371/journal.pone.0254208.g006
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production process, through the use of a stochastic model. The coating of polymersomes is

chosen specifically for biological environments such that they do not react with the environ-

ment in any adverse way and so investigating these properties is beyond the scope of this

work.

To setup the model we use dimensional parameters. The spheroid is a spherically symmet-

ric sphere of radius, R. We assume the spheroid is comprised of two continuous phases,

tumour cells and cellular material, as is common in the literature [17, 22, 28]. These phases are

described by the volume fraction per unit control volume of tumour cells, m(r, t) and cellular

material, w(r, t), which are functions of the distance from the spheroid centre, r, and time, t.
We also include transport of oxygen, c(r, t), via diffusion from the culture media surrounding

the spheroid, as well as distribution and binding of polymersomes. In order to simplify the

model we neglect the chemotherapy drug components and instead calculate cell death as a

function of polymersome concentration.

We apply a no-void condition within the spheroid, representing conservation of mass,

hence m + w = No, where No is a constant, given that m and w are normalised to a control vol-

ume of tumour cells.

The system is augmented via transport equations for the distribution of polymersomes,

giving

Tumour :

@m
@t
¼ �

1

r2

@

@r
r2Jmð Þ þ pmðw; cÞm � dmðcÞm � gðBÞ;

ð49Þ

Material :

@w
@t
¼ �

1

r2

@

@r
r2Jwð Þ � pmðw; cÞmþ dmðcÞmþ gðBiÞ;

ð50Þ

Oxygen :

@c
@t
¼ �

1

r2

@

@r
r2Jcð Þ � dcðm;wÞ;

ð51Þ

Table 2. Parameter values used in the spheroid model not already defined in Table 1.

Parameter Dimensional Value Dimensionless Value Reference

Random cell motility coefficient, Dm - 10 [29]

Random cellular material motility coefficient, Dw - 500 [29]

Oxygen diffusion coefficient, Dc 1 × 10−6cm2s−1 4 × 103 [19]

polymersome diffusion coefficient, Dv - 500 estimate

Maximum oxygen uptake by cells, pmax
cm - 0.05 [17]

Maximum oxygen uptake due to proliferation, pmax
cp 0.014 [17]

Maximum cell growth rate, pmax
m 6.944 × 10−4min−1 - [17]

Maximum cell death rate, dmax
m - 2 [29]

Oxygen concentration for half maximal cell proliferation, cp - 0.6 [17]

Oxygen concentration for half maximal cell death, cc - 0.6 [17]

Potentcy, γ 10−3 estimate

Total volume fraction of cells and cellular material, N0 - 1 -

Radius of a cell, Rm 6μm - [29]

https://doi.org/10.1371/journal.pone.0254208.t002
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Free polymersomes :

@V
@t
¼ �

1

r2

@

@r
r2Jvð Þ � kaVF þ

kd

l
B1;

ð52Þ

B1

@B1

@t
¼ �

1

r2

@

@r
r2 B1

m
Jm

� �

þ kalVF � ðkd þ kinð1ÞÞB1

� karf ðrllNa � 1ÞFB1 þ 2kdB2;

ð53Þ

Bi’s :

@Bi

@t
¼ �

1

r2

@

@r
r2 Bi

m
Jm

� �

þ karf rllNa � ði � 1Þð ÞFBi� 1

� ðikd þ kinðiÞÞBi � karf ðrllNa � ði � 1ÞÞFBi

þ ðiþ 1ÞkdBiþ1; for 2 � i � n � 1;

ð54Þ

Bn

@Bn

@t
¼ �

1

r2

@

@r
r2 Bn

m
Jm

� �

þ karf rllNa � ðn � 1Þð ÞFBn� 1

� ðnkd þ kinðnÞÞBn;

ð55Þ

where Jm, Jw, Jc and Jv are the fluxes of tumour cells, cellular material, oxygen and free polymer-

somes, respectively. The fluxes are given by

Jm ¼ � Dm
@m
@r
þ vm; Jw ¼ � Dw

@w
@r
þ vw;

Jc ¼ � Dc
@c
@r
þ vc; Jv ¼ � Dv

@V
@r
þ vV;

ð56Þ

where v is the common advection velocity (the velocity of all constituents in the model due to

bulk motion) and Dm, Dw, Dc, Dv are the diffusivities of the tumour cells, cellular material, oxy-

gen and free polymersomes respectively. We assume that once the polymersomes have bound

to the cell then they move with the cell. Using the no-void condition and by summing Eqs (49)

and (50) we can deduce the following advection velocity,

v ¼
1

N0

Dm � Dwð Þ
@m
@r

� �

: ð57Þ

Next, we discuss the functional forms of the terms in the model. The framework we are

using here has been adapted from similar work which models the use of therapeutic macro-

phages by Webb et al [17]. The function pm(w, c) denotes tumour proliferation, which we take

to be an increasing saturating function of both the cellular material and oxygen concentration,

pmðw; cÞ ¼ pmax
m Sðc; cpÞmin

w
w0

; 1

� �

; ð58Þ

and the death rate due to apoptosis, dm(c), is a decreasing function of the oxygen
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concentration,

dmðcÞ ¼ dmax
m ð1 � Sðc; ccÞÞ: ð59Þ

We capture oxygen metabolism through the function dc(m, w, c) which increases with tumour

cell density,

dcðm;w; cÞ ¼ pmax
cm Sðc; ccÞmþ pmax

cp pmðw; cÞm: ð60Þ

where

Sðc; cpÞ ¼
caðcap þ ca

1
Þ

ca
1
ðcap þ caÞ

; ð61Þ

cp is the oxygen threshold for proliferation, cc is the oxygen concentration for half maximal cell

death, pmax
cm is the maximum uptake rate of oxygen by cells, pmax

cp is the maximum uptake rate

of oxygen due to proliferation and pmax
m is the maximum cell growth rate under nutrient rich

conditions. S(c, cp) is a scaled Hill function with maximal value S = 1 when c = c1 (which we

assume is the maximum value of oxygen at the tumour boundary), with the steepness of the

curve dependent on the value of the exponent α> 0.

For simplicity the death of cells is a calculated as function of bound particles, reducing the

number of calculations needed in the model. We assume that the death rate of tumour cells,

g(B), is proportional to the total number of bound polymersomes,

gðBÞ ¼ g
Xn

i¼1

kinBi; ð62Þ

where γ is the potency of the polymersomes. To further simplify the framework, we assume a

fixed number of receptors per cell, f0. So that, at any time, the free receptors per cell is given by

this fixed number minus those involved in polymersome binding, namely

F ¼ f0m
z}|{

total mol receptors
per cm3

�
Xn

i¼1

iBi

zfflffl}|fflffl{

mol ligand‐receptor
complexes per cm3

ð63Þ

Using this model set up, we can solve Eqs (53)–(55) independently to give numerical equa-

tions for polymersomes with different bond numbers, i.e for each Bi, (where i = 1, . . ., n), in

terms of the remaining model variables. It is useful to solve for each Bi because this allows us to

perform investigations into how the number of bonds between polymersomes and cells effects

possible outcomes of spheroid growth. The values of the parameters that are introduced in this

section are given in Table 2, the rest of the parameters which were also used in the previous

section remain the same and are given in Table 1.

3.2 Initial and boundary conditions

Next we set the initial and boundary conditions for the model. Initially, the tumour is allowed

to grow without the presence of therapeutic polymersomes, as the spheroid would in experi-

ments, therefore at t = 0

mðr; 0Þ ¼ M0; wðr; 0Þ ¼ N0 � M0; cðr; 0Þ ¼ c0; ð64Þ

Vðr; 0Þ ¼ 0; Bðr; 0Þ ¼ 0; V1 ¼ 0 and Rð0Þ ¼ R0; ð65Þ
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where V1 is the polymersome surface concentration, M0 is the tumour cell density, c0 is the

oxygen concentration, B(r, 0) is the bound polymersome concentration and V(r, 0) is the poly-

mersome concentration at distance r from the spheroid centre and R0 is the initial radius of

the spheroid. At some time, t�, we introduce the polymersomes on the surface of the tumour

spheroid by setting the surface concentration of polymersomes, to some non-zero value (previ-

ously V1 = 0 when 0< t< t�).
Assuming the tumour is symmetric about the origin, we have

@m
@r
¼
@w
@r
¼
@c
@r
¼
@V
@r
¼
@B
@r
¼ 0 on r ¼ 0: ð66Þ

On the tumour boundary r = R(t), we fix the nutrient concentration, c = c1. Both cellular

material and polymersomes can move across the tumour boundary with their flux across the

boundary proportional to (w1 − w(R, t)) and (V1 − V(R, t)), respectively, where w1 is the

external concentration of cellular material. The tumour boundary moves with the velocity vm

and cellular material moves across the boundary at velocity vw, hence the flux boundary condi-

tions for cellular material and unbound polymersomes on r = R(t) are given by,

� wðvw � vmÞ ¼ hwðw1 � wÞ

) Dw
@m
@r
� Dm

ðNo � mÞ
m

@m
@r
¼ hwðw1 � No þmÞjr¼RðtÞ;

ð67Þ

� Vðvv � vmÞ ¼ hvðV1 � VÞ

) Dv
@V
@r
� Dm

V
m
@m
@r
¼ hvðV1 � VÞjr¼RðtÞ;

ð68Þ

where hw and hv are the positive permeabilities of the cellular material and free polymersomes,

respectively, across the tumour boundary. The velocities of tumour cells, vm, cellular material,

vc, and free polymersomes, vv, are given by

vm ¼ v �
Dm

m
@m
@r

; vw ¼ v �
Dw

w
@w
@r
; vv ¼ v �

Dv

V
@V
@r

:

The boundary conditions for bound polymersomes, Bi’s, on r = 0 and r = R(t) can be found

assuming the bound polymersomes are in quasi steady state (discussed in section 3.4).

The spheroid boundary moves with the tumour velocity vm,

dR
dt
¼ vmjr¼RðtÞ ¼ v �

Dm

m
@m
@r

� ��
�
�
�
r¼RðtÞ

: ð69Þ

Using (57) we can re-write (69) as

dR
dt
¼

1

No
hwðw1 þm � N0Þ: ð70Þ

Similarly to the well-mixed system we nondimensionalise due to the large variation in the

magnitude of parameter values and to allow us to identify dominant terms in the model.

3.3 Nondimensionlisation

In this section, the system of Eqs (49)–(55) is nondimensionalised alongside the counterpart

initial and boundary conditions to evaluate the dominant balance of different mechanisms.

We use the following re-scalings to nondimensionalise the system, where the hats denote the
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nondimensional variables,

m ¼ m̂No; w ¼ ŵNo; c ¼ ĉc1; V ¼
V̂
vm
; B ¼

B̂
vm
; F ¼

F̂
vm
;

r ¼ r̂Rm; v ¼ v̂Rmpmax
m ; l̂ ¼ lNa; t̂ ¼ pmax

m t;

where vm is the volume of a tumour cell, Rm is the radius of an individual tumour cell and c1
is the room temperature atmospheric oxygen pressure. On dropping the hats we obtain

@m
@t

¼ �
1

r2

@

@r
r2~Jm

� �
þ ~pmðw; cÞm � ~dmðcÞm � ~gðBÞ; ð71Þ

@c
@t
¼ �

1

r2

@

@r
r2~J c

� �
� ~dcðm;wÞ; ð72Þ

@V
@t

¼ �
1

r2

@

@r
r2~J v

� �
� ~kaVð~f 0 � bÞ þ

~kd

l
B1;

ð73Þ

@B1

@t
¼ �

1

r2

@

@r
r2 B1

m
~Jm

� �

þ ~kalVF � ð~kd þ
~kinð1ÞÞB1

� ~kd
arf ðrllNa � 1ÞFB1 þ 2~kdB2;

ð74Þ

@Bi

@t
¼ �

1

r2

@

@r
r2 Bi

m
~Jm

� �

þ ~karf rllNa � ði � 1Þð ÞFBi� 1�

ði~kd þ
~kinðiÞÞBi �

~karf ðrllNa � ði � 1ÞÞFBiþ

ðiþ 1Þ~kdBiþ1; for 2 � i � n � 1;

ð75Þ

@Bn

@t
¼ �

1

r2

@

@r
r2 Bn

m
~Jm

� �

þ ~karf rllNa � ðn � 1Þð ÞFBn� 1�

ðn~kd þ
~kinðnÞÞBn;

ð76Þ

where

~pm ¼ Sðĉ;~cpÞmin
w
~w0

; 1

� �

; ~dm ¼
~dmax

m f1 � Sðĉ;~ccÞg;
~dcðm;wÞ ¼

dcðm;wÞ
Dcc1

;

~gðBÞ ¼ ~g
Xn

i¼1

~kinBi; Sðĉ;~cpÞ ¼
cað~cap þ 1Þ

ð~cap þ caÞ

and

~Jm ¼ �
~Dm

@m
@r
þ vm;

~J c ¼ �
@c
@r
; ~J v ¼ �

~Dv
@V
@r
þ vV:
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The non-dimensional advection velocity then is as follows

v ¼ ~Dm �
~Dw

� � @m
@r

: ð77Þ

The parameter re-scalings read as,

~Dm ¼
Dm

R2
mpmax

m

; ~Dw ¼
Dw

R2
mpmax

m

; ~Dc ¼
Dc

R2
mpmax

m

; ~Dv ¼
Dv

R2
mpmax

m

;

~kinðiÞ ¼
kinðiÞ
pmax

m

; ~kd ¼
kd

pmax
m

; ~ka ¼
kaNo

pmax
m vmNa

; ~f 0 ¼ f0Na;

~g ¼
g

Na
; ~cp ¼

cp
c1
; ~cc ¼

cc
c1
; ~w0 ¼

w0

No
;

~dmax
m ¼

dmax
m

pmax
m

:

For convenience in the remaining analysis we drop the tildes.

3.4 Numerical solutions

Due to the fast timescale of oxygen diffusion (Dw = 1 × 10−6cm2s−1) compared to the timescale

of tumour growth (0.05cm/day) [19] we make the assumption that the oxygen concentration is

at quasi -steady state, as is common in the literature [19, 30]. The binding kinetics of the recep-

tors and ligands are fast compared to that of tumour cell growth, the binding rate, ka, is on the

order of 108mol−1min−1cm3 whereas cell division is on the order of 10−4min−1. This allows us

to make the assumption that bound polymersomes are in quasi steady state compared to cell

growth. We also note that the flux of cells is much lower than that of free nanoparticles and

oxygen, so comparatively the cells are stationary on the tissue scale of cell movement, growth

and decay. Thus the equations describing ligand-receptor complexes, Eqs (74)–(76), become

0 ¼ kalVF � ðkd þ kinð1ÞÞB1 � karf ðrllNa � 1ÞFB1 þ 2kdB2; ð78Þ

0 ¼ karf ðrllNa � ði � 1ÞÞFBi� 1 � ðikd þ kinðiÞÞBi � karf ðrllNa � ði � 1ÞÞFBi;

þðiþ 1ÞkdBiþ1; for i ¼ 2; :::; n � 1;
ð79Þ

0 ¼ karf ðrllNa � ðn � 1ÞÞFBn� 1 � ðnkd þ kinðnÞÞBn; ð80Þ

and the equation for oxygen, Eq 72, becomes

0 ¼ �
1

r2

@

@r
r2Jcð Þ � dcðm;wÞ: ð81Þ

We can now solve analytically for each Bi. First, we take n = 2, where the maximum number

of bonds per polymersome is 2. Eqs (78)–(80) then give

0 ¼ kalVðf0m � B1 � 2B2Þ � ðkd þ kinð1ÞÞB1

� karf ðrllNa � 1Þðf0m � B1 � 2B2ÞB1 þ 2kdB2;
ð82Þ

0 ¼ karf ðrllNa � 1Þðf0m � B1 � 2B2ÞB1

� ð2kd þ kinð2ÞÞB2:
ð83Þ
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We can express the solution for B1 and B2 analytically in terms of m and V, namely,

B1ðr; tÞ ¼
1

2g1ð2m1 � m2Þ

�

� kalVm2 � g1kinð2Þf0m � m1m2

þ
�
g2

1
kinð2Þ

2f 2
0
m2 þ 2g1m2f0mð4kalVm1

� kalVkinð2ÞÞ þ m
2
2
ðkalV þ m1Þ

2
Þ

1
2

�

;

ð84Þ

B2ðr; tÞ ¼
g1ðB1 þ f0mÞB1

2g1B1 þ m2

; ð85Þ

where

g1 ¼ karf ðrll � 1Þ; m1 ¼ kd þ kinð1Þ and m2 ¼ 2kd þ kinð2Þ: ð86Þ

Note that the algebraic system (78)–(80) with n = 3 is analytically intractable so we need to

make an additional simplifying assumption by introducing an additional approximation

to F. To do this we assume that there are many more free receptors than bound, so that

F �
Pn

i¼1
iBi, where i = 1, . . ., n, and we can make the approximation

F ¼ f0m; ð87Þ

which allows us to calculate Bi for n> 2. We solve the system for up to n = 5 (equations not

shown here for brevity).

With the solutions for Bi(r, t) we solve the nondimensionalised system (Eqs 71–73) with the

boundary conditions given by

@m
@r
¼
@c
@r
¼
@V
@r

on r ¼ 0: ð88Þ

On the spheroid boundary, r = R(t), the oxygen concentration is c = 1 and we have

� Dn
@m
@r
� Dm

1 � m
m

@m
@r
¼ h1ðn1 þm � 1Þjr¼RðtÞ; ð89Þ

Dv
@V
@r
� Dv

V
m
@m
@r
¼ h1ðV1 � VÞjr¼RðtÞ: ð90Þ

The spheroid boundary (r = R(t)) now moves with the tumour velocity so that

dR
dt
¼ hnðn1 þm � 1Þ: ð91Þ

The system is solved numerically using NAG routine D03PHF which uses a finite difference

approach to integrate over one spatial variable and the method of lines to reduce the PDEs to

a system of ODEs. The resulting system is solved using a backward differentiation formula

method.

3.5 Spheroid growth before, during and after polymersome application

With the system solved numerically we can investigate impact of applying polymersomes to

tumour spheroid growth. Fig 7 shows the model predictions in space and time for tumour

cell density, oxygen concentration and free and total bound polymersomes for a constant

internalisation function and a maximum number of bonds, n = 5. The spheroid grows
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initially in the absence of oxidative stress. During this period we observe linear growth of the

spheroid radius, with a high concentration of proliferating cells at the surface which rapidly

decays to no proliferating cells towards the spheroid centre at r = 0, indicating a necrotic

core due to lack of oxygen. At time t = 40 days polymersomes are applied to the surface of

the spheroid, which are then removed at t = 50 days. During the period of polymersome

application, we observe a noticeable decrease in spheroid radius. The polymersomes are

confined to the boundary of the spheroid, where the chemotherapy drug is unloaded into

proliferating cells, causing the spheroid to shrink. As would be expected, the total bound

polymersomes follows a similar trend to free polymersomes. Once the polymersomes are

removed the cells at the edge of the spheroid become re-oxygenated due to the smaller radius

allowing for effective diffusion. This then provides a good environment for growth, hence

the spheroid re-grows linearly for t> 50 days.

Next we investigate the model predictions using two different internalisation functions.

Fig 7. Evolution of a tumour spheroid and associated variables in time, including the tumour cell, oxygen, free and bound polymersome

concentrations for n = 5. The cellular concentration is given as the volume fraction of live tumour cells. The rest of the concentrations are dimensionless.

Initially growth occurs with no free polymersomes on the tumour surface up to a radius of 175μm, then we introduce polymersomes by setting V1 = 10

when 40� t� 50 days. The tumour growth rate decreases and the spheroid shrinks for the period of time when treatment is administered, but returns to

linear growth (indicating travelling wave solutions) afterwards. The simulations were conducted using the dimensionless framework and the time and

distance converted to dimensional form afterwards. The parameter values used are give in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0254208.g007
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3.6 Effects of constant and bond dependent internalisation functions

It has been assumed so far in this paper, and in our previous work, that internalisation is con-

stant. However, it is possible that internalisation is bond dependent so we also define a bond

dependent internalisation function, in addition to the constant function. The bond dependent

function is a simple step-wise Hill function

kinðiÞ ¼ kinðε1 þHði � j�ÞÞ; ð92Þ

where ε1 is a small number. In this scenario polymersomes are not internalised until they

reach the bond number specified by the activator, j�.
In Fig 8A we show the model predictions for tumour radius using the constant internalisa-

tion function for n = 1 � � � 5. As before the tumour is allowed to grow until t = 40 days at which

point polymersomes are applied until t = 50 days. We see very little variation in the predictions

Fig 8. The impact of polymersomes on the spheroid dynamics using the numerical solutions for bonds. (A) Tumour radius dependency on the

maximum number of bonds, n, for the constant internalisation function. The maximum bond number is varied from n = 1 � � � 5. (B) (C) The tumour

radius with time for a bond dependent internalisation function for various values of the activator, j�. Polymersomes are applied to the tumour surface at 40

� t� 50 days with the parameters V1 = 10, the rest of the parameter values used are give in Tables 1 and 2. (B) Polymersome application and growth over

80 days (C) Polymersome application and growth over a much longer time period of 2500 days.

https://doi.org/10.1371/journal.pone.0254208.g008
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which implies internalisation happens quickly before multiple bonds can form. This is in

agreement with our predictions in the well-mixed system (see Fig 3). In Fig 8B and 8C, we

show the predictions for the case of the bond dependent function. Fig 8 indicates that when

the activator, j� � 4, there is a decrease in spheroid radius during the period of treatment

comparable to that of constant internalisation, but if j� > 4 there is no reduction in spheroid

growth during the treatment time. Therefore, with this set of parameters j� = 5 appears to be a

threshold. That is, by forcing the polymersome to bind to at least 5 complexes before internali-

sation we slow down the internalisation of the polymersome sufficiently so that treatment

is then not effective within this time frame. Fig 8 also shows longer term solutions, for 0�

t� 2500 days. We find that over long time periods the model predictions tend to the same

solution.

3.7 Large time behaviour

In the absence of polymersomes the tumour spheroid appears to grow linearly (see Fig 7). In

order to find exact solutions for this behaviour we look to the asymptotic solutions of the sys-

tem as t!1 and hence we carry out a travelling wave analysis by assuming that the tumour

grows with constant speed, u> 0.

The rate of change of the spheroid radius will then be

dR
dt
¼ u; ð93Þ

so that R� ut as t!1. We redefine our system with the travelling wave coordinate, z = r −
ut, and rewrite the Eqs (49), (51) and (52) in terms of z:

� um0 ¼
2

r
ðDmm

0 � mvÞþÞðDmm
0 � mvÞ0 þ pmðw; cÞm � dmðcÞm � gðBÞ; ð94Þ

c@ ¼ dcðm;wÞ; ð95Þ

� uV 0 ¼
2

r
ðDvV

0 � VvÞ þ ðDmV
0 � VvÞ0 � kaVF þ

kd

l
B; ð96Þ

where the prime denotes the derivative with respect to z. We use the quasi-steady state expres-

sions for bound polymersomes as described in Eqs 84 and 85. The advection velocity can be

written as

v ¼ cm0 where c ¼ Dm � Dw: ð97Þ

The system is represented by the following first order ODEs,

m0 ¼ W; ð98Þ

c0 ¼ P; ð99Þ

V 0 ¼ Q; ð100Þ

W 0 ¼
1

cm � dm
uW � cW2 þ pmðw; cÞm � dmðcÞm � gðBiÞð Þ; ð101Þ

P0 ¼ dcðm;wÞ; ð102Þ

PLOS ONE A mathematical investigation into the uptake kinetics of nanoparticles in vitro

PLOS ONE | https://doi.org/10.1371/journal.pone.0254208 July 22, 2021 27 / 35

https://doi.org/10.1371/journal.pone.0254208


Q0 ¼ �
1

Dv
ðu � cWÞQ � cWV � kaVF þ

kd

l
B1

� �

; ð103Þ

for i = 1, . . ., n. Note that we have neglected the terms containing r−1 since they are OðR� 1Þ

when R!1.

We solve this system of equations numerically using AUTO (a bifurcation and continuation

software) [31]. To facilitate the solver we truncate the semi-finite domain ẑ 2 ð� 1; 0� to ẑ 2
½� R; 100� where R> 0 and taken to be sufficiently large for AUTO to solve the boundary value

problem.

We rescale z

ẑ ¼
z
R
þ 100 ð104Þ

so that ẑ 2 ½0; 100�.

The wavespeed u can be written using 91

u ¼ hnðn1 þm � 1Þj
ð̂zÞ¼100

: ð105Þ

The system is subject to the following boundary conditions on the truncated domain

ẑ 2 ½0; 100�: at ẑ ¼ 0

m0ð0Þ ¼ c0ð0Þ ¼ V 0ð0Þ ¼ 0; ð106Þ

at ẑ ¼ 100,

� Dwm0 � Dm
ð1 � mÞ

m
m0 ¼ hwðw1 þm � 1Þjẑ¼100; ð107Þ

DvV 0 � Dm
V
m

m0 ¼ hvðV1 � VÞjẑ¼100
ð108Þ

which follow from (88)–(90). The oxygen concentration is fixed at c = 1 when ẑ ¼ 100 (chosen

arbitrarily). We impose an additional boundary condition which fixes the wave speed u at

ẑ ¼ 100, given by u = hw(w1 + m − 1). This extra boundary condition allows us to use the

bifurcation and continuation AUTO software [31] to solve (98)–(103) to calculate the wave

speed, u.

3.8 Travelling wave solutions of spheroid growth

Fig 9 shows the wavespeed, u, against potency, γ, and external polymersome concentration,

V1. We can see that by increasing the potency of the polymersomes, γ, the wavespeed

decreases to zero (A), indicating a bifurcation from travelling waves (linear growth) to steady-

state where tumour growth is confined. As V1 increases we observe similar dynamics, i.e. a

greater concentration of polymersomes results in a more effective treatment (B).

In Fig 9, we also show the travelling wave:steady-state bifurcation in (V1,γ) parameter

space, with a varying external cellular material concentration, w1 (C). We can see that, with

increasing concentration of applied polymersomes, a lower polymersome potency is required

for steady state solutions. We would expect that by increasing w1 the tumour growth would

increase resulting in a larger parameter region for travelling waves. We have found that this is

true but only to a certain threshold value of w1, (D).
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Fig 9. Travelling wave and steady state solutions for the tumour spheroid model. (A) The travelling wave velocity, u, with varying potentcy, γ,

and fixed polymersome concentration at the spheroid boundary, V1 = 2, and (B) travelling wave velocity with varying V1 and fixed γ = 1 × 10−4.

(Middle and bottom) Travelling wave: steady state bifurcation curves. (Middle row) Bifurcation curves for γ with (C) various external polymersome

concentrations, V1 and fixed external nutrient concentration w1 = 1 � � � 5, and (D) with various cellular material concentrations, w1, and a

constant polymersome concentration, V1 = 5. In (E) we see the bifurcation in the polymersome diffusivity and spheroid permeability parameter

space. The rest of the parameter values used are give in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0254208.g009
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In Fig 9(E) we explore the travelling wave:steady-state bifurcation in relation to the diffu-

sion of the polymersomes and the permeability across the spheroid boundary. We notice that

for a fixed value of hv (for example, if hv = 2.2) the solutions can be either travelling waves for

very small or very large values of Dv, but steady state solutions occur for intermediate values

of Dv.

Finally, we examine the relationship between γ, V1 and w1 further by fixing V1 and fol-

lowing the travelling wave, steady state bifurcation in (w1,γ) parameter space. In Fig 10, we

examine the behaviour of the tumour cells and the internal velocity field within the tumour

spheroid for these parameter values. Typically the advection velocity within the spheroid is

negative, which means that material is advected into the centre of the spheroid. However,

when increasing w1 over a certain threshold, we see that the advection velocity becomes

positive near the spheroid boundary, this change in the direction of the velocity results in the

polymersomes being kept at the tumour boundary where the tumour density is highest. As a

Fig 10. In (A, B) and (C) are the solution profiles for tumour cells, free polymersomes and oxygen, respectively, at varying values of external nutrient

concentration, w1 = 0.2 (blue),0.4,0.6,0.8 (purple). (D) Advection velocity with w1 = 0.2, 0.4, 0.6, 0.8. We see a positive velocity at the tumour boundary

with larger values of w1. The rest of the parameter values used are give in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0254208.g010
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consequence more viable cells are being targeted and subsequently a lower polymersome

potency (γ) is required to give the same reduction in tumour size. We also show how the free

polymersome and oxygen density vary over the spheroid radius for various value of w1.

4 Discussion

A mathematical model for nanoparticle uptake via receptor-mediated endocytosis has been

presented. The model is applied to two scenarios representative of relevant experimental

designs for tumour therapy development. Firstly, the model was applied to cells in a well-

mixed system, representative of 2D monolayer cells and polymersomes in a tissue culture

flask, and secondly to investigate dynamics of growth in a tumour spheroid during and after

polymersome application. For both approaches the model is nondimensionalised in order to

evaluate the dominant features. The well-mixed system was investigated first which allowed

spatial effects to be neglected, with a focus on the binding kinetics of the model.

The nondimensionalisation of the well-mixed model indicated that polymersomes are

internalised after forming one bond with the cell, since the internalisation rate is several orders

of magnitude higher than the binding rate (see Table 1). Based on this we made the assump-

tion that the maximum number of bonds is low throughout the rest of the investigation. In the

singular perturbation analysis, a single binding event is assumed and the system is further sim-

plified by neglecting the polymersome dissociation rate, which is small compared to uptake,

and linearising the functions that describe receptor recycling and cell death. These changes did

not affect the observed early time system dynamics.

By carrying out this analysis some important biological insights regarding the early kinetics

of the polymersome uptake are discovered. It was found that the maximum value for internal-

ised polymersomes corresponds to a particular value of ligands approximately 500 (see Fig 5

which is consistent with the literature [21]. Hence this reinforces the hypothesis that there is

an optimal number of ligands per polymersome. The findings from the perturbation analysis

can be extremely useful for biologists working on nanoparticle targeted therapy as the number

to targeted ligands on polymersomes is specific to the polymersome structure which can be

modified during the manufacturing of the polymersomes. This approach could easily be

applied to other types of nanoparticle to guide experimental design.

The findings from the well-mixed system were used in the spheroid model. In the well-

mixed system internalisation happens at a low number of bonds which meant that during the

simulations the maximum number of bonds, could be capped at a low number, reducing the

required mathematical work load.

The spheroid consists of two phases, tumour cells and cellular materials, similar to the

approach of the seminal work by Ward and King [22] and Byrne et al [32]. The novelty of this

approach is the use of the spheroid model to understand polymersome uptake and distribution

in a system which mimics polymersome delivery from a source. The growth of the spheroid

depends on available nutrients which diffuse across the spheroid boundary. A quasi-steady

state assumption is made for bound polymersomes. Although the spheroid does not have vas-

culature, by placing the nanoparticles on the cell surface we can understand how cells will be

affected at varying distances from a nanoparticle source, for example a blood vessel, by looking

at the gradient from the polymersome source at the tumour surface to the cells towards the

centre of the spheroid.

From Table 2 we see that the diffusion coefficient for oxygen is an order of magnitude

higher than that of the polymersomes, since oxygen is a much smaller molecule. This implies

that oxygen should diffuse further into the spheroids than the polymersomes over a given time

period meaning some cells may able to proliferate that aren’t reached by the polymersomes.
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After application of polymersomes to the spheroid surface it was found that the highest con-

centration of free polymersomes occurs at the boundary. As the spheroid shrunk due to cell

kills by polymersomes, the polymersomes moved closer to the spheroid centre due to the

reduction in spheroid radius. At all time points during the polymersome application the poly-

mersomes remain close to the surface. This is likely to be because there is a high density of pro-

liferating tumour cells and this density poses a barrier to diffusion. The same is also seen for

oxygen, albeit oxygen does penetrate further into the spheroid. The limitation of oxygen to the

spheroid periphery results in a necrotic core which arises naturally from our simulations and

is in agreement with experimental findings [16, 18, 33, 34].

Two internalisation functions are considered for multiple binding events. A constant func-

tion is considered, which was also used in the well-mixed system, as well as a more biologically

realistic internalisation function, in which a polymersome must be bound by a given number

of complexes before internalisation can occur. The bond dependent function mimics the

membrane deformation that occurs during receptor-mediated endocytosis. We introduce an

approximation to the free receptor concentration as the multiple binding framework becomes

algebraically intractable to solve when the maximum number of bonds that can form is greater

than 2.

Numerical simulations indicate that the spheroid radius is dependent on the internalisation

function. The bond dependent function requires the polymersomes to reach the value of the

activator before being internalised. For values of the activator below 5, the predictions of the

constant and bond dependent functions match. However, as the activator is increased to 5 the

polymersomes do not impact the growth of the spheroid, indicating a threshold value exists

for effective treatment over the time period tested. Therefore, we conclude that internalisation

function plays a critical role in treatment success and effects model predictions.

For the case of the bond dependent internalisation function we found that the number of

bonds required before internalisation had a short term effect on the tumour radius, but over

long time periods the solutions were the same. Due to this result, if multiple polymersome

applications were to be considered, it can be hypothesised that the time between administra-

tion could result in either a decrease in spheroid size or no effect, depending on the value of

this threshold.

Various nutrient concentrations in the space surrounding the spheroid were explored. It

was found that, up to a threshold, with increasing nutrient concentration there was an increase

in growth and more potent polymersomes were to attain saturated growth. After the threshold

the model predicts that we are more likely to see saturation of growth when using less potent

polymersomes. In this case, the internal velocity within the spheroid came into play. By

increasing the nutrient concentration past the threshold, the gradient of cellular material

switched direction, creating an opposite internal velocity, causing the polymersomes remained

close to the spheroid edge. This indicates that the nutrient concentration in the media should

be considered when designing experiments.

The influence of permeability of the spheroid surface and the polymersome diffusion rate

on spheroid growth was also explored. It was found that for certain values of permeability

spheroid growth or saturation was possible, although a lower permeability generally resulted

in steady-state solutions. For very small or very large values of the polyermsome diffusivity,

travelling waves occur whereas intermediate values result in growth saturation. This implies

that nanoparticles should be designed with intermediate diffusion coefficient and a high per-

meability to the spheroid boundary in order to restrict spheroid growth.

It should be noted that a number of key assumptions were made, and parameter values

were estimated or drawn from similar, but not the same models and data sets were used in

order to achieve these results. Therefore, the results are valid for the parameter set we have
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used, but this parameter set may be subject to change once further experimental data can be

obtained which could influence the system dynamics. For example a number of simplifying

assumptions were made based on the size of some parameters, such as the dissociation con-

stant was assumed to be negligible. Likewise, the numerical solutions presented in section 3.4

for the spheroid model make a number of assumptions about the quasi-state regimes. If these

parameters and assumptions are found to be significantly different from the ones we have used

this could have significant impact on the model predictions and analytical tractability of the

model.

However, these assumptions and parameter choices were made due to the lack of available

experimental data on which to base the work, and in fact the lack of experimental data is one

of the key motivations for this work. The processes which are modelled in this paper, particu-

larly of cellular uptake of polyermsomes, and subsequent release of chemotherapy drug, is

extremely difficult, if not impossible to image for each part of the process given current tech-

nology and so mathematical modelling offers an alternative to this.

Despite the difficulty in finding data to parameterise the model, the results still offer key

insights into the system dynamics and has highlighted which parameters are important to

know accurately. The use of two different systems, one reflective of a 2D monolayer and one of

3D tumour spheroid, has allowed various characteristics of polymersome uptake to be eluci-

dated, particularly over various time periods with respect to uptake of polymersomes by cells,

as well as allowing the use of parameter values predicted in the well-mixed system to be used

in the spheroid model. The agreement of the models on certain kinetics strengthens the con-

clusions that can be made. Both approaches revealed that most polymersomes are internalised

after only a few bonds are made between the polymersome and cell.

5 Conclusion

We have demonstrated the application of a new model of cellular uptake of nanoparticles, for

example polymersomes, via receptor-mediated endocytosis that is parameterised with experi-

mental data to investigate uptake in tumour spheroids. We make predictions about nanoparti-

cle design, namely the number of ligands on the surface and diffusion and permeability

coefficients, which can be fed into future experimental work. We have also shown that, over

long time periods, spheroid growth is independent of polymersome internalisation function

and that polymersome distribution is limited to the outer edge of the spheroid, close to their

source. Future work will see further development of the mathematical model and applications

to other systems.
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