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Purpose: To develop a convolutional neural network (CNN) solution for landmark detection in cardiac MRI. 

Materials and Methods: This retrospective study included cine, late-gadolinium enhancement (LGE), and T1 
mapping scans from two hospitals. The training set included 2329 patients (34019 images; mean age 54.1 years; 
1471 men; December 2017-March 2020). A hold-out test set included 531 patients (7723 images; mean age 51.5 
years, 323 men; May 2020-July 2020). CNN models were developed to detect two mitral valve plane and apical 
points on long-axis images. On short-axis images, anterior and posterior right ventricular insertion points and left 
ventricle center were detected. Model outputs were compared with manual labels by two readers. The trained model 
was deployed to MR scanners. 

Results: For the long-axis images, successful detection of cardiac landmarks ranged from 99.7% to 100% for cine 
images and from 99.2% to 99.5% for LGE images. For the short-axis, detection rates was 96.6% for cine, 97.6% for 
LGE, and 98.9% for T1-mapping. The Euclidean distances between model and manual labels ranged from 2 to 3.5 
mm for different landmarks, indicating close agreement between model landmarks to manual labels. No differences 
were found for the anterior right ventricular insertion angle and left ventricle length by the models and readers for all 
views and imaging sequences. Model inference on MR scanner took 610 msec on the graphics processing unit and 
5.6 sec on central processing unit, respectively, for a typical cardiac cine series. 

Conclusion: A CNN was developed for landmark detection in both long and short-axis cardiac MR images for cine, 
LGE and T1 mapping sequences, with the accuracy comparable to the interreader variation. 

Published under a CC BY 4.0 license. 

A convolutional neural network was developed for labeling landmarks on long-and short-axis 
cardiac MR images for cine, late-gadolinium enhancement, and T1 mapping with a performance 
comparable to manual labeling. 

Abbreviations 

 This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during 
production of the final copyedited article, errors may be discovered which could affect the content.

This copy is for personal use only.
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AL-P = anteroseptal point, A-P = anterior point, A-RVI = Anterior right ventricular 
insertion, AS-P = anterolateral point, C-LV = LV center, CMR = cardiac MRI, CNN = 
convolutional neural network, IL-P = inferoseptal point, I-P = inferior point, I-RVI = 
Inferior right ventricular insertion, IS-P = inferolateral point, LV = left ventricular, MOLLI 
= modified Look-Locker inversion recovery, RV = right ventricular, RVI = right ventricular 
insertion 

Key Points 
The developed model achieved a high detection rate for cardiac landmarks (ranging from 96.6% 
to 99.8%) on the test dataset. 
Comparison of right ventricular insertion angle and left ventricular length measurements 
between the developed model and experts were similar on different cardiac MRI scan views. 
Models were integrated on MR scanners using Gadgetron InlineAI with <1s inference time. 
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analysis, H.X.; and manuscript editing, H.X., M.F., J.C.M., R.H.D., P.K. 

Conflicts of interest are listed at the end of this article. 

Cardiac MRI (CMR) is emerging as a main-stream modality to image the cardiovascular system 
for diagnosis and intervention. CMR imaging has advanced beyond the scope of imaging 
anatomy and can provide comprehensive quantitative measures of the myocardium. These 
include relaxometry T1, T2, and T2* (1,2) to assess fibrosis, edema, and iron, tissue composition 
for fat fraction (3) and physiologic measures such as myocardial perfusion (4,5) and blood 
volume (6) mapping. These capabilities open new opportunities and simultaneously place new 
demands on image analysis and reporting. A fully automated solution brings increased 
objectivity, reproducibility, and higher patient throughputs. 

Research in the field of automated analysis and reporting of CMR is continuing to 
advance. In clinical practice, manual delineation by cardiologists remains the main approach to 
quantify cardiac function, viability, and tissue properties (7). A recent study showed a detailed 
manual analysis by an expert can take anywhere from 9 to 19 minutes (8). Thus, automated 
image delineation could help reduce the time needed for image assessment. 

Deep learning models, convolutional neural networks (CNNs) in particular, have been 
developed to automate CMR analysis. Cardiac cine images can be automatically analyzed using 
CNNs to measure ejection fraction and other parameters to match the expert-level performance 
(9) and have demonstrated improved reproducibility in multicenter trials (8,10). Cardiac 
perfusion images have been successfully analyzed and reported on MR scanners (11) using 
CNNs. CNNs have also been developed to quantify left ventricular (LV) function in 
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multivendor, multicenter experiments (12). Additionally, deep learning CNNs have been 
developed for automatic myocardial scar quantification (13). Current research has focused on 
automating the time-consuming processes of segmenting the myocardium. 

To achieve automated analysis and reporting of CMR, key landmark points must be 
located on the cardiac images. For example, right ventricular (RV) insertion points are needed to 
report quantitative maps using the standard American Heart Association sector model (7). For 
the long-axis views, ventricular length can be measured if valve and apical points can be 
delineated. The variation of LV length is a useful marker and shown to be the principal 
component of left ventricular pumping in patients with chronic myocardial infarction (14). 
Furthermore, cardiac landmark detection can be useful on its own for applications such as 
automated imaging slice planning. 

In this study we developed a CNN-based solution for automatic cardiac landmark 
detection for CMR images. Detection was defined as the process to locate the key landmark 
points from CMR images acquired in both short and long-axis views. The proposed CNN model 
predicts the spatial probability of a landmark in the image. The performance of the trained model 
was quantitatively evaluated by comparing against manual labels for success rate and computing 
Euclidean distance between manual and model derived landmarks. To evaluate the feasibility of 
models for CMR reporting, two measures were computed from the model landmarks and 
compared with the manual values of the angle of anterior RVI point and length of the LV. To 
demonstrate clinical feasibility, the trained CNN models were integrated on MR scanners using 
Gadgetron InlineAI (15) and used to automatically measure the LV length from long-axis cine. 
The developed model has the potential to reduce the amount of time needed for CMR image 
assessment. 

Materials and Methods 

Study Design 
The developed CNN was designed to detect landmarks on both the long-axis (two-chamber 
[CH2], three-chamber [CH3], and four-chamber [CH4]) and short-axis series (Fig 1). The 
following points were detected in different views: (a) short-axis view, anterior and inferior RV 
insertion (A-RVI and I-RVI) and LV center points (C-LV); (b) CH2 view, anterior and inferior 
points (A-P and I-P); (c) CH3 view, inferolateral and anteroseptal points (IS-P and AL-P); (d) 
CH4, inferoseptal and anterolateral points (IL-P, AS-P), and (e) long-axis view, apical point 
(APEX). The trained CNN models were tested on cardiac cine, late gadolinium enhancement 
(LGE), and T1 maps derived from a modified Look-Locker inversion recovery (MOLLI) 
imaging sequence (1,16). 

Data Collection 
In this retrospective study, a dataset was assembled from two hospitals. All cine and LGE scans 
were performed at the Barts Heart Centre, London, UK and all T1 MOLLI images were acquired 
from the Royal Free Hospital, London, UK. Both long-and short-axis views were acquired for 
cine and LGE. T1 mapping acquired one to three short-axis slices per patient. The data used in 
this study was not utilized in prior publications. 

Data were acquired with the required ethical and/or secondary audit use approvals or 
guidelines (as per each center) that permitted retrospective analysis of anonymized data without 
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requiring written informed consent for secondary usage of the purpose of technical development, 
protocol optimization, and quality control. Institutions acquiring data were in the UK and not 
subject to HIPAA. All data were anonymized and delinked for analysis with approval by the 
local Office of Human Subjects Research (Exemption #13156). Appendix E1 (supplement) 
provides information about subject inclusion criteria. 

Table 1 summarizes the training and test datasets. For training, a total of 34019 images 
were included from 2329 patients (mean age 54.1 years; 1471 men), with 29214 cine and 3798 
LGE and 1077 T1 images. Cine training data were acquired from three time periods in 2017, 
2018 and 2020, as listed in Table 1. All patients with LGE scans also had cine imaging. Data 
acquisition in every scan period was consecutive. The test set consisted of 7723 images from 
consecutively acquired 531 patients (mean age 51.5 years, 323 men). The test data were acquired 
between May 2020 to June 2020. There was no overlap between training and test sets. No test 
data were used in any way during the training process and was a completely held-out dataset. 

CMR Acquisition 
Images were acquired using both 1.5 T (four MAGNETOM Aera, Siemens AG Healthcare, 
Erlangen, Germany) and 3 T (one MAGNETOM Prisma, Siemens AG Healthcare) MR scanners. 
In the training set, 1790 patients were scanned with 1.5T scanners and 539 were scanned with 
3T. In the test set, 462 patients were scanned at 1.5T MRI and 69 scanned at 3T. Typically 30 
cardiac phases were reconstructed for each heartbeat for every cine scan. For the training and 
testing purpose, the first phase (typically end-diastolic) and the end-systolic phase were selected. 
Given that there was a large number of patients, these acquired cardiac phases would represent a 
sufficiently broad variation. For those underwent contrast study, the gadolinium-based contrast 
agent (gadoterate meglumine, Dotarem, Guerbet, Paris, France) was administrator at 4 mL/s at a 
dose of 0.05 mmol/kg. 

Imaging Sequences 
The imaging parameters for each sequence are shown in Table E1 (supplement). 

Balanced steady state free precession Cine imaging Cine acquisitions were performed 
with retrospective electrocardiogram gating (30 cardiac phases were reconstructed) and two-fold 
parallel imaging acceleration using GRAPPA (17). For the short-axis acquisition, a scan 
typically had 8 to 14 sections to cover the LV. 

Phase sensitive inversion recovery for LGE imaging Phase sensitive inversion recovery 
(PSIR) LGE imaging was performed with a free-breathing sequence (18) for whole LV coverage 
with respiratory motion correction and averaging. The phase sensitive LGE reconstruction (19) 
was used to achieve insensitivity to inversion time. Previous studies (20) showed this free-
breathing technique is more robust against respiratory motion and delivered improved LGE 
image quality. 

T1 mapping using MOLLI T1 mapping used a previously published MOLLI protocol (1). 
The sampling strategy was 5s (3s)3s for precontrast T1 scans and 4s(1)3s(1s)2s for postcontrast 
scans. A retrospective motion correction algorithm (21) was applied to MOLLI images and then 
went through the T1 fitting (22) to estimate per-pixel maps. 

Data Preparation and Labeling 
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Since the acquired field-of-view may have varied between patients, all images were first 
resampled to a fixed 1 mm2 pixel spacing and padded or cropped to 400 × 400 pixels before 
input into the CNN. This corresponds to a processing field of view of 400 mm2 which was large 
enough to cover the heart, since the MR technicians generally placed the heart close to the center 
of field of view. The cine MRI often causes a shadow across the field of view (Fig E1 
[supplement]), as the tissue which is further away from receive coils on the chest and spine will 
have reduced signal intensity due to inhomogeneity of the surface coil receive sensitivity. To 
compensate for this shading, for every cine image in the dataset, a surface coil inhomogeneity 
correction algorithm (23) was applied to estimate slowly varying surface coil sensitivity which 
was used to correct this inhomogeneity. During training, either the original cine image or the 
corrected image was fed into the network with a probability P = .5 to pick original version. This 
served as a data augmentation step. Additional details on other data augmentation are found in 
Appendix E2 (supplement). 

One reader (HX, 9 years of experience in CMR imaging research and 3 years of 
experience in deep learning) manually labeled all images for training and test (41742 images). A 
second reader (JA, 3 years of experience in CMR clinical reporting) was invited to label part of 
the test dataset to assess interreader variation. JA labeled 1,100 images (cine and LGE: 100 
images for every long-axis view, 200 images for short-axis; T1 maps: 100 images). The VIA 
Image Annotator software (http://www.robots.ox.ac.uk/~vgg/software/via/) was used by both 
readers for manual labeling of landmarks. The data labeling took ∼ 150 hours in total. Table 1 
shows the training and test datasets. 

Model Development 
The landmark detection problem was formulated as a “heat map” (24). As shown in Figure 2, 
every landmark point was convolved with a Gaussian kernel (sigma was 4.0 pixels) and the 
resulting blurred distribution represents the spatial probability of this landmark. Detecting three 
landmarks was equivalent to a semantic segmentation problem for four classes (background class 
and one object class for each landmark). Class label for different landmarks was represented as 
channels in probability maps; thus, if there are three landmarks to be detected, it will have four 
heat maps (three maps for three landmarks and one for background). Additional information on 
the heat maps are described in Appendix E3 (supplement). 

Model Training 
A variation of U-net architecture was implemented (25,26) for heat-map detection. As shown in 
Figure 3, the network was organized as layers for different spatial resolution. Specific details on 
model architecture are described in Appendix E4 (supplement). The input to model was a two-
dimensional image (ie, to detect the landmarks from a time series, of cine image, the model was 
applied to each two-dimensional image using the current model configuration). 

In the data preparation step, all images were resampled and cropped to 400 × 400 pixels 
square. The CNN output score tensor had dimensions 400 × 400 × 4. To train the network, the 
KL divergence was computed between ground-truth heat-map and SoftMax tensor of scores. 
Besides this entropy-based loss, the shape loss was further computed as the soft Dice ratio (27). 
Soft Dice ratio was computed as the production of two probability maps over their sum. The 
final loss was a sum of entropy-based loss and soft Dice ratio, which used both entropy-based 
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information and region costs. This strategy to use a combined loss has been previously used in 
deep learning segmentation and found to improve segmentation robustness (28,29). 

For the long axis, all views were trained together as a multitask learning task. Since the 
number of images for each long-axis view was roughly equal, no extra data rebalancing strategy 
was applied. Instead, every minibatch randomly selected from CH2, CH3 or CH4 images and 
refined network weights. 

The data for training was split with 90% of all patients for training and 10% for 
validation. The training and validation datasets were split in a per-study basis, such that there 
was no mixing of patients between the two datasets. The Adam optimizer was used with an 
initial learning rate of 0.001, betas were 0.9 and 0.999 and epsilon was 1e-8. The learning rate 
was reduced by 2 whenever the cost function plateaued. Training lasted 50 epochs (∼ 4 hours) 
and the model was selected as the one giving the highest performance on the validation set. The 
CNN model was implemented using PyTorch (30) and training was performed on an Ubuntu 
20.04 PC with four NVIDIA GTX 2080Ti GPU cards, each with 11GB RAM. Data 
parallelization was used across multiple GPU cards to speedup training. 

Since there were more cine images than LGE and T1 MOLLI, a fine-tuning strategy was 
implemented using transfer learning. For both long-and short-axis images, a model was first 
trained with cine dataset and then fine-tuned with either LGE or T1 training sets. The transfer 
learning was implemented to first train the neural networks with cine data as the pretrained 
model. The LGE or T1 data were used to fine-tune the pretrained model with reduced learning 
rate (31). To perform the fine tuning, the initial learning rate was set to be 0.0005 and a total of 
10 epochs were trained. For each type of image, separate models were trained for short-and long-
axis detection, respectively. 

Performance Evaluation and Statistical Analysis 
The trained model was applied to all test samples. All results were first visually reviewed to 
determine whether landmarks were missed or unnecessarily detected (further details are 
described in Appendix E5 [supplement]). 

The detection rate or success rate was computed as the percentage of samples which had 
landmarks that were correctly detected. This rate was the ratio between the number of images 
with all landmarks detected and the total number of tested images. For all samples with 
successful detection, the Euclidean distance between detected landmarks and labels were 
computed and reported separately for different slice views and different landmark points. Results 
from model detection and manual labels were compared and Euclidean distance between two 
readers were reported. 

The detected key points were further processed to compute two derived measurements: 
(a) the angle of anterior RV insertion point to LV center for short-axis views; (b) the length of 
LV for long-axis views, computed as length from detected apical point to the middle point of two 
valve points (32). The model derived results were compared between manual labels. The results 
of the first reader were compared with the second reader to give references for interreader 
variation. 

Results were presented as mean ± SD, instead of standard error. Paired t test was 
performed and a P value less than 0.05 was considered statistically significant (Matlab R2017b, 
Mathworks Inc., MA, USA). 
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To test the sensitivity of detection performance to the size of the Gaussian kernel used to 
generate the heat map, two additional models were trained for long-axis cine images with sigma 
being 6.0 and 2.0 pixels. The detection performance was compared across different kernel sizes 
for cine long-axis test images. 

To visualize the characteristics of what trained models learned from the image, a saliency 
map was computed as the derivative of the CNN loss function with respect to the input image. 
Higher magnitude in the saliency map indicates the corresponding image content has more 
impact on the model loss and indicates the CNN model learned to put more weight in those 
regions. 

The cine long-axis test datasets were further split according to the scanner field strength. 
The Euclidean distance were compared for 3T and 1.5T. 

Model Deployment 
To demonstrate the clinical relevance of CMR landmark detection, an inline application was 
developed to measure LV length from long-axis cine images automatically on the MR scanner. 
The trained long-axis model was integrated onto MR scanners using the Gadgetron InlineAI 
toolbox (15). While the imaging was ongoing, the trained model was loaded and after the cine 
images were reconstructed, the model was applied to the acquired images as part of the image 
reconstruction workflow (inline processing) at the time of scan. The resulting landmark detection 
and LV length measurements were displayed and available for immediate evaluation prior to the 
next image series. Figure E4 (supplement) provides more information for this landmark detection 
application. A movie of this example can be found in Movie 1. Appendix E6 provides additional 
information on model deployment and processing times. 

The source file to train the model are shared at 
https://github.com/xueh2/CMR_LandMark_Detection.git. 

Results 

Model Landmark Detection Rates 
The trained model was applied to the test datasets. Examples of landmark detection for different 
long-axis and short-axis views (Fig 4) demonstrate the trained model was able to detect the 
specified landmarks. Table 2 summarizes the detection rate for all views and sequences on the 
test dataset. For the cine, 99.8% (2072 of 2076; 0 false-positive) of CH2, CH3, CH4 long-axis 
images and 96.6% (2906 of 3008 test images; 24 false-positives) of short-axis images were 
successfully detected. For the LGE, the detection rates were 99.4% (1105 of 1112; two false-
positives) for all long-axis views and 97.6% (1056 of 1082; 11 false-positives) for short axis. For 
the T1 mapping, the detection rate was 98.9% (439 of 445; 0 false-positive). 

The few failed detections in long-axis test images were due to incorrect imaging 
planning, or unusual shapes of LV or poor image quality. Examples of misdetected long-axis 
images and discussion can be found in Figure E2 (supplement). 

For the 102 misdetected short-axis images in cine, 51 missed the A-RVI and 25 missed 
the P-RVI and 13 missed LV center. Half of the errors were found to be on the most basal and 
apical slices (defined as top two sections or the last section for a short-axis series). For the 26 
failed short-axis cases in LGE, seven missed the A-RVI, one missed the P-RVI, and two missed 
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LV center. A total of 11 errors were due to unnecessary landmarks detected in slices outside LV. 
All T1 MOLLI failures (six of 445 test images) missed P-RVI, due to unusual imaging planning 
for one patient. Examples of misdetected short-axis cases can be found in Figure E3 
(supplement). 

Euclidean Distances between Readers and the CNNs 
For all images where detection was successful, the Euclidean distances between model detection 
and expert labels were computed. Tables 3 and 4 show the Euclidean distances and two derived 
measurements, reported separately for all imaging views and imaging sequences. The distances 
between the trained model and the first reader ranged between 2 to 3.5 mm. Figure 5 shows 
detection examples with model derived and manual landmarks and their Euclidean distance 
reported, showing model landmarks were in close vicinity to the manual labels. The mean 
Euclidean distance for long-axis cine and LGE images were 2.5 ± 1.9 mm and 3.0 ± 2.4 mm. For 
the short-axis, the mean Euclidean distance (across all landmarks) for cine, LGE, and MOLLI 
were 2.5 ± 1.8 mm, 2.4 ± 2.5 mm and 2.2 ± 2.0 mm. 

Tables 3 and 4 listed Euclidean distances between two readers for the labeled portion of 
tested data. The Euclidean distances between two human readers were comparable to model 
distances. No evidence of differences were found for the A-RVI angle and LV length 
measurement between the trained models and the first reader for all imaging applications and 
imaging views. For the test data labeled by both readers, no differences were found between two 
readers for both measures. The long-axis cine test images were split according to the acquired 
field strength (1.5T, 1668 images and 3T, 408 images). The mean distance for 1.5T images was 
2.5 ± 1.6 mm and for 3T, 2.3 ± 1.5 mm (P < .001). 

The model was retrained with two more different Gaussian kernel sizes (2.0 and 6.0 
pixels) for the long-axis cine datasets, bracketing the 4.0 pixels design to determine the 
sensitivity to kernel size. The mean distances to the manual landmarks from the first reader was 
2.3 ± 1.6 mm and 2.2 ± 1.6 mm for models trained with sigma being 2.0 and 6.0 pixels, which 
showed no differences compared with sigma 4.0. The LV length was estimated for sigma 2.0 and 
6.0, showing no differences than human measurement (P > .2 for all views). Figure E5 
(supplement) provides an example of landmark detection with computed probability maps for 
three models, showing that the detection was insensitive to Gaussian kernel sizes. 

Discussion 
This study presents a CNN-based solution for landmark detection in CMR. Three CMR imaging 
applications (cine, LGE, and T1 mapping) were tested in this study. A multitask learning strategy 
was used to simplify the training and ease deployment. Among the whole training dataset, a 
majority (86%) were cine images. As a result, a transfer learning strategy with fine tuning was 
applied to improve the performance of the LGE and T1 mapping detection. The resulting models 
had high detection rates across different imaging views and imaging sequences. An inline 
application was built to demonstrate the clinical usage of landmark detection to automatically 
measure and output LV length on the MR scanner. 

Landmark detection using deep learning has not been extensively studied for CMR, but 
has been investigated for computer vision applications, such as facial key point detection (33,34) 
or human pose estimation (24,35). In these studies, two categories of approaches were explored 
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for key point detection. First, the output layer of a CNN explicitly computes the x-y coordinates 
of landmark points and L2 regression loss was used for training. Second, landmark coordinates 
were implicitly coded as heat-maps. In this context, the detection problem was reformulated as a 
segmentation problem. In the human pose estimation, the segmentation-based models 
outperformed regression models (24,36). Here fewer landmarks were detected and were more 
spatially sparse distributed. The human pose images had much more variation, compared with 
human faces which often had been preprocessed as front position (37). It is easier for heat-map 
detection to handle landmark occlusion. For example, in Figure 1, some images may not include 
targeted landmarks, which is represented by low probability of detection outputs. For these 
reasons, this study adopted the segmentation model for CMR. 

A recent study used heatmap landmark detection in the context of automated image plane 
prescription for cardiac MRI (38). This study trained heatmap detection model on 892 long-axis 
and 493 short-axis SSFP cine images. The mid valve plane and apical points were automatically 
detected and compared with manual localization with the mean distance of ∼ 5–7 mm. A 
recurrent U-net architecture was used in another study to perform myocardial segmentation and 
detection of mitral valve and RV insertion points from cardiac cine images in one forward pass 
(39). This neural network was trained on 6961 long-axis images and 670 short-axis images. The 
detection distance was 2.87 mm for the mitral valve points and 3.64 mm for RV insertions. 

Another study developed a patched fully convolutional neural network to detect six 
landmarks from cardiac CT volume (40). The training was performed on 198 CT scans and 
resulting average Euclidean distances to the manual label were 1.82–3.78 mm. Compared with 
previous studies of cardiac landmark detection, the current study curated larger datasets and 
detected more landmarks in cine, as well as LGE and T1 maps which had substantially different 
contrasts, to enable automated reporting and measurement of global longitudinal shortening. 
Detection was slightly less accurate on basal and apical imaging short-axis slices. In these 
regions, the “ambiguity” of anatomy increases, leading to more variant in data labeling and more 
difficulties for model to give correct inference. Additional discussion can be found in Appendix 
E7 (supplement). 

There are limitations to this study. First, a single reader labeled entire datasets. Due to the 
limitation of research resources, the second reader only labeled a portion of test set to measure 
interreader variation. Second, three imaging applications were tested in this study. If the model 
were to be applied to the detection of a new anatomy (eg, RV center), imaging sequence, or a 
different cardiac view, more training data will be required. Use of transfer learning would reduce 
the amount of new data needed. The development process would have to be iterative to cover 
more imaging sequences and anatomy. Third, the data used in this study was collected from a 
single MR vendor (Siemens). A recent study (41) reported performance of deep learning models 
trained on one vendor may drop for different vendors although augmentation was used to 
improve robustness. Further validation will be required to extend proposed CNN models to CMR 
images from other vendors. It is very likely to require further data curation and training. Fourth, 
due to the availability of different imaging sequences, not all imaging sequences were acquired 
in between the two included institutions, which limits the evaluation of across hospital 
generalization. We expect the on-scanner deployment could enable the proposed models to be 
used in more hospitals and further studies can provide more comprehensive datasets. Other 
limitations are on the preprocessing. Although the selected processing field of view of 400 mm2 
has been large enough to cover the heart in our imaging experience, it is possible even larger 
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configuration may be needed if the imaging planning is far off the center. The model can be 
retrained with even larger field of view, but the inline feedback of detection results could be used 
to flag readers to adjust or repeat acquisition. 

In this study, a CNN-based solution for landmark detection on cardiac MRI was 
developed and validated. A large training dataset of 2329 patients was curated and used for 
model development. Testing was performed on 531 consecutive patients from two centers. The 
resulting models had high landmark detection rates across different imaging views and imaging 
sequences. Quantitative validation showed the CNN detection performance was comparable to 
the interreader variation. Based on the detected landmarks, RV insertion and LV length can be 
reliably measured. 

Disclosures of Conflicts of Interest: H.X. disclosed no relevant relationships. J.A. disclosed no relevant 
relationships. M.F. disclosed no relevant relationships. J.C.M. disclosed no relevant relationships. R.H.D. disclosed 
no relevant relationships. P.K. disclosed no relevant relationships. 
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Figure 1: Example of cardiac MRI with landmarks. Three short-axis (SAX) views are 
shown on the top row. The first three images at the second row shows example of long 
axis views for two chamber (CH2), three chambers (CH3) and four chamber (CH4). The 
anterior and inferior points were detected on CH2 view. The inferolateral and 
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anteroseptal points were detected on the CH3 view, and inferoseptal and anterolateral 
points were detected on CH4. Apical points were detected for all LAX views. For the 
SAX images, the anterior and inferior right ventricular insertion and left ventricular 
center points were detected. Note for some SAX slices (the rightmost column), no 
landmarks can be identified. The last column gives examples of late gadolinium 
enhancement images and T1 maps. Transfer learning was applied to detect landmarks 
from these imaging applications. 

 

Figure 2: The landmark detection problem can be reformulated as a semantic 
segmentation problem. Every landmark point in this two-chamber image on the left can 
be convolved with a Gaussian kernel and converted into a spatial probability map or 
heat map (upper row, from left to right, probability for background, anterior valve point, 
inferior valve point and apex). Unlike the binary detection task with target being one-hot 
binary mask, loss functions working on continues probability such as the KL divergence 
are needed. 

 

Figure 3: The backbone convolutional neural network developed for landmark 
detection had a U-net structure. More layers can be inserted to both downsampling and 
upsampling branches and more blocks can be inserted into each layer. The output layer 
outputs the per-pixel scores which goes through Softmax function. For the long-axis 
detection, data from three views were trained together for one model. As shown in the 
input, every minibatch was assembled by randomly selected images from three views 
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and used for back propagation. A total of four layers were used in this experiment with 3 
or 4 blocks per layer. The output tensor shapes were reported in the figure, in the format 
of [B, C, H, W]. B is the size of minibatch and C is the number of channels. H and W are 
the image height and width. Input images have one channel for image intensity and 
output has four channels for three landmarks and background. The illustration here for 
outputs plots three landmark channels color-coded and omits the background channel. 

 

Figure 4: Examples of landmark detection. The left panel are cine detection examples 
for (a) long and (b) short-axis images. The right panel are (c) late-gadolinium enhanced 
(LGE) and (d) T1 examples. 

 

Figure 5: Examples of Euclidean distance of landmarks. For every pair of manual and 
model delineated landmarks, the distance (in mm) is labeled. Red indicates manually 
labeled landmarks, and yellow indicates landmarks generated from the model. 

Table 1 

Information for Training and Test Dataset Distribution and Acquisition 
Imaging View No. Patients No. Images Time period 

A. Training 
All 2,329 34,019 

 

Cine 
CH2 2,115 4,232 12/18/17–12/29/17 

1/2/18–1/28/18 
1/2/20–4/19/20 

CH3 2,102 4,206 
CH4 2,127 4,256 
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SAX 702 16,520* 
LGE 

CH2 599 599 1/2/20–2/29/20 
CH3 582 582 
CH4 599 599 
SAX 178 2,018† 

T1 MOLLI 
SAX 202 1,077 1/2/20–3/25/20 

B. Testing 
All 531 7,723 

 

Cine 
CH2 347 694 5/1/20–7/3/20 
CH3 345 690 
CH4 347 692 
SAX 128 3,008‡ 

LGE 
CH2 370 370 5/1/20–7/3/20 
CH3 370 370 
CH4 370 372 
SAX 96 1,082§ 

T1 MOLLI 
SAX 161 445 5/1/20–7/23/20 

Note.— CH2 = two-chamber, CH3 = three-chamber, CH4 = four-chamber, SAX = short axis, LGE = late-
gadolinium enhancement, MOLLI = modified look-locker inversion recovery. 

*A total of 3803 images were acquired outside the left ventricle (LV) and contained no landmarks. 
†A total of 371 images did not contain landmarks. 
‡A total of 813 images did not contain landmarks. 
§A total of 222 images did not contain landmarks. 

Table 2 

Detection Rate for Three Imaging Applications at all Tested CMR Views 
Imaging Detection rate 

Cine 
CH2 99.7% (692/694) 
CH3 99.7% (688/690) 
CH4 100% (692/692) 
SAX 96.6% (2906/3008) 

LGE 
CH2 99.5% (368/370) 
CH3 99.5% (368/370) 
CH4 99.2% (369/372) 
SAX 97.6% (1056/1082) 

T1 MOLLI 
SAX 98.9% (439/445) 

Note.— CH2 = two-chamber, CH3 = three-chamber, CH4 = four-chamber, SAX = short axis, LGE = late-
gadolinium enhancement, MOLLI = modified look-locker inversion recovery 

Table 3 
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CMR Landmark Detection on CH2, CH3, and CH4 Views 
Imaging and landmark Euclidean distance LV length difference in %  

first versus CNN first versus 
second 

first versus CNN P value first versus 
second 

P value 

A. Cine 
CH2  
A-P 2.1 ± 1.8 2.8 ± 1.9 2.0 ± 1.7 0.42 1.9 ± 1.4 0.95 
I-P 2.4 ± 2.0 3.0 ± 3.9 

APEX* 2.4 ± 1.8 4.1 ± 2.8 
CH3 

 

IL-P 2.4 ± 1.7 2.8 ± 1.6 1.5 ± 1.3 0.79 2.0 ± 1.7 0.97 
AS-P* 2.2 ± 1.5 4.0 ± 2.4 
APEX* 3.2 ± 2.4 3.8 ± 2.1 
CH4 

 

AL-P 3.4 ± 2.1 3.5 ± 2.0 1.4 ± 1.2 0.92 2.0 ± 1.4 0.77 
IS-P* 2.1 ± 1.7 2.6 ± 1.6 
APEX 2.8 ± 1.9 2.8 ± 1.6 

B. LGE 
CH2 

 

A-P 2.9 ± 2.6 3.3 ± 2.0 2.7 ± 2.5 0.16 2.5 ± 2.1 0.82 
I-P 3.4 ± 2.7 3.4 ± 2.5 

APEX 3.1 ± 2.6 3.4 ± 2.5 
CH3 

 

IL-P 3.4 ± 3.1 3.5 ± 2.1 2.6 ± 2.6 0.37 2.9 ± 2.2 0.34 
AS-P* 2.7 ± 2.1 3.6 ± 2.3 
APEX 3.3 ± 2.8 3.3 ± 2.5 
CH4 

 

AL-P 3.1 ± 1.6 3.3 ± 2.2 2.0 ± 1.4 0.13 1.9 ± 1.9 0.53 
IS-P 2.0 ± 1.5 2.5 ± 2.3 

APEX 2.7 ± 1.2 2.1 ± 1.6 

Note.—“1st vs AI” indicates the comparisons of manual labels from the first reader to the trained model 
and “1st vs 2nd” indicates the comparisons between the two readers for the test data labeled by both. The 
distances reported are mean ± SD. 

*Indicates P < .05 (paired t test) for the comparison of the distance between the “1st vs. AI” and “1st vs. 
2nd.” 

Table 4 

CMR Landmark Detection on Short-Axis Views 
Imaging Euclidean distance A-RVI angle difference in degree  

first versus AI first versus second first-AI P value first-second P value 
Cine 

 

A-RVI 3.1 ± 1.8 3.5 ± 2.6 1.3 ± 3.4 0.14 −0.7 ± 4.1 0.89 
P-RVI 2.4 ± 2.1 2.7 ± 1.6 
C-LV 2.0 ± 1.1 2.4 ± 1.2 
LGE 

 

A-RVI 3.0 ± 3.2 3.6 ± 3.1 0.14 ± 2.9 0.92 −2.0 ± 4.5 0.62 
P-RVI 2.8 ± 2.6 3.3 ± 2.6 
C-LV* 1.5 ± 0.9 2.3 ± 1.1 

T1 MOLLI 
 

A-RVI 2.5 ± 2.0 3.0 ± 2.8 1.6 ± 3.1 0.31 1.7 ± 3.9 0.41 
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P-RVI 2.5 ± 2.6 2.5 ± 2.0 
C-LV 1.6 ± 1.0 2.0 ± 1.1 

Note.—“1st vs AI” indicates the comparisons of manual labels from the first reader to the trained model 
and “1st vs 2nd” indicates the comparisons between the two readers for the test data labeled by both. The 
distances reported are mean ± SD. 

*Indicates P < .05 (paired t test) for the comparison of the distance between the “1st vs. AI” and “1st vs. 
2nd.” 

Appendix E1. Study Criteria 

We included all consecutive patients who can successfully complete a routine CMR study with 
repeated breath-holds, without intentionally excluding structural abnormalities. Exclusion criteria 
included patients with a cardiac implantable electronic device, significant arrhythmia (atrial 
fibrillation or ectopy) during the scan, claustrophobia or inability to breath-hold. Since the 
purpose is to test the clinical performance of CNN models, patients who did not corporate and 
failed to complete study was excluded. As a result, the datasets reflect the real distribution of 
different anatomical and pathological distribution. 

Appendix E2. Data Augmentation 

Other data augmentation included adding random gaussian noise (prob. to add noise is 0.5, noise 
sigma was uniformly picked from 10-30% of the mean image value) and adding blurring with a 
Gaussian kernel applied randomly to images (prob. to apply filtering P = .5, filter sigma was 
uniformly picked from [0.5, 1.0, 2.0] pixel). Often the cine images from the MR scanner had 
already been corrected for surface coil inhomogeneity, using pre-scan calibration data. However, 
there are instances where images are not corrected, depending on the reconstruction workflow 
and imaging applications. The training set used these augmentations to encourage the resulting 
model to work robustly independent of whether correction has been applied. 

Appendix E3. Heatmaps 

The heat maps were normalized to be probability maps. That is, for every pixel in the field-of-
view, the sum over all classes including the background is 1.0. The pixel value in a heat map is 
the probability that this pixel belongs to corresponding landmark class or background. With the 
probability heat maps as the target, the training process will optimize the network parameters to 
minimize the distance between network outputs (after SoftMax) to the per-pixel probability 
distribution. For comparison, in the binary segmentation, the mask is either 0 or 1 (hard map). 
But in the current heat map setting, it uses “soft” probability. The entropy-based cost function 
(such as KL divergence which computes distance between two probability distributions) can be 
applied to both scenarios. In this way, landmark detection is formulated as a semantic 
segmentation problem. 

Compared to the typical semantic segmentation setup where the segmentation targets are 
input as the binary mask, the “heat map” formulation replaced the binary masks as the 
probability maps. The highest probability exists at the location of landmark points. By 
optimizing the cost function such as KL divergence between the label probability and model 
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outputs, the optimization reduces the distance between spatial probability maps. The advantage 
of this method is that it considers the location of landmarks in context with the surrounding 
image structures. 

Appendix E4. Model Architecture 

Each layer can contain several blocks. Each block had two convolution layers with batch 
normalization (42) and LeakyReLu activation functions (43). The network can be made deeper 
by inserting more resolution layers or by inserting more blocks. Going down the downsampling 
branch, the image spatial resolution was reduced by ×2 for every layer with the number of filters 
increased. Going up the upsampling branch, the spatial resolution was restored with a reduced 
number of filters. All convolution layers had filter size 3×3 with stride 1 and padding 1. The final 
convolution layer outputs a per-pixel score tensor which is converted to a probability tensor 
using a SoftMax. 

Appendix E5. Landmark Review 

To determine if landmarks were missing or unnecessarily detected, the detection images and 
results as jpg images were saved which were rapidly reviewed in image viewers to check 
whether all landmarks were detected. For example, if a mid-SAX slice was marked as three 
landmark points (see Fig 1) and only two points were detected by model, this case was reported 
as a failed detection case of false-negative. The false-positive failure was the case where a 
landmark location was not actually included in the image, but the model output a detection. 

Appendix E6. Model Deployment and Processing Times 

The deployed model was tested on the MR scanner for measurement of processing speed. On a 
tested server (2x Intel Xeon E5-2640 v3@3.400GHz, without GPU), it took ∼74ms to load the 
model and ∼5.6s to apply the model on all 30 phases of a cine series on central processing unit. 
When tested on a server with graphics processing unit (2x Intel Xeon Gold 6152@2.101GHz, 1x 
NVIDIA RTX 2080Ti), model loading took 66 ms and applying the model took 610 ms. 

Appendix E7. Supplemental Discussion 

While different neural network architecture or loss function may be optimized for higher 
accuracy, the limit of accuracy may be on the data labelling. Overall, the models had higher 
performance on LAX views than SAX slices. The reason is the less imaging and anatomical 
variation in long-axis acquisition. For a correctly prescribed LAX imaging slice, occlusion does 
not happen. A related finding is the detection of mid-cavity SAX slices was very robust. 
Therefore, future improvement in data labelling shall focus on the basal and apical SAX slices. 
There are a few failed detections due to unusual anatomy, inferior image quality and bad slide 
planning. More specific data collection for these “long-tail” scenario is needed to further 
improve models. One plausible strategy is to deploy models and monitor performance regularly 
and collect corner cases. Results also indicated the LV center detection had lower distance, 
compared to RV insertion points for SAX slices, which was consistent for AI vs. both human 
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readers. We assume that akin to the human, the network was learning the SAX LV center was 
equidistant from the well-defined myocardium border feature although the blood pool lacked 
texture. While the RV insertion points were in general well delineated, however occasionally the 
locations can become less well defined, e.g. due to the epicardial fat bearing bright intensity or 
when the RV wall was thin and less visible towards more apical slices. 

The comparison between 3T and 1.5T cine LAX images showed 3T detection was 
slightly more accurate with lower distance. This can be attributed to the high SNR of 3T 
acquisition, which can help both data labelling and CNN detection. Although detection 
performance differed slightly across field strengths, this result may indicate model performance 
drifting can happen if acquisition conditions vary, which can require further data curation and 
retraining. 

The results showed AI model was in closer agreement with the first annotator, which is 
not surprising since the CNN was trained on the labels delineated by this reader. In this study, 
the second annotator had labelled a much smaller number of images for the comparison purpose. 
Although the model generated landmarks were in ∼2-4mm distance to both annotators in tested 
images, ideally labelled data from multiple experts can be beneficial, but this is often hard to 
achieve due to the limitation of data labelling resource. This problem may be mitigated by using 
machine learning methods requiring a smaller size of labelled data, such as few-shot learning 
(44) or weak supervision (45). In this study, the trained model was deployed to MR scanners, 
also encouraging broader clinical usage and collecting more feedback from multiple clinicians. 

The current model processed every two-dimensional image to detect required landmarks. 
For the cine images, it could be beneficial to further use the temporal consistency across cardiac 
phases to improve the detection. The neural network will be modified to accept 2D+T image 
series and output landmarks for every input phase. The current strategy detected multiple 
landmarks in the field-of-view in one forward-pass, but treated every image separately, because 
labelled data did not exist for entire cine series. Future research will explore the temporal 
consistency to improve detection performance. 

For the CNN models aiming for clinical deployment, it is crucial to ensure the models 
function correctly and can be trusted by the users. As discussed in a recent study (46), AI models 
can gain interpretability through semantics, visualization, counter examples, or gradient-based 
saliency maps. Current study deployed trained AI models on the MR scanners and provided 
explainability of AI models, to certain level, through the visualization of images with 
superimposed landmarks. The images with detected landmarks were sent over together with 
derived measurements, where the missed or incorrect landmarks became visible to end-user. 
Furthermore, the saliency map (47) was computed for representative test examples and given in 
Figure E6, where higher magnitude indicates the image features which mostly activated the 
network. 
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Figure E1: Example of surface coil inhomogeneity correction. A two-chamber slice 
before and after correcting the surface coil inhomogeneity. In this study, a copy of 
original image (left) and its corrected version (right) was kept in the dataset and 
randomly picked to feed into the CNN as a data augmentation step. 

 

Figure E2: Examples of failed detection for LAX views. (a) This CH2 cine image 
contains unusual anatomy, due to congenital heart abnormality of this patient. Model 
missed two landmarks on this image. (b) This LGE image had very low signal-noise-
ratio. The model correctly detected apical point but missed other landmarks. (c) An LGE 
image had severe aliasing artifacts, causing models to miss all three landmarks. (d) The 
acquisition plane of this CH4 LGE image was imperfectly placed, causing the model to 
miss landmarks. Red: manual landmarks; Yellow: model landmarks. 
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Figure E3: Examples of failed detection for SAX views. (a) Detection failed to find the 
P-RVI point on this cine image, due to the very small RV cavity. (b) Both RVI points 
were missed in this very apical cine slice. (c) This LGE image was acquired outside the 
LV, but model incorrectly outputted landmarks. (d) The P-RVI point was missed in this 
precontrast T1 map, likely due to nonstandard imaging plane subscribed. Red: manual 
landmarks; Yellow: model landmarks. 

 

Figure E4: Model deployment and scanner integration. The trained landmark detection 
models can be useful for many CMR analysis tasks. As an example, the model for LAX 
detection was integrated on MR scanner and used to measure LV length for long-axis 
cine image series. The global longitudinal shortening ratio can be computed from the AI 
measurement as: 

100 ( _ _ ) / _ED ES EDLV length LV length LV length  . 

In this example, a scanner screen snapshot shows a four-chamber cine processed with 
proposed landmark detection algorithm. The LV length for every cardiac phase was 
measured and longitudinal shortening ratio was computed. This approach was fully 
automated. The corresponding movie of this example can be found in Movie 1. 
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Figure E5: Landmark detection with different Gaussian kernel sizes. Three Gaussian 
kernels (sigma = 2.0, 4.0 and 6.0 pixels) were used to train three models for heat map 
detection. These models were applied to cine images to investigate the detection 
against different kernel size. (a) A two-chamber cine image with detected landmarks 
marked for sigma 2.0 (blue), 4.0 (red) and 6.0 (green). The probability maps of three 
landmarks for sigma 2.0 (b), 4.0 (c) and 6.0 (d) were given in the right panel. 

 

Figure E6: Saliency maps for landmark detection. (a) A two-chamber cine image tested 
for landmark detection. (b) The computed saliency map, where high intensity region in 
the map indicates the image content mostly activating the neural network. The region 
around apical and valve points are indeed noticed by the CNN, which leads to the 
model output of probability maps for three landmarks. (c–e) Background probability 
maps are not shown here, since pixel-wise probabilities summed over all four channels 
must be 1.0. 
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Movie 1: Screen snapshot of inline landmark detection from a MR scanner. Original cine image series and detected 
landmarks are shown in the upper row. The estimated global longitudinal shortening ratio is estimated for every 
cardiac phase and plotted as a curve for reporting on the scanner. 

Table E1. Imaging Parameters for Cine, LGE, and MOLLI  
Cine LGE T1 Mapping 

Imaging bSSFP PSIR MOLLI 
TR, msec 2.7 2.7 2.7 
TE, msec 1.2 1.1 1.1 

Matrix 256 ×144 256 × 144 256 × 144 
Flip angle 50° 50° 35° 
FOV, mm2 360 × 270 360 × 270 360 × 270 

Slice thickness, mm 8 8 8 
Gap, mm 2 2 2 

Bandwidth, Hz/pixel 1085 977 1085 
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