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Abstract

Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. 

We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent 

stem cells, cultured them in the absence of added DNA damage, and performed whole-genome 

sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, 
ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators 

of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, 

including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is 

sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by 

oxidative damage (C>A transversions), differential misincorporation by replicative polymerases 

(T>C and C>T transitions), and we propose a ‘reverse template slippage’ model for T>A 

transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct 

from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS 

cancers showed enhanced detection of MMR-deficient tumors, with implications for 

responsiveness to immunotherapies.
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Introduction

Somatic mutations arising through endogenous and exogenous processes mark the genome 

with distinctive patterns, termed mutational signatures1–4. While there have been 

advancements in the analytical aspects of deriving mutational signatures from human 

cancers5–7, there is an emerging need for experimental substantiation, elucidating etiologies 

and mechanisms underpinning these patterns8–11. Cellular models have been used to 
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systematically study mutagenesis arising from exogenous sources of DNA damage8,11. Next, 

it is essential to experimentally explore genome-wide mutagenic consequences of 

endogenous sources of DNA damage in the absence of external DNA damaging agents.

Lindahl noted that water and oxygen, essential molecules for living organisms, are some of 

the most mutagenic elements to DNA12. His seminal work demonstrated that spontaneous 

DNA lesions occur through endogenous biochemical activities such as hydrolysis and 

oxidation. Errors at replication are also an enormous potential source of DNA changes. 

Fortuitously, our cells are equipped with DNA repair pathways that constantly mitigate this 

endogenous damage13,14. In this work, we combine CRISPR-Cas9-based biallelic knockouts 

of a selection of DNA replicative/repair genes in human induced Pluripotent Stem Cells 

(hiPSCs), whole-genome sequencing (WGS), and in-depth analysis of experimentally-

generated data to obtain mechanistic insights into mutation formation. It is beyond the scope 

of this manuscript to study all DNA repair genes. Thus, we have focused on 42 DNA 

replicative/repair pathway gene knockouts successfully generated through semi-high-

throughput methods. We also compared our experimental data with reported cancer-derived 

signatures.

While there is substantial literature regarding DNA repair pathways and complex protein 

interactions involved in maintaining genomic integrity15–20, here we focus on directly 

mapping whole-genome mutational outcomes associated with DNA repair defects, critically, 

in the absence of applied, external damage. This study, therefore, allows us to identify 

replicative/repair genes that are fundamentally important to genome maintenance against 

endogenous DNA damage.

Results

Biallelic knockouts of DNA replicative/repair genes

We knocked out (Δ) 42 DNA replicative/repair pathway genes and an unrelated control gene, 

ATP2B4 (Fig. 1a,b, Supplementary Table 1). A pilot experiment was performed to 

standardize experimental procedures (Methods, Extended Data Fig. 1). In the full-scale 

study, two knockout genotypes were generated per gene except for EXO1, MSH2, TDG, 

MDC1, and REV1, for which only one knockout genotype was obtained. All parental 

knockout lines were grown for 15 days under normoxic conditions (~20% oxygen). For each 

genotype, two single-cell subclones were derived for whole-genome sequencing, aiming for 

four sequenced subclones per edited gene (Fig. 1a). For single-genotype genes, three 

subclones were derived for ΔEXO1 and ΔMSH2, and four for ΔTDG, ΔMDC1, and ΔREV1.

In all, 173 subclones were obtained from 78 genotyped knockouts of 43 genes 

(Supplementary Table 2). All subclones were sequenced to an average depth of ~25-fold. 

Short-read sequences were aligned to human reference genome assembly GRCh37/hg19. All 

classes of somatic mutations were called, subtracting variation of the primary hiPSC 

parental clone. Rearrangements were too infrequent to decipher specific patterns.

We confirmed that mutational outcomes were neither due to off-target edits nor to the 

acquisition of new driver mutations (Online Methods). We verified that knockouts were 
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biallelic, validated the protein loss via mass spectrometry, and ensured that subclones in all 

comparative analyses were single-cell derived (Online Methods).

Mutational consequences of gene knockouts

Under these controlled experimental settings, if simply knocking-out a gene (in the absence 

of providing additional DNA damage) could produce a signature, then the gene is critical to 

maintaining genome stability from endogenous DNA damage. It would manifest an 

increased mutation burden above background and/or altered mutation profile (Extended Data 

Fig. 2). We found background substitution and indel mutagenesis associated with growing 

cells in culture occurred at ~150 substitutions and ~10 indels per genome and was 

comparable across all subclones (Supplementary Table 2, 3).

To address potential uncertainty associated with the relatively small number of subclones per 

knockout and variable mutation counts in each gene knockout (Methods), we generated 

bootstrapped control samples with variable mutation burdens (50-10,000). We calculated 

cosine similarities between each bootstrapped sample and the background control 

(ΔATP2B4) mutational signature (mean and standard deviations). A cosine similarity close 

to 1.0 indicates that the mutation profile of the bootstrapped sample is near-identical to the 

control signature. Cosine similarities could thus be considered across a range of mutation 

burdens (green line in Fig. 1c and light blue line in Fig. 1d). We next calculated cosine 

similarities between knockout profiles and controls (colored dots in Fig. 1c,d). A knockout 

experiment that does not fall within the expected distribution of cosine similarities implies a 

mutation profile distinct from controls, i.e., the gene knockout has a signature. For 

substitution signatures, two additional dimensionality reduction techniques, namely, 

contrastive principal component analysis (cPCA)21 and t-Distributed Stochastic Neighbour 

Embedding (t-SNE)22 were also applied to secure high confidence mutational signatures 

(Extended Data Fig. 3, Methods). This stringent series of steps would likely dismiss weaker 

signals and be highly conservative at calling mutational signatures.

We identified nine single substitution, two double substitution, and six indel signatures. Two 

gene knockouts, ΔOGG1 and ΔUNG, produced only substitution signatures. Five gene 

knockouts, ΔMSH2, ΔMSH6, ΔMLH1, ΔPMS2, and ΔPMS1, presented substitution and 

indel signatures. Two gene knockouts, Δ RNF168 and ΔEXO1, had substitution and double 

substitution signatures. ΔEXO1 also produced an indel signature. The average de novo 
mutation burden accumulated for these nine knockouts ranged between 250-2,500 for 

substitutions and 5-2,100 for indels (Fig. 1e). Based on cell proliferation assays, mutation 

rates for each knockout were calculated and ranged between 6-129 substitutions and 

0.39-126 indels per cell division (Supplementary Table 4). In the following sections, we 

dissect these experimentally-generated signatures, compare them to one another and to 

cancer-derived mutational signatures to gain insights into the sources of endogenous DNA 

damage and mutational mechanisms.

Safeguarding the genome from oxidative DNA damage

Oxygen can generate reactive oxygen species (ROS) and oxidative DNA lesions. The 

commonest is 8-oxo-2’-deoxyguanosine (8-oxo-dG), although over 25 oxidative DNA 
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lesions are known23. 8-oxo-dG is predominantly repaired by Base Excision Repair (BER). A 

pervasive mutational signature observed in cell-based experiments has been speculated as 

due to culture-related oxidative damage9,11. It is similar to a mutational signature identified 

in adrenocortical cancers and neuroblastomas, called RefSig1824 or SBS186. Biallelic loss 

of MutY DNA-glycosylase gene (MUTYH), which excises adenines inappropriately paired 

with 8-oxo-dG, has also been reported to generate a hypermutated version of a similar 

signature25. It is unclear whether other genes responsible for removing oxidative damage 

would also result in these characteristic patterns.

8-oxoguanine glycosylase (OGG1) is responsible for the excision of 8-oxo-dG26. Thus, an 

ΔOGG1 signature would be an undisputed pattern of 8-oxo-dG-related damage. ΔOGG1 
produced a marked G>T/C>A pattern particularly at TGC>TTC/GCA>GAA with additional 

peaks at TGT>TTT/ACA>AAA, CGA>CTA/GCT>GAT, and AGA>ATA/TCT>TAT (Fig. 

2a), similar to the culture-related signature and RefSig18/SBS18 (Fig. 2a,b). This supports 

the hypothesis that RefSig18/SBS18/culture-related signatures are due to oxidative damage, 

specifically implicating 8-oxo-dG. We expanded signature channels by considering ±2 bases 

flanking the mutated base. Higher-resolution assessment of the most dominant peak at 

TGC>TTC/GCA>GAA in ΔOGG1 showed an almost identical pattern to control samples 

carrying culture-related signatures and SBS18 (cosine similarity (cossim): > 0.9, Fig. 2c, 

Extended Data Fig. 4), strengthening the argument that the G>T/C>A transversions 

observed in cultured cells and SBS18 are indeed caused by 8-oxo-dG-related damage.

ΔOGG1 signature is qualitatively analogous to the signature of ΔMUTYH-related 

adrenocortical cancers25 (recently renamed SBS366), although the latter demonstrates 

hypermutator phenotypes and has its tallest peak at TCT (Fig. 2c). These similarities are 

explained by related but distinct roles played by OGG1 and MUTYH in repairing oxidation-

related lesions: 8-oxo-dG can pair with C or with A during DNA synthesis. 8-oxo-G/C 

mismatches are, however, not mutagenic and oxidized guanines are simply excised by 

OGG127. By contrast, 8-oxo-G/A mismatches are first repaired by MutY-glycosylase, which 

removes the A, and repair synthesis by pol-β or -λ inserts a C opposite the oxidized base. 

The resulting 8-oxo-G/C pair is then excised by OGG1 as outlined earlier. This mechanistic 

relatedness likely explains why mutational signatures of ΔOGG1 and ΔMUTYH are 

qualitatively alike, if quantitatively dissimilar. Notably, that simple knockouts of OGG1 or 

MUTYH can result in overt mutational phenotypes suggests that these genes are 

indispensable for maintaining the genome against endogenous oxidative damage.

Lastly, we examined ΔOGG1 G>T/C>A mutations correcting for frequencies of the 16 

trinucleotides in the reference genome and found that ΔOGG1 is depleted of mutations at 

GG/CC dinucleotides (Fig. 2c). Yet, prior literature reports 5’-G in GG and the first two Gs 

in GGG are more likely to be oxidized through intraduplex electron transfer reactions28,29. 

Therefore, one would expect elevated G>T/C>A mutation burdens in GG-rich regions when 

OGG1 is defunct. Our results may be explained by previous experiments which demonstrate 

that 8-oxo-dG excision rates by OGG1 are sequence-context dependent30: 8-oxo-dG 

excision at consecutive 5’-GG s is reported as inefficient compared to 5’-CGC/5’-GCG and 

5’-AGC/5’-GCT because OGG1 employs a bend-and-flip strategy to recognize 8-oxo-

dG31–33. Stacked adjacent 8-oxo-dGs have an increased kinetic barrier, preventing flipping 
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out and removal of 8-oxo-dG30. While this may explain why OGG1 cannot repair oxidized 

guanines at GG/CC motifs, it remains unclear how these motifs are repaired as guanine 

oxidation does occur at such sites. At some GG/CC motifs, we suggest a possibility in the 

section on mismatch repair genes later.

Maintaining cytosines from deamination to uracil

Deamination involves hydrolytic loss of an amine group. At CpG dinucleotides, deamination 

of 5-methylcytosine into thymine is a well-studied, universal process34,35,36, with C>T at 

CpGs (Signature 1) found in many tumor types. Hypermutator phenotypes of C>T at CpGs, 

however, have been reported in cancers with biallelic loss of methyl-binding domain 4 

(MBD4)37. This example underscores a mutational process that is customarily under tight 

MBD4 regulation, wherein its knockout uncovers the potential magnitude of unrepaired 

endogenous deamination.

Spontaneous hydrolytic cytosine deamination to uracil occurs more slowly at ~100-500/

cell/day 38. Cytosine deamination to uracil is rectified by UNG (uracil-N-glycosylase) via 

BER39. Uracils that are not removed prior to replication can result in C>T mutations (Fig. 

2a). There are signatures associated with enhanced APOBEC-related deamination in many 

cancers (Signatures 2 and 13). However, the consequence of UNG dysfunction is less clear. 

The ΔUNG signature comprised mainly C>T transitions. When corrected for reference 

genome trinucleotide frequencies, no trinucleotide preferences were observed (Fig. 2d), 

suggesting a general role for UNG activity on all uracils regardless of sequence context. 

ΔUNG signature is most similar to RefSig 30 (cossim 0.88), previously associated with 

ΔNTHL1 40. Both UNG and NTHL1 are BER glycosylases that process aberrant 

pyrimidines, which may explain the similarities between these signatures. However, when 

corrected for trinucleotide frequencies, ΔNTHL1 signature shows preference for ACC, CCC, 

and TCC trinucleotides in contrast to ΔUNG, supporting that they are signatures of different 

aetiologies.

Preserving thymines and adenines from T>C/A>G transitions

Two genes EXO1 and RNF168, with wide-ranging roles in repair/checkpoint 

pathways41,42,43 showed mutational signatures. EXO1 encodes a 5’ to 3’ exonuclease with 

RNase H activity. ΔEXO1 generated substitution, double-substitution, and indel signatures 

in hiPSC (Fig. 2a and Extended Data Fig. 5), consistent with previous report of ΔEXO1 in 

HAP1 lines9. In HAP1 cells, ΔEXO1 had stronger C>A components, probably reflecting 

differences in model systems. ΔEXO1 also produced a double substitution pattern defined 

by TC>AT, TC>AA, and GC>AA mutations, and an indel signature characterized by 1 bp 

A/T insertions at long poly[d(A-T)] (>= 5 bp) and 1 bp deletions at short poly[d(A-T)] or 

poly[d(C-G)] (< 5 bp) (Extended Data Fig. 5).

RNF168 encodes an E3 ubiquitin ligase involved in DNA double-strand break (DSB) 

repair43 that regulates 53BP1, BRCA1, and RAD18 recruitment to DSBs through ubiquitin-

dependent signaling44–46. The substitution signature of ΔRNF168 has two T>C peaks at 

ATA>ACA and TTA>TCA (Fig. 2a) and shares similarity with ΔEXO1(cossim: 0.94). 
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Double substitution patterns were defined by TC>AA and GC>AA mutations. Indel 

signature was not observed for ΔRNF168.

Substitution signatures of ΔEXO1 and ΔRNF168 are most similar to RefSig5 of cancer-

derived signatures (Fig. 2b, cossim: 0.89-0.9, Extended Data Fig. 6a,b), defined mainly by 

T>C/A>G substitutions. Additionally, ΔEXO1 and ΔRNF168 signatures show 

transcriptional strand bias for T>C/A>G mutations (Fig. 2e,f, Extended Data Fig. 6c), in 

particular, at ATA and TTA context, with bias for T>C on the transcribed strand (A>G on 

non-transcribed strand). This is in-keeping with T>C/A>G transcriptional strand asymmetry 

in Signature 5. The etiology of Signature 5 is currently unknown, although a hypermutator 

phenotype has been reported in association with ERCC2 loss
7
. Due to its similarity to 

ΔEXO1 and ΔRNF168 signatures, the wide-ranging roles played by these proteins and the 

transcriptional strand bias observed, we speculate that Signature 5 has a complex origin, and 

may be associated with endogenous DNA damage that are repaired by multiple repair 

pathway proteins.

Endogenous DNA damage managed by mismatch repair (MMR)

Knockouts of five genes involved in the MMR pathway47–49, MSH2, MSH6, MLH1, PMS2, 
and PMS1, produced substitution and indel signatures (Fig. 3a,b). ΔMLH1, ΔMSH2, and 

ΔMSH6 produced qualitatively identical substitution signatures (cossim: 0.99) characterized 

by a single strong peak at CCT>CAT/AGG>ATG, and multiple peaks of C>T and T>C (Fig. 

3a). In contrast, ΔPMS2 generated a signature of predominantly T>C transitions with a 

predominance at ATA, ATG, and CTG (Fig. 3a). The single peak at CCT>CAT/AGG>ATG 

remains visible in the ΔPMS2 signature, albeit markedly reduced (10% to 3%). In addition, 

ΔMSH2, ΔMSH6, and ΔMLH1 generated indel signatures dominated by A/T deletions at 

long repetitive sequences. In contrast, ΔPMS2 produced similar proportions of A/T 

insertions and A/T deletions at long repetitive sequences (Fig. 3b, Extended Data Fig. 5a,b). 

ΔPMS1 generated A/T deletions only at long poly[d(A-T)] (>=5 bp) and long deletions (> 

1bp) at repetitive sequences (Extended Data Fig. 5a).

In-depth analysis of these mutational signatures allowed us to determine putative sources of 

endogenous DNA damage (Fig. 3c) acted upon by MMR.

First, we consistently observed replication strand bias across ΔMLH1, ΔMSH2, ΔMSH6, 
and ΔPMS2: C>A on the lagging strand (equivalent to G>T leading strand bias), C>T on the 

leading strand (or G>A lagging) and T>C lagging (or A>G leading) (Fig. 3d). Similar results 

were previously reported in yeast and human cancers50–52. Under our experimental settings 

where exogenous DNA damage was not administered, mismatches may be generated by 

DNA polymerases α, δ or ε during replication. In the absence of MMR, these lesions 

become permanently etched as mutations. To understand which replicative polymerases 

could be causing these mutations, we analysed putative progeny of all 12 possible base/base 

mismatches (Extended Data Fig. 7). T/G mismatches are the most thermodynamically stable 

and represent the most frequent polymerase error53. Our assessment suggests that the 

predominance of T>C transitions on the lagging-strand can only be explained by 

misincorporation of T by lagging strand polymerases, pol-α and/or pol-δ, leading to G/T 

mismatches (Fig. 3c). Similarly, the observed bias for C>T transitions on the leading strand 
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is likely to be predominantly caused by misincorporation of G on lagging strand by pol-α 
and/or pol-δ resulting in T/G mismatches (Fig. 3c).

Second, the C>A predominance could be explained by differential processing of 8-oxo-dGs 

(Fig. 3c). The principal C>A/G>T peak in MMR-deficient cells occurs at CCT>CAT/

AGG>ATG followed by CCC>CAT/GGG>GTG and is distinct from the C>A/G>T peaks 

observed in ΔOGG1. However, we previously showed a depletion of mutations at CC/GG 

sequence motifs for ΔOGG1. Intriguingly, the experimental data suggest that the 8-oxo-G:A 

mismatches can be repaired by MMR, preventing C>A/G>T mutations54. Furthermore, 

G>T/C>A mutations of MMR-deficient cells occurred most frequently at the second G in 5’-

TG n(n>=3) in ΔMLH1, ΔMSH2, and ΔMSH6 (Fig. 3e and Extended Data Fig. 8). This is 

consistent with previous reports55 of the classical imprint of guanine oxidation at polyG 

tracts where site reactivity in double-stranded 5’-TG1G2G3G4T sequence is reported as G2 > 

G3 > G1 > G4. These results implicate MMR involvement in repairing 8-oxo-G:A 

mismatches at GG motifs that perhaps cannot be cleared by OGG1 in BER. As for G>T 

leading strand bias, studies in yeast have demonstrated that an excess of 8-oxo-dG-

associated mutations occurs during leading strand synthesis56. Furthermore, translesion 

synthesis polymerase η is also more error-prone when bypassing 8-oxo-dG on the leading 

strand57, which would result in increased 8-oxo-G:A mispairs on the leading strand.

Third, T>A transversions at ATT were strikingly persistent in MMR knockout signatures, 

although with modest peak size (<3% normalized signature, Fig. 3a). Additional sequence 

context information revealed that T>A occurred most frequently at AATTT or TTTAA, 

junctions of poly(A) and poly(T) tracts (Fig. 3f)58,59. Moreover, the length of 5’- and 3’- 

flanking homopolymers influenced the likelihood of mutation occurrence: T>A 

transversions were one to two orders of magnitude more likely to occur when flanked by 

homopolymers of 5’poly(A)/3’poly(T) (AnTm) or 5’poly(T)/3’poly(A) (TnAm), than when 

there were no flanking homopolymeric tracts (Fig. 3g).

Since polynucleotide repeat tracts predispose to indels due to replication slippage, a known 

source of mutagenesis in MMR-deficient cells, we hypothesize that T>A transversions 

observed at abutting poly(A)/poly(T) tracts are the result of ‘reverse template slippage’. In 

this scenario, the polymerase replicating across a mixed repeat sequence such as 

AAAAAATTTT, in which the template slipped at one of the As, would incorporate five 

instead of six Ts opposite the A repeat (red arrow pathway in Fig. 3h). If at this point the 

template were to revert to its original correct alignment, A/A mismatch would occur, 

resulting in a T>A transversion. If the slippage remained, this would give rise to a single 

nucleotide deletion, a characteristic feature of MMR-deficient cells known as microsatellite 

instability (MSI) (Fig. 3b, indel signatures).

Gene-specific mutational signatures in MMR-deficiency

There are uncertainties regarding which cancer-derived signatures are truly MMR-deficiency 

signatures. It was suggested that SBS6, SBS14, SBS15, SBS20, SBS21, SBS26, and SBS44 

were MMR-deficiency related6. In an independent analytical exercise, only two MMR-

associated signatures were identified24, with variations seen in different tissue-types24. An 

experimental process would help to obtain clarity in this regard8–11.
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As described earlier, the substitution and indel patterns of ΔMSH2,ΔMSH6, and ΔMLH1 
showed qualitative similarities and were distinct from ΔPMS2 (Fig. 3a,b and Extended Data 

Fig. 9a,b). While qualitative indel profiles of ΔMSH2, ΔMSH6, and ΔMLH1 were very 

similar (Fig. 3b), their quantitative burdens were different (Fig. 1e). ΔMLH1 and ΔMSH2 
had high indel burdens, whereas ΔMSH6 had half the indel burden (Fig. 1e). Substitution-to-

indel ratios showed that ΔMSH2, ΔPMS2, and ΔMLH1 produced similar numbers of 

substitutions and indels, while ΔMSH6 generated nearly 2.5 times more substitutions than 

indels (Extended Data Fig. 9c,d). This is in-keeping with known protein interactions: MSH2 

and MSH6 form heterodimer MutSα that addresses base-base mismatches and small (1-2 nt) 

indels48,60. MSH2 can also heterodimerize with MSH3 to form heterodimer MutSβ, which 

does not recognize base-base mismatches, but can address indels of 1-15 nt61. This 

functional redundancy in small indel repair between MSH6 and MSH3 explains the smaller 

number of indels observed in ΔMSH6 (Fig. 1e, Extended Data Fig. 9d) compared to ΔMSH2 
cells. This is consistent with the near-identical MSI phenotypes of Msh2-/- and Msh3-/-; 

Msh6-/-mice62.

Thus, there are clear qualitative differences between substitution and indel profiles of 

ΔMSH2, ΔMSH6, and ΔMLH1 from ΔPMS2. To validate these MMR-gene-specific knock-

out signatures, we interrogated genomic profiles of normal cells derived from patients with 

inherited autosomal recessive defects in MMR genes resulting in Constitutional Mismatch 

Repair Deficiency (CMMRD) – a severe, hereditary cancer predisposition syndrome 

characterized by increased risk of early-onset (often pediatric) malignancies and cutaneous 

café-au-lait macules63,64. hiPSCs were generated from erythroblasts derived from four 

CMMRD patients (one PMS2 homozygote, one PMS2 heterozygote and two MSH6 
homozygotes) and one healthy control65. hiPSC clones obtained were genotyped65, and 

expression arrays and cellomics-based immunohistochemistry were performed to ensure 

pluripotent stem cells were generated (Methods). Parental clones were grown for mutation 

accumulation, single-cell subclones were derived and whole-genome sequenced (Fig. 4a).

Mutational signatures seen in CMMRD hiPSCs were virtually identical to those of the 

CRISPR-Cas9 knockouts (Fig. 4b-d). The ΔPMS2 CMMRD patterns carried the same 

propensity for T>C mutations, small contribution of C>T mutations and single C>A/G>T at 

CCT/AGG peak as ΔPMS2, and the MSH6 CMMRD patterns carried the excess of C>T 

mutations with pronounced C>A/G>T at CCT/AGG similar to ΔMLH1, ΔMSH2 and 

ΔMSH6 clones (Fig. 4c). Indel propensities were also reflected in patient-derived cells (Fig. 

4d). Accordingly, gene-specificity of signatures generated in the experimental knockout 

system is well-recapitulated in independent patient-derived stem cell models.

Furthermore, gene-specific MMR signatures were seen in the International Cancer Genome 

Consortium (ICGC) cohort of >2,500 primary WGS cancers24. Biallelic MSH2/MSH6/
MLH1 mutant tumors carried the same signature (RefSig MMR1) as ΔMSH2/ΔMSH6/
ΔMLH1 clones (Fig. 4e). We also identified biallelic PMS2 mutants in several cancers, 

including breast and ovarian cancers with mutation patterns (RefSig MMR2) that were 

indistinguishable from experimentally-generated ΔPMS2 signatures (Fig. 4e).
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A mutational-signature-based classifier of MMR-deficiency

Algorithms to classify MMR-deficient tumors developed using massively-parallel 

sequencing data depend on detecting elevated tumor mutational burden (TMB) or 

microsatellite instability (MSI)66–71. New knowledge from our experimental data and 

awareness of tissue-specific signature variation (Fig. 4e) led us to derive an MMR-

deficiency classifier.

We obtained WGS data on 336 colorectal cancers from patients recruited via the National 

Health Service-based UK 100,000 Genomes Project (UK100kGP) run by Genomics England 

(GEL). Critically, these samples had accompanying immunohistochemistry (IHC) testing of 

MMR-deficiency status based on protein staining of MSH2, MSH6, MLH1, and PMS2, and 

79 out of 336 cases were identified as MMR-deficient (~24%). This cohort of 336 samples 

was randomly assigned into a training set (180 MMR-proficient and 56 MMR-deficient 

samples) or a test set (77 MMR-proficient and 23 MMR-deficient samples). We developed a 

logistic regression classifier, called MMRDetect, using new mutational-signatures-based 

parameters derived from the experimental insights gained from this study: 1) the exposure of 

MMR-deficient substitution signatures (E MMRD); 2) the cosine similarity between 

substitution profile of the tumor and that of MMR knockouts (S sub); 3) the mutation burden 

of indels in repetitive regions (N repindel) and 4) the cosine similarity between repeat-

mediated deletion profile of the tumor and that of MMR knockouts (S repdel) (further details 

in Methods, Extended Data Fig. 10, Supplementary Table 5,6). Ten-fold cross-validation was 

conducted in the training set (Extended Data Fig. 10f). As a comparator, we applied another 

widely-used MSI classifier, MSIseq66 to the same cohort of 336 colorectal cancers.

Samples with MMRDetect-calculated probability < 0.7 are defined as MMR-deficient by 

MMRDetect (Extended Data Fig. 10g). In all, 75 of 336 samples were concordantly 

determined as MMR-deficient by MMRDetect, MSIseq, and IHC (Fig. 5a, Supplementary 

Table 5). Eight samples had discordant statuses, including four samples with MMR-

deficiency only by IHC, two samples by MSIseq and MMRDetect, and two samples 

uniquely called by MSIseq. To understand these discordances, we sought driver mutations. 

Among these eight samples, two samples missed by IHC had confirmed loss-of-function 

mutations in MMR genes. Additionally, two cases uniquely called by MSIseq were 

misclassified, and were, in fact, POLE mutated and not MMR-deficient (Fig. 5a, 

Supplementary Table 5). While receiver operating characteristic (ROC) curves generated by 

these three methods showed excellent performance across the board, MMRDetect had the 

highest AUC of 1 in this dataset (Fig. 5b).

We next compared MMRDetect and MSIseq on another 2,012 colorectal and 713 uterine 

samples from UK100kGP, 2,610 published WGS primary cancers72–74 and 2,024 WGS 

metastatic cancers 75 (Supplementary Table 7-10, Methods). There was a very high 

concordance between MMRDetect and MSISeq for classifying tumors (0.97 to 0.997 (Fig. 

5c)). To understand the discrepancies between the two algorithms, we compared variables 

that were used by the two classifiers (Fig. 5d) and found that samples uniquely identified as 

MMR-deficient by MSIseq had a significantly higher number of repeat-mediated indels (N 

repindel) and non-MMR-deficiency signatures (E non-MMRD) than the ones identified as 

MMR-deficient by only MMRDetect (p < 0.001, two-sided Mann-Whitney test, Extended 
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Data Fig. 10h). This indicated a higher likelihood of misclassifying samples with high indel 

loads caused by non-MMR-deficient mutational processes (i.e., false positives) for MSIseq, 

a known generic problem reported for NGS indel-based classifiers76. Many of these samples 

showed signatures associated with proofreading POLE mutations. This demonstrates that 

MMRDetect has improved specificity over MSIseq.

Of note, samples identified as MMR-deficient by only MMRDetect had significantly lower 

numbers of repeat-mediated indels (N repindel) and MMR-related substitution signatures (E 

MMRD) than samples concordantly identified as MMR-deficient by both MSIseq and 

MMRDetect (p < 0.001, two-sided Mann-Whitney test, Extended Data Fig. 10h), suggesting 

that MMRDetect has improved sensitivity for MMR-deficient cancers with lower overall 

MMR-related mutation counts (E MMRD). Indeed, of 15 bona fide MMR-deficient breast 

cancers, a tumor-type that is not as proliferative as colon/uterine cancer and has lower 

mutation numbers in general, MMRDetect identified 13 cases (87%), whilst MSIseq 

identified five (~33%) of 15 samples, as the remaining ten samples had lower repeat-

mediated indel loads (2,885-18,863, Supplementary Table 10). The two cases missed by 

MMRDetect had very low levels of MMR-related signatures and were complicated by high 

levels of APOBEC-related mutagenesis. Thus, MMRDetect has enhanced sensitivity, 

particularly at detecting MMR-deficient samples with lower mutation burdens (Fig. 5d), 

although it could miss cases where MMR-deficiency is present at a very low level. We note 

that the current version of MMRDetect classifier has been trained on highly-proliferative 

colorectal cancers. More sequencing data are required to improve MMRDetect’s detection 

sensitivity in other tumor types.

Discussion

In standardized experiments performed in a diploid, non-transformed human stem cell 

model, biallelic gene knockouts that produce mutational signatures in the absence of 

administered DNA damage are indicative of genes that are important at maintaining the 

genome from intrinsic DNA damage sources (Fig. 6). We find substitution, double 

substitution and/or indel signatures of nine genes: ΔOGG1, 

ΔUNG,ΔEXO1,ΔRNF168,ΔMLH1,ΔMSH2,ΔMSH6,ΔPMS2, and ΔPMS1, suggesting that 

these proteins are critical guardians of the genome in non-transformed cells. Many gene 

knockouts did not show mutational signatures under these conditions. This does not mean 

that they are not important DNA repair proteins. There may be redundancy, or the gene may 

be crucial to the orchestration of DNA repair, even if not imperative at directly preventing 

mutagenesis. It is also possible that some knockouts have very low rates of mutagenesis such 

that statistically distinct signatures cannot be distinguished from background mutagenesis 

within our experimental time frame. For genes involved in double-strand-break (DSB) 

repair, hiPSCs may not be permissive for surviving DSBs to report signatures. Other genes 

may require alternative forms of endogenous DNA damage that manifest in vivo but notin 
vitro, for example, aldehydes, tissue-specific products of cellular metabolism, and 

pathophysiological processes such as replication stress. Likewise, for genes in the nucleotide 

excision repair pathway, bulky DNA adducts, whether exogenous (e.g., ultraviolet damage) 

or endogenous (e.g., cyclopurines and by-products of lipid peroxidation) may be a pre-

requisite before these compromised genes reveal associated signatures. Experimental 
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modifications such as addition of DNA damaging agents or using alternative cellular models 

(e.g., cancer lines or permissive cellular models of specific tissue-types), could amplify 

signal, but they could also modify mutational outcomes. That must be taken into 

consideration when interpreting data. Also, not all genes have been successfully knocked out 

in this endeavor and could have similarly important roles in directly preventing mutagenesis.

Detailed dissection of experimental signatures revealed interesting mutational insights, 

including how OGG1 and MMR sanitize oxidized guanines at specific sequence motifs. By 

contrast, UNG maintains all cytosines from hydrolytic deamination, irrespective of sequence 

context. Exhaustive assessment of DNA mismatches and their putative outcomes also 

uncovered precise polymerase errors that are repaired by MMR, including misincorporation 

of T resulting in T>C transitions and misincorporation of G resulting G>A/C>T transitions 

by lagging strand polymerases. We also observe a T>A substitution pattern at abutting 

poly(A) and poly(T) tracts and postulate a mechanism called reverse template slippage.

While it is known that 8-oxo-dGs can result in G>T mutations, our work demonstrates that 

the etiology of the culture-related signature and cancer-derived Signature 18 is mainly 8-

oxo-dG. We highlight the importance of functional EXO1 and RNF168 in preventing 

Signature 5, a relatively ubiquitous signature characterized by T>C/A>G transitions. We 

define gene-specificities of MMR deficiency signatures, prove that these are robust in 

normal stem cells derived from patients with CMMRD, and identify gene-specific signatures 

in human cancers.

Finally, unlike signatures of environmental mutagens that are historic, signatures of repair 

pathway defects are likely to be on-going. They could serve as biomarkers in precision 

medicine13,14,18 (Fig. 6) to identify pathway defects where selective therapeutic strategies 

are available. Our experiments led to the development of a more sensitive and specific assay 

to detect MMR deficiency, MMRDetect. Current TMB-based assays may have reduced 

sensitivity to detect MMR deficiency in tissues that do not have high proliferative rates. 

They may also falsely call MMR-proficient cases as MMR-deficient because single 

components were used for measurement (e.g., indel or substitution burdens only). High 

mutational burdens can be due to different biological processes77. Consequently, assays 

based on burden alone are unlikely to be adequately specific. As a community, we are at the 

early stages of seeking experimental validation of mutational signatures. However, we hope 

that our approach, which leans on experimental data, provides a template for improving 

biological understanding of how mutational patterns arise, and this, in turn, could help 

propose improved tools for tumor characterization going forward.

Methods

Cell lines and culture

The human iPSC line used in this study is previously described11. The line was derived at 

the Wellcome Sanger Institute (Hinxton, UK). The use of this cell line model was approved 

by Proportionate Review Sub-committee of the National Research Ethics (NRES) 

Committee North West - Liverpool Central under the project “Exploring the biological 

processes underlying mutational signatures identified in induced pluripotent stem cell lines 
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(iPSCs) that have been genetically modified or exposed to mutagens” (ref: 14.NW.0129). It 

is a long-standing iPSC line that is diploid and does not have any known driver mutations. It 

does carry a balanced translocation between chromosomes 6 and 8. It grows stably in culture 

and does not acquire a vast number of karyotypic abnormalities. This is confirmed through 

mutational and copy number assessment of the WGS data reviewed of all subclones.

Cell culture reagents were obtained from Stem Cell Technologies unless otherwise 

indicated. Cells were routinely maintained on Vitronectin XF-coated plates (10-15 ug/mL) 

in TeSR-E8 medium. The medium was changed daily, and cells were passaged every 4–8 

days depending on the confluence of the plates using Gentle Cell Dissociation Reagent.

All cell lines were grown at 37°C, with 20% oxygen and 5% carbon dioxide in a humidified 

incubator, except for the pilot study in which the iPSCs knockouts were also grown under 

hypoxic condition (3% oxygen) as one of the experimental conditions. Cells were cultivated 

as monolayers in their respective growth medium and passaged every 3-4 days to maintain 

sub-confluence during the mutation accumulation step. All cell lines were tested negative for 

mycoplasma contamination using MycoAlertTM Mycoplasma Detection Kit and LookOut® 

Mycoplasma PCR Detection Kit according to the manufacturers’ protocol.

CMMRD patient sample collection

Four CMMRD patients were recruited under the auspices of the Insignia project. This 

included two PMS2-mutant patients and two MSH6-mutant patients. Supplementary Table 

11 shows the genotypes of these four patients. A healthy donor was recruited as control. 

Ethical approval for the generation of hiPSCs from patients and healthy control was received 

for the Insignia project under the title “Exploring the biological processes underlying 

mutational signatures identified in patients with inherited disorders and in patients exposed 

to mutagens”, with reference number 13/EE/0302, from the East of England Cambridgeshire 

and Hertfordshire Research Ethics Committee.

Generation of DNA repair gene knockouts in human iPSCs

Biallelic DNA repair gene knockouts in human iPSCs were performed by the High 

Throughput Gene Editing team of Cellular Operations at the Sanger Institute, Hinxton, UK. 

These knockouts were generated based on the principles of CRISPR/Cas9-mediated HRD 

and NHEJ as described previously 78.

Generation of donor plasmids for precise gene targeting via HDR—All 

knockouts were generated using an established protocol that was found to minimize 

potential off-target effects 78. Briefly, the intermediate targeting vectors were generated for 

each gene using GIBSON assembly of the four fragments: pUC19 vector, 5’ homology arm, 

R1-pheS/zeo-R2 cassette and 3’ homology arm. Gene-specific homology arms were 

amplified by PCR from the iPSC gDNA and were either gel-purified or column-purified 

(QIAquick, QIAGEN). pUC19 vector and R1-pheS/zeo-R2 cassette were prepared as gel-

purified blunt fragments (EcoRV digested). Fragments were assembled via GIBSON 

assembly reactions (Gibson Assembly Master Mix, NEB, E2611) according to the 

manufacturer’s instructions. Assembly reaction mix was transformed into NEB 5-alpha 
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competent cells and clones resistant to carbenicillin (50 μg/mL) and zeocin (10 μg/mL) were 

analyzed by Sanger sequencing to select for correctly-assembled constructs. Sequence-

verified intermediate targeting vectors were converted into donor plasmids via a Gateway 

exchange reaction. LR Clonase II Plus enzyme mix (Invitrogen, 12538120) was used to 

perform a two-way reaction exchanging only the R1-pheSzeo-R2 cassette with the pL1-

EF1αPuro-L2 cassette as previously described 79. The latter was generated by cloning 

synthetic DNA fragments of the EF1α promoter and puromycin resistance cassette into one 

of pL1/L2 vector 79. Following Gateway reaction and selection on yeast extract glucose 

(YEG) + carbenicillin agar (50 μg/mL) plates, correct donor plasmids were verified by 

capillary sequencing across all junctions.

Guide RNA design & cloning—For every gene knockout, two separate gRNAs targeting 

within the same critical exon of a gene were also selected. The gRNAs were selected using 

the WGE CRISPR tool 80 based on their off-target scores. Selected gRNAs were suitably 

positioned to ensure DNA cleavage within the exonic region, excluding any sequence within 

the homology arms of the targeting vector. To generate individual gene targeting plasmids, 

gene-specific forward and reverse oligos were annealed and cloned into BsaI site of either 

U6_BsaI_gRNA (kindly provided by Sebastian Gerety, unpublished). The gRNA sequences 

are listed in Supplementary Table 12. All the oligos were synthesized by Integrated DNA 

Technologies (IDT)

Delivery of KO-targeting plasmids, donor templates and Cas9, selection and 
genotyping—Human iPSCs were dissociated to single cells and nucleofected with Cas9-

coding plasmid (hCas9, Addgene 41815), sgRNA plasmid and donor plasmid on Amaxa 4D-

Nucleofactor program CA-137 (Lonza). Following nucleofection, cells were selected for up 

to 11 days with 0.25 μg/mL puromycin. Edited cells were expanded to ~70% confluency 

before subcloning. Approximately 1000 cells were subcloned onto 10 cm tissue culture 

dishes precoated with SyntheMAX substrate (Corning) at a concentration of 5 μg/cm2to 

allow colony formation for 8-10 days until colonies are approximately 1-2 mm in diameter. 

Individual colonies were picked into U-bottom 96-well plates using a dissection microscope 

and a p20 pipette, grown to confluence and then replica plated. Once confluent, the replica 

plates were either frozen as single cells in 96-well vials or the wells were lysed for 

genotyping.

To genotype individual clones from a 96-well replica plate, cells were lysed and used for 

PCR amplification with LongAmp Taq DNA Polymerase (NEB, M0323). Insertion of the 

cassette into the correct locus was confirmed by visualizing on 1% E-gel (Invitrogen, 

G700801) PCR products generated by gene-specific (GF1 and GR1) and cassette specific 

primers (ER: TGATATCGTGGTATCGTTATGCGCCT and PF: 

CATGTCTGGATCCGGGGGTACCGCGTCGAG) for both 5’ and 3’ ends. We also 

confirmed single integration of the cassette by performing a qPCR copy number assay. To 

check the CRISPR site on the non-targeted allele, PCR products were generated from across 

the locus, using the same 5’ and the 3’ gene-specific genotyping primers. The PCR products 

were treated with exonuclease I and alkaline phosphatase (NEB, M0293; M0371) and 

Sanger sequenced to verify successful knockouts. Sequence reads and their traces were 
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analysed and visualised on a laboratory information management system (LIMS)-2. For 

each targeted gene, two independently-derived clones with different specific mutations were 

isolated and studied further.

Generation of iPSCs from Constitutional Mismatch Repair Deficiency (CMMRD) Patients

Peripheral blood mononuclear cells (PBMCs) isolation, erythroblast expansion, and IPSC 

derivation were done by the Cellular Generation and Phenotyping facility at the Wellcome 

Sanger Institute, Hinxton, according to Agu et al 201565. Briefly, whole blood samples 

collected from consented CMMRD patients were diluted with PBS, and PBMCs were 

separated using standard Ficoll Paque density gradient centrifugation method. Following the 

PBMC separation, samples were cultured in media favoring expansion into erythroblasts for 

9 days. Reprogramming of erythroblasts enriched fractions was done using non-integrating 

CytoTune-iPS Sendai Reprogramming kit (Invitrogen) based on the manufacturer’s 

recommendations. The kit contains three Sendai virus-based reprogramming vectors 

encoding the four Yamanaka factors, Oct3/4, Sox2, Klf4, and c-Myc. Successful 

reprogramming was confirmed via genotyping array and expression array.

Proteomics analysis

Cell pellets were dissolved in 150 μL buffer containing 1% sodium deoxycholate (SDC), 

100mM triethylammonium bicarbonate (TEAB), 10% isopropanol, 50mM NaCl and Halt 

protease and phosphatase inhibitor cocktail (100X) (Thermo, #78442) using pulsed probe 

sonication followed by boiling at 90 °C for 5 min. Aliquots containing 50 μg of total protein, 

measured with the Coomassie Plus Bradford Protein Assay (Pierce), were reduced with 5 

mM tris-2-carboxyethyl phosphine (TCEP) for 1 h at 60 °C and alkylated with 10 mM 

Iodoacetamide (IAA) for 30 min in dark. Proteins were then digested with 75 ng/μL trypsin 

(Pierce) overnight. The tryptic digests from the ATP2B4, EXO1, OGG1, PMS1, PMS2, 

RNF168 and UNG knock-out clones as well as three biological replicates of the parental cell 

line were labelled with the TMTpro 16plex reagents (Thermo) according to manufacturer’s 

instructions. The digests from MLH1, MSH2, MSH6 clones were subjected to label-free 

single-shot analysis. The TMTpro labelled peptides were fractionated with offline high-pH 

Reversed-Phase (RP) chromatography (XBridge C18, 2.1 x 150 mm, 3.5 μm, Waters) on a 

Dionex Ultimate 3000 HPLC system with 1% gradient. Mobile phase A was 0.1% 

ammonium hydroxide and mobile phase B was acetonitrile, 0.1% ammonium hydroxide. 

LC-MS analysis was performed on the Dionex Ultimate 3000 system coupled with the 

Orbitrap Lumos Mass Spectrometer (Thermo Scientific). Selected TMTpro peptide fractions 

were loaded to the Acclaim PepMap 100, 100 μm × 2 cm C18, 5 μm, 100? trapping column 

and were analyzed with the EASY-Spray C18 capillary column (75 μm × 50 cm, 2 μm). 

Mobile phase A was 0.1% formic acid and mobile phase B was 80% acetonitrile, 0.1% 

formic acid. The TMTpro peptide fractions were analyzed with a 90 min gradient from 

5%-38% B. MS spectral were acquired with mass resolution of 120 k and precursors were 

isolated for CID fragmentation with collision energy 35%. MS3 quantification was obtained 

with HCD fragmentation of the top 5 most abundant CID fragments isolated with 

Synchronous Precursor Selection (SPS) and collision energy 55% at 50k resolution. For the 

label-free experiments, peptides were analyzed with a 240 min gradient and HCD 

fragmentation with collision energy 35% and ion trap detection. Database search was 
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performed in Proteome Discoverer 2.4 (Thermo Scientific) using the SequestHT search 

engine with precursor mass tolerance 20 ppm and fragment ion mass tolerance 0.5 Da. 

TMTpro at N-terminus/K (for the labelled samples only) and Carbamidomethyl at C were 

defined as static modifications. Dynamic modifications included oxidation of M and 

Deamidation of N/Q. The Percolator node was used for peptide confidence estimation and 

peptides were filtered for q-value < 0.01. All spectra were searched against reviewed 

UniProt human protein entries. Only unique peptides were used for quantification. The 

results of proteomics analysis are provided in Supplementary Table 13.

Proliferation assay

Cells were seeded at 5,500 per well on 96-w plates. Measurements were taken at 24 h 

intervals post-seeding over a period of 5 days according to manufacturer’s instructions. 

Briefly, plates were removed from the incubator and allowed to equilibrate at room 

temperature for 30 minutes, and equal volume of CellTiter-Glo reagent (Promega) was 

added directly to the wells. Plates were incubated at room temperature for 2 minutes on a 

shaker and left to equilibrate for 10 minutes at 22°C before luminescence was measured on 

PHERAstar FS microplate reader. Luminescence readings were normalized and presented as 

relative luminescence units (RLU) to time point 0 (t0). Supplementary Table 14 shows the 

statistics of 6 replicates for each time point per indicated knockout lines. Doubling time was 

calculated based on replicate-averaged readings on the linear portion of the proliferation 

curve (exponential phase) using formula:

24hr × log 2
log Final Measurment − log Initial Measurement

Genomic DNA extraction and WGS

Samples were quantified with Biotium Accuclear Ultra high sensitivity dsDNA Quantitative 

kit using Mosquito LV liquid platform, Bravo WS and BMG FLUOstar Omega plate reader 

and cherrypicked to 500ng/120µl using Tecan liquid handling platform. Cherrypicked plates 

were sheared to 450bp using a Covaris LE220 instrument. Post-sheared samples were 

purified using Agencourt AMPure XP SPRI beads on Agilent Bravo WS. Libraries were 

constructed (ER, A-tailing and ligation) using ‘Agilent Sureselect kit’ on an Agilent Bravo 

WS automation system. KapaHiFi Hot start mix and IDT 96 iPCR tag barcodes were used 

for PCR set-up on Agilent Bravo WS automation system. PCR cycles include 6 standard 

cycles: 1) Incubate 95C 5 mins; 2) Incubate 98C 30 secs; 3) Incubate 65C 30 secs; 4) 

Incubate 72C 1 min; 5) Cycle from 2, 5 more times; 6) Incubate 72C 10 mins. Post PCR 

plate was purified using Agencourt AMPure XP SPRI beads on Beckman BioMek NX96 

liquid handling platform. Libraries were quantified with Biotium Accuclear Ultra high 

sensitivity dsDNA Quantitative kit using Mosquito LV liquid handling platform, Bravo WS 

and BMG FLUOstar Omega plate reader, then pooled in equimolar amounts on a Beckman 

BioMek NX-8 liquid handling platform and finally normalized to 2.8 nM ready for cluster 

generation on a c-BOT and loading on requested Illumina sequencing platform. Pooled 

samples were loaded on the X10 using 150 PE run length, sequenced to ~25X coverage. The 

details of sequence coverage for all clones and subclones are provided in Supplementary 

Table 2.
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Alignment and somatic variant-calling

Short reads were aligned to human reference genome GRCh37/hg19 assembly using the 

BWA-MEM algorithm81. Three algorithms, CaVEMan (http://cancerit.github.io/

CaVEMan/)82, Pindel (http://cancerit.github.io/cgpPindel)83 and BRASS (https://

github.com/cancerit/BRASS) were used to call somatic substitutions, indels and 

rearrangements in all subclones, respectively.

Assurance of knockout state using WGS data

First, we examined whether there were CRISPR-Cas9 off-target effects by seeking relevant 

mutations in other DNA repair genes besides the genes of interest. We also searched for 

potential off-target sites based on gRNA target sequences using COSMID84 and confirmed 

that there were no off-target hits in knockouts that generated mutational signatures 

(Supplementary Table 15). We confirmed chromosome copy number in all subclones 

remained stable and unchanged from their parent. Second, we confirmed that there are 

frameshift indels near the gRNA targeted sequence in the genes of interest for all knockout 

subclones. One UNG knockout was found to be heterozygous and was excluded in the 

downstream analysis. Third, we checked mislabelled samples by examining the shared 

mutations between subclones. Subclones originally derived from the same parental knockout 

clone would share some mutations, in contrast to subclones from different knockouts. 

Consequently, one ΔPRKDC, one ΔTP53 and two ΔNBN subclones were removed from 

downstream analysis. Fourth, variant allele fraction (VAF) distribution for each knockout 

subclone was examined. VAF>=0.4 was used as a cut-off for determination of whether the 

subclone was derived from a single-cell. When contrasting mutation burden between 

subclones, we only selected subclones that were derived from single-cells, cultured for 15 

days. Shared mutations among subclones were removed to obtain de novo somatic mutations 

accumulated after knocking out the gene of interest. Supplementary Table 2 summarizes the 

number of de novo mutations (substitutions and indels) for all subclones.

Determination of gene knockout-associated mutational signatures

An intrinsic background mutagenesis exists in normal cells grown in culture. Knocking out a 

DNA repair gene that is involved in repairing endogenous DNA damage may result in 

increased unrepaired DNA damage and thereby result in mutation accumulation with 

subsequent rounds of replication. Whole-genome sequencing of these knockouts can detect 

the mutations that occur as a result of being a specified knockout. If mutation burden and 

mutational profile of a knockout is significantly different from the control subclones which 

have only the background mutagenesis, it is most likely that there is gene knockout-

associated mutagenesis. Based on this principle, our approach to identify gene knockout-

associated mutational signature involved three steps: 1) we determined the background 

mutational signature; 2) we determined the difference between the mutational profile of 

knockout and background mutation profiles. 3) we removed the background mutation profile 

from mutation profile of the knockout subclone.

Substitution profiles were described according to the classical convention of 96 channels: the 

product of 6 types of substitution multiplied by 4 types of 5’ base (A,C,G,T) and 4 types of 

3’ base (A,C,G,T). Indel profiles were described by type (insertion, deletion, complex), size 
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(1-bp or longer) and flanking sequence (repeat-mediated, microhomology-mediated or 

other) of the indel. Here, we used two sets of indel channels. Set one contains 15 channels: 

1bp C/T insertion at short repetitive sequence (<5 bp), 1bp C/T insertion at long repetitive 

sequence (>=5 bp), long insertions (> 1bp) at repetitive sequences, microhomology-

mediated insertions, 1bp C/T deletions at short repetitive sequence (<5 bp), 1bp C/T 

deletions at long repetitive sequence (>=5 bp), long deletions (> 1bp) at repetitive sequences, 

microhomology-mediated deletions, other deletion and complex indels (Extended Data Fig. 

5a). Set two contains 45 channels, in which the 1 bp C/T indels at repetitive sequences are 

further expanded according to the exact length of the repetitive sequences (Fig. 3b). Indel 

channel set one was applied to all knockout subclones, whilst channel set two was only 

applied to four MMR gene knockouts (ΔMLH1, ΔPMS2, ΔMSH2, ΔMSH6) to obtain a 

higher resolution of mutational signatures of MMR gene knockouts.

Identifying background signatures—The mutational profile of control subclones were 

used to determine background mutagenesis. Aggregated substitution profiles of all control 

subclones (ΔATP2B4) were used as the background substitution mutational signature. 

Aggregated indel profiles of all subclones containing <= 8 indels were used as the 

background indel mutational signature.

Distinguishing mutational profiles of control and gene-edited subclone 
profiles—Signal-to-noise ratio affects mutational signature detection. In this study, ‘noise’ 

is largely background mutagenesis. The averaged mutation burden caused by the background 

mutagenesis in control cells for substitution and indels are around 150 and 10, with standard 

deviation of 10 and 1.4, respectively. ‘Signal’ represents the elevated mutation burden 

caused by gene knockouts. The averaged mutation burden in knockouts range from 63 to 

2360 for substitution, and 0 to 2122 for indels after 15 days in culture, as shown in 

Supplementary Table 2.

The costs associated with whole genome sequencing is prohibitive, thus we have 2-4 

subclones per knockout. The intrinsic fluctuation of detected mutation burden in each 

sample and the limited subclone numbers impose a greater uncertainty in mutational 

signature detection. Thus, to distinguish high-confidence mutational signatures from noise, 

we employed three different methods.

First, we evaluated the similarity of mutational profile between control and each gene 

knockout. According to the mutational profile of control subclones, 

Pcontrol = [pcontrol
1 , pcontrol

2 , …, pcontrol
k ]T , for a given number of mutations N (0 < N < 10000), 

one could generate L bootstrapped samples:

MN = [m1, ⋯, ml, ⋯, mL] =
m1

1 ⋯ mL
1

⋮ ⋱ ⋮

m1
K ⋯ mL

K
(1)
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where ∑k = 1
K m1

k = N. One can calculate the cosine similarities (sl) between bootstrapped 

control samples (ml) and experimentally-obtained control profile (P control) to obtain a 

distribution of cosine similarities P(S):

sl = ml ⋅ pcontrol
ml pcontrol

. (2)

We can then calculate the cosine similarity (S knockout) between control profile (pcontrol) and 

knockout profile (pknockout). As shown in Figs. 1c and 1d, when the mutation count is low, 

the bootstrapped samples are less similar to the actual control profile than the bootstrapped 

samples with higher mutation count. Comparing S knockout and P(S) at a given mutation 

number, N knockout, one could identify which gene knockouts having distinct mutational 

profiles from the control (p value of S knockout is less than 0.01 in P(S)).

Second, we used contrastive principal component analysis (cPCA)21, which efficiently 

identified directions that were enriched in the knockouts relative to the background through 

eliminating confounding variations present in both (Extended Data Fig. 3a), to recognize 

gene knockout-specific patterns from background signature.

Third, we used t-Distributed stochastic neighbor embedding (t-SNE)22, which is a 

visualization technique for viewing pairwise similarity data resulting from nonlinear 

dimensionality reduction based on probability distributions. In t-SNE implementation, 

mutational profiles that are similar to each other were plotted nearby each other, whereas 

profiles that are dissimilar are plotted distantly in a 2D space (Extended Data Fig. 3b).

Subtraction of the background mutational signature from knockout mutation 
profile—The experiment-associated mutational signature can then be obtained by 

subtracting the background mutational signature from the mutational profile of treated 

subclones through quantile analysis. First, one can generate a set of bootstrap samples of 

each treated subclone in order to determine the distribution of mutation number for each 

channel. According to the distribution, the upper and lower boundaries (e.g., 99% CI) for 

each channel can be identified. Then, based on the background mutational signature and 

averaged mutation burden (as initial value), one can construct bootstrapped background 

profiles, and subtract it from the centroid of bootstrap subclone samples. Due to data noise, 

some channels may have negative values, in which case, the negative values are set to zero. 

Occasionally, the number of mutations in a few channels will fall outside the lower boundary 

after removing the background profile. To avoid negative values, the background mutation 

pattern is maintained but burden is scaled down through an automated iterative process.

Topography analysis of signatures

Strand bias—Reference information of replicative strands and replication-timing regions 

were obtained from Repli-seq data of the ENCODE project (https://

www.encodeproject.org/)85. The transcriptional strand coordinates were inferred from the 

known footprints and transcriptional direction of protein coding genes. First, for a given 

mutational signature, one could calculate the ‘expected’ ratio of mutations between 
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transcribed and non-transcribed strand, or between lagging and leading strands, according to 

the distribution of trinucleotide sequence context in these regions. Second, the ‘observed’ 

ratio of mutations between different strands can be identified through mapping mutations to 

the genomic coordinates of all gene footprints (for transcription) or leading/lagging regions 

(for replication). Third, all mutations were orientated towards pyrimidines as the mutated 

base (as this has become the convention in the field). This helped denote which strand the 

mutation was on. Fourth, the level of asymmetry between different strands was measured by 

calculating the odds ratio of mutations occurring on one strand (e.g., transcribed or leading 

strand) vs. on the other strand (e.g., non-transcribed or lagging strand). IntersectBed86 was 

used to identify mutations overlapping certain genomic features.

MMRDetect algorithm

We trained a mismatch repair (MMR) deficiency logistic regression-based classifier, called 

MMRDetect, based on mutational signatures obtained from the experimental work. We 

obtained mutation data from 336 WGS colorectal cancers with accompanying 

immunohistochemistry (IHC) staining of the four MMR proteins (MSH2, MSH6, MLH1 

and PMS2) from UK100,000 Genomes Project (UK100kGP). Within this cohort of 336 

colorectal cancers, there were 79 (24%) cancers with abnormal IHC staining indicative of 

MMR deficiency. 336 cancers were randomly divided into a training set and a test set by 

using the R function sample(). The training set had 180 MMR-proficient and 56 MMR-

deficient samples. The test data set had 77 MMR-proficient and 23 MMR-deficient samples 

(Supplementary Table 5). Based on the experimental data, we investigated four potential 

predictor variables in MMRDetect (Extended Data Fig. 10):

1) The sum of exposures of MMR mutational signatures. We fitted tissue-specific 

substitution signatures to each tumor using an R package (signature.tools.lib) 

published by Degasperi et al 24.

2) The maximum cosine similarities between the substitution profiles of cancer 

samples and those of MMR gene knockouts. For each cancer sample, we 

calculated the cosine similarity between the substitution profile and substitution 

signatures of the four MMR gene knockouts. The maximum value was used in 

fitting the model.

3) The number of repeat-mediated indels. We examined the sequence context of 

each indel. Only the indels occurring at repetitive regions were used.

4) The cosine similarities between the profiles of repeat-mediated deletions of 

cancer samples and those of MMR gene knockouts. For each cancer sample, we 

calculated the cosine similarity between the repeat-mediated deletion profile and 

those of the four MMR gene knockouts. The mean value was used for fitting the 

model.

The values of different variables were transformed to between 0 and 1 using formula x’ = 

x/max (x) for comparability. Supplementary Table 5 shows calculated parameters of 336 

tumors for MSIseq and MMRDetect. The logistic regression algorithm (function glm()) 

provided in R package glmnet was employed as the framework of MMRDetect. 

Supplementary Table 6 provides the weight (coefficients) of the four variables obtained from 
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training the model using the training data set. A ten-fold cross validation was performed for 

the training data to evaluate the stability of the weights (Extended Data Fig. 10f).

Additional four datasets were used to compare the performance of MMRDetect and MSIseq:

1) 2610 tumors from three different studies72–74;

2) 2024 Hartwig metastatic cancers75;

3) additional 2012 colorectal cancers from the UK100kGP;

4) 713 uterine samples from UK100kGP.

Data analysis

All statistical analysis were performed in R87. P values were calculated using two-sided 

Mann-Whitney test, wilcox.test() in R. The enrichment of mutations on specific trinucleotide 

sequences was assessed by calculating the odds ratio (OR) between observed ratio and 

expected ratio. The 95% confidence interval (CI) was calculated to estimate the precision of 

the OR. All plots were generated by ggplot288.

Statistics and reproducibility

No statistical method was used to predetermine sample size. We produced two genotypes for 

each gene, and two subclones for each genotype. Four subclones were obtained for most of 

genes, except for ΔEXO1 and ΔMSH2. Off-target gene knockouts and/or mislabelled 

samples could cause erroneous results by reporting a signature incorrectly, thus, to reduce 

the likelihood of errors, we excluded these samples. The experiments were not randomized 

and the investigators were not blinded to allocation during experiments and outcome 

assessment. This was however a systematic experimental study performed with identical 

conditions across all knockouts and thus all sequencing data generated afterwards was 

agnostic and fully comparable to one another.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1. Results of pilot study.
Three genes were selected for knockout (&#Δ): MSH6, UNG and ATP2B4 (negative 

control). Two genotypes per gene were obtained and grown in culture to gauge 

reproducibility of signatures between different genotypes of a gene-knockout. These lines 

were cultured under normoxic (20%) and hypoxic (3%) states, for defined culture times of 

~15, 30 or 45 days. Two single-cell subclones were derived for whole genome sequencing 
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for each parental line (equivalent to four subclones per gene edit). One of the UNG 
genotypes appeared to be heterozygous, which was excluded in downstream analysis. (a) 

Substitution burden for knockouts of ATP2B4, UNG and MSH6 under hypoxic and 

normoxic conditions as well as different culturing time. (b) The cosine similarities between 

the mutational profile of each subclone and background signature of culture. (c) Indel 

burden for knockouts of ATP2B4, UNG and MSH6 under hypoxic and normoxic conditions 

as well as different culturing time. (d) The cosine similarities between the mutational profile 

of each subclone with background signature of culture. Overall, the differences between 

normoxic and hypoxic conditions were not marked, although normoxic conditions produced 

slightly more mutations. Time in culture made only a marginal, non-linear difference to 

burden of mutagenesis. Given the results of the pilot, weighing up the costs and risks 

associated with prolonged culture time (risk of infection, risk of selection, marked increase 

in cost of experimental reagents) with the minimal return in terms of mutation number, and 

also intending to minimize transitions between hypoxic to normoxic conditions while 

handling cell cultures, we opted to proceed with the full-scale study under normoxic 

conditions and for 15 days for the rest of study.
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Extended Data Fig. 2. Detecting mutational consequences of knockouts in the absence of added 
external DNA damage.
(a)(b) Schematic illustration of potential components of background signature (a) and 

Possible mutational consequences of the DNA repair gene knockouts for proteins that are 

critical mitigators of mutagenesis (b). (c)-(e) Mutation burden of whole-genome-sequenced 

subclones of gene knockouts. (c) Substitution, (d) indel and (e) double substitution. Bars 

represent the mean. Individual data points are shown in orange dots. In all comparative 

analyses, all gene knockouts were cultured for 15 days and only daughter subclones that 

were fully clonal (i.e., clearly derived from a single cell) were included. N = 2~4, which is 
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the number of clonal knockout subclones cultured under normoxic condition for 15 days 

(see Supplementary Table 2). (f) 96-channel substitution mutation profiles of 173 gene 

knockout subclones.

Extended Data Fig. 3. Results of contrastive principal component analysis and t-SNE.
(a) Contrastive principal component analysis (cPCA) was employed to discriminate 

knockout profiles from control profiles (&#ΔATP2B4). Each figure contains six different 

genes. Nine gene knockouts separate from the controls. Using this method, &#ΔADH5 did 
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not separate clearly from &#ΔATP2B4, indicative of either having no signature or a weak 

signature. Dot colours indicate the repair/replicative pathway that each gene is involved: in 

black - control; green - MMR; orange – BER; dark purple – HR and HR regulation; light 

purple - checkpoint. Each dot represents a subclone. The number of subclones for each gene 

knockout (N = 2~4) can be found in Supplementary Table 2. (b) The t-SNE algorithm was 

applied to discriminate the mutational profiles of gene knockouts from those of control 

knockouts. Gene knockouts that produce mutational signatures separate clearly from control 

subclones and other knockouts which do not have signatures. Subclones of the gene 

knockouts which produce signatures are clustered together, indicating consistency between 

subclones.

Extended Data Fig. 4. Oxidative damage-associated mutational signatures.
(a) Relative mutation frequency of G>T/C>A in 256 possible channels which take two 

adjacent bases 5’ and 3’ of each mutated base (4×4×4×4=256) for &#ΔATP2B4, 

&#ΔOGG1, a head and neck cancer with strong Signature 18 and COSMIC Signature 18. 

(b) Left: tSNE plot of tissue-specific mutational signature 18. Two groups are featured with 

predominant peaks at TGC>TTC/GCA>GAA (highlighted in green) and AGA>ATA/
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TCT>TAT (highlighted in purple), respectively. Right: heatmap of 21 tissue-specific 

mutational signatures at C>A. We compared experimental signatures to previously published 

cancer-derived signatures, focusing on 21 tissue-specific variations of Signature 18. 

Interestingly, we found two distinct groups of Signature 18. Signatures of &#Δ OGG1, 
cellular models and signatures derived from head and neck tumors, pancreas, myeloid, 

bladder, uterus, cervix, lymphoid tumors were most similar to each other, with the 

predominant G>T/C>A peak at TGC>TTC/GCA>GAA. By contrast, an alternative version 

of this signature with a predominant G>T/C>A peak at AGA>ATA/TCT>TAT was noted in 

colorectal, esophagus, stomach, bone, lung, CNS, breast, skin, prostate, liver, head and neck 

tumors (Signature Head_neck_G), ovary, biliary and kidney cancers. Indeed, there are many 

types of oxidative species which could fluctuate between tissues, variably affecting 

trinucleotides resulting in the variation observed in Signature 18.
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Extended Data Fig. 5. Indel signatures and double substitution signatures.
(a) 15-channel Indel signatures. (b) 186-channel Indel signatures. (c) Aggregated double 

substitution profile of &#ΔRNF168 and &#ΔEXO1.
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Extended Data Fig. 6. Similarities between &#ΔEXO1, &#ΔRNF168 signatures and Signature 5 
and results of analysis on transcriptional strand bias and distribution of mutations on replication 
timing domains.
(a) Hierarchical clustering of cancer-derived reference signatures with &#ΔEXO1 and 

&#ΔRNF168 signatures. (b) Hierarchical clustering of tissue-specific signature 5 with 

&#ΔEXO1 and &#ΔRNF168 signatures. (c) Transcriptional strand bias in 9 gene knockouts. 

Pearson's Chi-Squared test (chisq.test()) was used to calculate the p-value. P-value was 

corrected using p.adjust(). Unlike mutational signatures of environmental mutagens, we do 

not observe striking transcriptional strand bias in signatures generated by DNA repair gene 
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knockouts, except for T>C generated by &#ΔEXO1 and &#ΔRNF168. Since transcriptional 

strand bias is largely induced by NER repairing DNA bulky adducts, lack of it indicates that 

most of the endogenous DNA damage is not particularly bulky or DNA-deforming. (d) 

Distribution of mutation density across replication timing domains (separated into deciles) 

for signatures associated with different gene knockouts. Green bars indicate observed 

distribution. Blue lines indicate expected distribution with correction of trinucleotide density 

of each domain. Bars and error bars represent mean ± SD of bootstrapping replicates 

(n=100).
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Extended Data Fig. 7. Putative outcomes of all possible base-base mismatches.
Outcomes from 12 possible base-base mismatches. The red and black strands represent 

lagging and leading strands, respectively. The arrowed strand is the nascent strand. The 

highlighted pathways are the ones that generate C>A (blue), C>T (red) and T>C mutations 

(green) in the &#ΔMSH2 mutational signature.
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Extended Data Fig. 8. Distribution of G>T/C>A mutations in polyG tracts of &#ΔMSH2, 
&#ΔMSH6 and &#ΔMLH1.
(a) Relative frequency of occurrence of G>T/C>A in polyG tracts. (b) Occurrence of 

G>T/C>A in polyG tracts.
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Extended Data Fig. 9. Gene-specific mutational signatures in MMR-deficiency.
Proportion of different mutation types of substitution (a) and indel (b) signatures for 4 MMR 

gene knockouts. (c) The ratio of substitution and indel burden. (d) Schematic interpretation 

of the relative mutation burdens of &#ΔMSH2 and &#ΔMSH6.
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Extended Data Fig. 10. Development of MMRDetect.
(a)-(e) Distribution of the five parameters across IHC-determined MMR gene abnormal 

(orange) and MMR gene normal (green) samples. black dots and error bars represent mean ± 

SD of the paramenters. N Abnormal = 79 samples (yellow); N Normal = 257 samples (green). 

(a) Exposure of MMR signatures. (b) Cosine similarity between the substitution profile of 

cancer samples and that of MMR gene knockouts. (c) Number of indels in repetitive regions. 

(d) Cosine similarity between the profile of repeat-mediated deletions of cancer sample and 

that of knockout generated indel signatures, (e) the cosine similarity between the profile of 

repeat-mediated insertion of cancer sample and that of knockout generated indel signatures. 

P-values were calculated through two-sided Mann-Whitney test. (f) Distribution of 

coefficients from 10-fold cross validation using training data set. Box plots denote median 

(horizontal line) and 25th to 75th percentiles (boxes). The lower and upper whiskers extend 

to 1.5× the inter-quartile range. N = 10 iterations. (g) MMRDetect-calculated probabilities 

for 336 colorectal cancers. With cut-off of 0.7, 77 out of 336 were predicted to be MMR-
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deficient samples (probability < 0.7). Colour bars represent the MSI status determined by 

IHC staining: red – abnormal; blue – normal. Four samples with abnormal IHC staining have 

probabilities > 0.7, whilst 2 samples with normal IHC staining have probabilities < 0.7. The 

4 samples were revealed to be false positive cases and the 2 samples were false negative 

ones for IHC staining through validation using MSIseq and seeking coding mutations in 

MMR genes. (h) Distribution of the mutation number of repeat-mediated indels, MMR-

deficiency signatures and non-MMR-deficiency signatures across four groups of samples: 

MMR-deficient samples determined by only MMRDetect (yellow), MMR-deficient samples 

determined by only MSIseq (purple), MMR-deficient samples determined by both 

MMRDetect and MSIseq (blue) and non-MMR-deficient samples determined by both 

MMRDetect and MSIseq (pink). P-values were calculated through two-sided Mann-Whitney 

test. Numbers of MMR-deficient samples determined by MMRDetect only (blue), MSIseq 

only (pink), both (yellow) and none (purple) are 34, 20, 587 and 6718, respectively.
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Figure 1. Mutational consequences of DNA replicative/repair pathway gene knockouts.
(a) Experimental workflow from isolation of gene knockouts to generating subclones for 

WGS. (b) Forty-three genes were knocked out, including 42 DNA replicative/repair genes 

and one control gene (ATP2B4). (c) Distinguishing substitution profiles of control subclones 

and knockout subclones. Green line shows the cosine similarities between bootstrapped 

profiles of controls against aggregated control substitution profile. X-axis shows the 

aggregated substitution number of each genotype of a knockout. (d) Distinguishing indel 

profile of control subclones and knockout subclones. Light blue line shows the cosine 

similarities between bootstrapped indel profiles of controls against aggregated control indel 

profile. X-axis shows the aggregated indel number of each genotype of a knockout. (e) De 
novo mutation number of knockout subclones (n = 2~4, Supplementary Table 2) cultured for 

15 days. Bars and error bars represent mean ± SD of subclone observations.
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Figure 2. Safeguarding the genome from oxidative damage and cytosine deamination.
(a) Substitution signatures of background mutagenesis (from control ΔATP2B4), 

ΔOGG1,ΔUNG,ΔEXO1 and ΔRNF168. (b) Cosine similarity between mutational signature 

of gene knockouts and cancer-derived mutational signatures24. (c) Odds ratio of C>A 

occurring at 16 trinucleotides for ΔOGG1 and ΔMUTYH (SBS36)6. Calculation was 

corrected for distribution of trinucleotides in the reference genome. Odds ratio less than 1 

with 95% confidence interval (CI) < 1 implies that C>A mutations at that particular 

trinucleotide are less likely to occur. The mutational profiles of C>A at GCA with ±2 

flanking bases are shown for ΔATP2B4,ΔOGG1, SBS18 and SBS36. (d) Odds ratio of C>T 

occurring at all 16 trinucleotides for ΔUNG and ΔNTHL1 (SBS30)6. Transcriptional strand 

asymmetry of (e) ΔEXO1 signature and (f) ΔRNF168 signature. Dots and error bars in (c-f) 

represent calculated odds ratio with 95% confidence interval. The insets show the count of 

T>C/A>G mutations on transcribed and non-transcribed strands.
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Figure 3. Multiple endogenous sources of DNA damage managed by mismatch repair.
(a) Substitution and (b) indel signatures for five mismatch repair gene knockouts. The indel 

signature of ΔPMS1 is shown in Extended Data Fig. 5a. (c) Dissection of DNA mismatch 

repair mutational signatures: C>A mutations believed to be due to oxidative damage of 

guanine and proposed mechanism of how DNA polymerase errors contribute to mis-

incorporated bases that result in C>T and T>C. All other mismatch possibilities and their 

outcomes are demonstrated in Extended Data Fig. 7. The red and black strands represent 

lagging and leading strands, respectively. The arrowed strand is the nascent strand. (d) 

Replicative strand asymmetry observed for mutational signatures generated by four MMR 

gene knockouts. Dots and error bars represent odds ratio with 95% confidence interval. (e) 
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The relative frequency of occurrence of G>T/C>A in polyG tracts for ΔMSH6. The count 

and relative frequency of occurrence of G>T/C>A in polyG tracts for ΔMSH2 and ΔMLH1 
are shown in Extended Data Fig. 8. (f) T>A mutation frequency is highest at junctions of 

poly(A)poly(T) or poly(T)poly(A). The inset shows that T>A mutations have a striking peak 

at ATT. (g) Odds for T>A mutations occurring at poly(A)poly(T) or poly(T)poly(A) are 

higher than AT sequences flanked by other nucleotides, corrected for sequence context 

through whole genome. Data are represented as mean ± SEM. N= 2~4, see Supplementary 

Table 2. (h) Putative ‘reverse template slippage’ model: T>A substitutions at poly(A)poly(T) 

or poly(T)poly(A) junctions arise due to template strand slippage and subsequent reversal of 

the slipped template strand. IDL: insertion-deletion loop.
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Figure 4. Gene-specific features of signatures of mismatch repair (MMR) deficiency are 
recapitulated in other model systems.
(a) Experimental workflow including generation of hiPSCs from patients with Constitutional 

Mismatch Repair Deficiency (CMMRD), subcloning of hiPSCs and whole-genome 

sequencing. (b) Genome plots of MMR knockouts demonstrate consistent gene-specificity 

regardless of model system, e.g., cancer (in vivo) and CMMRD patient-derived hiPSCs (in 
vitro). Top: whole genome plots of two iPSC subclones from two PMS2 mutated CMMRD 

patients and a breast tumor with PMS2 deficiency. Bottom: genome plots of two iPSC 

subclones derived from two MSH6 mutant CMMRD patients and a breast tumor with 
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MSH2/MSH6 deficiency. Genome plots show somatic mutations including substitutions 

(outermost, dots represent six mutation types: C>A, blue; C>G, black; C>T, red; T>A, grey; 

T>C, green; T>G, pink), indels (the second outer circle, colour bars represent five types of 

indels: complex, grey; insertion, green; deletion other, red; repeat-mediated deletion, light 

red; microhomology-mediated deletion, dark red) and rearrangements (innermost, lines 

representing different types of rearrangements: tandem duplications, green; deletions, 

orange; inversions, blue; translocations, grey). (c) 96-channel substitution profiles. (d) 45-

channel indel profiles. (e) Hierarchical clustering of cancer-derived tissue-specific MMR 

signature and MMR knockout signatures. 96-bar plots of ΔPMS2-related tissue-specific 

signatures can be viewed here:

https://signal.mutationalsignatures.com/explore/cancer/consensusSubstitutionSignatures/6
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Figure 5. Mutational signature-based mismatch repair (MMR) deficiency classifier, MMRDetect.
(a) Concordance of three MMR-deficiency detection methods - immunohistochemistry 

(IHC) staining, MSIseq and MMRDetect - on 336 colorectal cancers is illustrated in the 

Venn diagram. IHC staining, MSIseq and MMRDetect identified 79, 79 and 77 MMR-

deficient samples, respectively. Details of the eight samples with discordant outcomes from 

the three methods are provided in Supplementary Table 5. Four samples classified as MMR-

proficient by MMRDetect and MSIseq have abnormal IHC staining (shown in dark yellow). 

However, no functional mutations in MMR genes were found. Two samples classified as 

MMR-proficient by MMRDetect and IHC staining were identified as MMR-deficient by 

MSIseq (shown in pink) and did not have MMR gene mutations but had POLE mutations 

and signatures instead. Two samples classified as MMR-deficient by MMRDetect and 

MSIseq have normal IHC staining (shown in orange). Both have mutations in MMR genes. 

(b) Receiver operating characteristic (ROC) curves of IHC staining, MMRDetect and 

MSIseq classification. (c) Concordance between MSIseq and MMRDetect on 2,012 GEL 

colorectal cancers, 713 GEL uterine cancers, 2,024 Hartwig metastatic cancers and 2,610 

cancers from PCAWG & SCANB projects. The bars show the numbers of samples that were 

identified as MMR deficient by only MSIseq (pink), only MMRDetect (blue), both (yellow) 

and none (purple). (d) The distribution of three variables amongst samples that were 

discordantly (blue, pink) and concordantly (yellow and purple) detected by MSIseq and 

MMRDetect: the number of repeat-mediated indels, number of mutations associated with 

MMRD signatures and non-MMRD mutations. Numbers of MMR-deficient samples 
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determined by MMRDetect only (blue), MSIseq only (pink), both (yellow) and none 

(purple) are 34, 20, 587 and 6,718, respectively.
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Figure 6. Impact of experimental validation of cancer-derived mutational signatures on 
biological understanding and development of clinical applications.
Some genes (often involved in DNA repair pathways) which are important guardians against 

endogenous DNA damage under non-malignant circumstances, have been identified in this 

work. They help to validate and to understand the etiologies of cancer-derived mutational 

signatures. The biological insights help to drive the development of new genomic clinical 

tools to detect these abnormalities with greater accuracy and sensitivity across tumor types.
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