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Abstract
Despite the incremental nature of Dynamic Syntax (DS), the semantic grounding of
it remains that of predicate logic, itself grounded in set theory, so is poorly suited
to expressing the rampantly context-relative nature of word meaning, and related
phenomena such as incremental judgements of similarity needed for the modelling of
disambiguation. Here, we showhowDS can be assigned a compositional distributional
semantics which enables such judgements and makes it possible to incrementally
disambiguate language constructs usingvector space semantics.Buildingon aproposal
in our previous work, we implement and evaluate our model on real data, showing
that it outperforms a commonly used additive baseline. In conclusion, we argue that
these results set the ground for an account of the non-determinism of lexical content,
in which the nature of word meaning is its dependence on surrounding context for its
construal.
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1 Introduction

At the core of Dynamic Syntax (DS) as a grammar formalism has been the claim
that the traditional concept of syntax—principles underpinning a set of structures
inhabited by strings—should be replaced by a dynamic perspective in which syntax is
a set of procedures for incrementally building up representations of content relative to
context. Central to this claim has been the concept of underspecification and update,
with partial content-representations being progressively built up on a word-by-word
basis, allowing the emergence of progressively established content.

Being a grammar formalism, DS underpins both speaker actions and hearer actions,
with the immediate consequence of being able to characterise directly the to-and-fro
dynamic of conversational dialogue. In informal conversations, people fluently switch
between speaking and listening in virtue of each agent constructing incrementally
evolving representations as driven by thewords uttered and the procedures they induce.
As a result, any one of them is able to adopt the lead role in this process at any stage.
This was one of many confirmations of the general stance of incorporating within the
grammar formalism a reflection of time incrementality (Kempson et al. 2016, inter
alia).

Within this framework, words have been defined as inducing procedures for devel-
oping tree-theoretic representations of content (Cann et al. 2005; Kempson et al. 2001,
2011). However throughout much of the DS development there has been one major
conservatism. The concept of semantic representationwas taken, along broadly Fodor-
ian lines, as involving a simple word-concept mapping. This was defined by Kempson
et al. (2001) as a mapping onto expressions of the epsilon calculus, with its set-
theoretically defined semantics (an epsilon term being defined as denoting a witness
for the constructed arbitrary name manipulated in natural deduction systems of pred-
icate calculus), a stance adopted as commensurate with the broadly proof-theoretic
perspective of DS, and additionally motivated by the character of epsilon terms under
development as displaying a growing reflection of the context within which they are
constructed. Though attractive in matching the characteristic entity-typing of noun
phrases, such a concept of word meaning is both too narrow in reflecting only what
is expressible within predicate logic terms, and yet too strong in defining fixed exten-
sions as content of the individual expressions, a move which provides no vehicle for
addressing how content words display considerable context-dependence. In effect, the
problem of explaining what meaning can be associated with a word as the systematic
contribution it makes to sentence meaning without positing a veritable Pandora’s box
of ambiguities was not addressed. The same is true in many other frameworks: formal
semanticists have by and large remained content with defining ambiguities when-
ever denotational considerations seemed to warrant them; and Partee (2018) cites the
context-dependence of lexical semantics as a hurdle for which such a methodology
does not appear to offer any natural means of addressing. And even within prag-
matics, with its dedicated remit of explicating context-particular effects external to a
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Incremental Composition in Distributional Semantics 381

standard competence model of grammar, and recent work on polysemy probing what
this amounts to (Recanati 2017; Carston 2019), there nevertheless remains a tendency
to invoke ambiguity involving discrete token-identical forms in the face of multiple
interpretation potential, thereby leaving the phenomenon of natural language plastic-
ity unexplained (Fretheim 2019). For DS as defined in (Kempson et al. 2001; Cann
et al. 2005; Kempson et al. 2011), polysemy would thus also seem to remain a hurdle
despite accounts of anaphora and ellipsis (see Kempson et al. 2015).

The challenge is this: words of natural language (NL) can have extraordinarily
variable interpretations (even setting the problem ofmetaphor aside). A ‘fire’ in a grate
is a warm welcome upon entering a house while a ‘fire’ in surrounding countryside
causes widespread alarm. A ‘burning’ of a scone denotes a quite different process
leading to quite different effects than ‘burning’ of a frying pan, or indeed ‘burning’
of a forest. The substance of the way in which such NL tokens are understood is
deeply embedded within the contingent and culture-specific variability of perspectives
which individual members of that community bring to bear in interaction with each
other based on both supposedly shared knowledge of that language and their own
practical and emotional experience.And such variation can occurwhen,within a single
exchange, even a single speaker is able to shift construal for a single word, fragment
by fragment as the participants finesse what they are talking. This is shown by the
potential surface ungrammaticality of shared utterances (or compound contributions,
Howes et al. 2011) which is in fact perfectly grammatical across speakers:

(1) A: I’ve almost completely burned the kitchen.
B: Did you burn..?
A: (interrupting) Myself? No, fortunately not. Well, only my hair

Yet, as long as the assumption that knowledge of language has to be modelled in
some sense as prior to, hence independent of, any model of how that knowledge is
put to use, this endemic context-relativity of even the basic units of language remains
deeply intransigent; and the assumptions underpinning the long-held competence per-
formance distinction have until very recently only been subject to minor modification
amongst formal semanticists, despite the advocacy of need for more radical change
from conversation analysts such as Schegloff (1984), psycholinguists such as Clark
(1996) and Healey et al. (2018), and increasingly within cognitive neuroscience (e.g.
Anderson 2014).

Though DS purports to provide a general framework for modelling NL grammar
in incremental terms, it was not until Purver et al. (2011) combined DS with Type
Theory with Records (DS-TTR) that it became able to fully capture the incremental
compositionality of semantic representation required to explain, for example, how
people interactively co-construct shared utterances (see Purver et al. 2014). Even then,
however, the challenge ofmodelling rampant lexical ambiguity was not addressed, and
the attendant process of disambiguation also remained an open issue.

In previous work (Sadrzadeh et al. 2017, 2018a, b) we showed how in principle
one can address these problems within the DS framework via the use of distribu-
tional or vector space semantics (VSS). By representing word meanings as vectors
within a continuous space, VSS approaches can provide not only quantitative tools
for measuring graded relations between words such as relatedness and similarities
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of meaning, but also a natural way to express the non-determinism of a word’s con-
strual from a denotational perspective, even relative to context (see e.g. Coecke 2019,
for initial work on how such an approach can model the change of meaning through
discourse). Moreover, we believe that the combination of a vector-space rendition of
word meaning with the DS process-oriented characterisation of NL syntax is timely
and of cross-disciplinary significance, as it promises to fill a niche within cognitive
neuroscience where the emphasis is increasingly one of defining cognitive abilities in
processual rather than representational terms – see discussion in Sect. 6.

In that earlier work, we outlined a theoretical approach to incorporating VSSwithin
DS (Sadrzadeh et al. 2017, 2018b); we then demonstrated with toy examples how this
approach might work to capture incremental measures of plausibility, and suggested
that it might also be applied to word sense disambiguation (Sadrzadeh et al. 2018a). In
this paper, we first review that approach (Sects. 2 and 3), and then continue to explore
this research program by extending that work: in Sect. 4 we show in detail how the
proposed model can be applied to a word sense disambiguation task, and in Sect. 5 we
implement the theoretical model using real data, and evaluate it on existing datasets for
word sense disambiguation. Our approach addresses the polysemy problem directly by
adopting the presumption that even relatively unorthodox cases of putative ambiguity
such as the verbs slump, tap, and dribble can be analysed from a unitary processual
base (these cases are where Vector Space Semantics, since its early days, has been
known to apply most successfully; see e.g. the original work of Schütze, 1998). We
take the corpus-based approach to word meaning with vector spaces deducible from
possible containing contexts within large scale corpora as a formal analogue to the
contingent and highly culture-specific variability of word meanings and usages. We
provide evidence from the corpora on degrees of similarities between variations of
finished and unfinished utterances, present accuracy results, and explore the effect
of incrementality on an existing disambiguation dataset. In conclusion, we reflect on
how VSS combined with DS assumptions opens up the possibility of modelling the
general non-determinism of NL meaning in the light of this incremental interactive
perspective with its shift away from direct pairings of string and denotational content
to a more dynamic and non-deterministic stance.

2 Background

2.1 Dynamic Syntax and Incremental Semantic Parsing

Dynamic Syntax (DS) provides a strictly incremental formalism relating word
sequences to semantic representations. Conventionally, these are seen as trees dec-
orated with semantic formulae that are terms in a typed lambda calculus (Kempson
et al. 2001, chapter 9):
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Fig. 1 DS parsing as semantic tree development, for an utterance of the simple sentence “Mary likes John”

O(X3,O(X1, X2))

X3 O(X1, X2)

X1 X2

“In this paper we will take the operation O to be
function application in a typed lambda calculus,
and the objects of the parsing process […] will be
terms in this calculus together with some labels;
[…]”

This permits analyses of the semantic output of theword-by-word parsing process in
terms of partial semantic trees, in which nodes are labelled with types T y and semantic
formulae Fo, or with requirements for future development (e.g. ?T y, ?Fo), and with a
pointer♦ indicating the node currently under development. This is shown in Fig. 1 for
the simple sentence Mary likes John. Phenomena such as conjunction, apposition and
relative clauses are analysed viaLinked trees (corresponding to semantic conjunction).
For reasons of space we do not present an original DS tree for these here (see Sect. 2.5
of the introduction to this volume); an example of a non-restrictive relative clause
linked tree labelled with vectors is presented later in Sect. 3.

The property of strict word-by-word incrementality inherent in all versions of DS
makes it a good candidate formodelling language in natural human interaction. Speak-
ers and hearers in dialogue can swap roles during sentences, without holding to notions
of traditional syntactic or semantic constituency (see Howes et al. (2011) and exam-
ple (1)). Speakers often produce incomplete output, and hearers manage to understand
the meaning conveyed so far. In order to perform these ordinary feats, a suitable pars-
ing and generation model must deal in incremental representations which capture the
semantic content built at any point, and reflect grammatical constraints appropriately,
and this is something DS does well (Cann et al. 2007). Accordingly, DS analyses of
manydialoguephenomenahavebeenproduced: for example, sharedutterances (Purver
et al. 2014), self-repair (Hough and Purver 2012), and backchannelling (Eshghi et al.
2015).

Much recent work in dialogue understanding takes a purely machine-learning
approach, learning how to encode input utterances into representations which can

123



384 M. Purver et al.

be decoded into appropriate follow-ups, without requiring prior knowledge of dia-
logue phenomena or structure (see e.g. Vinyals and Le 2015). However, while these
models can show good accuracy in terms of understanding speaker intentions and gen-
erating suitable output, their representations are suitable only for the task and domain
for which they are learned, and do not learn meaningful information about important
linguistic phenomena like self-repair (Hupkes et al. 2018). Structured grammar-based
approaches like DS can therefore contribute more general, informative models, from
which robust versions can be learned (Eshghi et al. 2017).

2.2 DS and Semantic Representation

As presented above, however, and in its original form, DS assumes semantic formulae
expressed in a standard symbolic predicate logic, and therefore not well suited to the
problems of non-determinism, (dis)similarity and shift in word meanings discussed in
Sect. 1. But the DS formalism is in fact considerably more general. To continue the
quotation above:

[. . .] it is important to keep in mind that the choice of the actual representation
language is not central to the parsing model developed here. [. . .] For instance,
we may take X1, X2, X3 to be feature structures and the operation O to be
unification, or X1, X2, X3 to be lambda terms andOApplication, or X1, X2, X3
to be labelled categorial expressions and O Application: Modus Ponens, or
X1, X2, X3 to be DRSs and O Merging.

This generality has been exploited in more recent work: Purver et al. (2010, 2011)
outlined a version in which the formulae are record types in Type Theory with Records
(TTR, Cooper 2005) in DS-TTR; and Hough and Purver (2012) show how this can
confer an extra advantage – the incremental decoration of the root node, even for par-
tial trees, with a maximally specific formula via type inference, using the TTR merge
operation � as the composition function. In the latter account, underspecified record
types decorate requirement nodes, containing a type judgement with the relevant type
(e.g. [x : e] at type ?T y(e) nodes)– see Fig. 2 for a DS-TTR parse of “Mary likes
John”. Hough and Purver (2017) show that this underspecification can be given a
precise semantics through record type lattices: the dual operation of merge, the mini-
mum common super type (or join) � is required to define a (probabilistic) distributive
record type lattice bound by � and � . The interpretation process, including reference
resolution, then takes the incrementally built top-level formula and checks it against a
type system (corresponding to a world model) defined by a record type lattice. Implic-
itly, the record type on each node in a DS-TTR tree can be seen to correspond to a
potential set of type judgements as sub-lattices of this lattice, with the appropriate
underspecified record type (e.g. [x : e]) as their top element, with a probability value
for each element in the probabilistic TTR version. Building on this, Sadrzadeh et al.
(2018b) took the first steps in showing how equivalent underspecification, and nar-
rowing down of meaning over time can be defined for vector space representations
with analogous operations to � and � —this gives the additional advantages inher-
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Fig. 2 DS-TTR parse of “Mary likes John”

ent in vector space models such as established techniques for computing similarity
judgements between word, phrase and sentence representations.

3 Compositional Vector Space Semantics for DS

Vector space semantics are commonly instantiated via lexical co-occurrence, based on
the distributional hypothesis that meanings of words are represented by the distribu-
tions of the words around them; this is often described by Firth’s claim that ‘you shall
know a word by the company it keeps’ (Firth 1957). More specifically, the method-
ology of distributional semantics has involved taking very large corpus collections as
the data source and defining the content of a word as a function of the number of times
it occurs in relation to other relevant expressions in that collection, as determined by
factors such as similarity and dependency relations with such expressions. This can
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be implemented by creating a co-occurrence matrix (Rubenstein and Goodenough
1965), in which the columns are labelled by context words and the rows by target
words; the entry of the matrix at the intersection of a context word c and a target
word t is a function (such as TF-IDF or PPMI) of the number of times t occurred in
the context of c (as defined via e.g. a lexical neighbourhood window, a dependency
relation, etc.). The meaning of each target word is represented by its corresponding
row of the matrix. These rows are embedded in a vector space, where the distances
between the vectors represent degrees of semantic similarity between words (Schütze
1998; Lin 1998; Curran 2004). Alternatively, rather than instantiating these vectors
directly from co-occurrence statistics, the vectors can be learned (usually via a neural
network) in order to predict co-occurrence observations and thus encode meaning in
a similar way (see e.g. Baroni et al. 2014b, for a comparison of these methods).

Distributional semantics has been extended fromword level to sentence level, where
compositional operations act on the vectors of the words to produce a vector for the
sentence. Existing models vary from using simple additive and multiplicative com-
positional operations (Mitchell and Lapata 2010) to operators based on fully fledged
categorial grammar derivations, e.g. pregroup grammars (Coecke et al. 2010; Clark
2013), the Lambek Calculus (Coecke et al. 2013), Combinatory Categorial Gram-
mar (CCG) (Krishnamurthy and Mitchell 2013; Baroni et al. 2014a; Maillard et al.
2014) and related formalisms, such as multimodal Lambek Calculi (Moortgat and
Wijnholds 2017). However, most work done on distributional semantics has not been
directly compatible with incremental processing, although first steps were taken in
Sadrzadeh et al. (2017) to develop such an incremental semantics, using a framework
based on a categorial grammar as opposed to in the DS formalism, i.e. one in which
a full categorial analysis of the phrase/sentence was the obligatory starting point.

Compositional vector space semantic models have a complementary property to
DS. Whereas DS is agnostic to its choice of semantics, compositional vector space
models are agnostic to the choice of the syntactic system. Coecke et al. (2010) show
how they provide semantics for sentences based on the grammatical structures given
by Lambek’s pregroup grammars (Lambek 1997); Coecke et al. (2013) show how this
semantics also works starting from the parse trees of Lambek’s Syntactic Calculus
(Lambek 1958); Wijnholds (2017) shows how the same semantics can be extended to
the Lambek-Grishin Calculus; and (Krishnamurthy and Mitchell 2013; Baroni et al.
2014a; Maillard et al. 2014) show how it works for CCG trees. These semantic models
homomorphicallymap the concatenation and slashes of categorial grammars to tensors
and their evaluation/application/composition operations, as shown by (Maillard et al.
2014), all of which can be reduced to tensor contraction.

In DS terms, structures X1, X2, X3 are mapped to general higher order tensors, e.g.
as follows:

X1 �→ Ti1i2···in ∈ V1 ⊗ V2 ⊗ · · · Vn

X2 �→ Tinin+1···in+k ∈ Vn ⊗ Vn+1 ⊗ · · · Vn+k

X3 �→ Tin+k in+k+1···in+k+m ∈ Vn+k ⊗ Vn+k+1 ⊗ · · · Vn+k+m

Each Ti1i2···in abbreviates the linear expansion of a tensor, which is normally written
as follows:
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Ti1i2···in ≡
∑

i1i2···in

Ci1i2···in e1 ⊗ e2 ⊗ · · · ⊗ en

for ei a basis of Vi and Ci1i2···in its corresponding scalar value. The O operations are
mapped to contractions between these tensors, formed as follows:

O(X1, X2) �→ Ti1i2···in Tinin+1···in+k

∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn−1 ⊗ Vn+1 ⊗ · · · ⊗ Vn+k

O(X3,O(X1, X2)) �→ Ti1i2···in Tinin+1···in+k Tin+k in+k+1···in+k+m

∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn−1 ⊗ Vn+1 ⊗ · · ·
· · · ⊗ Vn+k−1 ⊗ Vn+k+1 ⊗ · · · ⊗ Vn+k+m

In their most general form presented above, these formulae are large and the index
notation becomes difficult to read. In special cases, however, it is often enough to work
with spaces of rank around 3. For instance, the application of a transitive verb to its
object is mapped to the following contraction:

Ti1i2i3Ti3 =
⎛

⎝
∑

i1i2i3

Ci1i2i3e1 ⊗ e2 ⊗ e3

⎞

⎠

⎛

⎝
∑

i3

Ci3e3

⎞

⎠ =
∑

i1i2

Ci1i2i3Ci3e1 ⊗ e2

This is the contraction between a cube Ti1i2i3 in X1 ⊗ X2 ⊗ X3 and a vector Ti3 in X3,
resulting in a matrix in Ti1i2 in X1 ⊗ X2.

We take the DS propositional type T y(t) to correspond to a sentence space S, and
the entity type T y(e) to a word space W . Given vectors T mar y

i , T john
k in W and the

(cube) tensor T like
i jk in W ⊗ S ⊗ W , the tensor semantic trees of the DS parsing process

of “Mary likes John” become as in Fig. 3.1

A very similar procedure is applicable to the linked structures, where conjunction
can be interpreted by the μ map of a Frobenius algebra over a vector space, e.g. as
in (Kartsaklis 2015), or as composition of the interpretations of its two conjuncts, as
in (Muskens and Sadrzadeh 2016). The μ map has also been used to model relative
clauses (Clark et al. 2013; Sadrzadeh et al. 2013, 2014). It combines the information
of the two vector spaces into one. Figure 2 shows how it combines the information of
two contracted tensors T mar y

i T sleep
i j and T mar y

i T snore
i j .

DS requirements can now be treated as requirements for tensors of a particular order
(e.g. ?W , ?W ⊗S as above). If we can give these suitable vector-space representations,
we can then provide a procedure analogous to that of Hough and Purver (2012)’s
incremental type inference procedure, allowing us to compile a partial tree to specify its
overall semantic representation (at its root node). One alternative would be to interpret
them as picking out an element which is neutral with regards to composition: the unit
vector/tensor of the space they annotate. A more informative alternative would be to
interpret them as enumerating all the possibilities for further development. This can be
derived from all the word vectors and phrase tensors of the space under question—i.e.
all the words and phrases whose vectors and tensors live in W and in W ⊗ S in this

1 There has been much discussion about whether sentence and word spaces should be the same or separate.
In previous work, we have worked with both cases, i.e. when W �= S and when W = S.
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Fig. 3 A DS with vector space semantics parse of “Mary likes John”

Fig. 4 A DS with vector space semantics parse of “Mary, who sleeps, snores”

case — by taking either the sum T + or the direct sum T ⊕ of these vectors/tensors.
Summing will give us one vector/tensor, accumulating the information encoded in
the vectors/tensors of each word/phrase; direct summing will give us a tuple, keeping
this information separate from each other. This gives us the equivalent of a sub-
lattice of the record type lattices described in (Hough and Purver 2017), with the
appropriate underspecified record type as the top element, and the attendant advantages
for incremental probabilistic interpretation (Fig. 4).

These alternatives all provide the desired compositionality, but differ in the semantic
information they contribute. The use of the identity provides no extra semantic infor-
mation beyond that contributed by the words so far; the sum gives information about
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the “average” vector/tensor expected on the basis of what is known about the language
and its use in context (encoded in the vector space model); the direct sum enumer-
ates/lists the possibilities. In each case, more semantic information can arrive later as
more words are parsed. The best alternative will depend on task and implementation.
In the experiments below, we implement and compare all these three methods.

4 Incremental Disambiguation

In this section, we show how our model can be applied to a common task in compo-
sitional distributional semantics: disambiguation of verb meanings.

4.1 A Disambiguation Task

Verbs can have more than one meaning and their contexts, e.g. their subjects, objects
and other elements, can help disambiguate them. In compositional distributional
semantics, this has been modelled by comparing different hypothesized paraphrases
for a sentence, one for each of the meanings of the verb, and thenmeasuring the degree
of semantic similarity between the vectors for these hypothesized paraphrased sen-
tences and the original sentence (the one containing the ambiguous verb). The sentence
that is closer to the original sentence will then be returned as the one containing the
disambiguated meaning of the verb. For instance, consider the verb slump; it can mean
‘slouch’ in the context of an utterance with “shoulders” as its subject, or it can mean
‘decline’ in the context of an utterance with “sales” as its subject. This procedure
is implemented in compositional distributional semantics by building vectors for the
following sentences:

“Shoulders slumped”, “Shoulders slouched”, “Shoulders declined”.
“Sales slumped”, ‘Sales slouched”, “Sales declined”

The semantic distances, e.g. the cosine distance, between these vectors are
employed to see which ones of these sentences are closer to each other. If “x slumped”
is closest to “x slouched”, then it is concluded that an utterance of “slump” means
‘slouch’ in the context of “x”. This idea was used by Mitchell and Lapata (2010) to
disambiguate intransitive verbs using their subjects as context. They showed that the
compositional distributional methods work better than simple distributional methods:
comparing distances between composed sentence representations gives more accurate
paraphrase disambiguation than simply comparing the vectors of the individual verbs.

To test this, they used a dataset of sentences arranged in pairs:

Sentence1 Sentence2 Landmark

Shoulders slumped Shoulders declined Low
Shoulders slumped Shoulders slouched High
Sales slumped Sales declined High
Sales slumped Sales slouched Low
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Each entry of the dataset consists of a pair of sentences and a similarity landmark
(LOW, HIGH). Each sentence in the pair is created by replacing the verb of the first
sentencewith each of its twomost orthogonalmeanings. Themeanings and the degrees
of their orthogonality are drawn from WordNet and the synsets of the original verbs.

This dataset has been extended to transitive verbs, first by Grefenstette and
Sadrzadeh (2011), using a set of frequent verbs from the British National Corpus
(BNC, Burnard 2000) and two of their meanings which are furthest apart using Word-
Net distances; and then by Kartsaklis and Sadrzadeh (2013) using a set of genuinely
ambiguous verbs and their two eminent meanings introduced in (Pickering and Frisson
2001) using eye tracking. Examples of the verbs of these are as follows:

Sentence1 Sentence2 Landmark

Fingers tap table Fingers knock table High
Fingers tap table Fingers intercept table Low
Police tap telephone Police knock telephone Low
Police tap telephone Police intercept telephone High
Babies dribble milk Babies drip milk High
Babies dribble milk Babies control milk Low
Footballers dribble ball Footballers control ball High
Footballers dribble ball Footballers drip ball Low

In compositional distributional semantics, one can build vectors for the words of
these sentences and add or pointwise multiply them to obtain a vector for the whole
sentence (Mitchell and Lapata 2008). Alternatively, one can build vectors for nouns
and tensors for adjectives and verbs (and all other words with functional types) and
use tensor contraction to build a vector for the sentence (Grefenstette and Sadrzadeh
2015; Kartsaklis and Sadrzadeh 2013). It has been shown that some of the tensor-based
models improve on the results of the additive model, when considering the whole sen-
tence (Grefenstette and Sadrzadeh 2015; Kartsaklis and Sadrzadeh 2013; Wijnholds
and Sadrzadeh 2019); here, we focus on incremental composition as described above
to investigate how the disambiguation process works word-by-word.

In the intransitive sentence datasets (Mitchell and Lapata 2008), the disambiguation
context only consists of the subject and verb, and the incremental process is fairly trivial
(the ambiguity is only introduced when the verb is processed, and at that point the
sentence is complete). We use intransitive examples to explain the principle first, but
thereafter work with the transitive sentence datasets and their different variants.

4.2 An Incremental Disambiguation Procedure

In a nutshell, the disambiguation procedure is as follows: when we hear the word
“shoulders” uttered, we can build a vectorial interpretation for the as-yet incomplete
utterance, using the compositional distributional semantics of Dynamic Syntax as
explained in Sect. 3 (and using either neutral identity information, or (direct) sum
information about all the intransitive verbs and verb phrases that can follow). After we
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hear the verb “slump”, our uttered sentence is complete and we form a vector for it,
again byusing the compositional distributional semantics ofDS (or themore traditional
methods; the two should result in the same semantics for complete utterances). We
can check the incremental behaviour of this process by one or more of the following
steps:

1. The semantic vector of the unfinished utterance “shoulders · · · ” should be closer
to the semantic vector of the sentence with the correct meaning of “slump” (i.e.
to “Shoulders slouched”) than to the vector of the sentence with the incorrect
meaning of “slump” (i.e. to “Shoulders declined”). Formally, using the cosine
similarity measure of distributional semantics, the following should be the case:

cos(
−−−−−−−−→
shoulders · · ·,−−−−−−−−−−−−−→

shoulders slouched)

≥ cos(
−−−−−−−−→
shoulders · · ·,−−−−−−−−−−−−→

shoulders declined)

Of course, the complete utterance “shoulders slumped” should also be closer to
“shoulders slouched”. This is not incremental and has been verified in previous
work (Mitchell and Lapata 2008). We do not experiment with this case here,
although, we might also expect, and could check, that it is closer to the full correct
paraphrase than is the partial sentence:

cos(
−−−−−−−−−−−−→
shoulders slumped,

−−−−−−−−−−−−−→
shoulders slouched)

≥ cos(
−−−−−−−−→
shoulders · · ·,−−−−−−−−−−−−−→

shoulders slouched)

2. Conversely, for an example in which the other verb paraphrase is appropriate: the
semantic vector of the unfinished utterance sales · · · should be closer to the vector
of the sentence sales declined than to that for sales slouched, and a full sentence
be closer than an incomplete one:

cos(
−−−−−→
sales · · ·,−−−−−−−−−→

sales declined) ≥ cos(
−−−−−→
sales · · ·,−−−−−−−−−→

sales slouched)

cos(
−−−−−−−−−→
sales slumped,

−−−−−−−−−→
sales declined) ≥ cos(

−−−−−→
sales · · ·,−−−−−−−−−→

sales declined)

3. We can also compare between the examples: the semantic vector of the unfinished
utterance shoulders · · · should also be closer to the vector of the full sentence
shoulders slouched than the vector of the unfinished utterance “sales · · · ” is to
that of the complete sentence “sales slouched”:

cos(
−−−−−−−−→
shoulders · · ·,−−−−−−−−−−−−−→

shoulders slouched) ≥ cos(
−−−−−→
sales · · ·,−−−−−−−−−→

sales slouched)

And the other way around should also hold, that is, the vector of the unfinished
utterance sales · · · should be closer to the vector of the uttered sentence sales
declined than the vector of shoulders · · · is to shoulders declined.

cos(
−−−−−→
sales · · ·,−−−−−−−−−→

sales declined) ≥ cos(
−−−−−−−−→
shoulders · · ·,−−−−−−−−−−−−→

shoulders declined)
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A symbolic generalisation of the above procedure for the Sbj Vrb Obj cases, which
is the case we will experiment with, is presented below. In Sect. 5, we then provide
evidence from real data, first giving a worked example for each of these cases, and
then a large scale experimental evaluation.

Consider a verb Vrb that is ambiguous between two meanings Vrb1 and Vrb2;
suppose further that a subject Sbj makes more sense with the first meaning of the
verb, that is with Vrb1, rather than with its second meaning, that is with Vrb2. This
is because Sbj has more associations with Vrb1, e.g. since it has occurred more with
Vrb1 (or with verbs with similar tensors to Vrb1) than with Vrb2 in a corpus. These
correlations are interpreted in our setting as follows:

cos(
−−−−→
Sbj · · ·,−−−−−−−−→

Sbj V rb1 · · ·) ≥ cos(
−−−−→
Sbj · · ·,−−−−−−−−→

Sbj V rb2 · · ·)

We can extend this when we incrementally proceed and parse the verb Vrb. Now
we can check the following:

cos(
−−−−−−−→
Sbj V rb · · ·,−−−−−−−−→

Sbj V rb1 · · ·) ≥ cos(
−−−−−−−→
Sbj V rb · · ·,−−−−−−−−→

Sbj V rb2 · · ·)

Here, we are incrementally disambiguating the unfinished utterance Sbj Vrb using
the vector semantics of its subject Sbj, the tensor meaning of its verb Vrb, and the
contraction (read composition) of the two. As we add more context and finish the
incremental parsing of the utterances, similar regularities to the above are observed
and we expect the corresponding degrees of semantic similarity to become more
sharply distinguished as the object meaning Obj is added:

cos(
−−−−→
Sbj · · ·,−−−−−−−−−−→

Sbj V rb1 Obj) ≥ cos(
−−−−→
Sbj · · ·,−−−−−−−−−−→

Sbj V rb2 Obj)

cos(
−−−−−−−→
Sbj V rb · · ·,−−−−−−−−−−→

Sbj V rb1 Obj) ≥ cos(
−−−−−−−→
Sbj V rb · · ·,−−−−−−−−−−→

Sbj V rb2 Obj)

cos(
−−−−−−−−→
Sbj V rbObj,

−−−−−−−−−→
Sbj V rb1Obj) ≥ cos(

−−−−−−−−→
Sbj V rbObj,

−−−−−−−−−→
Sbj V rb2Obj)

The fronted object cases, Obj Sbj Vrb, such as in the sentence The milk the baby
dribbled can also be dealt with, but are left to future work.

5 Evidence from Real Data

Of course, the real test is whether similarities calculated this way reflect those we
would intuitively expect. In this section, we test this with some selected example
sentences, using vectors and tensors calculated from real corpus data.

Our noun vectors are produced usingword2vec, a commonly used neural network
model for learning word vector representations (Mikolov et al. 2013): we use 300-
dimensional vectors learned from the Google News corpus.2 Our verb tensors are
derived using the method of Grefenstette and Sadrzadeh (2011): the tensor

−→
V is the

sum of
−→
S ⊗−→

O over the subject noun vectors
−→
S and object noun vectors

−→
O observed

2 Taken from: https://code.google.com/archive/p/word2vec/
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to co-occur with the verb in question in a large parsed corpus. Here we take the
verb-subject/verb-object occurrences from the dependency-parsed version of UKWaC
(Baroni et al. 2009), and use the same word2vec noun vectors; our verb tensors are
therefore 300x300-dimensional matrices. To compose a sentence representation

−→
A ,

we again follow Grefenstette and Sadrzadeh (2011), using point-wise multiplication
of the verb tensor with the Kronecker product of the subject and object vectors (other
methods are possible, and we explore these in the next section):

−→
A = −→

V � (
−→
S ⊗ −→

O )

We start with an example from the dataset of Kartsaklis et al. (2013b): the ambigu-
ous verb dribble has a different sense in the sentence Footballers dribble balls than in
the sentence Babies dribble milk. If we take these senses to be roughly paraphrased as
‘control’ and ‘drip’, respectively, we can examine not only whether the full sentence
representations are more similar to the appropriate paraphrases (as in the experiments
ofKartsaklis et al., 2013b), but alsowhether this disambiguation is exhibited incremen-
tally.Here,we take the option described above of representing unsatisfied requirements
with the identity tensor I ; we express similarities using the cosine similarity measure:

similarity = cos(
−→
A ,

−→
B ) =

−→
A · −→

B

‖−→A ‖‖−→B ‖
=

n∑
i=1

Ai Bi

√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

First, we note that the expected pattern is observable between completed utterances
(as expected, given the results of Mitchell and Lapata (2008) and Kartsaklis et al.
(2013b)), with the representation for the complete sentence being more similar to the
correct paraphrase (following Kartsaklis et al. (2013b) we simplify here by ignoring
inflections such as plural suffixes and use the vectors and tensors for noun and verb
root forms):

cos(
−−−−−−−−−−−−−−−−−→
f ootballer dribble ball,

−−−−−−−−−−−−−−−−−→
f ootballer control ball) = 0.3664

cos(
−−−−−−−−−−−−−−−−−→
f ootballer dribble ball,

−−−−−−−−−−−−−−−→
f ootballer drip ball) = 0.2260

We can check the incremental behaviour by calculating and comparing similarities
at incremental stages. First, after parsingonly the subject,we see that“Footballers · · · ”
has a closer semantic similarity with “Footballers control · · · ” than with “Footballers
drip · · · ”: that as you add to your unfinished utterances, its semantics builds up in a
coherent way:

cos(
−−−−−−−−−→
f ootballer · · ·,−−−−−−−−−−−−−−−−→

f ootballer control · · ·) = 0.0860

cos(
−−−−−−−−−→
f ootballer · · ·,−−−−−−−−−−−−−→

f ootballer drip · · ·) = 0.0498
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Next, after parsing the subject and verb, we again see the expected effect:

cos(
−−−−−−−−−−−−−−−−→
f ootballer dribble · · ·,−−−−−−−−−−−−−−−−→

f ootballer control · · ·) = 0.3392

cos(
−−−−−−−−−−−−−−−−→
f ootballer dribble · · ·,−−−−−−−−−−−−−→

f ootballer drip · · ·) = 0.2407

Similarly we can examine similarities with possible complete utterances, giving us
a notion of incremental expectation in parsing; again we see an effect in the expected
direction – the unfinished utterance “Footballers · · · ” is semantically closer to “Foot-
ballers dribble balls” than to “Footballers dribble milk”, which is of course what
semantically makes sense:

cos(
−−−−−−−−−→
f ootballer · · ·,−−−−−−−−−−−−−−−−−→

f ootballer dribble ball) = 0.0046

cos(
−−−−−−−−−→
f ootballer · · ·,−−−−−−−−−−−−−−−−−→

f ootballer dribble milk) = 0.0019

And this also holds when the verb is parsed, i.e. as we carry on finishing the
utterance, we get higher more reasonable similarity degrees:

cos(
−−−−−−−−−−−−−−−−→
f ootballer dribble · · ·,−−−−−−−−−−−−−−−−−→

f ootballer dribble ball) = 0.2246

cos(
−−−−−−−−−−−−−−−−→
f ootballer dribble · · ·,−−−−−−−−−−−−−−−−−→

f ootballer dribble milk) = 0.0239

Similarly, for the unfinished utterance “Babies · · · ” we obtain the following desir-
able results that agree with semantic incrementality:

cos(
−−−−−−−−−−−→
baby dribble · · ·,−−−−−−−−−→

baby drip · · ·) = 0.3269

cos(
−−−−−−−−−−−→
baby dribble · · ·,−−−−−−−−−−−→

baby control · · ·) = 0.3239

cos(
−−−−−−−−−−−−−→
baby dribble milk,

−−−−−−−−−−→
baby drip milk) = 0.3468

cos(
−−−−−−−−−−−−−→
baby dribble milk,

−−−−−−−−−−−−→
baby control milk) = 0.3291

However, this is not always the case; for the same utterance, the similarities calcu-
lated after parsing only the subject point in the opposite direction to that expected:

cos(
−−−−−→
baby · · ·,−−−−−−−−−→

baby drip · · ·) = 0.0573

cos(
−−−−−→
baby · · ·,−−−−−−−−−−−→

baby control · · ·) = 0.0932

It seems, therefore, that it must be the verb dribble and then even more strongly, the
combinationwith the objectmilk that providesmuchof the disambiguating information
in this case – perhaps babies alone are no more likely to drip than to control.

We have a similar situation for the ambiguous verb tap, its two meanings ‘knock’
and ‘intercept’, and the subject “finger” which disambiguates “tap” to its ‘knock’
meaning:

cos(
−−−−−−→
f inger · · ·,−−−−−−−−−−−→

f inger knock · · ·) = 0.0667
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cos(
−−−−−−→
f inger · · ·,−−−−−−−−−−−−−−→

f inger intercept · · ·) = 0.0534

cos(
−−−−−−−−−−→
f inger tap · · ·,−−−−−−−−−−−→

f inger knock · · ·) = 0.6751

cos(
−−−−−−−−−−→
f inger tap · · ·,−−−−−−−−−−−−−−→

f inger intercept · · ·) = 0.4320

cos(
−−−−−−−−−−−−→
f inger tap wood,

−−−−−−−−−−−−−−→
f inger knock wood = 0.7154

cos(
−−−−−−−−−−−−→
f inger tap wood,

−−−−−−−−−−−−−−−−→
f inger intercept wood) = 0.4735

For the casewhen “tap” is disambiguated to its ‘intercept’meaning, we do not yield
the expected cosine correlations. For instance, “police . . . ” is not semantically closer
to “police intercept . . . ” than to “police knock . . . ”, as one would expect. This might
be since policemen knock many objects, such as tables and doors, and also since tap is
too strongly associated with its knocking meaning than with its intercepting meaning.

cos(
−−−−−−→
police · · ·,−−−−−−−−−−−→

police knock · · ·) = 0.0740

cos(
−−−−−−→
police · · ·,−−−−−−−−−−−−−−→

police intercept · · ·) = 0.0599

cos(
−−−−−−−−−→
police tap · · ·,−−−−−−−−−−−→

police knock · · ·) = 0.6630

cos(
−−−−−−−−−→
police tap · · ·,−−−−−−−−−−−−−−→

police intercept · · ·) = 0.4597

cos(
−−−−−−−−−−−−→
police tap phone,

−−−−−−−−−−−−−−→
police knock phone) = 0.6662

cos(
−−−−−−−−−−−−→
police tap phone,

−−−−−−−−−−−−−−−−−→
police intercept phone) = 0.4954

Because of these individual mismatches, we require a larger scale evaluation to get
a more general picture, which we perform in the following section.

5.1 Larger-Scale Evaluation

We apply this method for incremental disambiguation in the full versions of the above
mentioned datasets to see how well it scales up. Previous work on compositional
distributional semantics provides three preliminary datasets suitable for this task: in
each, sets of transitive S-V-O sentences in which the verb V is ambiguous are paired
with human judgements of similarity between each given sentence and two possible
paraphrases (e.g. for the sentence “footballer dribbles ball”, the possible paraphrases
‘footballer carries ball’ and ‘footballer drips ball’). Grefenstette and Sadrzadeh (2011)
provide a dataset with 32 paraphrase examples (hereafter GS2011); Grefenstette and
Sadrzadeh (2015) a modification and extension of this to 97 paraphrase examples
(GS2012); and Kartsaklis et al. (2013a) a further 97 examples on a different verb set
(KSP2013).3

The GS2011 dataset is small, and contains judgements from only 12 annotators
per example; the authors found it not to show significant differences between additive
baselines and more complex compositional methods. The extended GS2012 version

3 Note that despite the date of the associated publication (Grefenstette and Sadrzadeh 2015), the GS2012
dataset was created in 2012 and came second in the series. All datasets are publicly available; we provide
information on how to download them, together with the software used here for our experiments, for
replication purposes at https://osf.io/hby4e/.
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provides a larger set of 97 examples, each with 50 annotators’ judgements; we expect
it to provide a more reliable test. KSP2013 is then the same size, but selects the verbs
using a different method.While Grefenstette and Sadrzadeh (2015) chose verbs which
spanned multiple senses in WordNet (Fellbaum 1998), taking the paraphrases as two
of their most distant senses, Kartsaklis et al. (2013a) chose verbs specifically for their
ambiguity, based on psycholinguistic evidence collected by eye tracking and human
evaluation by Pickering and Frisson (2001). We therefore expect the KSP2013 dataset
to provide an evaluation which is not only robust but a more direct test of the task of
disambiguation in natural dialogue.

Again, we use the same 300-dimensional word2vec vectors and 300x300-
dimensional verb tensors derived from them. For sentence composition, we now
compare the method used in the previous section, from (Grefenstette and Sadrzadeh
2011), which we term “G&S” below; with alternatives proposed by Kartsaklis et al.
(2013b) termed “copy-subj” and “copy-obj”.Here,� denotes pointwisemultiplication
and ⊗ the Kronecker product as before, and × denotes matrix multiplication:

G&S : −→
A = −→

V � (
−→
S ⊗ −→

O )

copy-subj : −→
A = −→

S � (
−→
V × −→

O )

copy-obj : −→
A = −→

O � (
−→
V T × −→

S )

The latter alternatives have been shown to perform better in some compositional
tasks (see e.g. Kartsaklis et al. 2013b; Milajevs et al. 2014). We also compare the
use of the identity I and sum T + to represent nodes with unsatisfied requirements;
given our disambiguation task setting here, the natural way to use the direct sum T ⊕
is to average the resulting distances over its output tuples, thus making it effectively
equivalent to using the sum in this case. We compare these options to a simple, but
often surprisingly effective, additive baseline (Mitchell and Lapata 2008): summing
the vectors for the words in the sentence. In this case, verbs are represented by their
word2vec vectors, just as nouns (or any other words) are, viz. without taking their
grammatical role into account; and incremental results are simply the sum of the words
seen so far.

We evaluate the accuracy of these approaches by comparing to the human
judgements in terms of the direction of preference indicated for the two possible
paraphrases.4 As several human judges were used for each sentence, we compare to
the mean judgement for each sentence-paraphrase pair. Accuracy can therefore be
calculated directly in terms of the percentage of sentences for which the most similar
paraphrase is correctly identified. Given our incremental setting, we can make this
comparison at three points in each S-V-O sentence (after parsing the subject S only;
after parsing S and V; and after parsing the full S-V-O), at each point comparing the
similarity between the (partial) sentence and each of the (partial) paraphrase sentences.
Note though that after parsing S only, all methods are equivalent: the only information
available is the vector representing the subject noun, the ambiguous verb has not even

4 We do not attempt to evaluate whether the magnitude of the preference matches the magnitude of human
preferences, but only whether the direction is correct: in other words, we treat this as a classification rather
than a regression task.
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Fig. 5 Mean disambiguation accuracy over theGS2011 dataset (Grefenstette and Sadrzadeh 2011), as incre-
mental parsing proceeds left-to-right through “S V O” sentences. Note that the sum/G&S and identity/G&S
methods give identical average accuracy on this dataset, and thus share a line on the graph

Fig. 6 Mean disambiguation accuracy over theGS2012 dataset (Grefenstette and Sadrzadeh 2015), as incre-
mental parsing proceeds left-to-right through “S V O” sentences. Note that the sum/G&S and identity/G&S
methods give identical average accuracy on this dataset, as do the sum/copy-subj and identity/copy-subj
methods, and thus those pairs share lines on the graph

been observed, and disambiguation is therefore a random choice with 50% accuracy;
the performance then diverges at S-V and S-V-O points.

Results Results for the small Grefenstette and Sadrzadeh (2011) dataset are shown
in Fig. 5; while none of our compositional approaches beat the additive baseline, it
appears that the incremental performance after S-Vmay be reasonable compared to the
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Fig. 7 Mean disambiguation accuracy over the KSP2013 dataset (Kartsaklis et al. 2013a), as incremental
parsing proceeds left-to-right through “S V O” sentences. Note that the sum/copy-obj and identity/copy-obj
methods give identical average accuracy on this dataset, and thus share a line on the graph

full-sentence performance S-V-O. However, none of the differences are statistically
significant (a χ2 test shows χ2

(1) = 1.56, p = 0.21 for the largest difference, iden-
tity/G&S vs. add at the S-V point), given the small size of the dataset, and conclusions
are therefore hard to draw. One thing that, however, stands out, is that disambigua-
tion accuracy increases from S-V to S-V-O for the relational G&S model and the
copy-subject model. The additive model stays almost the same after adding the verb
and after adding the object, while the copy-object method gets worse; these may be
undesirable properties in terms of providing a good model of incrementality.

For the larger datasets, results are shown in Tables 1 and 2 and depicted in Figs. 6
and 7. For GS2012, all methods do significantly better than chance (taking p < 0.05
for significance, χ2

(1) = 5.08, p = 0.024 for the worst method, add); the compo-
sitional methods outperform the additive baseline, and although the improvement is
not statistically significant at the p < 0.05 level it suggests an effect (p < 0.15,
with χ2

(1) = 2.51, p = 0.11 for the best method, identity/copy-obj at the V-O
point).The copy-object method seems to do best, outperforming copy-subject and
the G&S method, and particularly to perform well incrementally at the mid-sentence
S-V point (76% accuracy, with 72% after S-V-O). Again, similar to GS2011, and
despite the fact that copy-object does best on the overall accuracy, the identity/G&S
and identity/copy-subj models seem to do best in terms of incremental accuracy devel-
opment; their accuracies increase more when going from S-V to S-V-O, and seem to
increase more smoothly through the sentence, whereas the copy-obj models increase
to S-V and then decrease.

For KSP2013, the task seems harder: here, the additive baseline performs almost
at chance level with about 52%, but all the tensor-based compositional methods do
better; the best improvement being significant at p < 0.1, although not at p < 0.05
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(χ2
(1) = 2.77, p = 0.096 for identity/copy-obj at S-V-O). Again, the copy-object

composition method seems to perform best, giving good accuracy at S-V and S-V-O
points (62% accuracy); the G&S method does better this time, particularly at the mid-
sentence point; but copy-subject does well for the full sentence but not incrementally.
Copy-object with identity, the model that provides the best accuracy, also shows a
steady increase in accuracy through the sentence, although copy-subject with identity
still shows the steepest increase from S-V to S-V-O. This latter method shows the
steepest increase in all the datasets.

Accuracy comparisons between the identity and sum/direct sum methods show
little difference. As we see in Tables 1 and 2, whenever there is a difference in results
among the different requirement representations, the identity approach gives slightly
higher accuracy. An explanation of this is that the identity is only used as a mechanism
to be able to compute a sentence representation in a compositional way, but without
contributing information by itself. On the contrary, the sum and direct sum methods
introduce averages of vectors found in the corpus, which is akin to adding noisy
information to the sentence representation; remember that the datasets we use here
(from which we must take our information about the possible continuations that we
average over) are very small compared to the large corpora used to build standard
word vectors. It is encouraging that all methods perform well; it may be that in larger
datasets the sum methods will improve, given more information about the possible
distributions over continuations, and in other tasks which depend on more than just
average sentence distances, the sum and direct sum methods will diverge.

Discussion and comparison The main point of interest here, of course, is the inter-
mediate point after processing S-V (but before seeing the object O): here the additive
baseline does approximately aswell aswith full sentences, suggesting thatmost disam-
biguating information comes from the verb vector in these datasets. The compositional
tensor-based methods on the other hand, particularly copy-object, seem able to use
information from the combination of S-V to improve on that, and then to incorporate
further information from O to improve again (at least with KSP2013). Composition
therefore allows useful information from all arguments to be included; and it seems
that our method allows that to be captured incrementally as the sentence proceeds.

An error analysis showed that in the majority of cases our overall best performing
models (sum/copy-obj, identity/copy-obj) either correctly disambiguated both the S-V
and the S-V-O pairs, or got it wrong in both cases; in other words, the incremental
accuracy was as good (or bad) as that for complete sentences. In a minority of cases,
though, the incremental behaviour diverged (either S-V was disambiguated correctly,
while S-V-Owas not, or vice versa). These are the cases of interest here (for discussion
of the behaviour of different compositional models for full sentences, see Kartsaklis
et al., 2013b).

Interestingly, a prominent erratic ambiguous verb was to file, where in some cases,
the smoothmeaningwas expected but themodel wrongly computed it to be the register
meaning, and in the other cases, the register meaning was expected whereas the model
wrongly computed it to be the smooth meaning. Examples of the data set entries were
(all words in stem form):
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Table 1 Mean disambiguation accuracy over the GS2011 dataset (Grefenstette and Sadrzadeh 2011), as
incremental parsing proceeds left-to-right through “S V O” sentences

Composition method Representation of requirements Accuracy

S S+V S+V+O

Addition (N/A) 0.500 0.660 0.660

G&S Identity 0.500 0.680 0.711

Sum / direct sum 0.500 0.680 0.711

Copy-Sbj Ident ity 0.500 0.691 0.711

Sum / direct sum 0.500 0.691 0.711

Copy-Obj Identity 0.500 0.763 0.722

Sum / direct sum 0.500 0.753 0.722

Table 2 Mean disambiguation accuracy over the KSP2013 dataset (Kartsaklis et al. 2013a), as incremental
parsing proceeds left-to-right through “S V O” sentences

Composition method Representation of requirements Accuracy

S S+V S+V+O

Addition (N/A) 0.500 0.526 0.515

G&S Identity 0.500 0.588 0.567

Sum / direct sum 0.500 0.567 0.567

Copy-Sbj Identity 0.500 0.526 0.588

Sum / direct sum 0.500 0.515 0.588

Copy-Obj Identity 0.500 0.577 0.619

Sum / direct sum 0.500 0.577 0.619

(1) woman file nail
englishman file steel

(2) state file declaration
union file lawsuit

where the smooth meaning is expected in (1) and register in (2). For (1) examples,
the copy-obj models predicted correctly at the S-V point, and then incorrectly at the
S-V-O point. These seem to be examples where most disambiguating information
intuitively comes in the object. We therefore suspect that although the S-V subject and
verb tensor combination itself contains sufficient information about the kind of object
in these cases (see Kartsaklis et al. 2013b for discussion of how the copy-obj method
encodes more object information), these particular objects did not occur frequently
enough in the corpus with this verb meaning, but had more occurrences in the context
of other verbs. In the case of file nail, for instance, the noun nail may occur more
with verbs such as to hammer or to sell, or to cut, rather than the verb to file. The
copy-subj models performed the opposite way, predicting incorrectly at S-V and then
correctly with the full S-V-O sentence: here, the S-V composition themselves encode
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less information about the disambiguating object (hence incorrectness at S-V), and
this can be supplied later on S-V-O composition, while giving the object less weight
than with the copy-obj method.

We observed the same pattern for our most smoothly incremental models: copy-
subject with sum and identity. In the majority of cases, these models either got the
meaning of the verb correctly for both S-V and S-V-O, or got it wrong, again for both
S-V and S-V-O. Their mistakes, i.e. cases where S-Vwas correctly disambiguated, but
S-V-O was not, were more varied, apart from the verb to file, they also had instances
of to cast, to tap and to lace, in the following contexts:

(3) company file account
boat cast net
palace cast net
monitor tap conversation
child lace shoe

In all of these cases, the object provided in the data set has occurredmore frequently
with contexts of other verbs, e.g. account in the first sentence above has occurred
more in the context of verbs such as funded or issued; net in the second and third
examples is itself ambiguous and occurred much more frequently in its financial sense
(where it contrasts with gross) in the very large naturally occurring dataset taken as
base. Similarly for conversation and shoe, which occurred more with had and wore
respectively, than tapped and laced.

Differences between the sum and identity methods are smaller and thus harder
to investigate in a conclusive manner. Some verbs, such as dribble, show interesting
differences: for woman dribble wine, identity seems to give better accuracy at the S-V
stage than at S-V-O; for player dribble ball it is the opposite.

Overall, following the Kartsaklis et al. (2013b) demonstration that copy-obj outper-
forms others for full-sentence disambiguation in virtue of encoding more information
about the object, the results here, which incorporate in addition an incrementality fac-
tor, also indicate that copy-obj does better overall, and for similar reasons, though here
based on probability rather than encoding. However, with some verbs getting disam-
biguated with their objects better than with their subject and some verbs the other way
round, it is hard to evaluate which model’s performance is really most desirable. In
future work we would hope to investigate comparisons with human ratings of disam-
biguation at the S-V stage, but this raises complex questions about datasets and about
bias in the vector/tensor corpora which are beyond the scope of this paper.

6 Discussion

Although the theoretical predictions of the model have only been verified on S-V-
O triples, they are immediately applicable to sentences of greater complexity. Of
importance here, however, are utterances arising within natural dialogue, and of those,
particularly unfinished and interrupted instances. These kinds of utterance have not
been dealt with in the commonly used type-logical vector space approaches so far, as
those rely on a sentential level of grammaticality. As our simple experiment shows,
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our setting does not rely on sentential grammaticality: we have theoretically pre-
scribed how to build vector representations for any DS tree; on the practical side, we
have applied these prescriptions to subject-only, subject-verb, and subject-verb-object
strings. This is the first time it has been shown that disambiguation of unfinished utter-
ances can be computed incrementally in vector space semantics, not only opening the
practical possibilities of real-time distributional semantic processing for spoken Nat-
ural Language Understanding tasks, but also allowing for a more realistic simulation
of human processing than previously possible. The match that our setting provides for
human disambiguation judgements is being derived solely on the basis of observed co-
occurrences between words and syntactic roles in a corpus, without any specification
of content intrinsic to the word itself. Further experiments will be needed to extend
this approach to larger datasets and to dialogue data and examine its effectiveness,
perhaps using the work extending DS grammars to dialogue (Eshghi et al. 2017), and
possibly evaluating on the similarity dataset of Wijnholds and Sadrzadeh (2019) that
extends the transitive sentence datasets used in this paper to a verb phrase elliptical
setting.

Our assumption from the outset of this work was that distributions across a suffi-
ciently large corpus can be taken to provide an analogue and basis for formalmodelling
of the observation that interpretation of words depends on contingent, contextual and
encyclopaedic facts associated with objects. To place these results and the adopted
methodology in a psychological perspective, the way in which these statistical meth-
ods show that discrete facets of meaning of an individual word are progressively
distinguishable in an incremental way provides at least partial confirmation that the
meaning that words have is recoverable from affordances made available in the contin-
gent contexts in which they occur, these being anticipations routinely associated with
the word in question over many uses that they come to constitute, including the actions
triggered by the word.5 Moreover, the underlying concept of a context of affordances
has the cross-temporal, cross-spatial attributes shared by “big-data” corpora.

We thus take the results as provisionally confirming a thin concept of meaning,
not associated with some intrinsically fixed encoded content, but merely a non-
deterministic set of associations which the word triggers for the individual agent(s).
We also expect to be able to deal with cases when an interpretation shifts during the
incremental process (say, when uttering “The footballer dribbled beer down his chin”),
when the incoming input acts as a filter over-riding an otherwise accumulating default.
This is exactly what one would expect of an account with a basis in non-deterministic
meanings, the underpinnings allowing variability as the interpretation gradually con-
solidates, directly in line with a range of Radical Embodied Cognition perspectives
(Clark 2016; Bruineberg and Rietveld 2014; Kempson and Gregoromichelaki 2019).
It also gives us hope that such an approach (although we currently have no direct
model of this) should extend to modelling the more general shifts in understanding

5 The original Gibsonian concept of affordance, ‘perceivable relations between an organism’s abilities
and the properties of the environment’ (Anderson 2014), was restricted to that of affordances for motor
activity made available by the environment to the individual in question, but following Bruineberg and
Rietveld inter alia we take affordances to be all types of possibility relevant to an agent for action within the
environment provided (Clark 2016; Bruineberg and Rietveld 2014; Rietveld et al. 2018), including words
and the grammar.
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that occur within the ubiquitous coordinating to-and-fro between interlocutors in dia-
logue (Healey et al. 2018). In the mean time, we hope these provisional results make
a contribution towards grounding the claim that languages are defined as procedures
for inducing growth of specifications of content in real time, with plasticity of such
constituent parts playing an irreducible role.
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