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a b s t r a c t 

This paper investigates the impact of cell body (namely soma) size and branching of cellular projections on 

diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) 

and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to 

investigate the ability of dMRI/dMRS to characterize the complex morphology of brain cells focusing on these 

two distinctive features of brain grey matter. 

To this end, we employ a recently developed computational framework to create three dimensional meshes 

of neuron-like structures for Monte Carlo simulations, using diffusion coefficients typical of water and brain 

metabolites. Modelling the cellular structure as realistically connected spherical soma and cylindrical cellular 

projections, we cover a wide range of combinations of sphere radii and branching order of cellular projections, 

characteristic of various grey matter cells. We assess the impact of spherical soma size and branching order on 

the b-value dependence of the SDE signal as well as the time dependence of the mean diffusivity (MD) and mean 

kurtosis (MK). Moreover, we also assess the impact of spherical soma size and branching order on the angular 

modulation of DDE signal at different mixing times, together with the mixing time dependence of the apparent 

microscopic anisotropy ( 𝜇A), a promising contrast derived from DDE measurements. 

The SDE results show that spherical soma size has a measurable impact on both the b-value dependence of the 

SDE signal and the MD and MK diffusion time dependence for both water and metabolites. On the other hand, we 

show that branching order has little impact on either, especially for water. In contrast, the DDE results show that 

spherical soma size has a measurable impact on the DDE signal’s angular modulation at short mixing times and 

the branching order of cellular projections significantly impacts the mixing time dependence of the DDE signal’s 

angular modulation as well as of the derived 𝜇A, for both water and metabolites. 

Our results confirm that SDE based techniques may be sensitive to spherical soma size, and most importantly, 

show for the first time that DDE measurements may be more sensitive to the dendritic tree complexity (as 

parametrized by the branching order of cellular projections), paving the way for new ways of characterizing 

grey matter morphology, non-invasively using dMRS and potentially dMRI. 
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. Introduction 

Non-invasive mapping of brain cells morphology is a major focus

n biomedical imaging research, as it can play a crucial role in the as-

essment of neurologic and psychiatric diseases which alter the tissue

tructure ( Uylings and de Brabander, 2002 ), for studying brain devel-

pment ( Cassey et al., 2005 ), plasticity ( Zatorre et al., 2012 ) or ageing

 Uylings and de Brabander, 2002 ). Soma size and the tree configuration

f cellular projections of neurons and glia are largely plastic properties

hich are directly affected in various pathologies. For instance, a de-
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rease in neuronal soma size has been reported in subjects with bipolar

isorder ( Bezchlibnyk et al., 2007 ), while an increase in motoneuron

oma size is present in amyotrophic lateral sclerosis ( Dukkipati et al.,

018 ). Abnormalities and changes in the dendritic tree characterize a

ide range of disorders ( Kulkarni and Firestein, 2012 ), including a pro-

ressive loss of dendrites and spines in normal aging ( Dickstein et al.,

007 ). Changes in glial cells, such as astrocyte hypertrophy/atrophy

haracterized by an overall increase/decrease in cell size, also accom-

any various pathologies, from traumatic brain injury ( Robinson et al.,

016 ) to Alzheimer’s disease ( De Strooper and Karran, 2016 ). This in-
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l  
ormation is usually obtained based on histological imaging of tissue

amples, which is highly invasive and can be performed only ex-vivo. 

Significant efforts are made to estimate microscopic tissue features

n-vivo using non-invasive imaging techniques, and especially diffusion

agnetic Resonance Imaging (dMRI), which uses magnetic field gra-

ients to sensitise the measured signal to the displacement of probe

olecules (usually water) in the tissue. Then, by modelling the relation-

hip between neuronal configurations and the measured signal, micro-

copic tissue properties could be inferred from the dMRI measurements.

owards this goal, various signal representations and biophysical mod-

ls have been developed to capture different features of the complex

rain tissue ( Alexander et al., 2017 ; Novikov et al., 2019 ; Ghosh et al.,

018 ). 

The majority of techniques aimed at mapping brain microstruc-

ure properties, either based on signal representations ( Basser et al.,

994 ; Jensen et al., 2005 ; Ozarslan et al., 2013 ) or biophysical mod-

ls ( Alexander et al., 2017 ; Novikov et al., 2019 ), have been focused

n white matter. In terms of biophysical modelling approaches, they

sually describe simple geometries ( Ghosh et al., 2018 ), with a fo-

us on estimating tissue features such as intra-neurite volume frac-

ion ( Behrens et al., 2003 ; Zhang et al., 2012 ; Fieremans et al., 2013 ;

eisert et al., 2017 ), axon diameter ( Stanisz et al., 1997 ; Assaf et al.,

008 ; Alexander et al., 2010 ), neurite dispersion ( Zhang et al., 2012 ;

espersen et al., 2010 , Sotiropoulos et al., 2012 ), and membrane per-

eability ( Nilsson et al., 2010 ; Nedjati-Gilani et al., 2017 ). Some tech-

iques have also been applied for mapping microstructure in grey

atter, mainly focusing on neurite dispersion ( Zhang et al., 2012 ;

espersen et al., 2010 ; Lampinen et al., 2017 ), and more recent studies

ave shown the potential of mapping soma apparent density and size

 Palombo et al., 2020 ) as well as branching complexity using diffusion

f metabolites ( Ligneul et al., 2019 ; Valette et al., 2018 ; Palombo et al.,

017 ; Ingo et al., 2018 , Lundell et al., 2020 ; Palombo et al., 2016 ;

alombo et al., 2018 ). Most of these techniques use a collection of stan-

ard single diffusion encoding (SDE) measurements and simple geomet-

ic representations to describe the brain tissue, for instance cylinders to

imic axons or spheres to represent the soma. Although such models

an provide an insight into the gross effects of different tissue features

n the dMRI signal and are useful for optimising the acquisition param-

ters, they are an oversimplification of real configurations and limit the

bility of extracting details about the tissue structure. Moreover, there is

ncreasing evidence that going beyond the standard acquisition and em-

loying multi-dimensional diffusion sequences, such as double diffusion

ncoding (DDE) ( Mitra, 1995 ; Cheng and Cory, 1999 ; Ozarslan, 2009 ;

anus et al., 2016 ; Shemesh and Cohen, 2011 ; Lawrenz and Finster-

usch, 2015 ; Yang et al., 2018 ), double oscillating diffusion encoding

DODE) ( Ianus et al., 2017 ; Ianus et al., 2018 ; Shemesh, 2018 ) or q-

pace trajectory encoding (QTI) ( Lampinen et al., 2017 ; Westin et al.,

016 ; Szczepankiewicz et al., 2016 ), can provide additional information

bout the tissue microstructure compared to SDE acquisitions. 

Developing a meaningful biophysical model of diffusion in grey mat-

er is very challenging ( Jelescu et al., 2020 ). In contrast to white matter,

rey matter is comprised of packed cell bodies and cellular projections,

uch as neuronal dendrites and glial projections, that branch and densely

eave together in random configurations. Furthermore, each branch

an present undulations, curvature and secondary structures such as

pines that add another layer of complexity to the biophysical mod-

lling. Therefore, to address the challenge of modelling grey matter mi-

rostructure and/or to understand the contrast of various signal repre-

entations, it is crucial to know which features of the cellular structure

ave a measurable impact on the diffusion-weighted MR signal. 

A powerful tool that can be used to find an answer to this still open

uestion is computational modelling. Numerical phantoms, and espe-

ially those based on Monte Carlo (MC) simulations, e.g. ( Palombo et al.,

018 ; Palombo et al., 2019 , Hall and Alexander, 2009 ; Yeh et al., 2013 ;

ieremans et al., 2010 ; Ginsburger et al., 2019 ), allow control and flex-

bility, both in terms of the underlying diffusion substrates, as well
2 
s the acquisition sequences, offering the unique opportunity to per-

orm in silico experiments targeting specific features of the tissue mi-

rostructure. So far, such techniques have been employed with a wide

ange of synthetic tissues, from simple substrates of parallel cylinders

 Hall and Alexander, 2009 ; Fieremans et al., 2010 ), substrates includ-

ng fibre dispersion ( Nilsson et al., 2011 ; Kleinnijenhuis et al., 2015 ;

allaghan et al., 2020 ) and multiple fibre populations ( Ginsburger et al.,

018 ), to realistic meshes based on electron microscopy images of

eal tissue ( Panagiotaki et al., 2010 ; Nguyen et al., 2018 ; Lee et al.,

018 ). Although MC based simulations of dMRI signal have been around

or decades ( Weisskoff et al., 1994 ; Gudbjartsson and Patz, 1995 ;

alinov et al., 1993 ), they have been either rather simplistic and very

exible (e.g. parallel cylinders) or highly realistic, but very rigid (e.g.

eshes based on microscopy). Only recently, computational frame-

orks for designing realistic neuronal meshes for MC dMRI simula-

ions have been proposed ( Palombo et al., 2019 ; Ginsburger et al.,

019 ; Callaghan et al., 2020 ). Specifically, the framework presented in

alombo et al. ( Palombo et al., 2019 ) offers flexibility and control by

mploying a generative model to create realistic meshes which closely

esemble a wide range of brain cells, from glia to neurons. The dMRI

imulations presented in ( Palombo et al., 2019 ) show the signal differ-

nces between several cell types, however they do not study the specific

ffects of different microstructural properties on the signal. 

The aim of this study is to systematically investigate the effect of sub-

le morphological features such as cell soma size (modelled as sphere)

nd branching order of cellular projections (modelled as connected

ylinders) on the diffusion properties measured with water dMRI and/or

etabolite diffusion-weighted MR spectroscopy (dMRS). First, we study

he effect of branching order and spherical soma size on the b-value and

iffusion time dependence of the signal measured with standard SDE

equences. Then, we investigate the signature of branching order and

pherical soma size on the signal measured with DDE sequences and we

ssess whether we can use DDE measurements to inform on cell com-

lexity. 

. Methods 

In this section we first describe the overall design of the simulation

xperiments and the details of the implementation, including the com-

utational models of brain cells used together with the details of the MC

imulation. Then, we explain the two sets of simulation experiments we

erformed to investigate the impact of branching and spherical soma

ize on both SDE and DDE measurements, using two different diffusivi-

ies to mimic intracellular water and metabolites diffusion, respectively.

n this way, our results can be used to inform both water dMRI and

etabolites dMRS experiments. 

.1. General simulation design 

The aim of this work is to systematically investigate the effect of

pherical soma size and branching order of cylindrical projections on

he diffusion properties measured with dMRI/dMRS. Towards this goal,

e use the generative model introduced in ( Palombo et al., 2019 ) to

reate synthetic neuron-like cell structures with controllable complex

eatures. Specifically, the generative model allows the design of real-

stic virtual cell structures by defining twelve morphological features

ncluding the number of cell projections, N proj , number of consecutive

ifurcations, N b , cell branch length, L b , and diameter, D b ( Fig. 1 a), soma

ealistically connected to the projections with controllable diameter, D s 

 Fig. 1 b), cell branch undulations and curvature ( Fig. 1 c), as well as

omplex secondary features such as dendritic spines with controllable

ize and density ( Fig. 1 d). Given our specific goal, we focus our analy-

is on synthetic cell structures like that reported in Fig. 1 b, where fea-

ures other than branching and spherical soma, e.g. cell branch undu-

ation/curvature and dendritic spines, are not incorporated by design.
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Fig. 1. a)-d) Exemplar computational mod- 

els of brain cell structures possible to de- 

sign using the generative model introduced in 

( Westin et al., 2016 ). The specific kind of cellu- 

lar model used in this study is b) as highlighted 

by the red box. a) In this example, a basic cel- 

lular structure can be made using N proj = 10 

interconnected cellular projections that can bi- 

furcate in N b = 4 consecutive embranchments. 

Each branch has diameter D b = 0.75 𝜇m and 

length L b = 125 𝜇m. b) It is possible to make the 

cell model more complex, for example adding 

a cell body, namely soma, of given diameter, 

here D s = 20 𝜇m, and/or c) adding branch un- 

dulations (direct over path ratio 𝜂 = 0.95, see 

( Westin et al., 2016 ) for further details) and 

curvature (radius of curvature R c = 500 𝜇m, 

see ( Westin et al., 2016 ) for further details). d) Finally, for higher level of realism, secondary fine structural features, such as spines, can also be added choosing 

the density 𝜌sp = 2 spines/ 𝜇m and the size of the spine head and neck, h sp = 0.5 𝜇m and n sp = 1 𝜇m, respectively (see ( Westin et al., 2016 ) for further details). e) 

Examples of synthetic cells with different branching orders, N b = {1,2,4,6} and different soma diameters D s = {8, 12, 16, 20} 𝜇m combinations used in this study. 

Cell morphological features other than soma size and branching order (as parametrized by N b ), such as undulations, curvature and spines, have been removed by 

design using the generative model in ( Westin et al., 2016 ). 
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t  
he effect of branching and spherical soma size are investigated by sys-

ematically varying N b and D s , for two values of cell domain sizes L,

imicking small and big neural cells, and two values of intrinsic diffu-

ivity D, mimicking water and metabolite diffusion. 

However, isolating the relative contribution of branching and soma

ize from other confounding factors is still challenging. In particular,

he signal fraction of restricted diffusion within the spherical soma can

ave a significant influence on the time-dependence of the measured

ignal, hence the virtual cell models must be designed to have the same

olume fraction occupied by the spherical soma 𝜈s . To keep 𝜈s constant

hen changing branching complexity (by changing N b ) and/or spherical

oma size (by changing D s ), there are three basic strategies to choose

rom: i) adjusting N proj ; ii) adjusting the overall size of the cell domain

 (which leads to changes in L b ), or iii) adjusting the diameter D b of

ylindrical branches. Strategies i) and ii) would lead to cell structures

ather unrealistic/unusual to be considered. For example, if 𝜈s = 30%

nd D b = 0.5 𝜇m, when high branching (e.g. N b = 6) and small soma

e.g. D s = 8 𝜇m) are chosen, the overall cell domain and N proj would

eed to be very small to keep the soma volume fraction constant (e.g.

eading to L b = 12 𝜇m for N proj = 3). In the other extreme, when D s = 20

m and N b = 1, the overall cell domain and N proj would need to be very

arge (e.g. leading to L b = 490 𝜇m for N proj = 100). In contrast, strategy

ii) avoids such unrealistic configurations. Therefore, we adopt strategy

ii) when designing our computational models of neuron-like cells, and

djust D b . 

Nonetheless, using strategy iii) still leaves some confounding effects,

ue to cases where D b is large enough to have a measurable impact as

ell as due to different probabilities of exchange between soma and

ranches as D b is varied. Nevertheless, the signature of D b on the mea-

ured dMRI signal is predictable and would impact only a few cases

those with low N b and large D s ), while the effect of exchange can be

nvestigated by comparison with a compartment model which exhibits

o exchange. For these reasons, when designing our computational mod-

ls of brain cells we take care of keeping the branch diameter below 3

m, where it has a minimal influence on the diffusion weighted signal,

specially at moderate gradient strength and medium and long diffu-

ion times ( Drobnjak et al., 2015 ; Nilsson et al., 2017 ), which are more

ypical conditions in real pre-clinical and clinical settings. 

.2. Implementation of computational models of synthetic neurons 

Specifically, we choose four target soma diameters D s = {8,12,16,

0} 𝜇m to cover a wide range of spherical soma sizes seen in various

euron types ( Beebe et al., 2016 ; Erö et al., 2018 ) and four branching
3 
rders N b = {1, 2, 4, 6}. When constructing the synthetic cell, each

ylindrical projection bifurcates N b -1 times, with N b = 1 correspond-

ng to non-branching projections, and the complexity of the synthetic

ellular structure increases exponentially with N b . Fig. 1 e) shows an ex-

mple set of the configurations investigated. Furthermore, we choose

 fixed cellular volume fraction occupied by the soma 𝜈s = 30%, as a

ypical value for most of the brain cell types. Each cell has N proj = 10

ylindrical projections leaving the soma, which is the average number

f projections encountered in several cell types, for example in pyrami-

al cells, motoneurons, stellate and chandelier neurons ( Palombo et al.,

019 ). The first branch of each projection radiating from the soma is

sotropically distributed in space. At each bifurcation, the subsequent

irections of the two new segments are drawn randomly in space, with a

0 o angle between segments. This value is the average bifurcation angle

or most of the brain cells ( Palombo et al., 2019 ). We choose two target

ell domain sizes L = {400, 1000} 𝜇m corresponding to the typical sizes

f most of glial cells (i.e. astrocytes, oligodendrocytes and majority of

icroglia) and small and large neurons domain, for example pyrami-

al cells and motoneuron, respectively ( Palombo et al., 2019 ). Since the

arget cell domain radius is L/2 and equal to the average total process

ength, 𝐿 𝑏 ×𝑁 𝑏 , we set the target L b as: 

 𝑏 = 

𝐿 

2 𝑁 𝑏 

(1) 

Given the fixed soma volume fraction 𝜈𝑠 , the target D b can be com-

uted from the definition of 𝜈𝑠 as: 

 𝑏 = 

√ √ √ √ √ 

2 
3 

(
1 
𝜈𝑠 

− 1 
)

𝐷 

3 
𝑠 

𝐿 𝑏 𝑁 𝑝𝑟𝑜𝑗 

(
2 𝑁 𝑏 − 1 

) (2) 

here we used the definition of 𝜈𝑠 as: 

𝑠 = 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑜𝑚𝑎 𝑣𝑜𝑙 

𝑠𝑝ℎ 𝑠𝑜𝑚𝑎 𝑣𝑜𝑙 + 𝑡𝑜𝑡𝑎𝑙 𝑐𝑦𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑣𝑜𝑙 

= 

4 
3 𝜋

(
𝐷 𝑠 

2 

)3 

4 
3 𝜋

(
𝐷 𝑠 

2 

)3 
+ 𝑁 𝑝𝑟𝑜𝑗 

(
2 𝑁 𝑏 − 1 

)
𝜋 𝐿 𝑏 

(
𝐷 𝑏 

2 

)2 

ith 𝑁 𝑝𝑟𝑜𝑗 ( 2 𝑁 𝑏 − 1 ) being the total number of cylindrical segments of

ength L b and diameter D b comprising each cellular projection. 

Then, for each cell configuration the potential of water molecules to

xchange between soma and branches is proportional to the ratio be-

ween the total cross-sectional area of the projections leaving the soma
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nd the soma surface: 

 𝑒𝑥 ∼
𝑁 𝑝𝑟𝑜𝑗 𝐷 𝑏 

2 

4 𝐷 𝑠 
2 (3) 

Given the probabilistic nature of the synthetic cell generation, for

ach parameter combination we create 10 cell instances which are

sed to average the simulated diffusion signal. Previous investigations

 Palombo et al., 2016 ; Palombo et al., 2018 ; Palombo et al., 2019 ) have

uggested that 10 cell instances are the minimum number to guarantee

 standard deviation of the simulated normalized signal lower than 2%.

Three-dimensional surface meshes are then generated in

lender 2.79 using “metaballs ” objects, as previously described in

 Palombo et al., 2019 ). To make the MC simulations less computation-

lly expensive, the resulting meshes are simplified and smoothed in

lender 2.79 using the “decimate ” and “smooth ” modifiers, leading

o sparser surface meshes of ~10 3 triangular faces. Following this

rocedure, the effective sizes of soma (D s ) and branches (D b ) of the

nal mesh may slightly differ from the target ones. To precisely measure

he effective values of D s and D b , we consider 256 rays, each one along

 different direction in space chosen by uniformly sampling a sphere

entred in the middle of the soma or each branch. Then, we compute for

ach ray the ray-triangle intersection to determine which triangle of the

ellular mesh the ray intersect. Subsequently, we compute the distance

rom the origin of the ray to the intersection point on that triangular

ace of the mesh. The minimum of the 256 distances computed in this

ay (one for each ray) is taken as effective radius of the corresponding

pherical soma or cylindrical branch. The morphometric parameters,

oth the target ones as well as the effective values after the meshing

rocedure, are given in Table S1 in Supplementary Information. 

.3. Monte Carlo simulations 

To simulate the diffusion signal, we employ the MC simulator in

amino ( Hall and Alexander, 2009 ; Cook et al., 2006 ). The source code

as been slightly modified to allow the user to input the initial walker co-

rdinates. This significantly reduces the time required for walker place-

ent inside the cells with Camino’s built-in algorithm which is designed

or generic meshes and thus not optimised for the morphology of neu-

onal cells we model here. 

For each mesh, the initial walker coordinates are carefully generated

sing a custom script in MATLAB (The Mathworks) to ensure that the

umber of walkers placed in each branch segment or soma is propor-

ional to its volume fraction with respect to the whole cell. In the soma,

he walkers are placed in a smaller concentric sphere with a diameter of

.9 ∙ D s . To allow for the distribution of the spins to reach a steady state,

he first 50 ms of the simulation are discarded. For each configuration,

e verify that the number of spins in the soma indeed stabilise after this

eriod, for both the investigated diffusivities. 

The MC simulations are run with the following parameters: diffusiv-

ty D = {2, 0.5} 𝜇m 

2 /ms corresponding to typical intracellular water and

etabolites diffusivities, respectively; 10 4 walkers for each cell instance,

esulting in 10 5 walkers for each configuration and a step duration of

t = 0.1 ms, according to the general guidelines in ( Hall and Alexan-

er, 2009 ). The step duration, together with D, determines the fixed

tep size 𝛿r = (6 ∙ D ∙ 𝛿t) 1/2 . We choose this 𝛿t as a trade-off between

ccuracy of the MC simulation and computational time. The chosen 𝛿t is

mall enough to guarantee that the standard deviation of the simulated

ormalized signal over the 10 cell instances is lower than 2% for the

ast diffusivity and less than 0.7% for the slow diffusivity. 

.4. Simulated mechanisms of exchange 

Our simulations are focused on intracellular dynamics and corre-

ponding intracellular dMRI/dMRS signal only. With our simulation de-

ign, we can access two possible mechanisms of exchange: 
4 
1 soma-branch exchange , that is the exchange of diffusing molecules

between the spherical soma and the cylindrical projections of our

synthetic cells; 

2 branch-branch exchange , that is the exchange of diffusing molecules

between one branch of a projection to another of our synthetic cells.

Exchange of diffusing molecules between intracellular and extracel-

ular compartments, namely intra-extracellular exchange , is not consid-

red in our simulations. 

.5. Effect of soma size and branching order on SDE measurements 

In the first set of simulation experiments, we investigate the effect of

pherical soma size and branching order on the diffusion signal of ideal

DE sequences. First, we investigate the impact on the signal b-value

ependence, then the effect on the time dependence of the mean diffu-

ivity (MD) and mean diffusional kurtosis (MK) indices derived from the

econd-order cumulant expansion of the signal. 

.5.1. B-value dependence 

We investigate the effect of spherical soma size and branching order

f cylindrical projections on the b-value dependence for ideal SDE se-

uences with short gradient duration 𝛿1 = 1 ms, three different diffusion

radient pulse separation times Δ1 = {10, 30, 80} ms and 28 b-values

anging from 0 to 60 ms/ 𝜇m 

2 . For each parameter combination, we av-

rage the signal over 32 isotropically oriented gradient directions. 

To better understand the b-value dependence and the impact of the

xchange between branches and soma, we compare these signals with

hose from a theoretical compartment model which accounts for re-

tricted diffusion inside spheres and isotropically oriented finite cylin-

ers with the effective diameter given in Table S1, and a length equal

o half the cell domain L. The restricted diffusion signal is computed

ccording to the Gaussian Phase Distribution (GPD) approximation

 Neuman, 1974 ). 

.5.2. MD and MK time dependence 

To study the impact of spherical soma size and branching order of

ylindrical projections on the MD and MK time dependence, we consider

deal SDE sequences with a gradient pulse duration of 𝛿2 = 1 ms, 3

ifferent b-values, specifically b 2 = {0.5, 1, 2} ms/ 𝜇m 

2 for simulations

ith high diffusivity D = 2 𝜇m 

2 /ms and b 2 = {2, 4, 8} ms/ 𝜇m 

2 for small

iffusivity D = 0.5 𝜇m 

2 /ms, and 35 diffusion gradient pulse separation

imes Δ2 per b value ranging from 1.1 to 2450 ms. As in section 2.4.1, the

ignal is averaged over 32 directions, then, MD and MK are computed

y fitting the following equation: 

og ( 𝑆 ) = − 𝑀𝐷 ⋅ 𝑏 + 

1 
6 

𝑀 𝐷 

2 ⋅𝑀𝐾 ⋅ 𝑏 2 , (4)

here S is the normalized diffusion signal from the MC simulations. The

stimated MD and MK values are also compared to the theoretical values

ased on the two-compartment model. 

.6. Effect of soma size and branching order on DDE measurements 

In this second set of experiments, we study the effect of spherical

oma size and branching order on DDE measurements, which have been

uggested to provide additional contrast compared to SDE sequences, es-

ecially related to microscopic diffusion anisotropy ( 𝜇A) ( Novikov et al.,

019 ; Shemesh et al., 2010 ; Shemesh et al., 2015 ; Finsterbusch, 2011 ).

e hypothesise that DDE measurements would be more sensitive to the

ranching of cellular projections than SDE ones. Specifically, we hy-

othesise that the angular modulation of the DDE signal and the derived

pparent 𝜇A index can quantify more directly the loss of correlation be-

ween subsequent diffusion directions due to spins diffusing from one

ranch to another, oriented in a different direction. 

A typical DDE experiment encompasses two diffusion-weighting

locks separated by a mixing time 𝜏 . The specific DDE design to map
m 
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estricted diffusion (in the case of negligible/slow inter-compartmental

xchange) is to study the angular modulation of the DDE signal as a

unction of the relative angle between the diffusion gradients of the two

locks at short mixing time 𝜏m 

, with the difference between parallel and

nti-parallel measurements reflecting the restriction size. On the other

and, the specific DDE design to map microscopic anisotropy is to study

he angular modulation at long 𝜏m 

( Novikov et al., 2019 ; Mitra, 1995 ;

heng and Cory, 1999 ; Shemesh et al., 2010 ; Shemesh et al., 2015 ,

insterbusch, 2011 ), with the difference between parallel and orthogo-

al measurements reflecting microscopic anisotropy. In this experiment,

ompartments without shape anisotropy would lead to flat angular mod-

lation of the DDE signal’s amplitude at long 𝜏m 

, while compartments

ith shape anisotropy would preserve a strong modulation ( Cheng and

ory, 1999 ; Ozarslan, 2009 ; Shemesh and Cohen, 2011 ; Ianus et al.,

018 ; Shemesh et al., 2010 ; Lawrenz and Finsterbusch, 2011 ). 

However, in neuron-like structures such as those considered here,

ifferent cellular compartments of different shapes, e.g. spherical soma

nd (branched) cylindrical projections, are interconnected and the MR

robe molecules (either water or metabolites) can exchange between

hem during the interval 𝜏m 

, losing correlation between subsequent dif-

usion directions. As a consequence, in case of cellular structures with

ranched projections, if there is a non-negligible fraction of diffusing

olecules which move between one branch to another oriented in a

ifferent direction and/or between branches and the spherical soma,

hen we should measure a lower amplitude of the angular DDE signal

odulation due to the resulting loss of correlation between subsequent

iffusion directions, compared to the non-exchanging case. 

Here we design simulation experiments to investigate whether and

ow the presence of spherical soma of different sizes and cylindrical

rojections with different branching orders impact the 𝜏m 

dependence

f the DDE signal’s angular modulation. We also study the effect on

 rotationally invariant index of apparent 𝜇A ( Jespersen et al., 2013 ),

hich nowadays is more commonly used in anisotropic tissue compared

o the amplitude modulation of the signal. 

.6.1. Mixing time dependence of the DDE signal’s angular modulation 

With the first simulation experiment, we investigate the effect of

ixing time 𝜏m 

on the amplitude of angular DDE signal modulation,

here the relative angle between the two gradient pairs is varied be-

ween 0 and 2 𝜋 radians. To this end, we keep the diffusion time of each

lock short, to ensure negligible exchange between spherical soma and

ranches and between different branches during the individual blocks,

hus isolating the contribution of soma and dendritic tree complexity to

he signal only during the mixing time. In this way, we expect to see

hat in SDE experiments is driven by diffusion time, being driven in-

tead by mixing time in DDE. This allows us to explore a unique DDE

eature (mixing time) while providing a fair comparison with SDE as a

ingle timing parameter is varied. Specifically, we consider ideal DDE

equences with a gradient pulse duration 𝛿3 = 1 ms, short diffusion time

3 = 5 ms, three b-values (b 3 = {1, 2, 4} ms/ 𝜇m 

2 for D = 2 𝜇m 

2 /ms

nd b 3 = {4, 8, 16} ms/ 𝜇m 

2 for D = 0.5 𝜇m 

2 /ms), 𝜏m 

varying between

 and 200 ms, and the relative angle between the gradients 𝜑 is var-

ed in 17 steps between 0 and 2 𝜋 radians. These sequence parameters

re chosen to ensure that the exchange between soma and branches and

etween different branches is negligible during the interval Δ3 (i.e. the

oot mean squared displacement along the branch ≤ 10% L branch ), but

t can have a significant effect when increasing 𝜏m 

. 

To mitigate the effect of any residual macroscopic anisotropy, we

se a scheme similar to the ones described in ( Yang et al., 2018 ) that

howed to minimize the contribution from any residual macroscopic

nisotropy. Specifically, the measurements are performed in 8 planes,

ith their normals isotropically distributed on a sphere. Moreover, in

ach plane, the gradients with parallel directions (i.e. 𝜑 = 0) are rotated

o point in 5 different directions. Thus, for each 𝜑 value there are 40

easurements (8 planes × 5 in plane directions). 
5 
To assess the relative impact of exchange between soma and

ranches and between different branches, the signal angular depen-

ence in the simulated cells is also compared with the analytical signal

or a two-compartment model which accounts for restricted diffusion

nside spheres and inside isotropically oriented finite cylinders. 

.6.2. Mixing time dependence of the apparent microscopic anisotropy 

In the second DDE simulation, we study the behaviour of appar-

nt 𝜇A in different synthetic cell configurations for various diffusion

imes and 𝜏m 

. Towards this goal, we synthesize the signal from the well-

tudied DDE 5-design with 12 parallel and 60 orthogonal measurements

 Jespersen et al., 2013 ) with three b-values (b 4 = {1, 2, 4} ms/ 𝜇m 

2 for

 = 2 𝜇m 

2 /ms and b 4 = {4, 8, 16} ms/ 𝜇m 

2 for D = 0.5 𝜇m 

2 /ms), vari-

us diffusion times Δ4 = {5, 10, 20, 30, 45, 60, 80} ms and 𝜏m 

between

 and 200 ms, without exceeding a total sequence duration of 250 ms.

hen, we calculate the apparent 𝜇A at each b-value based on the dif-

erence between measurements with parallel and orthogonal gradients

 Jespersen et al., 2013 ). 

Although we know from simulations that this metric slightly

nderestimates the expected microscopic anisotropy of the system

 Ianus et al., 2018 ) and at short 𝜏m 

it also reflects the effects of restric-

ion size, it is a robust metric for comparing the trends between cells

ith different dendritic tree complexities. 

Moreover, to investigate the effect of the exchange between spherical

oma and branches and between different branches, we also compared

he 𝜇A values from the simulations with those obtained from the ana-

ytical two-compartment model (sphere + isotropically oriented finite

ylinders). 

.7. Noise considerations 

To detect the effect of changing a certain parameter, such as spheri-

al soma size or branching order, the differences incurred on the signal

r on an estimated index (e.g. MD) should be larger than the variations

ue to noise. To study this effect, after the signal was averaged over the

0 cellular configurations, N noise = 1000 instances of Gaussian noise

ith standard deviation 𝜎 = 0.05 (i.e. corresponding to an SNR of 20 in

he b = 0 data) was added to each diffusion measurement. After adding

oise, the signal is averaged over different directions, according to the

rotocols described in each experiment, followed by the computation

f various indices (e.g. MD and MK). The differences incurred on the

ignal or on the estimated indices when changing a certain parameter

re considered “detectable ” if different from the noise induced varia-

ions with statistical significance assessed through two-tailed t-test and

 < 0.01. Further details are reported in section S2 of Supplementary In-

ormation. 

. Results 

.1. Effect of soma size and branching order on SDE measurements 

.1.1. Spherical soma size can impact the b value dependence of the 

irection-averaged signal 

Fig. 2 shows the signal b-value dependence for a diffusion time of

0 ms, for synthetic cells with different branching orders and spheri-

al soma size. Focusing on soma, we find that soma size impacts the

igh b value dependence of the normalized direction-averaged signal,

or both simulated water ( Fig. 2 a) and metabolite ( Fig. 2 b) diffusivi-

ies. In particular, for b > 5 ms/ 𝜇m 

2 , we observe a curvature (convexity)

f the signal as a function of b value which increases when soma size

ncreases. This effect is more clearly shown in Fig. 3 a). This effect is

ven more pronounced for the shorter diffusion times of 10 and 30 ms,

here a difference in signal between different soma diameters occurs at

ower b values, as illustrated in Fig. S2. However, if the diffusion time

s very short relative to the restriction sizes, the effect of different soma

izes is reduced. This can be seen for instance in Fig. S1b, where for
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Fig. 2. B-value dependence of the diffusion 

signal for a) D = 2 𝜇m 

2 /ms (mimicking wa- 

ter diffusion) and b) D = 0.5 𝜇m 

2 /ms (mimick- 

ing metabolites diffusion). Within each panel, 

the top row simulates large cells and the bot- 

tom row small cells, with different soma diam- 

eters (increasing diameter from left to right) 

and various branching orders (lines of differ- 

ent colours). The data is simulated at Δ = 80 

ms. 

Fig. 3. a) Comparison of signal b-value depen- 

dence for cells with different soma sizes, do- 

main size L = 400 𝜇m, and increasing com- 

plexity (branching order increases left to right). 

b) Comparison between Monte Carlo simula- 

tions and the GPD approximation for a non- 

exchanging two-compartment model which in- 

cludes diffusion inside a sphere and finite 

isotropically oriented cylinders with the same 

effective diameters as the effective D s and D b 

values indicated in Table 1 . The signal is com- 

puted for cells with a domain size L = 400 𝜇m 

and target D s = 8 𝜇m. In both a) and b), the 

signal is computed for a diffusion time of 80 

ms. 

6 
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= 10 ms and D = 0.5 𝜇m 

2 /ms the mean squared root displacement

6 𝐷Δ = 5 . 4 μm is smaller than the soma diameters. 

Noise considerations: Fig.s S5a) and b) in Supplementary Information

resent the signal differences between cell configurations with D s = 8

m and larger diameters as a function of b-value for diffusion times of 80

nd 10 ms, respectively. For Δ = 80 ms, the signal differences are largest

or high b values (3 – 20 ms/ 𝜇m 

2 ) both for high and low diffusivity

alues. For shorter diffusion times, the differences shift towards lower

-values and the noisy curves become separable for b-values around 0.5

s/ 𝜇m 

2 for D = 2 𝜇m 

2 /ms and around 1 ms/ 𝜇m 

2 for D = 0.5 𝜇m 

2 /ms.

.1.2. Cylindrical branch diameter can impact the high b value dependence

f the direction-averaged signal at short diffusion times 

As explained in Section 2.1 and 2.2 , to keep the cellular volume frac-

ion occupied by the soma constant, we adapted the D b value keeping

xed L and N proj according to Eq. ( Cassey et al., 2005 ). For most sub-

trates, which have projections with diameters ≤ 1.5 𝜇m, the branch

iameter does not have an impact on the b value dependence of the

ignal. Nevertheless, for the substrates which have a larger branch di-

meter (i.e. cells with low N b and large soma size), the signal decay

urves at short diffusion time ( Δ = 10 ms) start diverging at very large

 values (b > 10 ms/ 𝜇m 

2 ). This effect is especially clear for simulations

ith D = 0.5 𝜇m 

2 /ms, as illustrated in Fig. S1b). 

Noise considerations: The effect of branch diameter is detectable in the

resence of noise, especially for D = 0.5 𝜇m 

2 /ms, as illustrated in Fig.

6a) which shows large differences between cells with different soma

izes (and implicitly different branch diameters) at high b values. 

.1.3. Negligible impact of branching order of cylindrical projections on the

 value dependence of the direction-averaged signal 

As illustrated in Fig. 2 , the signal decay curves as a function of b-

alue are similar for synthetic cells with different branching orders for

he SDE sequence parameters chosen in these simulations, i.e. short gra-

ient duration and diffusion time up to 80 ms. Moreover, comparing the

ignal decay from Monte Carlo simulations with a theoretical model of

wo, non-exchanging, compartments ( Fig. 3 b) also shows a good agree-

ent between the curves, especially for N b = 6, implying that for the

DE sequences investigated here, the b-value dependence of the signal

annot directly inform on the complexity of the cell dendritic tree, ex-

ressed in terms of branching order N b . Even better agreement is ob-

erved for the shorter diffusion times of 10 and 30 ms. 

Noise considerations: Indeed, the results presented in Fig.s S5b) for

= 80 ms and in S6b) for Δ = 10 ms show that for cells with N b = {4,6}

here are just very small differences between the simulated signal and

he theoretical compartment model, and for the larger spherical soma

izes the shaded area describing the standard deviation of the noise over-

aps with the theoretical model. The differences are even smaller for the

ower diffusivity value D = 0.5 𝜇m 

2 /ms. 

.1.4. Soma-branch exchange can impact the b value dependence of the 

irection-averaged signal at long diffusion times 

For structures with N b = 1 (which have the largest potential of soma-

ranches exchange, see p ex values in Table S1), the simulated signal is

elow the theoretical curve for a range of intermediate b values (1-10

s/ 𝜇m 

2 ), especially for D = 2 𝜇m 

2 /ms and Δ = 80 ms. This effect is

ess pronounced for the shorter diffusion times and is not present for

he structures with branched projections and implicitly lower p ex values,

ointing out this effect rises from the exchange between spherical soma

nd cylindrical projections. 

Noise considerations: As illustrated in Fig.s S5b) and S6b), this effect

s more pronounced for Δ = 80 ms, and significant differences between

heoretical and simulated curves are present for both D = 2 𝜇m 

2 /ms and

 = 0.5 𝜇m 

2 /ms, given the simulated SNR of 20. 
7 
.1.5. Spherical soma size can impact the MD and MK time dependence at 

hort to intermediate diffusion times 

Figs. 4 and 6 illustrate the MD and MK time dependence for large and

mall cell domains with various spherical soma diameters and branching

rders, for diffusivities mimicking both water diffusion (D = 2 𝜇m 

2 /ms)

nd metabolites diffusion (D = 0.5 𝜇m 

2 /ms). 

For all substrates, the spherical soma size has a marked influence

n the time dependence of MD and MK, as also illustrated in Fig. 5 a)

nd 7a). For smaller spherical soma sizes, there is a sharp decay in MD

nd increase in MK at short diffusion times (~ 10 ms), followed by a

lower change at longer diffusion times. For the larger spherical soma

izes this regime extends up to ~100 ms. These patterns are further

hifted to longer diffusion times for the simulations with low diffusivity

s illustrated in Fig. 5 a) and 7a). 

Noise considerations: Fig. S7 and S8 from Supplementary Information

resent the differences in MD and MK between cells with D s = 8 𝜇m and

ells with larger diameter. For intermediate diffusion times, the differ-

nces in MD and MK are larger than the variations due to noise, both

or D = 2 𝜇m 

2 /ms and D = 0.5 𝜇m 

2 /ms. 

.1.6. Cylindrical branch diameter can impact the MD and MK time 

ependence at short diffusion times 

It is worthwhile to note that in some cases reported in Figs. 4 and 6 ,

e can additionally see the impact of non-negligible cylindrical branch

iameter on the simulated MD and MK time dependence, especially at

iffusion times < ~20 ms. 

For D = 2 𝜇m 

2 /ms, in Fig. 4 a) and Fig. 6 a), the effect of finite branch

iameter is negligible in most substrates, except for the smaller cells

L = 400 𝜇m) with large soma sizes (D s = 16, 20 𝜇m) and N b = 1 and 2,

here the branch diameter is larger than 1.9 𝜇m. In these cases, we see

 higher MD and a lower MK at the very short diffusion times[64, 65].

onsequently, for smaller cell domain and lower N b , D b values are large

nough to have a non-negligible impact on the MD and MK diffusion

ime dependence at relatively short diffusion time. 

For D = 0.5 𝜇m 

2 /ms, in Fig. 4 b) and Fig. 6 b), the effect of branch

iameter on MD and MK is more pronounced, as smaller diameter values

re detectable as expected from previous analyses ( Drobnjak et al., 2015 ;

ilsson et al., 2017 ). 

Noise considerations: The effect of cylindrical branch diameter is also

learly illustrated in Fig. S7a) and S8a), where signal differences due

o an increase in branch diameter are also detectable in the presence of

oise for short diffusion times. 

.1.7. Small impact of branching order of cylindrical projections on MD 

but not MK) time dependence at long diffusion time 

For all substrates, Figs. 4 and 6 show that there is a visible depar-

ure in MD and MK between the cells with different branching orders for

ong diffusion times ( > 100 ms), which is more pronounced for longer

iffusion times and smaller cells. These differences in MD and MK val-

es are determined by two effects, namely the cell branching itself and

 difference in exchange probabilities between soma and branches, as

llustrated in Table S1. 

To separate these effects, Fig. 5 b) and Fig. 7 b) are comparing the

ignal decay from Monte Carlo simulations with a theoretical model of

wo, non-exchanging, compartments, namely a sphere and isotropically

riented capped cylinders, with the same effective diameters as the val-

es from Table 1 . To investigate the effect of branching we focus on

ubstrates with Nb = {4, 6} which have a low potential of exchange

etween soma and branches. 

For substrates with larger N b values, and implicitly lower exchange

otential, we see a good alignment between the simulated and theoret-

cal curves, both for MD and MK. For the most branched cells (N b = 6),

e see slightly lower MD values compared to the theoretical curves for

ery long diffusion times > 200 ms which is due to the cell projections’

ranching, while the MK values remain lower than the theoretical values
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Fig. 4. MD time dependence for a) D = 2 

𝜇m 

2 /ms (mimicking water diffusion) and b) 

D = 0.5 𝜇m 

2 /ms (mimicking metabolites diffu- 

sion). Within each panel, the top row simulates 

large cells and the bottom row small cells, with 

different soma diameters (increasing diameter 

from left to right) and various branching orders 

(lines of different colours). MD is computed by 

fitting the Kurtosis model to the data simulated 

with all 3 b-values. 

Fig. 5. a) Comparison of MD time depen- 

dence for cells with different soma sizes, do- 

main size L = 400 𝜇m, and increasing com- 

plexity (branching order increases left to right). 

b) Comparison between Monte Carlo simula- 

tions and the GPD approximation for a non- 

exchanging two-compartment model which in- 

cludes diffusion inside a sphere and finite 

isotropically oriented cylinders with the same 

effective diameters as the effective D s and D b 

values indicated in Table 1 . The signal is com- 

puted for cells with a domain size L = 400 𝜇m 

and target D s = 8 𝜇m. In both a) and b). MD is 

computed by fitting the Kurtosis model to the 

data simulated with all 3 b-values. 

8 
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Fig. 6. MK time dependence for a) D = 2 

𝜇m 

2 /ms (mimicking water diffusion) and b) 

D = 0.5 𝜇m 

2 /ms (mimicking metabolites diffu- 

sion). Within each panel, the top row simulates 

large cells and the bottom row small cells, with 

different soma diameters (increasing diameter 

from left to right) and various branching orders 

(lines of different colours). MK is computed by 

fitting the Kurtosis model to the data simulated 

with all 3 b-values. 

Fig. 7. a) Comparison of MK time dependence 

for cells with different soma sizes, domain 

size L = 400 𝜇m, and increasing complex- 

ity (branching order increases left to right). 

b) Comparison between Monte Carlo simula- 

tions and the GPD approximation for a non- 

exchanging two-compartment model which in- 

cludes diffusion inside a sphere and finite 

isotropically oriented cylinders with the same 

effective diameters as the effective D s and D b 

values indicated in Table S1. The signal is com- 

puted for cells with a domain size L = 400 𝜇m 

and target D s = 8 𝜇m. In both a) and b). MK is 

computed by fitting the Kurtosis model to the 

data simulated with all 3 b-values. 

9 
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Table 1 

A summary of different dMRI/dMRS regimes and acquisitions where the measurements show sensitivity to different substrate properties, namely spherical soma 

size, branching of cylindrical projections, cylindrical projection size, soma-branch exchange. 

Diffusion sequence Measurement 

Intracellular probe 

molecule 

Sensitivity to spherical 

soma size 

Sensitivity to 

branching of 

cylindrical projections 

(branch-branch 

exchange) 

Sensitivity to 

cylindrical projections 

size 

Sensitivity to 

soma-branch exchange 

SDE 

(short 𝛿 = 1 ms) 

Signal intensity at 

fixed diffusion time 

and varying gradient 

strength 

Water 

D 0 = 2 𝜇m 

2 /ms 

YES 

for b > 3 ms/ 𝜇m 

2 and 

Δ ≤ 30 ms 

NO NO 

because it requires 

higher b values than 

those simulated here 

YES 

for 0.5 < b < 10 

ms/ 𝜇m 

2 

and Δ ≥ 30 ms 

NOTE 

intra-extracellular 

exchange may mask 

the effect 

Metabolites 

D 0 = 0.5 𝜇m 

2 /ms 

YES 

for b > 10 ms/ 𝜇m 

2 

and Δ ≤ 100 ms 

NO YES 

for b > 10 ms/ 𝜇m 

2 , 

Δ ≤ 10 ms 

and diameters ≥ 1.5 

𝜇m 

YES 

for 2 < b < 10 ms/ 𝜇m 

2 

and Δ ≥ 80 ms 

SDE 

(short 𝛿 = 1 ms) 

MD at varying 

diffusion time 

Water 

D 0 = 2 𝜇m 

2 /ms 

YES 

for Δ ∈ [5-40] ms 

YES 

for Δ > 200 ms 

NOTE 

intra-extracellular 

exchange may mask 

the effect 

NO YES 

for Δ ≥ 20 ms 

NOTE 

intra-extracellular 

exchange may mask 

the effect 

Metabolites 

D 0 = 0.5 𝜇m 

2 /ms 

YES 

for Δ ∈ [40-200] ms 

YES 

for Δ > 1000 ms 

YES 

for Δ ≤ 10 ms 

and diameters ≥ 1.5 

𝜇m 

YES 

and Δ ≥ 100 ms 

SDE 

(short 𝛿 = 1 ms) 

MK at varying 

diffusion time 

Water 

D 0 = 2 𝜇m 

2 /ms 

YES 

for Δ ∈ [20-100] ms 

NO NO YES 

for Δ ≥ 20 ms 

Metabolites 

D 0 = 0.5 𝜇m 

2 /ms 

YES 

for Δ ∈ [80-400] ms 

NO YES 

for Δ ≤ 10 ms 

and diameters ≥ 1.5 

𝜇m 

YES 

and Δ ≥ 100 ms 

DDE 

(short 𝛿 = 1 ms) 

Amplitude of angular 

signal modulation, 

Δ = 5 ms 

Water 

D 0 = 2 𝜇m 

2 /ms 

b = 4 ms/ 𝜇m 

2 

YES 

for t m → 0 

and small soma sizes, as 

larger sizes require longer 

diffusion times 

YES 

by contrasting 

measurements with t m 
~ 1 ms and t m > 20 ms 

NO NO 

Metabolites 

D 0 = 0.5 𝜇m 

2 /ms 

b = 16 ms/ 𝜇m 

2 

NO 

for t m → 0 

because it requires longer 

diffusion times than 

simulated here 

YES 

by contrasting 

measurements with t m 
~ 5 ms and and t m > 

80 ms 

YES 

for t m → 0 

and diameters ≥ 1.5 

𝜇m 

NO 

DDE 

(short 𝛿 = 1 ms) 

𝜇A Water 

D 0 = 2 𝜇m 

2 /ms 

b = 4 ms/ 𝜇m 

2 

YES 

for t m → 0 

and Δ > 5 ms 

YES 

by contrasting 

measurements with t m 
~ 1 ms and t m > 30 ms 

NO NO 

Metabolites 

D 0 = 0.5 𝜇m 

2 /ms 

b = 4 ms/ 𝜇m 

2 

YES 

for t m → 0 

and Δ > 20 ms 

YES 

by contrasting 

measurements with t m 
~ 5 ms and and t m > 

100 ms 

YES 

for t m → 0, 

Δ ~ 5 ms 

and diameters ≥ 1.5 

𝜇m 

NO 
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s  
or all N b investigated here. At long diffusion times, the overall domain

ize also has an impact on the MD and MK values, which have a more

ronounced change with diffusion time for smaller cells with L = 400 𝜇m

ompared to cells with L = 1000 𝜇m, a trend also captured by the finite

ylinders from the two-compartment model as illustrated in Figs. 5 b)

nd 7 b). 

Noise considerations: To better assess the detectability of these effects,

ig. S7b) and S8b) plot the signal differences between the simulated

ignal, which includes the effects of branched projections (N b > 1) as

ell as the exchange between soma and branches, and the theoretical

ignal for a compartment model which does not include these effects,

n the presence of noise. For substrates with Nb = {4, 6}, the impact

f branching order on MD is small, nevertheless, for cells with N b = 6

t long diffusion times, there is a small but significant decrease in MD

ompared to the theoretical model. When considering MK, for structures
10 
ith N b = 6, the shaded areas, showing the standard deviation of MK

or an SNR of 20, overlap with the theoretical values. 

.1.8. Soma-branch exchange can impact the MD and MK time 

ependence at long diffusion times 

For cells with low branching orders N b = {1,2} we see higher MD

alues and lower MK values in the simulated cells compared to the the-

retical model for diffusion times larger than 20-30 ms. This trend was

een for other values of the soma diameter as well and is due to the

xchange between the soma and the branches which is the most pro-

ounced for cells with N b = 1 compared to other cells due to the larger

ranch diameter (see p ex values in Table S1). 

Noise considerations: For diffusion times above ~100 ms, we see a

ignificant increase in MD and decrease in MK due to exchange between
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oma and branches for cells with N b = {1, 2}, for the considered SNR of

0. 

.1.9. Distinct regimes for the impact of cylindrical branch size, spherical 

oma size, soma-branch exchange and branch-branch exchange 

The results in the previous sections suggest the existence of distinct

egimes where the effects of cylindrical branch diameter, spherical soma

ize, soma-branch exchange and the branch-branch exchange due to

ranching of cellular projections (here parametrized by N b ), dominate

he MD and MK time dependence. Specifically, for water diffusion: 

a) at very short diffusion times, i.e. ≤ 10 ms, branch diameters ( > 1.5

𝜇m) seem to drive the MD and MK time dependence; 

b) at short to medium diffusion times, i.e. ~10-50 ms, the spherical

soma diameter D s seems to drive the MD and MK diffusion time de-

pendence; 

c) at medium to long diffusion times, i.e. ≥ 50 ms, the exchange be-

tween soma and branches seems to impact the MD and MK diffusion

time dependence ( Fig. 3 ), 

d) at very long diffusion times, i.e. > 200 ms, the branch-branch ex-

change has a dominant effect on MD. 

These regimes seem to hold for metabolites too, once longer diffu-

ion times are considered to compensate for the much slower diffusion

oefficient of metabolites compared to water ( Fig. 4 b), Fig. 6 b), Fig. S6

nd Fig. S7). Also, it is worth noting that the soma-branch exchange has

n opposite effect to the branch-branch exchange on the MD and MK

ime dependence. 

.2. Effect of soma size and branching order on DDE measurements 

.2.1. Spherical soma size can impact the DDE signal’s angular modulation

t short mixing times 

Fig. 8 a) plots the angular DDE modulation as a function of mixing

ime for cells with different spherical soma size for N b = 1 and N b = 6

nd a cell domain L = 400 𝜇m, for the water diffusivity D = 2 𝜇m 

2 /ms.

or the DDE sequences with short diffusion time ( Δ = 5 ms) considered

n this simulation, spherical soma size has only a small effect on the

ngular modulation, shown by the bell-shaped curve for D s = 8 𝜇m at

m 

= 1 ms. For the same cellular configurations with D s = 8 𝜇m, the sig-

al is slightly shifted compared to the other soma sizes, nevertheless all

urves follow the same amplitude modulations for 𝜏m 

> 10 ms. The shift

ccurs due to a more pronounced effect of restricted diffusion inside the

oma, which is closer to the mean squared displacement of 
√
6 𝐷Δ ~

 𝜇m compared to the larger soma diameters, for which only part of

he spins will probe the boundary during the given diffusion time. The

arger effect of restricted diffusion for D s = 8 𝜇m can also be seen from

he higher difference between the DDE with parallel (0 o ) and orthogo-

al (180 o ) gradient orientations. For these DDE sequences, the effect of

pherical soma size for metabolites diffusivity D = 0.5 𝜇m 

2 /ms is neg-

igible, as it is clearly illustrated in Fig. S4a) for structures with N b = 6

here the effect of branch diameter is negligible, and all curves overlap.

oreover, for the shortest mixing time, there is no difference between

arallel and anti-parallel signals, which is also a signature of restriction.

Noise considerations: When considering the difference between DDE

easurements with parallel and anti-parallel gradients at 𝜏m 

= 1 ms as a

robe of restriction size, for the larger diffusivity value D = 2 𝜇m 

2 /ms,

he signal differences are ~ 0.07 for cells with D s = 8 𝜇m, ~ 0.02 for

 s = 12 𝜇m and below 0.01 for the largest diameters. Thus, even for the

hort diffusion time used in these simulations, the impact of the smaller

oma sizes on the DDE signal at short mixing time is above the noise

evel, for the noise distribution considered in this study with 𝜎 = 0.05

nd averaging over the 40 directions. 

.2.2. Cylindrical branch diameter can impact the DDE signal’s angular 

odulation at short mixing times 

As illustrated in Fig. S4, for simulations with D = 0.5 𝜇m 

2 /ms and

tructures with branch diameter ≥ 1.5 𝜇m, there is a clear effect both on
11 
he DDE signal values and on the mixing time dependence of the angular

odulation shape, which at very short mixing times has the character-

stic bell-shaped curve for restricted diffusion. Also, for the substrates

ith the larger branch diameters, the overall amplitude of the angu-

ar modulation at long mixing times is lower than for substrates with

maller branch diameters, nevertheless it does not vary with mixing time

nce the long-time regime with respect to the diameter values has been

eached. 

Noise considerations: When considering the difference between DDE

easurements with parallel and anti-parallel gradients at 𝜏m 

= 1 ms as a

robe of restriction size, for D = 0.5 𝜇m 

2 /ms the signal differences are

0.03 for cells with D b ~ 2 𝜇m, which is above the noise level for the

istribution considered in this study with 𝜎 = 0.05 and averaging over

he 40 directions. 

.2.3. Branching order of cylindrical cellular projections can impact the 

ixing time dependence of the DDE signal’s angular modulation 

Fig. 8 b) presents the angular DDE modulation as a function of mix-

ng time for synthetic cells with different branching orders for D s = 8

m and D s = 20 𝜇m and a cell domain L = 400 𝜇m. The plots show

 decrease in the amplitude of the DDE signal modulation with mixing

ime for the cells with branched projection, and the decrease is larger for

arger values of N b . To further investigate this effect, Fig. 9 compares the

imulated angular DDE modulation with the signal provided by a non-

xchanging two-compartment model consisting of diffusion restricted

n a sphere and finite isotropically oriented cylinders with the parame-

ers described in Table S1, which is exemplified for D s = 8 𝜇m. Fig. 9 a)

hows a good agreement between simulated and theoretical curves for

ells with straight projections (N b = 1) for the entire range of mixing

imes, while Fig. 9 b) indeed shows a decrease in the modulation ampli-

ude with mixing time for the branched cells with N b = 6, both for D = 2

nd 0.5 𝜇m 

2 /ms. Similar trends have been observed for other substrates

nd soma diameters. For simulations with D = 0.5 𝜇m 

2 /ms or for larger

ell domains (L = 1000 𝜇m), the decrease is less pronounced compared

o the results for D = 2 𝜇m 

2 /ms, as less spins travel from one segment

o the other in the same time interval. The results are shown for the se-

uences with b = 4 ms/ 𝜇m 

2 for D = 2 𝜇m 

2 /ms and b = 16 ms/ 𝜇m 

2 for

 = 0.5 𝜇m 

2 /ms nevertheless, similar trends are seen for other b values.

Noise considerations: Analysing the difference between DDE measure-

ents with parallel and orthogonal gradient orientations and how it

hanges with mixing time, Fig. S9a) shows that for cells with highly

ranched projections (N b = 4 and 6), the amplitude modulation de-

reases with mixing time. The change in amplitude modulation between

hort mixing times and longer mixing times can be detected at 𝜏m 

= 200

s also when considering noisy data, both for D = 2 and 0.5 𝜇m 

2 /ms.

he decrease is less pronounced ( < 0.015) for cells with straight projec-

ions, and the signals overlap within their standard deviations. Similar

rends and detectability levels are observed when comparing the simu-

ated DDE signal with the compartment model (Fig. S9b). 

.2.4. Negligible impact of soma-branch exchange on the mixing time 

ependence of the DDE signal’s angular modulation 

For the DDE sequences investigated in this work, we see no direct

ffect of exchange between spherical soma and cylindrical projections,

s the amplitude of the angular modulation for cells with N b = 1 (which

ave the highest exchange potential) does not vary with mixing time and

losely matches the theoretical two compartment model, as illustrated

n Fig. 9 and Fig. S9. 

.2.5. Spherical soma size can impact the mixing time dependence of the 

A for medium diffusion times 

To further investigate the effect of spherical soma size and branching

rder on DDE signal, Fig. 10 presents the mixing time dependence of the

pparent microscopic anisotropy for DDE sequences with short (a,c,e,g)

nd long (b,d,f,h) diffusion times, for cells with different branching or-
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Fig. 8. Dependence of DDE angular modula- 

tion on the mixing time for a) cells with dif- 

ferent soma sizes and b) cells with different 

branching orders. The data is simulated for 

cells with a domain size of 400 𝜇m, b-value of 

b = 4 ms/ 𝜇m 

2 and D = 2 𝜇m 

2 /ms. 
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ers, for D = 2 𝜇m 

2 /ms and D = 0.5 𝜇m 

2 /ms, respectively. The plots also

ompare the simulated values with predictions from a non-exchanging

wo-compartment model. 

For DDE sequences with short diffusion time ( Δ = 5 ms) we see sim-

lar 𝜇A trends for small and large soma values with D s = 8 𝜇m and 16

m, respectively ( Figs. 10 a, 10 c, 10 e, 10 g). For DDE sequences with

onger diffusion time ( Δ = 30 ms) we see an initial increase in 𝜇A

ith mixing time, which becomes more pronounced as the soma size

ncreases, especially for the larger diffusivity value D = 2 𝜇m 

2 /ms. For

he smaller diffusivity value, i.e. D = 0.5 𝜇m 

2 /ms, and larger soma di-

meter D s = 16 𝜇m, the diffusion time of Δ = 30 ms is not long enough

o probe the spherical restriction and the initial increase with mixing

ime is no longer apparent. 

.2.6. Cylindrical branch diameter can impact the mixing time dependence 

f the 𝜇A for short diffusion times 

Besides the soma size effect, the plot in Fig. 10 g (D = 0.5 𝜇m 

2 /ms,

= 5 ms and large soma size D s = 16 𝜇m) also shows the effect of finite

ranch diameter which is reflected by different plateau values of the

heoretical curves corresponding to cells with different N b values, which

y design, have different branch diameters. As illustrated in Fig. 9 g),

or sequences with short diffusion time Δ = 5 ms and small diffusivity

 = 0.5 𝜇m 

2 /ms, the effect of branch diameters > ~ 1.5 𝜇m can be

bserved on the 𝜇A values, which are different for different substrates,

s also reflected by the theoretical model. For the synthetic cells with

he largest branch diameter, there is also a sharp increase in 𝜇A at very

hort mixing times (data not shown). 

Noise considerations: The effects of branch diameters > ~ 1.5 𝜇m can

e detected for the metabolites’ diffusivity D = 0.5 𝜇m 

2 /ms, following

 similar rationale to 3.2.2. 
12 
.2.7. Branching order can impact the mixing time dependence 

f the 𝜇A 

Fig. 10 shows lower values of microscopic anisotropy for cells with

ranched projections (i.e. N b = 4 and N b = 6) compared to the values

btained for cells with straight projections (N b = 1) as well as the cor-

esponding theoretical curves from the two-compartment model. More-

ver, for DDE sequences with short diffusion time (5 ms), we see a de-

rease in 𝜇A with mixing time as the branching order increases. This

ffect can be seen for higher and lower diffusivity values, both for cells

ith a small soma diameter of 8 𝜇m, as well as a larger soma diameter

f 16 𝜇m ( Figs. 10 a, 10 c, 10 e and 10 g). This decrease in 𝜇A cannot be

aptured by the analytical two-compartment model, which, apart from

 slight increase at short 𝜏m 

in the case of D s = 8 𝜇m, shows no 𝜇A

ependence on mixing time. 

For the sequences with longer diffusion time of 30 ms, the mix-

ng time dependence of 𝜇A is dominated by soma size and the effect

f branching is less pronounced compared to the DDE sequences with

hort diffusion times, as illustrated in Fig. 10 b,d for D = 2 𝜇m 

2 /ms and

n Fig. 10 f, h for D = 0.5 𝜇m 

2 /ms, respectively. In this case, the differ-

nce between cells with N b = 1 and N b = 6 is mainly reflected by an

verall shift in the 𝜇A values, rather than a different dependence (i.e. a

ifferent slope) on 𝜏m 

. Similar trends to the ones presented in Fig. 10 are

bserved for other cellular configurations as well. 

Noise considerations: As illustrated in Fig. S10a), the detectability of

A 

2 differences for noisy DDE with Δ = 5 ms is similar to the results pre-

ented in section 3.2.2 . Branched cells (N b = 4 and 6) show a decrease

n 𝜇A 

2 with mixing time which can be detected considering the condi-

ions of this analysis, i.e. 12 parallel and 60 perpendicular directions,

oise standard deviation of 0.05 for each measurement. The decrease is

ignificant both for D = 2 𝜇m 

2 /ms and D = 0.5 𝜇m 

2 /ms. For sequences

ith Δ = 30 ms (Fig. S10b), the decrease in 𝜇A 

2 with mixing time is less
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Fig. 9. Dependence of DDE angular modula- 

tion on the mixing time for cells with a soma 

diameter of 8 𝜇m and a) N b = 1 and b) N b = 6. 

The data is simulated for cells with a domain 

size of 400 𝜇m and a b-value of b = 4 ms/ 𝜇m 

2 . 

The coloured solid lines represent the MC sim- 

ulations, and the dotted lines represented the 

analytical two-compartment model. 

Fig. 10. Mixing time dependence of the appar- 

ent microscopic anisotropy for DDE sequences 

with b = 4 ms/ 𝜇m 

2 and different diffusion 

times and soma diameters: a),e) Δ = 5 ms and 

D s = 8 𝜇m; b),f) Δ = 30 ms and D s = 8 𝜇m; c),g) 

Δ = 5 ms and D s = 16 𝜇m; d),h) Δ = 30 ms and 

D s = 16 𝜇m. The data is simulated for diffu- 

sivities a)-d) D = 2 𝜇m 

2 /ms and e)-h) D = 0.5 

𝜇m 

2 /ms. The data is simulated for cells with 

an overall diameter of 400 𝜇m. The coloured 

solid lines represent the MC simulations, and 

the dotted lines represented the analytical two- 

compartment model. 
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ronounced, nevertheless, the branched cells show a larger mismatch

etween the theoretical and the simulated data, compared to the cells

ith straight projections. 

.2.8. Negligible impact of soma-branch exchange on the mixing time 

ependence of the 𝜇A 

For the DDE sequences investigated in this work, we see no direct

ffect of exchange between spherical soma and cylindrical projections,

s 𝜇A values estimated for cells with N b = 1 (which have the highest

xchange potential) do not vary with mixing time and closely match

he theoretical two compartment model, as illustrated in Fig. 10 and

ig. S10. 
13 
.3. Summary of results 

A summary of the results for the sequences employed in this work is

resented in Table 1 . 

. Discussion 

This work employs MC simulations of diffusion within realistically

onnected neuron-like meshes in order to study the effect of branch-

ng order of cellular projections and soma size on the signal measured

sing both single (SDE) and double (DDE) diffusion encodings. We in-

estigate both fast and slow diffusion, to mimic intracellular water and

etabolites diffusion, respectively. Although we see only a small effect
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n  
f branching on the signal measured with standard SDE sequences, our

ey results show that DDE acquisitions with variable mixing time could

rovide information about the branching order of the cellular projec-

ions ( Table 1 ). Moreover, we show that as the cellular projections be-

ome more branched, there is a more pronounced decrease in measured

pparent 𝜇A with mixing time, which could be used as a signature of

his feature. 

The SDE results presented here support the use of simpler compart-

ental models for disentangling the soma contribution to the overall sig-

al, for example SANDI ( Palombo et al., 2020 ), as the branching makes

ittle difference on the time and b-value dependence for values typi-

ally used in diffusion experiments. Nevertheless, this work also points

t the necessity to carefully choose the experimental design, since the

mpact of soma seems to dominate the signal within a specific time and

-value window ( Table 1 ). These results are also in line with recent pre-

iminary data showing that branching has little impact on the b-value

ower law characteristic for straight cylinders with infinitesimally small

adius ( Olesen and Jespersen, 2020 ). 

.1. Comparison with metabolites dMRS literature 

Our simulations are focused on the intracellular space only and

herefore are directly relevant for metabolites dMRS measurements.

ur results at slow diffusivity (i.e. mimicking metabolites diffusion)

re in good agreement with experimental evidences from previously

ublished SDE ( Valette et al., 2018 ; Ingo et al., 2018 ; Palombo et al.,

016 ; Pfeuffer et al., 2000 ; Ellegood et al., 2005 ; Valette et al., 2007 ;

an et al., 2012 ; Deelchand and Auerbach, 2018 ; Ercan et al., 2015 ;

igneul and Valette, 2017 ; Marchadour et al., 2012 ; Marja ń ska et al.,

019 ; Döring et al., 2018 ; Najac et al., 2016 ; Najac et al., 2014 ) and

DE ( Lundell et al., 2020 ; Shemesh et al., 2017 ; Shemesh et al., 2014 ;

incent et al., 2020 ; Lundell et al., 2021 ) measurements of metabolites

iffusion through dMRS. 

To our knowledge, there are a few studies investigating the

etabolites MD time-dependence but none investigating the MK time-

ependence. Our simulation results match the observed MD decrease

t increasing diffusion time for the mostly intracellular metabolites

uch as N-acetylaspartate (NAA), Creatine (Cr), Myo-Inositol (Ins) and

holine (Cho) ( Valette et al., 2018 ; Ingo et al., 2018 ; Palombo et al.,

016 ; Pfeuffer et al., 2000 ; Ellegood et al., 2005 ; Valette et al., 2007 ;

an et al., 2012 ; Deelchand and Auerbach, 2018 ; Ercan et al., 2015 ;

igneul and Valette, 2017 ; Marchadour et al., 2012 ; Marja ń ska et al.,

019 ; Döring et al., 2018 ; Najac et al., 2016 ; Najac et al., 2014 ). To

ompare more directly our simulation results with experimental find-

ngs, we have reanalyzed the data from ( Veraart et al., 2020 ) and esti-

ated metabolites MD and MK at Δ ~ 64 and 254 ms to be on average:

D ~ 0.115 and 0.085 𝜇m 

2 /ms; MK ~ 1.45 and 1.75 (see Fig. S11 in

upplementary Information). Our simulation results for spherical soma

f 12 𝜇m in diameter suggest MD ~ 0.120 and 0.090 𝜇m 

2 /ms; MK ~

.40 and 2.20, so in agreement with the experimental findings for purely

ntracellular metabolites. As a novel result, our simulations of MK time-

ependence suggest that MK time-dependent measurements of intracel-

ular metabolites can be sensitive to the exchange between soma and

rojections, pointing at the interesting possibility to design metabolites

DE acquisitions optimized to measure this exchange mechanism. 

Concerning DDE acquisitions, measuring the diffusion of purely

ntracellular metabolites in-vivo in rat brain, Shemesh et al.

 Shemesh et al., 2017 ; Shemesh et al., 2014 ) showed that DDE signal

rom NAA and Ins displayed characteristic amplitude modulations re-

orting on confinements in otherwise randomly oriented anisotropic

icrostructures for both metabolites. More recently, Vincent et al.

 Vincent et al., 2020 ) showed in vivo in mouse brain that a simple geo-

etrical model of randomly oriented cylinders is not able to accurately

xplain the experimental DDE data, and that a more complex model in-

orporating branching (and/or other subtle structures such as spines)

s indeed needed. Our simulation results on the amplitude of angular
14 
ignal modulation from DDE measurements using brain metabolites dif-

usivity match these experimental observations, further supporting the

nterpretation that indeed branching of complex neural cell structures

ignificantly impacts intracellular metabolites diffusion under the exper-

mental conditions investigated by Shemesh et al. ( Shemesh et al., 2017 ;

hemesh et al., 2014 ) and Vincent et al. ( Vincent et al., 2020 ). More-

ver, the recent DDE measurements of metabolites diffusion in vivo in

uman brain by Lundell et al. ( Lundell et al., 2021 ) corroborate these

esults and additionally show that the microscopic fractional anisotropy

f tCho, intracellular metabolite preferentially found in glial cells, is sig-

ificantly lower in gray matter than in white matter. The authors specu-

ated that a possible explanation is that in gray matter a significant frac-

ion of tCho may be found in protoplasmic astrocytes. These astrocytes,

ound extensively in human gray matter, are highly branched cells, sig-

ificantly more so than their fibrous counterparts in white matter. Our

imulation results support this explanation, showing that indeed higher

ranching can reduce the DDE signal’s amplitude angular modulation

nd the estimates of derived apparent microscopic anisotropy. 

.2. Comparison with water dMRI literature 

A few studies investigated MD and MK time-dependence in GM

hrough water dMRI ( Aggarwal et al., 2012 ; Aggarwal et al., 2020 ;

oes et al., 2003 ; Lee et al., 2020 ). They reported a marked decrease

f MD and increase of MK as diffusion time increases up to ~20 ms,

hen the decrease of MD is much less pronounced, and MK starts de-

reasing with increasing diffusion times. Our simulation results match

he observed decrease of MD and increase of MK at short diffusion times

i.e. Δ≤ 20 ms) ( Aggarwal et al., 2012 ; Aggarwal et al., 2020 ; Does et al.,

003 ) but do not match the observed behaviours of MD and MK at longer

iffusion times (i.e. Δ > 20 ms) ( Lee et al., 2020 ). As pointed in the lit-

rature ( Aggarwal et al., 2020 ; Lee et al., 2020 ), one of the possible

echanisms explaining the observed MD and MK time-dependence at

ong diffusion times in GM could be the intra-extracellular exchange.

ince we have not accounted for this mechanism in our simulations, we

ypothesize that the discrepancy of our simulation results with respect

o published experimental data at diffusion times longer than ~20 ms

an be due to intra-extracellular exchange. This indirectly suggests that

ntra-extracellular exchange in GM may affect the measured MD and

K time-dependence for diffusion times > 20 ms more than the soma-

ranch exchange and the branch-branch exchange (both included in our

imulations). 

The conclusions concerning water DDE measurements may also

e altered by the exchange with extracellular space. Earlier studies

 Lampinen et al., 2017 ; Lampinen et al., 2019 ) exclusively based on

ater dMRI measurements at b values ≤ 2 ms/ 𝜇m 

2 showed lower 𝜇A

n GM. Given the relatively low b value, this could be explained by

ast intra-extracellular exchange as well as significant contribution from

ostly isotropic extracellular space. However, the recent study by Lun-

ell et al. ( Lundell et al., 2021 ) compared DDE measurements of metabo-

ites and water diffusion in healthy human brain and showed that water

A at high b values ( > 2 ms/ 𝜇m 

2 ) in GM is similar to that of some

urely intracellular metabolites (e.g. NAA), suggesting that the signal

rom the extracellular space is effectively suppressed at high b values (~

-7 ms/ 𝜇m 

2 ) and that intra-extracellular exchange has small effect un-

er the investigated experimental conditions (gradient separation ~45

s; mixing time ~5 ms). Our simulation setup includes these experi-

ental conditions and indeed our results mirrors the experimental ob-

ervations by Lundell et al. for both water and metabolites. The DDE

imulations show similar trends for different b-values, nevertheless for

ater this may change at low b-values (~1 ms/ 𝜇m 

2 ) due to the effect

f extracellular space. 

Moreover, tortuosity values in the cytoplasm for water and NAA were

ound remarkably similar, while exhibiting a clear difference between

ray and white matter, suggesting a more complex cytomorphology of

euronal cell bodies and branching dendrites in GM compared to WM
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 Lundell et al., 2021 ). These findings are also in good agreement with

ur DDE results, which support the hypothesis that the more complex

ytomorphology of neural cells in GM can significantly impact DDE mea-

urements and DDE acquisitions can be potentially used to quantify it. 

Finally, a study by Ianus et al ( Ianus et al., 2018 ) measuring the time

nd frequency dependence of 𝜇A in mouse brain, ex-vivo, showed that

he observed 𝜇A time dependence cannot be explained by any simple

odel of water restricted in cylinders and/or spheres, also supporting

ur simulation results at the fastest diffusivity (i.e. mimicking intracel-

ular water diffusion) and the possibility of measuring new features of

rain cell morphology, such as branching. 

.3. Impact of soma-branch exchange and branch-branch exchange 

In this work we investigate two potential mechanisms of exchange

n neural cells that have been previously ignored: the soma-branch and

he branch-branch exchange. Our results show that soma-branch ex-

hange can have a significant effect on SDE measurements within an

xperimental regime which is quite different from that of the branch-

ranch exchange (see Table 1 ). This suggests that it may be possible

o tune dMRI/dMRS measurements to disentangle the two mechanisms

nd potentially quantify them. For metabolites dMRS, these conclusions

irectly point towards exciting new perspectives for future experiments,

nforming the design of acquisitions aiming to disentangle and measure

hese two exchange mechanisms. Perhaps, more sophisticated encod-

ngs of the diffusion gradients ( Westin et al., 2016 ; de Almeida Martins

nd Topgaard, 2016 ) could be envisioned, also benefitting from filter-

ng techniques such as the relaxation-enhanced dMRS at ultrahigh field

 Shemesh et al., 2017 ). Such measurements could be important in the

ontext of measuring in vivo brain plasticity ( Zatorre et al., 2012 ) in

sychiatric disorders ( Li et al., 2010 ) or in the context of degenerative

iseases ( Cusack et al., 2013 ), providing new insights into changes in

eural cell soma-branch connectivity or branching order of projections.

Concerning water dMRI, an additional third mechanism of exchange

an play a significant role: the intra-extracellular exchange. Based on

he comparison of our results on water MK time-dependence with re-

ent experimental findings (see previous section), we can hypothesis

hat the intra-extracellular exchange may have a dominant impact at

iffusion times > 20 ms, hence potentially outweigh the influence of

ranch-branch exchange. However, whether the intra-extracellular ex-

hange actually dominates over the other two mechanisms of exchange

s a new open question for future works. 

.4. Potential impact of extracellular signal and intra-extracellular 

xchange on water dMRI results 

In this work we focus on intracellular signal only, in order to sys-

ematically investigate the effect of branching order of cellular projec-

ions and soma size, without considering exchange with any extracellu-

ar space. The exchange between intra and extracellular space could im-

act water dMRI experiments and might alter some of the corresponding

onclusions. Therefore, the prominent direct application of our results

s in intracellular metabolite dMRS studies, with our simulations mim-

cking water diffusion surely of interest for dMRI applications, when

he effect of water exchange can be considered negligible. For example,

s already discussed in Section 4.2 , intra-extracellular exchange could

lter our results on the MD and MK time dependence, potentially ex-

laining the mismatch of our simulations with the experimentally ob-

erved behaviours of MD and MK at medium-long diffusion times ( > 20

s). However, it is still unclear how fast the intra-extracellular water

xchange is in vivo in brain grey matter and at which time scale its ef-

ect becomes significant. While substantial information exists on water

xchange through cellular membranes in vitro, the in vivo information

emains limited and controversial. From experiments using in vitro cul-

ures of rat cortex, Bai et al. ( Bai et al., 2018 ) and Yang et al. ( Yang et al.,

018 ) consistently estimated the apparent water exchange time to be of
15 
0.5-0.8 seconds. On the other hand, studies using a technique called

lter-exchange imaging (FEXI) ( Lasic et al., 2011 ) consistently measured

pparent water exchange time in vivo in human brain cortex of ~1.4-2.5

econds ( Nilsson et al., 2013 ; Lampinen et al., 2017 ; Bai et al., 2020 ).

ccording to these FEXI estimates, for in vivo dMRI applications we can

onsider water exchange effects to be negligible in brain grey matter

or diffusion and mixing times much shorter than ~2 seconds. This is

he case concerning our DDE results, where the longest mixing time is

.2 seconds, while it may indeed affect our conclusions about the MD

nd MK time-dependence from SDE measurements, where the longest

iffusion time is 2.450 seconds. More quantitatively, assuming the FEXI

ramework and parameters previously reported in the literature for in

ivo human brain grey matter ( Nilsson et al., 2013 , Lampinen et al.,

017 ; Bai et al., 2020 ), we estimate that the signal difference between

he DDE signal (total b value = 4 ms/ 𝜇m 

2 ) at 𝜏m 

= 1 ms and 𝜏m 

= 200

s due to exchange would be ~5 times smaller than the signal ampli-

ude difference due to the branching of cellular projections as quanti-

ed in Supplementary Information section S3 and Fig. S7. Of course,

hese considerations should be revised by appropriate rescaling if new

xperimental evidences would suggest faster apparent water exchange

imes in gray matter. Moreover, we note that highly permeable cellular

rojections could still support long voxel-level exchange times, if the

oma and myelinated axons had a low permeability. Nevertheless, re-

ent findings using metabolites and water DDE in humans ( Lundell et al.,

021 ) show high microscopic anisotropy in grey matter measured at

igh b-values and challenge previous results in ( Lampinen et al., 2017 ,

ampinen et al., 2019 ), pointing towards the possibility of negligible im-

act from extracellular signal and intra-extracellular exchange on DDE

easurements under specific experimental conditions, which have been

nvestigated here as well. Future works are needed to assess when and to

hat extent the intra-extracellular exchange and different permeability

or different cellular sub-compartments (e.g. nucleus, soma, projections,

yelinated axons etc) could change our results and conclusions. 

.5. Limitations and future works 

One main limitation of this simulation study is that it does not in-

lude exchange with extracellular space, which can also affect MD and

K time dependence for SDE sequences as well as the mixing time de-

endence of angular DDE signals and microscopic anisotropy metrics

n case of water-based measurements, especially if longer diffusion /

ixing times are considered. We chose to focus on intracellular signal

nly in order to systematically investigate the effect of soma size and

ranching order of cellular projections, without the added complexity

f cellular packing and exchange between intra and extracellular spaces,

hich is a research topic on its own. Furthermore, there is currently lack

f computational tools able to densely pack complex cellular structures

ike those considered in this work into realistic virtual tissues. This is

 crucial aspect necessary to assess any realistic and sensible impact of

xchange with brain extracellular space. Moreover, the meshes simplify

he cellular structure and do not account for cellular nuclei or axonal

eatures such as variations in calibers and axonal undulations that can

ave a larger impact on the dMRI signal than the cylinder diameter itself

 Lee et al., 2020 ; Brabec et al., 2020 ). However, it is worthwhile to note

hat substantial steps forward have been recently achieved for white

atter numerical phantoms ( Ginsburger et al., 2019 ; Callaghan et al.,

020 ; Lee et al., 2020 ). Future works will aim at adapting these kinds

f approaches for realistic grey matter numerical phantoms generation,

nabling an exhaustive study of also the intra-extracellular exchange.

evertheless, the results presented here for D = 0.5 𝜇m 

2 /ms, which

how similar SDE and DDE signatures, are highly relevant for spec-

roscopy studies which investigate intracellular metabolites, as proven

n ( Lundell et al., 2020 ; Shemesh et al., 2017 ; Shemesh et al., 2014 ;

incent et al., 2020 ), and the use of potentially high b vales (b > 4

s/ 𝜇m 

2 ) may mitigate the effect of extra-cellular water in dMRI ap-

lications. 
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The meshes used in these simulations have been designed in order

o assess the effect of branching and soma size on the diffusion time

nd b-value dependence in as fair a way as possible. As the signal frac-

ion of restricted diffusion has a great influence on the time-dependence

f the measured signal, we designed the meshes to have the same cel-

ular volume fraction occupied by the soma (~30%). To achieve this,

e have adjusted the diameter of the branches. Therefore, cells with

 b = 6, have very thin projections, and thus a smaller exchange poten-

ial between the soma and the branches. On the other hand, cells with

o branching (N b = 1) have wider projections, with diameter > 1.5 𝜇m in

ome cases, thus the time dependence of restricted diffusion inside the

ylinders can become noticeable at short diffusion times, especially for

 = 0.5 𝜇m 

2 /ms. Moreover, for the same cells with larger diameters, the

ffects of exchange between the branches and the soma can also play a

ole for medium to long diffusion times. As the focus of this work was to

nvestigate the effect of spherical soma size and branching order of pro-

ections, the sensitivity to branch diameter is a secondary effect given by

he way the substrates were designed, and not a sought-after contrast.

s described in previous literature ( Drobnjak et al., 2015 ; Nilsson et al.,

017 ), other sequences might significantly improve the contrast to the

iameter of cylindrical objects, which is outside the scope of this work.

These simulations have also considered ideal sequences with short

radient duration 𝛿 = 1 ms and covered a wide range of b-values and

iffusion times, leading to very high gradient strengths for some con-

gurations, not all of which are feasible in practice. For instance, the

aximum gradient strength to achieve SDE sequences with Δ1 = {10,

0, 80} ms and a b-value of 60 ms/ 𝜇m 

2 , are G = {9.3, 5.3, 3.2} T/m; for

he SDE time-dependence analysis, to achieve a b-value of 8 ms/ 𝜇m 

2 for

 diffusion time of Δ2 = 1.1 ms the gradient strength needs to be G = 12.1

/m; for the DDE sequences with Δ3 = 5 ms and b 3 = 16 ms/ 𝜇m 

2 the cor-

esponding gradient is G = 4.9 T/m. Although these values are higher

han what is practically feasible at present, similar SDE / DDE acqui-

itions can be achieved for example on high performance pre-clinical

radients which reach up to ~ 3 T/m, by increasing the gradient dura-

ion 𝛿 to 2-3 ms ( Ianus et al., 2018 ; Veraart et al., 2020 ). For systems

ith lower gradient capabilities, the pulse durations would need to be

urther increased to reach high b-values, and the contrast provided by

he sequences would need to be further investigated given the specific

ardware constrains ( Drobnjak et al., 2015 ). 

Future works will also benefit from the promising results obtained

ere, by, for example, using them to design real experiments target-

ng the non-invasive mapping of cell processes branch order in differ-

nt areas of the brain known to be comprised of neural cells with very

ifferent morphologies: for instance the cerebral cortex, mostly com-

rised of pyramidal neurons, and the cerebellar molecular layer, mostly

omprised of Purkinje cells’ dendritic trees having branch order at least

ouble that of pyramidal neurons. 

. Conclusion 

This study uses advanced numerical simulations to systematically

nvestigate for the first time the effects of dendritic branching on the

MRI and dMRS signal and shows the potential of DDE rather than

DE acquisitions to non-invasively map such microstructural features.

n particular, the simulation results reported here can inform the design

f dMRI/dMRS experiments focused on the quantification of branching

rder of cellular projections, a tissue feature of pivotal importance for

haracterizing a wide range of disorders ( Kulkarni and Firestein, 2012 ),

s well as normal and atypical development and aging ( Dickstein et al.,

007 ). Although a purely simulation study, our results are in good agree-

ent with previously published dMRI and dMRS experimental evidence,

upporting the fascinating perspective of non-invasively mapping the

omplex brain cell morphology in-vivo with double diffusion encoding

easurements. 
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