
Guarded Kleene Algebra with Tests:
Coequations, Coinduction, and Completeness
Todd Schmid #Ñ

Department of Computer Science, University College London, UK

Tobias Kappé #

Department of Computer Science, Cornell University, Ithaca, NY, USA

Dexter Kozen #Ñ

Department of Computer Science, Cornell University, Ithaca, NY, USA

Alexandra Silva #Ñ

Department of Computer Science, University College London, UK

Abstract
Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment of KAT, as it allows for
almost linear decidability of equivalence. In this paper, we study the (co)algebraic properties of
GKAT. Our initial focus is on the fragment that can distinguish between unsuccessful programs
performing different actions, by omitting the so-called early termination axiom. We develop an
operational (coalgebraic) and denotational (algebraic) semantics and show that they coincide. We
then characterize the behaviors of GKAT expressions in this semantics, leading to a coequation that
captures the covariety of automata corresponding to these behaviors. Finally, we prove that the
axioms of the reduced fragment are sound and complete w.r.t. the semantics, and then build on this
result to recover a semantics that is sound and complete w.r.t. the full set of axioms.

2012 ACM Subject Classification Theory of computation Ñ Program reasoning

Keywords and phrases Kleene algebra, program equivalence, completeness, coequations

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.142

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2102.08286

Funding Tobias Kappé: DARPA grant HR001120C0107 (Pronto)
Dexter Kozen: NSF grant CCF-2008083
Alexandra Silva: ERC Consolidator Grant AutoProbe (101002697) and a Royal Society Wolfson
Fellowship

1 Introduction

Kleene algebra with tests (KAT) [17] was introduced in the early 90’s as an extension of Kleene
algebra (KA), the algebra of regular expressions. The core idea of the extension was simple:
consider regular languages over a two-sorted alphabet, in which one sort represents Boolean
tests and the other denotes basic program actions. This seemingly simple extension enables
an important application for regular languages in reasoning about imperative programs with
basic control flow structures like branches (if -then-else) and loops (while). KAT largely
inherited the properties of KA: a language model [22], a Kleene theorem [19], a sound and
complete axiomatization [22], and a pspace decision procedure for equivalence [8].

In 2014, a specialized KAT called NetKAT [4] was proposed to program software-defined
networks. NetKAT was later extended with a probabilistic choice operator that enabled the
modelling of randomized protocols [9]. Interestingly, there exists a decision procedure for
NetKAT program equivalence that enables practical verification of reachability in networks

EA
T

C
S

© Todd Schmid, Tobias Kappé, Dexter Kozen, and Alexandra Silva;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 142; pp. 142:1–142:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:todd.schmid.19@ucl.ac.uk
http://www.homepages.ucl.ac.uk/~ucabtws/
https://orcid.org/0000-0002-9838-2363
mailto:tkappe@cornell.edu
https://orcid.org/0000-0002-6068-880X
mailto:kozen@cs.cornell.edu
https://www.cs.cornell.edu/~kozen/
https://orcid.org/0000-0002-8007-4725
mailto:alexandra.silva@ucl.ac.uk
https://alexandrasilva.org/#/main.html
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://arxiv.org/abs/2102.08286
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

142:2 GKAT: Coequations, Coinduction, and Completeness

with thousands of nodes and links, which seems to scale almost linearly despite the pspace-
completeness of this problem [10, 35]. This raised the question: do practical NetKAT programs
belong to a fragment of KAT that has more favorable properties than the full language?

Recently, this question was answered positively [34], in the form of Guarded Kleene
Algebra with Tests (GKAT), a fragment of KAT obtained by adding a Boolean guard to
the non-deterministic choice and iteration operators so that they correspond exactly to the
standard if-then-else and while constructs. GKAT is expressive enough to capture all
programs used in network verification while allowing for almost linear time1 decidability of
equivalence, thereby explaining the experimental results observed in NetKAT.

The use of GKAT as a framework for program analysis also raises further questions
about recovering the properties of KAT on the level of GKAT. Is there a class of automata
that provides a Kleene theorem? Is there a sound and complete axiomatization of GKAT
equivalence? The original paper [34] gave incomplete answers to these questions. First,
it proposed a class of well-nested automata that can be used to describe the semantics of
all GKAT programs, but left open whether this class covered all automata that accept the
behaviors of GKAT programs. Second, GKAT was axiomatized under the assumption of early
termination: intuitively, referring to a semantics of imperative programs where programs
that fail immediately are equated to programs that fail eventually. This semantics, though
useful, is too coarse in contexts where program behavior prior to failure matters.

In this paper, we take a new perspective on the semantics of GKAT programs and
their corresponding automata, using coequations. Coequations provide the right tool to
characterize fragments of languages as they enable a precise way to remove unwanted traces.
We are then able to give a precise characterization of the behaviors of GKAT programs and
prove a completeness theorem for each of the fragments of interest.

Our contributions. In a nutshell, the contributions of this paper are the following:
1. We give a denotational model for GKAT without early termination by representing

the behavior as a certain kind of tree. This allows us to design two coequations: one
characterizing the behaviors denoted by GKAT expressions, and another capturing only
the behaviors of GKAT expressions that terminate early.

2. We obtain two completeness results for GKAT: one for the model of the previous item
and the axiomatization of [34] without the early termination axiom; and building on this,
another for the full axiomatization. The former is new; the latter provides an alternative
proof to the completeness theorem presented in [34].

3. A concrete example of a well-nested GKAT automaton with a non-well-nested quotient.
This settles an open question of [34] and closes the door on an alternative proof of
completeness based on well-nested automata.

2 Guarded Kleene Algebra with Tests

At its heart, Guarded Kleene Algebra with Tests (GKAT) is an algebraic theory of imperative
programs. Expressions in GKAT are concise formulas for while programs [23], which are built
inductively from actions and tests with sequential composition and the classic programming
constructs of branches and loops: if b then e else f and while b do e.

1 Opnαpnqq, where αpnq is the inverse of Ackermann’s function

T. Schmid, T. Kappé, D. Kozen, and A. Silva 142:3

Union Axioms Sequence Axioms Loop Axioms
U1. e `b e ” e S1. pe ¨ fq ¨ g ” e ¨ pf ¨ gq W1. epbq

” e ¨ epbq
`b 1

U2. e `b f ” f `b̄ e S2. 0 ¨ e ” 0 W2. pceq
pbq

” pe `c 1q
pbq

U3. pe `b fq `c g ” e `b^c pf `c gq S3. e ¨ 0 ” 0
W3.

Epeq ” 0 g ” eg `b f

g ” epbq
¨ f

U4. e `b f ” b ¨ e `b f S4. 1 ¨ e ” e; S5. e ” e ¨ 1
U5. e ¨ g `b f ¨ g ” pe `b fq ¨ g S6. b ¨ c ” b ^ c

Figure 1 Axioms for GKAT-expressions. Here, e, f, g P Exp and b, c P BExp.

Formally, these expressions are drawn from a two-sorted language of tests and programs.
The tests are built from a finite set of primitive tests T , as follows:

BExp Q b, c ::“ 0 | 1 | t P T | b̄ | b ^ c | b _ c.

Here, 0 and 1 are understood as the constant tests false and true respectively, b̄ denotes
the negation of b, and ^ and _ are conjunction and disjunction, respectively. We will use
A to denote the set of atomic tests (or just atoms), Boolean expressions of the form
d1 ^ ¨ ¨ ¨ ^ dl, where di P tti, t̄iu for each i ď l and tti | i ď lu is a fixed enumeration of T . It
is well known that any b P BExp can be written equivalently as the disjunction of the atoms
a P A that imply b under the laws of Boolean algebra. We will often identify each Boolean
expression b P BExp with this set of atoms and write b Ď A or a P b.

Programs are built from tests and a finite set of primitive programs or actions Σ,
disjoint from T . Formally, programs are generated by the grammar

Exp Q e, f ::“ b P BExp | p P Σ | e ¨ f | e `b f | epbq

Here, a test b abbreviates the statement assert b, the operator ¨ is sequential composition,
e `b f is shorthand for if b then e else f and epbq is shorthand for while b do e.

GKAT programs satisfy standard properties of imperative programs. For instance, swap-
ping the branches of an if-then-else construct should not make a difference, provided that
we also negate the condition; that is, the semantics of e `b f should coincide with that of
f `b e. The rules in Figure 1 axiomatize equivalences between programs. Together with the
axioms of Boolean algebra, these generate a congruence ” on Exp.

Some remarks are in order for axiom W3. The right-hand premise states that an expression
g has some self-similarity in the sense that it is equivalent to checking whether b holds, in
which case it runs e followed by recursing at g, and otherwise running f . Intuitively, this
says that g is loop-like, matching the conclusion that g is equivalent to epbq ¨ f . However,
this conclusion may not make sense when based on just the second premise. Specifically, if
we choose e, f , g and b to be 1, we can show that the premise holds and derive 1 ” 1p1q ¨ 1,
which is to say that assert true is equivalent to (while true do assert true); assert true.
Intuitively, this should be false: the first program terminates successfully and immediately,
but the second program does not. The problem is that the loop body does not perform any
actions that affect the state and make progress towards the end of the loop.

This is remedied by the left-hand premise, which distinguishes loop bodies that can accept
immediately from those that cannot. It plays the same role as the empty word property in
Salomaa’s axiomatization of the algebra of regular events [31]. Formally, given e P Exp, the
Boolean expression Epeq is defined inductively by setting Eppq “ 0, Epbq “ b, and

Epe ¨ fq “ Epeq ^ Epfq Epe `b fq “ pb ^ Epeqq _ pb̄ ^ Epfqq Epepbqq “ b̄

ICALP 2021

142:4 GKAT: Coequations, Coinduction, and Completeness

We call e productive if Epeq ” 0. Axioms W2 and W3 are analogues of Salomaa’s axioms
A11 and R2 [31]. Specifically, W2 says that non-productive loop iterations do not contribute
to the semantics. This allows the use of W3 to reason about loops in general, for instance to
prove epbq ” epbq ¨ b, which says that the loop condition is false when a loop ends [34].

Axiom S3 identifies a program that fails eventually with the program that fails immediately.
As a consequence, ” cannot distinguish between processes that loop forever, like pp1q and qp1q,
even though they perform different actions [34]. Consequently, GKAT can be seen as a theory
of computation schemata, i.e., programs that need to halt successfully to be meaningful.

In contrast, it is also useful to be able to reason about process schemata, i.e., programs
that perform meaningful tasks, even when they do not terminate successfully. To this end,
we define the reduced congruence ”0 generated by the axioms of Figure 1 except S3.

Let rr´ss : Exp Ñ S be a semantics of GKAT. We say that rr´ss is sound w.r.t. ” if for
all e, f P Exp with e ” f , it holds that rress “ rrf ss. Similarly, rr´ss is sound w.r.t. ”0 if
e ”0 f implies that rress “ rrf ss.

Since ” encodes common program laws, one might wonder whether there is a single
interpretation in which programs are related by ” if and only if they have the same image.
Such an interpretation is called free w.r.t. ”. This question is not just of theoretical
interest: a free interpretation can help decide whether programs are provably equivalent, and
hence the same under any sound interpretation, by checking whether their free semantics
coincide. Naturally, the same question can be asked for ”0: is there a semantics that is free
w.r.t. ”0, i.e., where e ”0 f if and only if e and f have the same interpretation?

The remainder of this paper is organized as follows. In Section 3, we describe the
operational structure for GKAT expressions in terms of GKAT-automata, as in [34]. In
Section 4, we provide an explicit construction of a GKAT-automaton in which all other
automata can be uniquely interpreted. We then build a semantics that is sound w.r.t. ”0
in Section 5. In Section 6 we relate our coequational description of GKAT expressions to
the well-nested GKAT-automata of [34]. In Section 7, we prove that this semantics is in
fact complete w.r.t. ”0 and, building on this, obtain a semantics that is complete w.r.t. ”.
Omitted proofs are included in the extended version [32].

3 An operational model: GKAT-automata

In this section we discuss the small-step operational model for GKAT programs from [34]. The
operational perspective provides us with the tools to describe a semantics that is complete
w.r.t. ”0 and paves the way to a decision procedure.

We can think of a GKAT-program as a machine that evolves as it reads a string of atomic
tests. Depending on the most recently observed atomic test, the program either accepts,
rejects, or emits an action label and changes to a new state. For example, feeding if b do p

else q an atomic test a P b causes it to perform the action p and then terminate successfully.

▶ Definition 3.1. A GKAT-automaton [34, 23] is a pair X “ pX, δq, where X is a set
of states and δ : X ˆ A Ñ 2 ` Σ ˆ X is a transition function. We use x a|p

ÝÝÑX x1 as
a notation for δpx, aq “ pp, x1q. Similarly, x ñX a denotes that δpx, aq “ 1, and x ÓX a

denotes that δpx, aq “ 0. We drop the subscript X when the automaton is clear from context.

Intuitively, X represents the states of an abstract machine running a GKAT program, with
dynamics encoded in δ. When the machine is in state x P X and observes a P A, there are
three possibilities: if x Ó a, the machine rejects; if x ñ a, it accepts; and if x a|p

ÝÝÑ x1, it
performs the action p followed by a transition to the state x1.

T. Schmid, T. Kappé, D. Kozen, and A. Silva 142:5

a P b

b ñ a p a|p
ÝÝÑ 1

a P b e ñ a

e `b f ñ a

a P b̄ f ñ a

e `b f ñ a

a P b e a|p
ÝÝÑ e1

e `b f a|p
ÝÝÑ e1

a P b̄ f a|p
ÝÝÑ f 1

e `b f a|p
ÝÝÑ f 1

e ñ a f ñ a

e ¨ f ñ a

e ñ a f a|p
ÝÝÑ f 1

e ¨ f a|p
ÝÝÑ f 1

e a|p
ÝÝÑ e1

e ¨ f a|p
ÝÝÑ e1

¨ f

a P b e a|p
ÝÝÑ e1

epbq a|p
ÝÝÑ e1

¨ epbq

a P b̄

epbq
ñ a

Figure 2 The transition structure of E . Here, e, e1, f, f 1
P Exp, b Ď A, a P A, and p P Σ.

Transitions that are not explicitly defined above are assumed to be failed termination.

▶ Remark 3.2. The reader familiar with coalgebra will recognize that GKAT-automata are
precisely coalgebras for the functor G “ p2 ` Σ ˆ Idq

A [34]. Indeed, the notions relating to
GKAT-automata, such as homomorphism, bisimulation, and semantics to follow are precisely
those that arise from G as prescribed by universal coalgebra [27].

We can impose an automaton structure on Exp yielding the syntactic GKAT-automaton
E “ pExp, Dq, where D is the transition map given by Brzozowski derivatives [34] as specified
in Figure 2. For instance, the operational behavior of ppbq as a state of E could be drawn as
follows, where x b|p

ÝÝÑ y denotes that x a|p
ÝÝÑ y for every a P b and rejecting transitions x Ó a

are left implicit:

b̄ ppbq 1 ¨ ppbq
b̄

b|p
b|p (1)

The operational structure of E is connected to ”0 as follows.

▶ Theorem 3.3 (Fundamental theorem of GKAT). For any e P Exp, e ”0 1 `Epeq Dpeq where

Dpeq “
ă

e a|pa
ÝÝÝÑea

pa ¨ ea and
ă

aPb

ea “

$

’

&

’

%

0 if b “ 0,

ea `a

˜

Ř

a1Pbza

ea1

¸

some a P b, otherwise.

The generalized guarded union above is well defined, in that the order of atoms does not
matter up to ”0. See [34] for more details about the generalised guarded union.

States of GKAT-automata have the same behavior if reading the same sequence of atoms
leads to the same sequence of actions, acceptance, or rejection. This happens when one state
mimics the moves of the other, performing the same actions in response to the same stimuli.
For instance, consider the GKAT-automaton in (1): the behavior of ppbq can be replicated by
the behavior of 1 ¨ ppbq, in that both either consume an a P b̄ and terminate or consume a P b

and emit p before transitioning to 1 ¨ ppbq. This can be made precise.

▶ Definition 3.4. Let R Ď X ˆ Y be a relation between the state spaces of GKAT-automata
X and Y. Then R is a bisimulation if for any px, yq P R and a P A,
(1) x ÓX a if and only if y ÓY a; and (2) x ñX a if and only if y ñY a; and
(3) if x a|p

ÝÝÑX x1 and y a|q
ÝÝÑY y1 for some x1 and y1, then p “ q and px1, y1q P R.

If a pair of states px, yq P X ˆ Y is contained in a bisimulation, we say that x and y are
bisimilar. If a bisimulation R is the graph of a function φ : X Ñ Y , we write φ : X Ñ Y
and call φ a GKAT-automaton homomorphism [27].

Indeed, bisimulations are designed to formally witness behavioral equivalence. We use
the term behavior as a synonym for the phrase bisimilarity (equivalence) class.

ICALP 2021

142:6 GKAT: Coequations, Coinduction, and Completeness

4 The final GKAT-automaton

One way of assigning semantics to GKAT expressions is to find a sufficiently large GKAT-
automaton Z that contains the behavior of every other GKAT-automaton. In this section,
we provide a concrete explicit description of such a “semantic” GKAT-automaton – this is a
crucial step towards being able to devise a completeness proof.

Concretely, Z represents the behavior of a state as a tree that holds information about
acceptance, rejection, and transitions to other states (which are subtrees). Essentially, this
tree is an unfolding of the transition graph from that state.

We describe these trees using partial functions. Let us write A` for the set of all non-
empty words consisting of atoms. The state space Z of Z is the set of all partial functions
t : A` á 2 ` Σ with A Ď domptq, such that the following hold for all a P A and x P A`.

w P domptq tpwq P Σ
wa P domptq

w P domptq tpwq P 2
wx R domptq

The transition structure of Z is defined by the inferences

tpaq “ 0
t Ó a

tpaq “ 1
t ñ a

tpaq “ p P Σ
t a|p

ÝÝÑ λw.tpawq

When tpwq P Σ, we will write Bwt for λu.tpwuq. We can think of t P Z as a tree where the
root has leaves for atoms a P A with tpaq “ 1, and a subtree for every a P A with tpaq P Σ.
▶ Remark 4.1. Trees correspond to deterministic (possibly infinite) guarded languages [34, 23].
More precisely, every tree can be identified with a language L Ď pA ¨ Σq

˚
¨ A Y pA ¨ Σq

ω

satisfying (i) if wapσ, waqσ1 P L, then p “ q; and (ii) if wa P L, then wapσ R L for any pσ.
We forgo a description in terms of guarded languages in favor of trees because these trees
have the constraint about determinism built in.

A node of t is a word w P A˚ such that either w “ ϵ (the empty word), or w P domptq

and tpwq P Σ. We write Nodeptq for the set of nodes of t. A subtree of t is a tree t1 such
that t1 “ Bwt for some w P Nodeptq. A leaf of t is a word w P domptq such that tpwq P 2.

Next, we specialize Definition 3.4 to Z (c.f. [28, Theorem 3.1]).

▶ Lemma 4.2. R Ď Z ˆ Z is a bisimulation on Z iff for any pt, sq P R and a P A,
(1) tpaq “ spaq; and (2) if either Bat or Bas is defined, then both are defined and pBat, Basq P R.

We can now prove that bisimilar trees in Z coincide.

▶ Lemma 4.3 (Coinduction). If s, t P Z are bisimilar, then s “ t.

Thus, to show that two trees are equal, it suffices to demonstrate a bisimulation that
relates them. This proof method is called coinduction. We can also use Lemma 4.2 to
define algebraic operations on Z, and such definitions are said to be coinductive. Many of
the results in the sequel are argued using coinduction, and many of the constructions are
coinductive. With this in mind, we are now ready to prove that Z contains every behavior
that can be represented by a GKAT-automaton, as follows.

▶ Theorem 4.4. Z is the final GKAT-automaton. In other words, for every GKAT-automaton
X , there exists a unique GKAT-automaton homomorphism !X from X to Z.

Given a GKAT-automaton X , the unique map !X assigns a tree from Z to each of its
states. In particular, recalling that the syntactic GKAT-automaton E has Exp as its set of
states, !E is a semantics of GKAT programs in terms of trees. The following lemma states
that bisimulation is sound and complete with respect to this semantics.

▶ Lemma 4.5. States x and x1 of a GKAT-automaton X are bisimilar iff !X pxq “ !X px1q.

T. Schmid, T. Kappé, D. Kozen, and A. Silva 142:7

5 Trees form an algebra

So far, we have seen that the behavior of a GKAT-program is naturally interpreted as a
certain kind of tree, and that each such tree is the state of the final GKAT-automaton Z.
In this section, we show that the trees in Z can themselves be manipulated and combined
using the programming constructs of GKAT. These operations satisfy all of the axioms that
build ”0, but fail the early-termination axiom S3. This gives rise to an inductive semantics
of GKAT-programs rr´ss : Exp Ñ Z that is sound w.r.t. ”0. As a matter of fact, we will see
that rr´ss coincides with the unique GKAT-automaton homomorphism !E : Exp Ñ Z.

We begin by interpreting the tests. Given b Ď A, we define rrbss as the characteristic
function of b as a subset of A`, i.e., rrbss paq “ 1 if a P b, and rrbss paq “ 0 otherwise.

On the other hand, primitive action symbols denote programs that perform an action in
one step and then terminate successfully in the next. For p P Σ, this behavior is described
by the unique tree rrpss such that rrpss paq “ p and Ba rrpss “ rr1ss for any a P A. When context
can disambiguate, we write b in place of rrbss and p in place of rrpss.

Each operation is defined using a behavioral differential equation (BDE) consisting
of a set of initial conditions tpaq “ ξa P 2`Σ indexed by a P A and a set of step equations
Bat “ sa indexed by the a P A with tpaq P Σ. This is possible because every BDE describes
a unique automaton, which (by Theorem 4.4) has a unique interpretation in Z [28]. Each
BDE below can be read more or less directly from Figure 2.

The first operation that we interpret in Z is sequential composition. For any s, t P Z, the
tree s ¨ t models sequential composition of programs by replacing each non-zero leaf of s by
the nodal subtree of t given by the corresponding atomic test. This can formally be defined
as the unique operation satisfying the following behavioral differential equation.

ps ¨ tqpaq “

#

tpaq if spaq “ 1,

spaq otherwise
Baps ¨ tq “

#

Bat if spaq “ 1,

Bas ¨ t otherwise.

Here, Bas ¨ t “ pBasq ¨ t. Using this operation, we define rre ¨ f ss “ rress ¨ rrf ss.
To interpret the guarded union operation, define `b to be the unique operation such that

ps `b tqpaq “

#

spaq if a P b,

tpaq otherwise
Baps `b tq “

#

Bas if a P b,

Bat otherwise.

As before, we define rre `b f ss “ rress `b rrf ss.
Finally, we interpret the guarded exponential operation. Following Figure 2, tpbq can be

defined as the unique tree satisfying

tpbq
paq “

$

’

&

’

%

1 if a R b,

tpaq if a P b and tpaq P Σ,

0 otherwise.
Baptpbq

q “ Bat ¨ tpbq

Similar to the other operators, we set
““

epbq
‰‰

“ rress
pbq. This completes our definition of the

algebraic homomorphism rr´ss : Exp Ñ Z.
As it happens, rr´ss is also a GKAT automaton homomorphism from E to Z. By uniqueness

of such homomorphisms (Theorem 4.4), we can conclude that rr´ss and !E are the same.

▶ Proposition 5.1. For any e P Exp, rress “ !Epeq.

This allows us to treat the algebraic and coalgebraic semantics as synonymous. Using
Lemma 4.5, we can then show soundness w.r.t. ”0 by arguing that ”0 is a bisimulation on E .

ICALP 2021

142:8 GKAT: Coequations, Coinduction, and Completeness

v0 v1 bb̄

b|p

b̄|q

Figure 3 A GKAT-automaton without GKAT behaviors.

▶ Theorem 5.2. The semantics rr´ss is sound w.r.t. ”0.

On the other hand, Z does not satisfy S3. For instance, rrp ¨ 0ss ‰ rr0ss for any p P Σ. We
will adapt the model to overcome this in Section 7.3.

6 Well-nested automata and nested behavior

Not all behaviors expressible in terms of finite GKAT-automata occur in E . For example, the
two-state automaton in Figure 3 fails to exhibit any behavior of the form rress, with e P Exp,
when b, b̄ ‰ 0. This is proven in the extended version [32] where we show that no branch
of a GKAT behavior can accept both b and b̄ infinitely often. For another example, see [23],
where a particular three-state automaton is shown to exhibit no GKAT behavior.

Intuitively, both of the examples above fail to exhibit the behaviors of GKAT programs
because GKAT lacks a goto-statement that allows control to transfer to an arbitrary position
in the program; instead, GKAT automata corresponding to GKAT expressions are structured
by branches and loops. The question then arises: can we characterize the “shapes” of
automata whose behavior is goto-free, i.e., described by a GKAT expression?

In [34], the authors proposed the class of well-nested GKAT automata, consisting of
automata built inductively by applying a series of operations designed to mimic the structural
effects of loops. It was shown that the behavior of every GKAT expression can be described by
some well-nested automaton. Moreover, they proved that the class of well-nested automata
constitutes a sufficient condition: the behavior of a well-nested GKAT automaton is described
by a GKAT expression. Whether this condition is also necessary, i.e., whether every automaton
with behavior corresponding to a GKAT expression is well-nested, was left open.

Thus, a positive answer to the latter question amounts to showing that every GKAT
automaton whose behavior is the same as a well-nested GKAT automaton is itself well-nested.
Such a class of automata closed under behavioral equivalence is known as a covariety. Covari-
eties have desirable structural properties. In particular, they are closed under homomorphic
images [27, 12, 3]. Unfortunately, well-nested automata do not satisfy this property: we
have found a well-nested automaton whose homomorphic image is not well-nested, depicted
in Figure 4. In other words, there exists a non-well-nested automaton whose behavior is
still described by a GKAT expression. This also closes the door on a simpler approach to
completeness described in [34].

Thus, well-nested automata do not constitute a characterization of the GKAT automata
that correspond to GKAT expressions. To obtain such a characterization, we take a slightly
different approach: rather than describing shapes of these automata, we describe the shapes
of the trees that they denote. We refer to a set of trees U Ď Z as a coequation, and treat it
as a predicate: a GKAT-automaton X satisfies U, written X |ù U, if every behavior present
in X appears in U – in other words, if !X factors through U. We write CovpUq to denote the
class of all GKAT-automata that satisfy U. It is easily shown that CovpUq is a covariety.

The coequation that we give to describe the covariety of automata whose behavior
corresponds to a GKAT expression is driven by the intuition behind well-nested automata:
the trees in this coequation are built using compositions that enforce while-like behavior,

T. Schmid, T. Kappé, D. Kozen, and A. Silva 142:9

v0 v1

v2 v3

v4 v5

v6 v7

a0, a1

a0, a1

a2, a3

a2, a3

a3

a3

a2 a2

a0

a0

a1 a1

Figure 4 As depicted, this automaton is well-nested. However, identifying v1 with v4, and v3

with v6, we obtain an automaton that is not well-nested.

and do not permit the construction of goto-like behavior. To this end, we need to define a
new continuation operation, as follows. Given s, t P Z, the continuation s ▷ t of s along t

is the unique tree satisfying the behavioral differential equation

ps ▷ tqpaq “

#

tpaq if spaq “ 1,

spaq otherwise
Baps ▷ tq “

#

Bat ▷ t if spaq “ 1,

Bas ▷ t otherwise.

Intuitively, s ▷ t is the tree that attaches infinitely many copies of t to s. This operation
can be thought of as the dual to Kleene’s original ˚-operation [16], which loops on its first
argument some number of times before continuing in the second.

▶ Definition 6.1. The nesting coequation W is the smallest subset of Z containing the
discrete coequation D :“ trrbss | b Ď Au and closed under the nesting rules below:

t, s P W
t ¨ s P W

p@a P Aq tpaq P Σ ùñ Bat P W
t P W

t, s P W
t ▷ s P W

The first and third nesting rules say that W is closed under composition and continuation;
the second rule says that integrals over nested trees are nested.

It is not too hard to see that W is a subautomaton of Z. In other words, if t P W, then
the derivatives of t are in W as well. In fact, W is a subalgebra of Z in that it is closed under
the operations of GKAT. This can be seen from the following observations: first, Bap “ 1
for all a P A, so p P W for any p P Σ by the second nesting rule. Second, W is closed under
sequential composition by definition. Third, if s, t P W and b Ď A, then every derivative
of s `b t is either a derivative of s or a derivative of t. Lastly, closure under the guarded
exponential is a consequence of the identity

tpbq
“ 1 ▷ pt̃ `b 1q, where t̃ :“

Ř

t a|pa
ÝÝÝÑta

pa ¨ ta.

This identity can be shown to hold for all t P Z and b Ď A using a coinductive argument. It
follows that the nesting coequation contains the image of rr´ss. A similar argument can be
used to establish the reverse containment as well, which leads to the following.

▶ Proposition 6.2. W is the set of GKAT program behaviors, i.e, W “ trress | e P Expu.

Proposition 6.2 characterizes W as the the set of behavioral patterns exhibited by GKAT
expressions: the states of a GKAT-automaton X behave like GKAT programs if and only if
X satisfies W, or, in other words, if X can be found in the covariety CovpWq. Since every
well-nested automaton has the behavior of some GKAT expression [34], it must satisfy W.

▶ Proposition 6.3. Well-nested GKAT-automata satisfy the nesting coequation.

ICALP 2021

142:10 GKAT: Coequations, Coinduction, and Completeness

7 Completeness

This section contains two completeness theorems for GKAT . As in [34], we need to assume
that W3 is generalized to arbitrary (linear) systems of equations. This uniqueness axiom,
discussed in Section 7.1, will allow us to prove that the semantics rr´ss from Section 5 is
free with respect to ”0 – that is, rress “ rrf ss implies e ”0 f – in Section 7.2. This will then
provide an alternative route to completeness for GKAT in Section 7.3.

7.1 Uniqueness of solutions for Salomaa systems

In part, W3 from Figure 1 ensures that the equation g ” e ¨ g `b f with indeterminate g

has at most one solution in Exp{”0 for any e, f P Exp under the condition that e denotes a
productive program. In fact, we could have stated the axiom this way from the beginning,
as W1 provides the existence of a solution to this equation (even without the restriction on
productivity). As we will see, the uniqueness axiom makes a more general statement than
W3 about systems of equations with an arbitrary number of indeterminates.

▶ Definition 7.1. A system of (n left-affine) equations is a sequence of n equations
of the form xi “ ei1 ¨ x1 `bi1 ¨ ¨ ¨ `bipn´1q

ein ¨ xn `bin ci, indexed by i ď n, such that (1) xi

is an indeterminate variable; (2) pbijqjďn is a sequence of disjoint Boolean expressions,
i.e. bij ^ bik ” 0 for any j ‰ k; (3) ci is a Boolean expression disjoint from bij for all j ď n;
and (4) eij is a GKAT expression for any j ď n.

Given any congruence 9” satisfying the axioms of ”0, a solution in Exp{ 9” to such a
system is an n-tuple of GKAT expressions pgiqiďn such that the equivalence gi 9” ei1 ¨ g1 `bi1

¨ ¨ ¨ `bipn´1q
ein ¨ gn `bin

ci holds for all i ď n.

For example, the equation in the premise of W3 is a system of one left-affine equation, and
the conclusion prescribes a unique solution (in Exp{”0) to the premise. Every finite GKAT-
automaton X gives rise to a system of equations with variables indexed by X “ txi | i ď nu

and coefficients indexed by the transition map, as follows:

eij “
ă

xi
a|pa

ÝÝÝÑxj

pa ci “ ta P A | xi ñ au bij “ ta P A | xi
a|p

ÝÝÑ xju.

Solving this system of equations uncovers the GKAT-constructs the automaton implements.
The uniqueness axiom states that certain systems of equations, like the one in the premise

of W3, admit at most one solution. Choosing which systems the axiom should apply to
must be done carefully for the same reason that necessitates the side-condition on W3.
Crucially, we require that the system have productive coefficients, i.e. Epeijq ” 0 for all
i, j ď n, to admit a unique solution. As this condition is analogous to Salomaa’s empty word
property [31], a system of equations with productive coefficients is called Salomaa [34]. The
uniqueness axiom (for 9”) states that every Salomaa system of equations has at most one
solution in Exp{ 9”. It is sound with respect to the semantics rr´ss from Section 5.

▶ Theorem 7.2. For any i, j ď n, let sij P Z satisfy sijpaq ‰ 1 for any a P A, pbijqj‰n be a
sequence of disjoint Boolean expressions for any i ď n, and ci Ď A be disjoint from bij for
each i ď n. The system of equations xi “ si1 ¨ t1 `bi1 ¨ ¨ ¨ `bipn´1q

sin ¨ tn `bin ci, indexed by
i ď n has a unique solution in Zn.

T. Schmid, T. Kappé, D. Kozen, and A. Silva 142:11

7.2 Completeness with respect to ”0

Next, we present a completeness theorem w.r.t. ”0. We have already seen that the behavior
of a program takes the form of a tree, and that the programming constructs of GKAT apply
to trees in such a way that equivalence up to the axioms of ”0 is preserved (Theorem 5.2).
The completeness theorem in this section shows that up to ”0-equivalence, GKAT programs
can be identified with the trees they denote.

▶ Theorem 7.3 (Completeness for ”0). Assume the uniqueness axiom for ”0 and let
e, f P Exp. If rress “ rrf ss, then e ”0 f .

Proof sketch. Since rress “ rrf ss, e and f are bisimilar as expressions. This bisimulation gives
rise to a Salomaa system of equations, which can be shown to admit both the derivatives of
e and f as solutions. By the unique solutions axiom, it then follows that e ”0 f . ◀

7.3 Completeness with respect to ”

Having found a semantics that is sound and complete w.r.t. ”0, we proceed to extend
this result to find a semantics that is sound and complete w.r.t. ”. Recall that the only
difference between these equivalences was S3, which equates programs that fail eventually
with programs that fail immediately. To coarsen our semantics, we need an operation on
labelled trees that forces early termination in case an accepting state cannot be reached.

▶ Definition 7.4. We say t P Z is dead when for all w P domptq it holds that tpwq ‰ 1. The
normalization operator is defined coinductively, as follows:

t^
paq “

#

0 tpaq P Σ ^ Bat is dead,

tpaq otherwise
Bapt^

q “ pBatq^.

▶ Example 7.5. Normalizing the tree rrp `b p ¨ 0ss prunes the branch corresponding to b̄,
since it has no accepting leaves. This yields the tree rrb ¨ pss.

We can compose the normalization operator with the semantics rr´ss to obtain a new
semantics rr´ss

^, which replaces dead subtrees with early termination. Composing normal-
ization with the earlier semantics of GKAT, we obtain the normalized semantics rr´ss

^.
This semantics is sound w.r.t. ”.

▶ Proposition 7.6. If e ” f , then rress
^

“ rrf ss
^.

For the corresponding completeness property, we need a way of “normalizing” a given
expression in Exp. The following observation gives us a way to do this.

▶ Lemma 7.7. W is closed under normalization.

When e P Exp, we have that rress P W. Moreover, by the above, rress
^

P W, which
means that there is an e1 P Exp such that rre1ss “ rress

^. We write e^ for this normalized
expression. As it turns out, we can derive the equivalence e^ ” e from the uniqueness
axiom for ”. This gives an alternative proof of the completeness result of [34] that highlights
the role of coequational methods in reasoning about failure modes.

▶ Corollary 7.8 ([34]). Assume the uniqueness axiom for ” and ”0. If rress
^

“ rrf ss
^, then

e ” f .

Proof sketch. If rress
^

“ rrf ss
^, then rre^ss “ rrf^ss. By completeness of ”0 w.r.t. rr´ss, we

can then derive that e ” e^ ”0 f^ ” f , and since ”0 is contained in ”, also e ” f . ◀

ICALP 2021

142:12 GKAT: Coequations, Coinduction, and Completeness

By normalizing the trees in W, we obtain the coequation W^ “ tt^ | t P Wu. This co-
equation precisely characterizes GKAT programs with forced early termination. In particular,
since W^ Ď W, neither state in Figure 3 has a semantics described by rress

^ for some e P Exp.

8 Related work

This paper builds on [34], where GKAT was proposed together with a language semantics based
on guarded strings [15] and an axiomatization closely related to Salomaa’s axiomatization of
regular expressions based on unique fixpoints [31]. Note that the language of propositional
while programs from [23, 20] is closely related to GKAT in terms of semantics, although the
compact syntax and axiomatization were only introduced in [34].

Some GKAT-automata have behavior that does not correspond to any GKAT expression,
such as the example in [23]. The upshot is that the Böhm-Jacopini theorem [6, 13], which
states that every deterministic flowchart corresponds to a while program, does not hold
propositionally, i.e., when we abstract from the meaning of individual actions and tests [23].

In contrast with [34, 23], our work provides a precise characterization of the behaviors
denoted by GKAT programs using trees. In other words, we characterize the image of the
semantic map inside the space of all behaviors. This explicit characterization was essential
for proving completeness of the full theory of GKAT, including the early termination axiom.
KAT equivalence without early termination has been investigated by Mamouras [24].

Brzozowski derivatives [7] appear in the completeness proof of KA [18, 21, 14]. We were
more directly inspired by Silva’s coalgebraic analogues of Brzozowski derivatives used in
the context of completeness [33]. Rutten [28] and Pavlovic and Escardo [26] document the
connection between the differential calculus of analysis and coalgebraic derivatives.

Coequations have appeared in the coalgebra literature in a variety of contexts, e.g. [3, 1,
5, 29, 30], and notably in the proof of generalized Eilenberg theorems [36, 2]. The use of
coequations in completeness proofs is, as far as we are aware, new.

9 Discussion

GKAT was introduced in [23] under the name propositional while programs and extensively
studied in [34] as an algebraic framework to reason about simple imperative programs. We
presented a new perspective on the theory of GKAT, which allowed us to isolate a fragment of
the original axiomatization that captures the purely behavioral properties of GKAT programs.
We solved an open problem from [34], providing a proof that well-nested automata are
not closed under homomorphisms, thereby making it unlikely that these automata can be
used in a completeness proof that does not rely on uniqueness axioms. Finally, we proved
completeness for the full theory, respecting the early-termination property, in which programs
that fail immediately are equated with programs that fail eventually.

There are several directions for future work that are worth investigating. First, it was
conjectured in [34] that the uniqueness axiom follows from the other axioms of GKAT. This
remains open, but at the time of writing we think this conjecture might be false. Secondly,
the technique we use, based on coequations, can serve as basis for a general approach to
completeness proofs. We plan to investigate other difficult problems where our technique
might apply. Of particular interest is an open problem posed by Milner in [25], which consists
of showing that a certain set of axioms are complete w.r.t. bisimulation equivalence for
regular expressions. Recently, Grabmeyer and Fokkink [11] provided a partial solution. We
believe our technique can simplify their proofs and shed further light on Milner’s problem.

T. Schmid, T. Kappé, D. Kozen, and A. Silva 142:13

We have chosen to adopt the axiomatization from [34], which can be described as a
Salomaa-style axiomatization – the loop is a unique fixpoint satisfying a side condition on
termination. We would like to generalize the results of the present paper to an axiomatization
in which the loop is a least fixpoint w.r.t. an order. The challenge is that there is no natural
order in the language because the ` of Kleene Algebra has been replaced by `b. However,
we hope to devise an order ď directly on expressions and extend the characterizations that
we have to the new setting. This new axiomatization would have the advantage of being
algebraic (that is, sound under arbitrary substitution), which makes it more suitable for
verification purposes as the number of models of the language would increase.

References
1 Jirí Adámek. A logic of coequations. In CSL, pages 70–86, 2005. doi:10.1007/11538363_7.
2 Jirí Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. Generalized Eilenberg

theorem: Varieties of languages in a category. ACM Trans. Comput. Log., 20(1):3:1–3:47, 2019.
doi:10.1145/3276771.

3 Jirí Adámek and Hans-E. Porst. On varieties and covarieties in a category. Math. Struct.
Comput. Sci., 13(2):201–232, 2003. doi:10.1017/S0960129502003882.

4 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In POPL, pages
113–126, 2014. doi:10.1145/2535838.2535862.

5 Adolfo Ballester-Bolinches, Enric Cosme-Llópez, and Jan J. M. M. Rutten. The dual equivalence
of equations and coequations for automata. Inf. Comput., 244:49–75, 2015. doi:10.1016/j.
ic.2015.08.001.

6 Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages with
only two formation rules. Commun. ACM, 9(5):366–371, 1966. doi:10.1145/355592.365646.

7 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
doi:10.1145/321239.321249.

8 Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with tests.
Technical Report TR96-1598, Cornell University, July 1996. URL: https://hdl.handle.net/
1813/7253.

9 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.
Probabilistic NetKAT. In ESOP, pages 282–309, 2016. doi:10.1007/978-3-662-49498-1_12.

10 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A
coalgebraic decision procedure for NetKAT. In POPL, pages 343–355, 2015. doi:10.1145/
2676726.2677011.

11 Clemens Grabmayer and Wan J. Fokkink. A complete proof system for 1-free regular expressions
modulo bisimilarity. In LICS, pages 465–478, 2020. doi:10.1145/3373718.3394744.

12 H. Gumm. Elements of the general theory of coalgebras, 2000.
13 David Harel. On folk theorems. Commun. ACM, 23(7):379–389, 1980. doi:10.1145/358886.

358892.
14 Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.

In Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion
of His 65th Birthday, pages 375–404, 2006. doi:10.1007/11780274_20.

15 Donald M. Kaplan. Regular expressions and the equivalence of programs. J. Comput. Syst.
Sci., 3(4):361–386, 1969. doi:10.1016/S0022-0000(69)80027-9.

16 Stephen C. Kleene. Representation of events in nerve nets and finite automata. In Claude E.
Shannon and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, 1956.

17 Dexter Kozen. Kleene algebra with tests and commutativity conditions. In TACAS, pages
14–33, 1996. doi:10.1007/3-540-61042-1_35.

ICALP 2021

https://doi.org/10.1007/11538363_7
https://doi.org/10.1145/3276771
https://doi.org/10.1017/S0960129502003882
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1016/j.ic.2015.08.001
https://doi.org/10.1016/j.ic.2015.08.001
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/321239.321249
https://hdl.handle.net/1813/7253
https://hdl.handle.net/1813/7253
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1007/11780274_20
https://doi.org/10.1016/S0022-0000(69)80027-9
https://doi.org/10.1007/3-540-61042-1_35

142:14 GKAT: Coequations, Coinduction, and Completeness

18 Dexter Kozen. Myhill-Nerode relations on automatic systems and the completeness of Kleene
algebra. In STACS, pages 27–38, 2001. doi:10.1007/3-540-44693-1_3.

19 Dexter Kozen. Automata on guarded strings and applications. Matematica Contemporanea,
24:117–139, 2003.

20 Dexter Kozen. Nonlocal flow of control and Kleene algebra with tests. In LICS, pages 105–117,
2008. doi:10.1109/LICS.2008.32.

21 Dexter Kozen. On the coalgebraic theory of Kleene algebra with tests. In Can Başkent,
Lawrence S. Moss, and Ramaswamy Ramanujam, editors, Rohit Parikh on Logic, Language
and Society, volume 11 of Outstanding Contributions to Logic, pages 279–298. Springer, 2017.
doi:10.1007/978-3-319-47843-2_15.

22 Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decidability.
In CSL, pages 244–259, 1996. doi:10.1007/3-540-63172-0_43.

23 Dexter Kozen and Wei-Lung Dustin Tseng. The Böhm-Jacopini theorem is false, propositionally.
In MPC, pages 177–192, 2008. doi:10.1007/978-3-540-70594-9_11.

24 Konstantinos Mamouras. Equational theories of abnormal termination based on Kleene
algebra. In FOSSACS, volume 10203 of Lecture Notes in Computer Science, pages 88–105,
2017. doi:10.1007/978-3-662-54458-7_6.

25 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

26 Dusko Pavlovic and Martín Hötzel Escardó. Calculus in coinductive form. In LICS, pages
408–417, 1998. doi:10.1109/LICS.1998.705675.

27 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

28 Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comput. Sci., 308(1-3):1–53, 2003. doi:
10.1016/S0304-3975(02)00895-2.

29 Julian Salamanca, Adolfo Ballester-Bolinches, Marcello M. Bonsangue, Enric Cosme-Llópez,
and Jan J. M. M. Rutten. Regular varieties of automata and coequations. In MPC, pages
224–237, 2015. doi:10.1007/978-3-319-19797-5_11.

30 Julian Salamanca, Marcello M. Bonsangue, and Jurriaan Rot. Duality of equations and
coequations via contravariant adjunctions. In Ichiro Hasuo, editor, CMCS, pages 73–93, 2016.
doi:10.1007/978-3-319-40370-0_6.

31 Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. ACM,
13(1):158–169, 1966. doi:10.1145/321312.321326.

32 Todd Schmid, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene algebra
with tests: Coequations, coinduction, and completeness, 2021. arXiv:2102.08286.

33 Alexandra Silva. Kleene coalgebra. PhD thesis, Radboud University, Nijmegen, 2010. URL:
https://hdl.handle.net/2066/83205.

34 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.
Guarded Kleene algebra with tests: Verification of uninterpreted programs in nearly linear
time. In POPL, 2020. doi:10.1145/3371129.

35 Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and
Alexandra Silva. Scalable verification of probabilistic networks. In PLDI, pages 190–203, 2019.
doi:10.1145/3314221.3314639.

36 Henning Urbat, Jirí Adámek, Liang-Ting Chen, and Stefan Milius. Eilenberg theorems for
free. In MFCS, 2017. doi:10.4230/LIPIcs.MFCS.2017.43.

https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1109/LICS.2008.32
https://doi.org/10.1007/978-3-319-47843-2_15
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1109/LICS.1998.705675
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1007/978-3-319-19797-5_11
https://doi.org/10.1007/978-3-319-40370-0_6
https://doi.org/10.1145/321312.321326
http://arxiv.org/abs/2102.08286
https://hdl.handle.net/2066/83205
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.4230/LIPIcs.MFCS.2017.43

	1 Introduction
	2 Guarded Kleene Algebra with Tests
	3 An operational model: GKAT-automata
	4 The final GKAT-automaton
	5 Trees form an algebra
	6 Well-nested automata and nested behavior
	7 Completeness
	7.1 Uniqueness of solutions for Salomaa systems
	7.2 Completeness with respect to 0-equivalence
	7.3 Completeness with respect to equivalence

	8 Related work
	9 Discussion

