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Abstract

With deep learning becoming a more prominent ap-
proach for automatic classification of three-dimensional
point cloud data, a key bottleneck is the amount of high
quality training data, especially when compared to that
available for two-dimensional images. One potential so-
lution is the use of synthetic data for pre-training networks,
however the ability for models to generalise from synthetic
data to real world data has been poorly studied for point
clouds. Despite this, a huge wealth of 3D virtual environ-
ments exist which, if proved effective can be exploited. We
therefore argue that research in this domain would be of
significant use. In this paper we present SynthCity an open
dataset to help aid research. SynthCity is a 367.9M point
synthetic full colour Mobile Laser Scanning point cloud.
Every point is assigned a label from one of nine categories.
We generate our point cloud in a typical Urban/Suburban
environment using the Blensor plugin for Blender.

1. Introduction
One of the fundamental requirements for supervised

deep learning are large, accurately labelled datasets. For
this reason, progress in two-dimensional (2D) image pro-
cessing is often largely accredited to the wealth of very
large, high quality datasets such as ImageNet [1] (classifi-
cation), COCO [2] (object detection) and Pascal VOC [3]
(segmentation). It is now common practice to pre-train
Convolutional Neural Networks (CNN) on large datasets
before fine-tuning on smaller domain specific datasets. De-
spite the large success of deep learning for 2D image pro-
cessing, it is evident that automatic understanding for three-
dimensional (3D) point cloud data is not as mature. We
argue one of the reasons for this is the lack of training data
at the scale of that available for 2D data.

A key reason for the lack of 3D training data is that nat-
urally the amount of prepared labelled data decreases as the
complexity of labelling increases. For example in 2D, sin-
gle image classification (i.e. dog, car, cup etc.) is generally
trivial and can therefore be carried out by large communi-

(a)

(b)
Figure 1. Example of the SynthCity dataset displaying a) class la-
bels and b) RGB values.

ties of untrained workers. Object detection requires more
skill and has an added level of subjectivity. Segmentation
again requires further precision, delicacy and involves more
subjectivity. Per-point 3D segmentation requires highly
skilled users and generating perfect labels for even the most
advanced users is non-trivial. A potential solution to ac-
count for this is to synthetically generate training data (i.e.
ShapeNet [4]). Despite general success when pre-training
2D images on synthetic data and fine-tuning on real-world
data, there has been very little research on this topic with
respect to point cloud classification.

More so than 2D, 3D data benefits from a wealth of syn-
thetic data in the form of virtual 3D environments generated
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for the purpose of gaming, virtual reality and scenario train-
ing simulators to name a few. However, the ability for deep
learning networks to generalise from synthetic point clouds
to real-world data is poorly studied, and as such the commu-
nity risks missing out on a massive resource of data. To help
address this we introduce SynthCity an open, large scale
synthetic point cloud of a typical urban/suburban environ-
ment. SynthCity is captured using a simulated Mobile Laser
Scanner (MLS). MLS point cloud data capturing is being in-
creasingly used due to its ability to easily cover large areas
when compared to a Terrestrial Laser Scanner (TLS) and
at a higher resolution than an Aerial Laser Scanner (ALS).
However, whilst capturing large quantities of data is becom-
ing more trivial, such large datasets are useless without the
means to extract useful structured information from other-
wise useless unstructured data. As such, progress in this
field offers huge potential for a range of disciplines from
city planning to autonomous driving.

The primary purpose of our dataset is therefore to of-
fer an open dataset to aid further research assessing the po-
tential of synthetic datasets for pre-training Deep Neural
Networks (DNNs) for automatic point cloud labelling. We
believe successful progression in this area could have po-
tentially huge implications of the future of automatic point
cloud labelling. Our dataset is available for download at
http://www.synthcity.xyz.

2. Related Work
The need for outdoor labelled point clouds has been ad-

dressed by a range of researchers. Serna et al., [5] re-
leased the Paris-rue-Madame MLS dataset containing 20M
points (xy, y, z and reflectance), Vallet et al., [6] the iQ-
mulus dataset containing 300M points (x, y, z,, time, re-
flectance and number of echoes) and Roynard et al., [7] the
Paris-Lille-3D containing 143.1M points (x, y, z,, scanner
x, y, z, gps time, reflectance). However, many caveats ex-
ist within these datasets. For example, Paris-rue-Madame,
whilst large enough for traditional machine learning algo-
rithms (i.e. Support Vector Machines, Random Forest),
does not meet the scale for a modern DNN, which number
of parameters can easily exceed 10x the number of points
available. The iQmulus is more suited in terms of size
however due to a 2D semi-manual data labelling approach,
many mislabelled ground truth points exist.

A direct effort to address the need of large labelled
datasets for deep learning algorithms is the Semantic3D
dataset [8]. Semantic3D consists of ∼4BN points collected
over 30 non-overlapping TLS scans. Points are classified
into 8 categories; man made terrain, natural terrain, high
vegetation, low vegetation, buildings, hardscape, scanning
artefacts and cars. Although this dataset is certainly very
valuable to the community, many caveats still exist. Most
prominent is the use of a TLS over MLS. Scanning large

areas with a static scanner is very time-consuming and en-
suring complete coverage without significant redundancy is
very difficult. As such, the Geomatics community has typi-
cally moved towards the use of MLS for large scale map-
ping, which is capable of scanning much larger areas in
time scales orders of magnitudes less than static approaches.
This causes issues when pre-training MLS data as TLS data
exhibits very different artefacts to MLS. Furthermore, as
with all the datasets discussed, strong class imbalances are
present within the datasets. This is caused by the natural
class imbalance of outdoor scenes. For example, a typi-
cal urban scan can consist of >90% more road and façade
points over less prominent classes such as pole features and
street furniture. This has been shown to negatively affect
the network performance when training DNNs [9]. For a
more thorough review on datasets available including in-
door datasets we refer the reader to [10].

Although the ability to transfer learn from synthetic data
is widely exploited for 2D images, this is less prominent
in 3D point cloud learning. Wu et al., [11, 12], exploit the
widely acclaimed Grand Theft Auto V game by creating a
plugin to allow the mounting of a simulated Velodyne 64
scanner on top of a vehicle. Despite being able to train
on a huge source of labelled synthetic data, their model
SqueezeSeg generalised very poorly when switching to a
real world domain, with a test accuracy of 29%. This was
accredited to dropout noise, defined as missing points from
the sensed point cloud caused by limited sensing range,
mirror diffusion of the sensing laser, or jitter in the inci-
dent angles. SqueezeSegV2 proposed a domain adaption
pipeline whereby dropout noise was mitigated by a Context
Aggregation Module, increasing real world test accuracy to
57.4%. This work is a strong influence for our dataset, as
firstly the authors demonstrate the success of domain adap-
tion techniques. Secondly, SqueezeSegV2 does not perform
learning directly in the 3D space, but instead projects the
points on to a spherical surface to allow for easier convo-
lutions. The dataset is only available in the projected data
format, and therefore can not be used for networks that op-
erate directly on point clouds.

The research field of autonomous driving also exploits
synthetic data to create realistic agent training environ-
ments. This is largely beneficial as the vehicles can be de-
veloped in a safe environment where accidents costs noth-
ing. The Synthia dataset [13] is a vehicle drive through a
virtual world. The dataset contains 2D imagery but also a
lidar inspired 2.5D registered depth map. As the primary
purpose of the research is to aid semantic segmentation for
a moving vehicle, a full 3D point cloud is not released
with the dataset. The authors do demonstrate the added
benefit of pre-training on synthetic data. The more recent
CARLA simulator [14] builds on Synthia, but is released as
a full simulator software with a fully integrated API. Using
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Figure 2. Rendered image from the initial downloaded model. Im-
age source [16].

CARLA, a globally registered 3D point cloud could be gen-
erated inside the very realistic and complex environment.

3. Generation

The primary aim in generating our dataset is to pro-
duce a globally registered point cloud where each point
P ∈ Rn×3. Additionally, each point P contains a feature
vector F ∈ Rn×d where n is the number of points such that
n = 367.9M and d is red, green, blue, time, end of line,
and label l where l ∈ L such that |L| = 9.

The SynthCity data was modelled inside the open-source
Blender 3D graphics software [15]. The initial model was
downloaded from an online model database (Fig. 2). The
model was subsequently duplicated with the object under-
going shuffling to ensure the two areas were not identical
to one another. Road segments were duplicated to connect
the two urban environments leaving large areas of unoccu-
pied space. To populate these areas additional typical sub-
urban building models were downloaded and placed along
the road. With respect to model numbers the dataset con-
tains; 130 buildings, 196 cars, 21 natural ground planes,
12 ground planes, 272 pole-like objects, 172 road objects,
1095 street furniture objects and 217 trees (table 2). The
total disk size of the model was 16.9GB. The primary re-
striction for the size of the dataset was availability of Ran-
dom Access Memory (RAM) required on the workstation
used for creating the model. This was limited to 32GB in
our case, however, with a larger RAM the model size could
have easily been extended.

The open-source Blender Sensor Simulation plugin
Blensor [17] was used for simulation of the MLS and thus
point cloud generation. We use the following setup for
scanning:

Scan type Generic lidar
Max distance 100m
Angle resolution 0.05m
Start angle −180◦
End angle 180◦

Frame time 1/24s

A typical scan took∼330s to render and a total of 75,000
key frames were rendered from a pre-defined trajectory. To
increase realism and generate more variability in point den-
sity the trajectory spline was moved by a random permuta-
tion at random intervals in all x, y, z directions. The final
rendering required (330 × 75000)/86400 = 286.46 days
CPU compute time. This was processed using AWS cloud
computing service. We launched 22 type r4.2xlarge Ubuntu
18.04 EC2 spot instances, each containing 8 virtual CPUs
and 61GB RAM. These were selected as rendering typically
required ∼50GB RAM. All data was read and written to a
EFS file storage system to allow for joint access of a single
model instance. The total rendering time took ∼13 days on
22 EC2 instances.

Each render node produces an individual file st for the
2D scan at time frame t. To create the global 3D point cloud
each point must undergo a transformation T with respect to
the scanner location Sx,y,z and rotation Sω,φ,κ. Blensor can
export both Sx,y,z and Sω,φ,κ at time t as a motion file. Each
scan is passed through a global registration script where the
transformation T is computed as the rotation matrix where:

Rx =

1 0 0
0 cosω −sinω
0 sinω cosω

 (1)

Ry =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 (2)

Rz =

cosκ −sinκ 0
sinκ cosκ 0
0 0 1

 (3)

R = RzRyRx (4)

T =


R1,1 R1,2 R1,3 Sx
R2,1 R2,2 R2,3 Sy
R3,1 R3,2 R3,3 Sz
0 0 0 1

 (5)

Finally, each transformed point p̂t is computed as:

p̂t = pt ·T (6)

In a separate post-processing stage we generate the fea-
tures F = xn,yn, zn, time, eol. To create F = xn,yn, zn
we simply apply a 0.005m Gaussian noise to each px, py
and pz independently such that pni = pxi +σ

1, pyi +σ
2, pzi+
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σ3 where −0.005 < σ < 0.005. We choose 0.005m as this
is in line with an expected modern scanner noise at this dis-
tance. F = time is calculated by adding the key frame
time available in the motion file with the scanner point time
available in the individual scan files. This is effectively a
simulated GNSS time available with MLS and ALS point
clouds. Finally the end of line (eol) is calculated as a binary
indicator where the peoli = 1 if it is the final point acquired
by the individual scan st or 0 otherwise.

Feature Type
x float
y float
z float
xn float
yn float
zn float
R short
G short
B short
time double
eol boolean [0, 1]
label short [0-8]

Table 1. Data fields and stored types.

We choose to store our data in the parquet data format
[18]. The parquet format is very efficient with respect to
memory storage but is also very suitable for out-of-memory
processing. The parquet format is designed to integrate with
the Apache Hadoop ecosystem. It can be directly read into
python Pandas dataframes but also python Dask data frames
which allow for easy out-of-memory processing directly in
the python ecosystem.

4. Data
The dataset is modelled from a completely fictional typi-

cal urban environment. In reality the environment would be
most similar to that of downtown and suburban New York
City, USA. This was due to the initial starting model, and
not any design choices made by ourselves. Other buildings
and street infrastructure are typical of mainland Europe. We
classify each point into one category from; road, pavement,
ground, natural ground, tree, building, pole-like, street fur-
niture or car. To address the class imbalance issue, during
construction of the model we aimed to bias the placement
of small less dominant features in an attempt to reduce this
as much as possible. As point cloud DNNs typically work
on small subsets of the dataset we argue that this approach
should not introduce any unfavourable bias, but instead help
physically reduce the class imbalance.

The final feature list with their respective storage type is
shown in table 1. The total number of points generated is
shown in table 2. The disk space of the complete parquet

Label No. Models No. Points
Road 172 215,870,472
Pavement 172 21,986,017
Ground 12 6,206,312
Natural ground 21 4,788,775
Tree 217 12,088,077
Building 130 97,973,820
Pole-like 272 1,636,443
Street furniture 1095 1,469,766
Car 196 5,907,347
Total 2287 367,927,029

Table 2. Label categories and number of points per category.

file is 27.5GB, as a typical work station would not be able
to load this model into memory, we split this scan into 9
sub areas. Each sub area is split solely on horizontal coor-
dinates and can therefore contain points from any scan at
any key frame. The purpose of this is twofold; firstly, users
of typical workstations can load an area directly into mem-
ory, and secondly, we can nominate a fixed test area. We
propose that areas 1-2 and 4-9 be used for training and area
3 be reserved for model testing. This enables consistency
if models trained on our dataset are to be compared from
one another. We choose area 3 as it contains a good rep-
resentation of all classes. As SynthCity is not designed as
a benchmark dataset we provide the ground truth labels for
area 3 in the same manner as all other areas.

Figure 3. Total point counts for each label category. Note the log
y-axis scale.

5. Discussion
Although SynthCity was modelled to be biased toward

poorly represented categories (i.e. street furniture and pole-
like objects), it is evident that a significant class imbalance
still exists (Fig. 3). The reasons for this is twofold. Firstly,

4



continuous features such as road and pavement cover signif-
icantly larger areas than smaller discrete features. Secondly,
due to the nature of MLS, objects closer to the scanner are
sampled with a higher point density. As MLS are typically
car mounted, road and pavement naturally have very high
point densities. A sensible pre-processing approach to ac-
count for this issue is to first voxel downsample the point
cloud to a regular point density. This technique has been
shown to considerably improve classification accuracy for
both outdoor and indoor point clouds [9]. As one of the pri-
mary benefits of a self-constructed synthetic model is the
ability to choose the object placement distribution, it is evi-
dent from our dataset that this should be further exaggerated
still.

SynthCity has been designed primarily to be used for se-
mantic per-point classification. As such each point contains
a feature vector and a classification label. Whilst this is
useful for a range of applications, currently the dataset does
not contain instance id’s for individual object extraction. As
each object is a discrete object within the Blender environ-
ment extraction of instance id’s would be reasonably trivial
to extract. Moreover, a simple post processing script could
be employed to convert instance id’s to 3D instance bound-
ing boxes which would enable the dataset to be used for 3D
object localisation algorithms as well as per-point classifi-
cation. With SynthCity being an ongoing project we plan to
implement this in future releases.

Blensor supports the ability scan with a range of scan-
ners, most notably a simulated Velodyne scanner. Such
scanners are commonly used for both MLS systems and au-
tonomous vehicles. Re-rendering with a Velodyne scanner
would only require the AWS instances to be run again to
produce the equivalent point cloud. Furthermore, scanner
properties can be changed to simulate a range of scanners
that are currently not covered by the pre-defined settings.
We argue that as with 2D images, 3D point clouds should be
sensor invariant. Training on multiple sensors would likely
be a very valuable augmentation technique.

6. Conclusion
In this work we present SynthCity an open, large-scale

synthetic point cloud. We release this dataset to help aid
research in the potential use for pre-training of segmenta-
tion/classification models on synthetic datasets. We argue
an ability to generalise from synthetic data to real world
data would be immensely beneficial to the community as
such a wealth of existing synthetic 3D environments al-
ready exist. Most notably those generated from the gaming,
virtual environment and simulated training industries. Our
model contains 367.9M perfect labelled points with 5 addi-
tional features; red, green, blue, time, eol. In addition we
also present an identical point cloud with the permutation
of Gaussian sampled noise, giving the point cloud a more

realistic appearance.
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