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Abstract— The development of connected and automated
vehicles (CAVs) enables improvements in the safety, smoothness,
and energy efficiency of the road transportation systems. This
paper addresses the problem of optimally controlling battery-
electric CAVs crossing an unsignalized intersection subject to a
first-in-first-out crossing policy. The optimal velocity trajectory
of each vehicle that minimizes the average energy consumption
and travel time, is found by a decentralized model predictive
control (DMPC) method via a convex modeling framework
so as to ensure computational efficiency and the optimality
of the solution. Numerical examples and comparisons with a
centralized control counterpart demonstrate the effectiveness
of the proposed decentralized coordination scheme and the
trade-off between energy consumption and travel time. Further
investigation into the size of the sampling interval is also
provided in order to show the validity of the method in practice.

I. INTRODUCTION

Road congestion and strained transportation networks are
persistent concerns associated with rapid urbanization and
the increasing number of vehicles on the road. With the
advancement of connected and autonomous vehicle (CAV)
technologies, significant research efforts have been made on
cooperative vehicle management, which has the potential to
alleviate traffic congestion and therefore improve throughput
and energy efficiency. This technique is particularly relevant
to road traffic management at intersections, where different
traffic flows merge together. Compared to the traditional
traffic light control methods, autonomous (signal-free) inter-
section control is an innovative technology that relies only on
the advanced vehicular communication system and therefore
it could improve intersection throughput with a minimum
investment on the infrastructure [1], [2], [3].

A comprehensive overview of recent advancements in cen-
tralized and decentralized autonomous intersection control
approaches is presented in [4], [5]. The core of the central-
ized methods is a central intersection controller (IC), which
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determines the optimal velocity trajectories of all CAVs
approaching the intersection with the aim of minimizing
average energy consumption and travel time [6], [7], [8].
The trade-off between travel time and energy consumption
minimization is investigated in [9], where the problem is
addressed by a hierarchical and convex optimization method.
More recently, in [10], [11], the problem is recast by consid-
ering electric CAVs and various friction losses, and a convex
reformulation approach is proposed to alleviate the overall
computational complexity. The development of the more
realistic modeling framework by the inclusion of explicit
powertrain and vehicle dynamics models is shown to lead to
a more accurate energy consumption evaluation, as compared
to existing work that employs conventional simplistic lossless
vehicles models.

Despite the efficiency of the convex optimization, the
centralized scheme still has disadvantages in computational
efficiency and resilience against the failure of the central
controller, as the whole system relies on the central con-
troller. A more practical alternative is the decentralized
control framework, where each CAV is controlled by its
local controller in conjunction with the communication and
sensing systems [12], [13], [14]. In [12], a sequential optimal
control approach is proposed to maximize the throughput,
along with a computational efficient scheduling method. An
analytic optimization method is proposed in [13] where the
energy-optimal trajectory of each CAV is found individually
by Pontryagin’s minimum principle. Multi-agent Markov
decision processes are utilized in [14] to model the sequential
movement of CAVs such that each velocity trajectory can be
optimally determined by a reinforcement learning method.
More computationally efficient methods are also designed
based on heuristic control strategies [15], [16], which how-
ever lack optimality guarantees.

The present paper addresses the autonomous intersection
crossing problem by a decentralized method, where the speed
trajectory of each CAV is sequentially optimized by a decen-
tralized model predictive control (DMPC) method targeting
minimum travel time and energy consumption. Compared
to a centralized MPC setup, where a global optimal control
problem is solved with respect to the overall dynamics and
constraints, the DMPC enables the problem to be decoupled
into local (of smaller size) MPC problems. These local
MPC systems cooperatively control the large-scale system
by exchanging information through communication channels.
As such, online implementation is allowed with superior
optimality as compared to other non-optimization methods.
The modeling framework with electric CAVs proposed in



prior work [11] of the authors is utilized in the present
work. The optimization problem is formulated in a convex
form under the space domain rather than the commonly used
time domain, which enables a convenient deployment of
DMPC, as the boundary conditions (in terms of the travel
distance) are fixed. The optimality of the DMPC solution
is validated by numerical investigation into the impact of
the prediction horizon length and by a comparison with
the optimal solutions obtained by a centralized method [11]
under the same modeling framework. The computational
efficiency of the proposed decentralized control scheme is
examined by evaluating the running time for a single MPC at
each distance sample, and the results provide insight into the
setting of the sampling distance interval and also show the
practicality of the proposed methodology. The contributions
of the present work can be summarized as follows: 1) a first
in the literature combination of decentralized control method
for the autonomous intersection problem with a realistic
vehicle modeling framework, and 2) that innovatively also
combines decentralization with model predictive control in
the space domain, which avoids the difficulty of solving the
end-time free optimization in the time domain.

The rest of this paper is organized as follows. Section II in-
troduces the convex modeling framework of an autonomous
intersection crossing problem as well as the electric power-
train model of the CAV. The convex autonomous intersection
crossing problem is formulated as a decentralized MPC
problem in Section III. Simulation results are presented and
discussed in Section IV. Finally, concluding remarks are
given in Section V.

II. PROBLEM STATEMENT

A. Intersection Model

A signal-free traffic intersection that is formed by two
perpendicular roads with two lanes per road and a group of
homogeneous battery electric CAVs is considered. This paper
deals with a decentralized control scheme for the cooperative
intersection crossing of all CAVs. The schematic of the
intersection is shown in Fig. 1. As it can be seen, vehicles
approaching the intersection will first enter a control zone
(CZ) of length L. The intersection also has a coordinator that
facilitates exchange of information among the CAVs inside
the CZ, therefore, L is determined by the communication
range capability of the CAVs and the coordinator. Note
that the intersection coordinator is only used to streamline
the communication network for the decentralized control
scheme, which will be specified in Section III, and it is
not involved in making control decisions. The centre of the
intersection is called the Merging Zone (MZ), where vehicles
merge from different directions, and therefore where lateral
collision may occur. The area of the MZ is considered as
a square of side S, with S < L, as the physical length of
the MZ is usually much smaller than the sensing range of
wireless communication devices. For simplicity, it is assumed
that the roads are flat and all CAVs maintain their initial
direction after exiting the MZ. The control target is to
minimize the average electric energy consumption and travel

Fig. 1. The schematic of autonomous intersection with connected and
autonomous vehicles.

time by finding in a decentralized manner the optimal speed
trajectory for each vehicle from the entry of the CZ to the
exit point of the MZ.

Let us denote N(t)∈N>0 the total number of CAVs within
the CZ at a given time t∈R>0 and N (t)={1, 2, . . . , N(t)}
the set to designate the order in which the vehicles enter the
CZ. The sequence N (t) is recorded by the coordinator and
will later be used to generate the corresponding information
set exchanged with each CAV that follows a First-In-First-
Out (FIFO) policy (all CAVs enter and leave the MZ in the
same order they arrive at the CZ). The following definitions
are given for the further discussion of collision avoidance
constraints. Given an arbitrary CAV h, any CAV i ∈ N (t)
arriving at the CZ later than the hth CAV (h < i) can be
categorized into one of the following subsets of N based on
its physical location inside the CZ: 1) Ch collects vehicles
traveling in the same direction as the ith vehicle; 2) Oh
collects vehicles traveling in the opposite direction to the ith
vehicle; 3) Lh collects vehicles traveling in the perpendicular
directions to the ith vehicle.

In this paper, the autonomous intersection crossing prob-
lem is modeled in the space domain for two reasons: (a) the
free end-time optimization problem in the time domain is
avoided and (b) the problem can be formulated in convex
form [11]. Let s denote the variable of traveled distance and
vi(s) denote the velocity of the ith vehicle. The transforma-
tion from time to space domain is achieved by changing the
independent variable t to s via d

ds = 1
vi

d
dt . Thus, in the space

domain, the travel distance for each CAV is constant at L+S
and the travel time of each CAV can be easily obtained as
a state variable, d

ds ti=
1
vi

, and therefore, the required travel
time of each CAV to cross the intersection is:

Jt,i = ti(L+ S)− ti(0), (1)

where ti(0) is the arrival time of CAV i at the CZ.
The electric energy cost of each CAV, Jb,i, is evaluated

based on the static efficiency map of the tank-to-wheel
energy path [11], given in Fig. 2, including the efficiency



of the electric motor, converter and fixed gear. Although the
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Fig. 2. Efficiency map of the electric motor (positive torque indicates
battery discharging and negative torque represents battery charging) and
operational bounds (dotted lines) for the reversible motor. The area sur-
rounded by red dashed lines denotes the operational region for the feasible
vehicle speed specified by (4e) with vmin and vmax defined in Table I.

motor torque is constrained by speed dependent limits, the
motor torque limits Tmax and Tmin are constant until the an-
gular speed, ωi(s), reaches approximately 2800 rpm, which
corresponds to a forward speed at 25 m/s, as shown in Fig. 2.
However, it is reasonable to impose a much lower speed
limit for vehicles approaching an intersection. Considering
the speed limit vmax = 15 m/s given in Table I, constant
motor toque limits can be applied, Ti ∈ [Tmin, Tmax],∀i∈N ,
where Ti is the torque of the ith CAV, and Tmin = −300 Nm,
Tmax = 300 Nm.

The battery output power can be represented by a quadratic
function of the powertrain traction force and driving speed
that are proportional to the motor torque and angular speed,
respectively, as follows:,

Pb,i = b1F
2
t,ivi + b2Ft,ivi + b3vi, (2)

where Ft,i(s)= gr
rw
Ti(s), vi(s)=rw

gr
ωi(s), gr and rw are the

transmission gear ratio and the wheel radius, respectively,
and b1, b2 and b3 are the fitting parameters for the map
given in Fig. 2. In view of (2), the battery energy usage in

Fig. 3. Nonlinear regression of the battery output power data (red dots,
calculated based on the efficiency map shown in Fig. 2) by using the
approximated model (2) with an R-square fit of 99.53%.

the space domain of each CAV is:

Jb,i=

∫ L+S

0

Pb,i(s)

vi(s)
ds=

∫ L+S

0

(
b1F

2
t,i(s)+b2Ft,i(s)+b3

)
ds.

(3)
The main characteristic parameters of each vehicle model
are summarized in Table I.

TABLE I
ELECTRIC VEHICLE MODEL PARAMETERS

symbol value description
m 1200 kg vehicle mass
rw 0.3 m wheel radius
gr 3.5 transmission gear ratio
fr 0.01 rolling resistance coefficient
fd 0.47 air drag resistance coefficient
vmin 0.1 m/s minimum velocity
vmax 15 m/s maximum velocity
b1, b2, b3 7.15e-4, 0.8842, 5.35 powertrain fitting parameters

Taking into account the FIFO policy and the objective of
minimizing the electric energy (3) and travel time (1), the
global optimization problem can be formulated as follows
[11] (this is instrumental for introducing the DMPC algo-
rithm in the upcoming Section):

min
u

J = W1

N∑
i=1

Jt,i +W2

N∑
i=1

Jb,i (4a)

s.t. : (∀s ∈ [0, L+ S], i ∈ N )

d

ds
Ei(s) = Ft,i(s) + Fb,i(s)− Fr −

2fd
m
Ei(s), (4b)

d

ds
ti(s) = ζi(s) , (4c)

ζi(s) ≥
1√

2Ei(s)/m
, (4d)

1

2
mv2min ≤ Ei(s) ≤

1

2
mv2max (4e)

gr
rw
Tmin ≤ Ft,i(s) ≤

gr
rw
Tmax , (4f)

mamin −
gr
rw
Tmin ≤ Fb,i(s)≤0 , (4g)

ti(s)−th(s) ≥ β(s), ∀i ∈ Ch, (4h)
ti(L) ≥ th(L+ S) , ∀i ∈ Lh , (4i)
ti(L)>th(L), ti(L+S)>th(L+S), ∀i ∈ Oh , (4j)

Ei(L+ S) =
1

2
mv̄2 , (4k)

where

u=[Ft,1(s), Ft,2(s), · · · , Ft,N (s), Fb,1(s), Fb,2(s),

· · · , Fb,N (s), ζ1(s), ζ2(s), · · · , ζN (s)]> ∈ R3N ,

W1≥ 0 and W2≥ 0 are weighting factors, m is the vehicle
mass, Fb,i(s) is the mechanical braking force, Fr=frmg is
the rolling resistance force, and fr and fd are the coefficients
of rolling and air drag resistances, respectively. Instead of
using the velocity vi as a state, the longitudinal dynamics of
each CAV are modeled in (4b) with respect to the kinetic
energy, Ei(s) = 1

2mv
2
i (s), to cancel the nonlinearity due to



the air drag. The dynamics of ti are modeled by (4c) and
(4d), which relax the original nonlinear differential equation
into a linear differential equation and a convex constraint of
the auxiliary control variable ζi(s). It is worth noting that the
validity of the final solution relies on the tightness of (4d). A
rigorous investigation of the tightness of (4d) is beyond the
scope of the present article and will be addressed in future
work, however, for all the practical scenarios of interest in the
present work it has been found that the present formulation
yields a tight solution, which is considered adequate for the
present purposes; see also [11]. The kinetic energy of each
CAV is bounded by (4e), where without loss of generality
vmin is set to a sufficiently small positive constant to avoid
singularity issues that would appear in (4c) when vi=0, and
vmax is determined based on the infrastructure constraints
and traffic regulations [9]. Vehicle driving/braking forces
Ft,i(s), Fb,i(s) are constrained by (4f) and (4g). amin =
−6.5 m/s2 is the maximum available deceleration during
emergency braking subject to tire friction limits. As it can
be noticed in (4g), amin is achieved by a combination of
regenerative and mechanical braking.

The rear-end collision avoidance constraint is given in
(4h). The right hand side of the inequality represents the
time-to-collision (TTC),

β(s) =
vi(s)−vh(s)

|amin|
=

√
2Ei(s)/m−

√
2Eh(s)/m

|amin|
. (5)

To convexify (4h), the nonlinear term
√

2Ei(s)/m is approx-
imated by f∗(Ei(s)) = a∗0 +a∗1Ei(s), where a∗0 and a∗1 are
obtained through a constrained least-squares optimization:

min
a0,a1

∥∥∥f(Ei)−
√

2Ei/m
∥∥∥
2

(6a)

s.t.: f(Ei)−
√

2Ei/m ≥ 0 , (6b)

Ei ∈ [
1

2
mv2min,

1

2
mv2max], (6c)

which is formed to maximize feasibility while preserving
convexity. The problem has a unique solution f∗(Ei(s)) that
is tangential to

√
2Ei(s)/m, as shown in Fig. 4. As it can

be seen, the TTC constraint (4h) is active only when vi(s)>
vh(s) while aiming to reduce the inter-vehicular distance for
increased road capacity. Lateral collisions are avoided by
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Fig. 4. Linearly approximated relationship between kinetic energy and
velocity with R-square fit of 92.27%.

(4i), which guarantees that the ith vehicle enters the MZ only
after the hth vehicle leaves the MZ. For any CAV i ∈ Oh,
there is no interference between CAVs h and i inside the
CZ. Hence, only (4j) is required to ensure the FIFO policy.

Finally, the optimization problem is completed by the ter-
minal speed condition (4k), where v̄ can be chosen arbitrarily
within [vmin, vmax]. Note that the same terminal speed for
all CAVs is imposed only to allow solutions in different
scenarios to be easily compared. It is straightforward to relax
(4k) with non-uniform terminal speeds.

The following assumptions are also needed.
Assumption 1: All the vehicle information (e.g., position,

velocity, acceleration) can be measured precisely, and the
data can be transferred between each CAV and the coordi-
nator without errors and delays.

Assumption 2: The entry times of all CAVs at the CZ are
different, such that ti(0) 6= th(0), i 6=h, i, h ∈ {1, 2, · · · , N}.

Assumption 3: For each CAV i, constraints (4e), (4f), (4g)
and (4h) are inactive at ti(0).

Assumption 2 is intended to validate the FIFO priority
model. Under this assumption, the FIFO policy can be
guaranteed when (4h), (4i), (4j) are met. Assumption 3 is
needed to ensure feasible initial states and initial control
inputs.

III. DECENTRALIZED MPC FORMULATION

It is straightforward to solve the optimization problem
(4) using a centralized control scheme, which yields speed
trajectories of all the CAVs and the associated control actions
for the whole mission [11]. Nevertheless, it is challenging to
implement centralized methods due to the limited computa-
tional resources in reality and the uncertain arrival time and
speed of the second or later CAVs in the sequence N . This
section reformulates (4) as a DMPC problem, which finds a
balance between optimality and computational efficiency.

Let us denote Np ∈ N>0 the prediction horizon. The
vehicle dynamics (4b)-(4c) can be rewritten in a discrete
state-space form with a sampling distance interval ∆s∈R>0:[
Ei(k + 1)
ti(k + 1)

]
=Ad

[
Ei(k)
ti(k)

]
+Bd

Ft,i(k)
Fb,i(k)
ζi(k)

+∆s

[
−Fr

0

]
,

(7)
where,

Ad =

[
1− 2fd

m ∆s 0
0 1

]
, Bd =

[
∆s ∆s 0
0 0 ∆s

]
. (8)

Without loss of generality, it is assumed that L+ S=α1∆s
and L=α2∆s, α1, α2 ∈ N>0, α1 > α2.

In the decentralized framework, the coordinator assigns a
unique identity to each CAV when the vehicle enters the CZ
of the intersection based on the vehicle’s arrival time and
entering direction. Let M(t) be the cumulative number of
CAVs that have entered the CZ by time t. The identity that
the coordinator assigns to vehicle i that arrives at the CZ is
defined as (γi, di), where γi = M(t) + 1, and di ∈ {1, 2, 3}
is an integer based on a one-to-one mapping with respect
to {Ch,Oh,Lh} that indicates the relationship between the
ith CAV and the vehicle h entering the CZ at an earlier
time. At any step k, the coordinator requests from each



CAV the optimal state sequence xγi(k)= [Eγi(k), tγi(k)]∈
R(Np+1)×2 within the receding horizon Np:

Eγi(k)=[Eγi(k|k), Eγi(k + 1|k), . . . , Eγi(k +Np|k)]
>
,

tγi(k)=[tγi(k|k), tγi(k + 1|k), . . . , tγi(k +Np|k)]
>
.

As such for each CAV i at step k, the coordinator can
generate an information set:

Iγi(k) = [xγi(0),xγi(1), · · · ,xγi(k)] ∈ R(Np+1)×2k . (9)

Then, based on (γi, di), the coordinator exchanges the infor-
mation set Iγi(k) with the associated vehicles (see below) to
enable collision avoidance constraints to be established for
each local MPC. The information any CAV i requires is:

1) no information is required, if γi = 1,
2) Iγi−1(k), if γi ∈ Cγi−1 ,
3) Iγi−1(k) and Iγh(k) with γh < γi, where h stands for

the CAV immediately ahead of CAV i, if γi /∈ Cγi−1
.

The objective function in the DMPC framework for vehi-
cle i is designed based on (4a):

J̃γi,k =

Np−1∑
j=0

[W1Pb,γi(k+j|k) +W2ζγi(k+j|k)] ds

+W3(Eγi(k+Np|k)−m
2
v̄2)2, k = 0, 1, · · · , α1. (10)

where the third term in (10) is a terminal cost. It is used to
penalize the kinetic energy difference between Eγi(k+Np|k)
and the desired exit condition 1

2mv̄
2 of the MZ, to avoid

the suboptimal solution where the final speed tends to reach
vγi(k+Np|k) = vmin.

The constraints (4d)-(4g) can be immediately incorporated
into the DMPC framework as they are imposed on a single
vehicle. For CAV i at each step, it follows that:

ζγi(k + j|k) ≥ 1√
2Eγi(k + j|k)/m

, (11a)

1

2
mv2min ≤ Eγi(k + j + 1|k) ≤ 1

2
mv2max (11b)

gr
rw
Tmin ≤ Ft,γi(k + j|k) ≤ gr

rw
Tmax , (11c)

mamin −
gr
rw
Tmin ≤ Fb,γi(k + j|k)≤0 , (11d)

where j = 0, 1, · · · , Np − 1.
In terms of the collision avoidance constraints (4h)-(4j)

that involve more than one vehicles, the information set Iγi
received from other vehicles (via the coordinator) is invoked.
For any CAV i, if there exists a vehicle h, γh < γi that
is immediately ahead of CAV i, such that γi ∈ Cγh , the
following rear-end collision constraint is incorporated into
the DMPC of vehicle i:

tγi(k+ j+ 1|k)− tγh(k+ j+ 1|k) ≥ β(k+ j+ 1|k), (12)

where j = 0, 1, · · · , Np − 1, and tγh(k + j + 1|k) is the
historical information stored in Iγh(k̄), where k̄ > k is the
corresponding distance step of CAV h when the ith CAV is
at step k, that is tγh(k̄∆s)= tγi(k∆s).

In the DMPC framework, the lateral collision constraint
for any CAV i is required only when γi ∈ Lγi−1 , and the
constraint is not active until the receding space window
of the γith vehicle reaches the entry of MZ. However, the
information of tγi−1

(L+S) is not available from Iγi−1
until

the space window of the γi−1th CAV reaches the exit of MZ.
In this context, the reformatted lateral collision avoidance
constraint is given by:

tγi(k + j + 1|k) ≥ t̂Lγi−1
(L+ S), j ∈ N[0,Np−1] , (13)

where k + j + 1 = α2 with α2 ∈N[k, k+Np]. The exit time
of the γi−1th CAV of MZ, t̂γi−1

(L+ S), is estimated by

t̂Lγi−1
(L+S)=


tγi−1(k̄+l+1|k̄), if l<Np, k̄+l+1=α1,

tγi−1
(k̄+Np|k̄)+

L+S−(k̄+Np)∆s

vγi−1
(k̄ +Np|k̄)

,

if k̄+Np < α1,
(14)

where l∈N[0,Np−1], and k̄, similarly to the earlier definition,
stands for the associated step of the γi−1th CAV such that
tγi−1

(k̄∆s) = tγi(k∆s). In the first case in (14), t̂Lγi−1
(L +

S) is obtained straightforwardly in the first case, as the
terminal condition is included in the space window of the
γi−1th vehicle. In the second case in (14), the terminal time
t̂Lγi−1

(L+S) is unavailable from the information received by
the γith CAV; instead, it is estimated by assuming that the
γi−1th CAV will finish the rest of the mission at its terminal
speed of the present horizon.

The constraints (4j) are needed when vehicle γi ∈Oγi−1 .
By analogy to the lateral collision avoidance constraint, (4j)
is rewritten as follows:

tγi(k + j + 1|k) ≥ t̂Oγi−1
(L), k + j + 1 = α2

tγi(k + l + 1|k) ≥ t̂Oγi−1
(L+ S), k + l + 1= α1

(15)

where j, l∈N[0,Np−1], while t̂Oγi−1
(L) and t̂Oγi−1

(L+ S) can
be estimated using the same approach given in (14).

Finally, the terminal speed constraint (4k) triggers when
the position of the exit of the MZ falls into the prediction
horizon of vehicle i, such that α1 ∈ N[k, k+Np]. With MPC,
the receding window can surpass the exit of the MZ, that is
k+Np ≥ α1. To ensure that the terminal condition is fulfilled
under this circumstance, when the horizon surpasses α1, the
speed for that part of the horizon is enforced to the desired
terminal speed, such that:

Eγi(k + j + 1|k) =
1

2
mv̄2, if k +Np ≥ α1, (16)

where j=α1−k−1, α1−k, . . . , Np−1.
The DMPC framework of the autonomous intersection

crossing control problem (4) for each CAV i ∈ N (t) can
finally be formulated as:

min
uγi

J̃γi,k(xγi(k),uγi(k)) , (17a)

s.t. : (7), (11), (13), (15), (16) (17b)
xγi(k|k) = xγi(k) (17c)

given :xγi(0). (17d)



where xγi(k)∈R(Np+1)×3, uγi(k)∈RNp×3, k=0, 1, . . . , α1,
xγi(k) in (17c) is the actual state measured at step k,
and xγi(0) in (17d) is the initial state (entry state at CZ)
satisfying Assumptions 2-3.

Remark 1: The choice of the sampling distance interval
is important for the problem, and its tuning is subject to
the typical trade-off between accuracy and computational
complexity, which influences the setup of the DMPC. In
practice, due to the inevitable delays in computation and
communication, the information Iγi−1(k̄) required for con-
straints (13) and (15) may not be available at step k of the
γith CAV. In such case, the γith vehicle can use the latest
data of the γi−1th vehicle contained in Iγi−1

, and then, the
arrival time of the γi−1th CAV at the entry and exit of the MZ
t̂Lγi−1

(L + S), t̂Oγi−1
(L), t̂Oγi−1

(L + S) can still be estimated
by following (14).

IV. NUMERICAL RESULTS

The performance of the proposed decentralized au-
tonomous intersection management method is evaluated in
this section. The parameters of the intersection are L =
150 m and S = 10 m, with a sampling interval ∆s = 2 m.
For illustrative and comparative purposes, let us consider a
case with 20 CAVs all of which are assumed to leave the
intersection (the MZ) at the same terminal speed v̄=10 m/s.
Without loss of generality, the control problem is initialized
with randomized initial conditions vi(0) and ti(0) for all
CAVs subject to the constraints imposed in Assumptions 2
and 3. In particular, the initial speeds of all CAVs follow a
uniform distribution within [vmin, vmax], while their arrival
times ti(0) follow a Poisson distribution. Moreover, the entry
of each CAV is also randomly generated. The convex DMPC
is solved by using YALMIP and MOSEK [17] in Matlab on
a PC with Intel Core i5 2.9 GHz and 8 GB of RAM.

The optimality of DMPC solutions is investigated by
studying the trade-off between travel time and energy con-
sumption. In terms of the comparison, various prediction
horizon lengths Np = {10, 15, 20} are used and the solu-
tion of the centralized convex optimal control problem (4)
proposed in [11] is also included. The results shown in Fig. 5
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Fig. 5. The trade-offs between average battery energy consumption and
average travel time at the arrival rate of 500 veh/h per lane for the DMPC
with varied prediction horizon length and the centralized method [11].

point out for both centralized and decentralized methods

the importance of examining the energy-time trade-off, as
a small change in the travel time can significantly affect
the energy efficiency. For example, when the decentralized
method is used with Np = 10, an increase in travel time
of approximately 30% can lead to a roughly 56% reduction
in the energy consumption, while further increase in travel
time can eventually yield up to 60% energy consumption re-
duction. The comparison among the three prediction horizon
lengths indicates that the overall optimality increases as the
Np increases. The reason is that increasing the horizon tends
to enhance the ability to anticipate the future behavior of each
CAV to satisfy the collision and FIFO constraints, at a price
of higher computational burden. However, the improvement
in terms of energy consumption optimality from Np = 10
to 20 is less than 4% for most cases, and therefore, the
subsequent studies in this paper adopt Np=10 for the DMPC
problem.

Moreover, by comparing with the centralized OCP, it can
be expected that the Pareto frontiers of the DMPC are always
above (less optimal) that of the centralized method. When
W2 � W1, the optimality of the decentralized approach
is close the that of the centralized approach. This can be
understood as when the energy cost becomes negligible in
the objective function, the driving speed solved by both
methods is pushed to the upper limit to minimize the travel
time, resulting in a similar energy cost. As the weight W1

for the energy cost is gradually increased, the optimality
of the decentralized method deteriorates as compared to the
solution of the centralized method, resulting in a maximum
gap of 22% between the two methods when the average travel
time is 12.75 s, and after this time resulting in a gap of no
less than 21%. The reason is that when the travel time is
relaxed, there exists more room for speed optimization, and
therefore the centralized method can yield superior solutions
in terms of energy consumption.

To gain more insight into the behavior of both the cen-
tralized and decentralized control schemes, Fig. 6 shows
the traveled distance of all 20 CAVs by solving the DMPC
problem (17) subject to an average travel time 12.75 s at an
arrival rate of 500 veh/h per lane. It can be observed that all
CAVs obey the FIFO policy without experiencing rear-end
and side collisions throughout the simulation, and therefore,
the validity of the solutions of the DMPC problem (17) is
verified.

The optimal speed trajectories (with respect to time) in
the decentralized and centralized cases at the same average
travel time 12.75 s are shown in Figs. 7 and 8, respectively,
where the speed profiles in both scenarios are grouped based
on the heading directions for illustration purposes. Unlike the
centralized method where all CAVs decelerate immediately
after reaching the peak speeds, the CAVs in the decentralized
framework tend to cruise at the peak speed and apply more
intensive braking when approaching the exit of the MZ as
compared to the centralized solution. Mechanical braking is
engaged on this occasion to meet to the sharp deceleration,
which due to the power dissipation is not optimal in terms
of energy efficiency.



0 10 20 30 40

150

100

50

0

50

100

150

1 3

2 5 9 14 16 17 19 20

4 6 7 8 10 11
12 13

15 18

Fig. 6. Traveled distance trajectories (distance to the end of MZ) by solving
the DMPC (17) subject to an average travel time 12.75 s at an arrival rate
of 500 veh/h per lane. The horizontal dashed lines correspond to the entry
of the MZ, while the horizontal continuous black line represents the end
of the MZ. The four vehicle heading directions are denoted using different
colors.

The DMPC computational time of a single CAV i at
every step with the sampling interval ∆s = 2 m is shown
in Fig. 9. The dashed line denotes the estimated permissible
computational time at every interval distance ∆s in the
space domain, obtained by ∆s/vi(k). As it can be seen,
the computational time of vehicle i is strictly below the
maximum allowed time, which validates the implementation
of the DMPC approach. A further increase on ∆s could
increase the computational capability of the DMPC in coping
with additional uncertainties, such as communication delay,
at a price of computational precision.
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Fig. 7. Optimal speed profiles by solving the DMPC problem (17) subject
to an average travel time 12.75 s for all CAVs at an arrival rate of 500
veh/h per lane.

V. CONCLUSIONS

In this paper, the problem of optimally controlling battery-
electric CAVs crossing an unsignalized intersection is ad-
dressed in a decentralized manner. A DMPC-based control
strategy is proposed to sequentially minimize the electric
energy consumption and the travel time of all CAVs. With
the convex modeling technique and MPC framework, a
unique optimal solution can be guaranteed with a high
computational efficiency. The numerical examples examine
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Fig. 8. Optimal speed profiles by solving the centralized problem (4)
subject to an average travel time 12.75 s for all CAVs at an arrival rate of
500 veh/h per lane.
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Fig. 9. Computational time of an example CAV i and the corresponding
maximum allowed computational time ∆s/vi(k) with sampling ∆s=2 m
by solving the DMPC problem.

the trade-off between energy consumption and travel time
for different prediction horizon lengths. The proposed de-
centralized method is also benchmarked against a centralized
optimal control method. Finally, the computation efficiency
of the DMPC is examined and the results show the practical
potential of the proposed scheme. Future work will focus
on the development of robust DMPC methods to cope with
communication, measurement and model uncertainties.
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[17] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
matlab,” in Proc. of the CACSD Conference, Taipei, Taiwan, 2004.


	Introduction
	Problem Statement
	Intersection Model

	Decentralized MPC Formulation
	Numerical Results
	Conclusions
	References

