
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rejf20

The European Journal of Finance

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rejf20

Ascertaining price formation in cryptocurrency
markets with machine learning

Fan Fang, Waichung Chung, Carmine Ventre, Michail Basios, Leslie Kanthan,
Lingbo Li & Fan Wu

To cite this article: Fan Fang, Waichung Chung, Carmine Ventre, Michail Basios, Leslie Kanthan,
Lingbo Li & Fan Wu (2021): Ascertaining price formation in cryptocurrency markets with machine
learning, The European Journal of Finance, DOI: 10.1080/1351847X.2021.1908390

To link to this article: https://doi.org/10.1080/1351847X.2021.1908390

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 05 Apr 2021.

Submit your article to this journal

Article views: 314

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=rejf20
https://www.tandfonline.com/loi/rejf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1351847X.2021.1908390
https://doi.org/10.1080/1351847X.2021.1908390
https://www.tandfonline.com/action/authorSubmission?journalCode=rejf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rejf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/1351847X.2021.1908390
https://www.tandfonline.com/doi/mlt/10.1080/1351847X.2021.1908390
http://crossmark.crossref.org/dialog/?doi=10.1080/1351847X.2021.1908390&domain=pdf&date_stamp=2021-04-05
http://crossmark.crossref.org/dialog/?doi=10.1080/1351847X.2021.1908390&domain=pdf&date_stamp=2021-04-05
https://www.tandfonline.com/doi/citedby/10.1080/1351847X.2021.1908390#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/1351847X.2021.1908390#tabModule

THE EUROPEAN JOURNAL OF FINANCE
https://doi.org/10.1080/1351847X.2021.1908390

Ascertaining price formation in cryptocurrency markets with machine
learning

Fan Fanga, Waichung Chungb, Carmine Ventrea, Michail Basiosc,d, Leslie Kanthanc,d, Lingbo Lid and
Fan Wud

aKing’s College London, London, UK; bUniversity of Essex, Colchester, UK; cUniversity College London, London, UK; dTuring
Intelligence Technology Limited, London, UK

ABSTRACT
The cryptocurrency market is amongst the fastest-growing of all the financial mar-
kets in the world. Unlike traditional markets, such as equities, foreign exchange and
commodities, cryptocurrency market is considered to have larger volatility and illiq-
uidity. This paper is inspired by the recent success of using machine learning for stock
market prediction. In this work, we analyze and present the characteristics of the cryp-
tocurrency market in a high-frequency setting. In particular, we applied a machine
learning approach to predict the direction of the mid-price changes on the upcoming
tick. We show that there are universal features amongst cryptocurrencies which lead
to models outperforming asset-specific ones. We also show that there is little point in
feeding machine learning models with long sequences of data points; predictions do
not improve. Furthermore, we solve the technical challenge to design a lean predictor,
which performs well on live data downloaded from crypto exchanges. A novel retrain-
ing method is defined and adopted towards this end. Finally, the trade-off between
model accuracy and frequency of training is analyzed in the context of multi-label
prediction. Overall, we demonstrate that promising results are possible for cryptocur-
rencies on live data, by achieving a consistent 78% accuracy on the prediction of the
mid-price movement on live exchange rate of Bitcoins vs. US dollars.

ARTICLE HISTORY
Received 19 November 2019
Accepted 11 March 2021

KEYWORDS
Cryptocurrency; machine
learning; predictors ; model
classification

1. Introduction

A powerful yet basic toolkit for algorithmic traders would efficiently predict the direction of price changes for
financial assets;machine learning techniques, such as deep neural networks, are known as performant predictors
for a variety of tasks and setups. This paper focuses on effectively applying neural networks on cryptocurrency
market trading systems. Our objective is to predict the price changes; we consider both binary (up/down) and
multi-class (e.g. degrees of increase/decrease) prediction of price changes.

The cryptocurrency market is a huge emerging market (Ahamad, Nair, and Varghese 2013). There were over
11, 641 exchanges available on the internet as of July 2018 (En.wikipedia.org 2018). Most of them are exchanges
of small capitalization with low liquidity. Exchanges with the highest 24-hour volume are FCoin, BitMEX, and
Binance. Bitcoin, as the pioneer and also the market leader, has a market capitalization of over 112 billion USD,
and a 24-hour volume over 3.8 billion USD in early July 2018. The cryptocurrency market is one of the most
rapidly growing markets in the world and is also considered one of the most volatile markets to trade in. For
example, the price of a single Bitcoin increased significantly, from near zero in 2013 to nearly 19, 000 USD in
2017. For some alt-coins, the price can increase or fall over 50%within a day. Therefore, having amethod to accu-
rately predict these changes is a pervasive task, but one that could achieve a long-term profit for cryptocurrency
traders.

CONTACT Fan Fang fan.fang@kcl.ac.uk

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1351847X.2021.1908390&domain=pdf&date_stamp=2021-06-08
mailto:fan.fang@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/

2 F. FANG ET AL.

Table 1. Comparison between our research and Easley et al. #FDR refers to
Feature Dimensionality Reduction.

Our research Easley et al.

Target Market Cryptocurrency Future contracts
Data Frequency Tick-level Tick-level
Core ML Model LSTM Random forest
Features 16 6
Methods of #FDR PCA & Autoencoder Correlation coefficient

There are a number of research papers that studied the structure of the limit order book (i.e. the bids at
both sides of the market) and, more generally, the micro-structure of the market by using different methods
ranging from stochastic to statistical and machine learning approaches (Biais, Hillion, and Spatt 1995; Huang,
Nakamori, and Wang 2005; Altay and Satman 2005; Fletcher 2012; Nousi et al. 2019). The Limit-Order Books
of cryptocurrency markets share many common characteristics with those of traditional markets, especially at
the microstructure level. The main difference is due to the lower average depth of the book in cryptocurrency
markets; this leads to other differences related to the way the order book absorbs order flows and trade flow
imbalances (Silantyev 2019).

The objective of this paper is to understand the way prices at either side of the market move. Motivated
by related literature, we focus on a particular measure, the mid-price, which intuitively captures the average
difference between the best ask (the lowest price sellers are willing to accept) and best bid (the highest price
buyers are willing to pay). Towards this aim we could, for example, use Markov chains to model the limit order
book (Kelly and Yudovina 2017).We could view the limit order book as a queuing systemwith a randomprocess
and use birth-and-death chains to model its behavior. From this perspective, a natural way to explain the mid-
price movement is to consider the value of the mid-price as the state of the chain. This value is controlled by the
ratio between the probability of birth transitions p and the probability of death transitions q. A ratio p/q greater
than 1 within a short interval of time indicates that there is a higher chance for birth transitions to happen (more
buyers), and the value of the mid-price is expected to increase. Similarly, if the ratio is smaller than 1, the value
of the mid-price is expected to decrease (Sundarapandian 2009). The problem with this approach is the way it
models the order book, namely, is the limit order book a queuing system? If it were, how to correctly simulate
the random process and how to accurately estimate p and q become vital questions for this approach.

Easley et al. (2019) researched similar topic in price formation. They investigated price dynamics in current
complex markets using machine learning algorithms. We compare our research design with theirs along several
dimensions (cf. Table 1). There are several differences. First, our research aims at emerging market – cryptocur-
rency market – which is characterized by high risk and high returns. Easley et al. focus on future contracts;
dollar-volume bars are used in their analysis. The core machine learning model in our research is LSTM whilst
they focus on Random Forests. Many researchers found that LSTM is more suitable than random forest in han-
dling financial time series (Fischer and Krauss 2018). The memory cell in LSTM allows the model to remember
relevant historical information more clearly. Second, our research uses 16 features including basic market fea-
tures and order book features while Easley et al. focus on features related to volume. Third, there are differences
in the methods used to detect features correlation; we use Principal Component Analysis (PCA) and Autoen-
coders while Easley et al. use Correlation Coefficient. Although Correlation Coefficient is a goodmethod to find
relationship among selected features, it is hard to reduce features’ dimension when some features are strongly
related. Combining PCA and Autoencoder could reduce the interference between similar features, as implied by
our research. Finally, we design a new retrainingmethod to refresh obsolete predictivemachine learningmodels.
Updating the model frequently makes sense in financial prediction, as from our back-testing experiment.

In this research, we propose to adopt a machine learning approach to reveal useful patterns from limit order
books. We provide insights to a number of specific technical questions that arise from this approach. Specifi-
cally, we show that there are universal features amongst cryptocurrencies that can improve the predictive power
of machine learning models, as there are in the case of equities (Sirignano and Cont 2019). The conceptual
difference is that Sirignano and Cont focus on equities and our research focused on cryptocurrencies. We also
show that feeding more data to train our deep neural network fails to improve the model performances; simpler

THE EUROPEAN JOURNAL OF FINANCE 3

single-dimensional models are preferred. Third, we test the model on live data for different periods of varying
length, which bears conceptual as well as technical challenges. Conceptually, we show that models developed
with an ideal condition (carefully selected and split data) hardly perform well on real world cases, often because
of sub-optimal accuracy and inefficient running time. This leads to the engineering challenge of designing a
lean model which runs fast on live data, including retraining the model when necessary, whilst retaining accu-
rate predictions. We show in this paper that, certain known architectures can meet both requirements, when
using a novel training method that we callWalkthrough Training. Finally, we explore the problem of multi-label
classification, by predicting ‘small’ or ‘large’ increase/decrease of themid-price; we analyze the trade-off between
performance and retrain frequency of Walkthrough Training in this context. Ultimately, our findings pave the
way to the design of novel trading strategies and market estimators.

1.1. Relatedwork

Since the birth of the market, traders have been trying to find accurate models to use to make a profit. Many
studies and experiments have been conducted based on statistical modeling of the stock price data. Some studies
attempted to model the limit order book by using statistical approaches, such as using Poisson Processes and
Hawkes Processes to estimate the next coming order and to model the state of the limit order book (Toke and
Pomponio 2012; Abergel and Jedidi 2015). Brooks et al. (2019) pointed out that financial data science and econo-
metrics are highly complementary. The new research paradigm financial data science brings new opportunities
for academic research in finance.

Others have used machine learning approaches to estimate the upcoming market condition by applying
different machine learning models, such as support vector machine (SVM) (Kercheval and Zhang 2015), con-
volutional neural network (CNN) (Tsantekidis et al. 2017), Random Forest (Easley et al. 2019), and recurrent
network such as Long-Short-Term-Memory (LSTM) (Dixon 2018). These studies show that it is possible to use a
data-driven approach to discover hidden patterns within the market. In particular, Kercheval and Zhang (2015)
modeled the high-frequency limit order book dynamics by using SVM. They discovered that some of the essen-
tial features of the order book lie on fundamental features, such as price and volume, and time-insensitive
features like mid-price and bid-ask spread. Nousi et al. (2019) provided extensive study in high frequency limit
order book information in predictingmid-price movements. Support vector machine (SVM), Single layer Feed-
forward Network (SLFN), and Multilayer Perceptron (MLP) are compared in examining whether the classifier
learns the general trends and trends of the stock market by learning from some stocks and applying this knowl-
edge to invisible stocks. The research evaluated these models in solving high speed, variance, quantity of limit
order book data and showed that the feature extractionmodel can discover potential auxiliary knowledge (Nousi
et al. 2019). As from above, Easley et al. (2019) investigated price dynamics in future contract markets using
random forests. Mäkinen et al. (2019) proposed an approach with attention forecasting jump arrivals 1-minute
ahead in stock prices. This mechanism, convolutional neural network, and Long Short-Term memory model
are compared in their experiments. Tran et al. (2018) considered a neural network layer structure combining
the idea of bilinear projection and enabling this layer to detect and focus on critical time information in finan-
cial time-series forecasting. Barbon (2019) proposed an encoder–decoder neural network augmented with an
attention-basedmechanism in predicting future transaction prices in NASDAQ. The results showed themodel’s
behavior prefers liquidity provision rather than front-running strategies. Gu, Kelly, and Xiu (2020) compared
different machine learning methods for the canonical problem of empirical asset pricing. Tree and neural net-
works are best-performing methods in measuring asset risk premiums from their research. Verstyuk (2020)
took a range of small to large-scale Long Short-Term Memory recurrent neural networks and compared those
to the VAR method. These methods are used to model multivariate time series such as GDP growth, inflation,
commodity prices, and so on. The results showed that the neural networks used may also be a useful tool for
policy simulation under actual relevant economic conditions, which can also discover different macroeconomic
regimes. Finally, Sirignano and Cont (2019) suggested that there might be some universal features on the stock
market’s limit order book that have a non-linear relationship to the price change. They tried to predict the mid-
price movement of the next tick by training a neural network using a significant amount of stock data. Their

4 F. FANG ET AL.

findings suggest that instead of building a stock-specific model, a universal model for all kinds of stock could be
built.

Most of the studies in the area focus on the traditional stock market like NYSE and NASDAQ (Güresen,
Kayakutlu, and Daim 2011). Many researchers have studied these exchanges for many years. The quality of
data and the market environment are more desirable than those of the cryptocurrency market. Although the
traditional stockmarketmay provide a less volatile andmore regulated environment for traders, the high volatil-
ity of the cryptocurrency market may provide a higher potential return. Our research aims to apply the same
philosophy to the cryptocurrency market and replicate the findings above. In other words, we try to model
the cryptocurrency market by using a data-driven approach. In this paper, experiments are focusing on the
engineering side of this approach.

Understanding price formation through mid-price for cryptocurrencies becomes even harder due to the
fact that they are distinct from traditional fiat-based currencies. The latter are usually issued by banks or
governments. The only way to create Bitcoins, the currently dominant cryptocurrency, is to run a computa-
tionally intensive algorithm to add new blocks to the blockchain. People who participate in this processing
will verify transactions on the blockchain and try to earn Bitcoins as the reward of adding new blocks. These
people are usually referred to as Bitcoins miners. The protocol of the Bitcoin fixed its total supply at 21 mil-
lion (Nakamoto 2008). Every transaction on the blockchain is protected by a cryptographic hash algorithmcalled
SHA-256. It is a computational intensive hash algorithm that is implemented to verify blocks on the blockchain.
For instance, if a counterfeiter wants to forge a block on the blockchain, they will also need to redo all the hashing
before that block. This property provides a trustless foundation for Bitcoin because neither an individual nor an
institution can counterfeit the currency or the transaction unless it has a computational power in excess of the
majority of the network (Nakamoto 2008).

Multi-label prediction is widely used in image processing, character recognition and forecasting of decisions
or time series. Complex trading strategies might require more than binary classification. One may use the status
box method to measure different stock statuses such as turning point, flat box, and up-down box (Zhang, Li,
and Pan 2016) in order to reflect the relative position of the stock and classify whether the state coincides with
the stock price trend. In this research, we propose to use the transaction fee as a threshold to decide whether
the designated cryptocurrency market has a long or short signal. When prediction of price movement is under
transaction fee, it means in the next trading cycle the market falls in a ‘Buffer area’ where the market is in a
relatively stable position.

Marcus (2018) points critical aspects on the application of machine learning, especially deep learning, which
provide insights for finance. First, machine learning models are data-hungry. Marcus gives an example in his
research: one cannot rely on millions of training examples to represent abstract relationships between similar
algebraic variables. Accordingly, in financial predictions, machine learning models might be misaligned due to
limited training examples. Second, the knowledge gathered by deep learning systems is primarily concernedwith
correlations between features, rather than abstractions like quantified statements. For these reasons, machine
learning is not yet able to reach human-level cognitive flexibility. Ultimately, a machine learning algorithm
applied to finance needs to improve adaptability when facing a new market or order structure.

1.2. Roadmap

The paper is organized as follows. In Section 2, we provide a brief overview of the tools adopted, including
machine learning, limit order books, and data sources we used. In Section 3, we design experiments to address
our research questions. In Section 4, we give a brief discussion of the validity of our findings. Section 5 gives a
conclusion of this paper.

2. Our tools

In this section, we first review the background of machine learning and limit order books, before introducing
an overview of the trading system where our prediction model is trained on.

THE EUROPEAN JOURNAL OF FINANCE 5

Figure 1. An overview of an LSTM cell

2.1. Machine learning

Artificial neural networks are computational algorithms mimicking biological neural systems, such as human
brains. These algorithms are designed to recognize and generalize patterns from the input, and memorize them
as weights in the neural network. The basic unit of a neural network is a neuron; a simple neural network, which
is a conglomeration of neurons, is called Perceptron.

The neural network used in this paper is a type of recurrent neural network called Long-Short-Term-Memory
(LSTM) (Hochreiter and Schmidhuber 1997). This is distinct from the feed-forward neural network such as
Perceptrons, since the output of the neural network sends feedback to the input and affects the subsequent
output. Therefore, LSTM is better suited for handling sequential data where the previous data can have an
impact on subsequent data; this, in principle, works well for time series data for price prediction and forecasting
(Figure 1).

An LSTM cell contains a few gates and a cell status to help the LSTM cell decide what information should
be kept and what information should be forgotten. As a result, the LSTM cell can recall important features
from the previous prediction by having a cell state. An LSTM cell can also be viewed as a combination of a few
simple neural networks, each of them serving a different purpose. The first one is the forget gate (Hochreiter
and Schmidhuber 1997). The previous output is concatenated with the new input and passed through a sigmoid
function. After that, the output of the forget gate, ft , will perform a Hadamard product (element-wise product)
with the previous cell’s state. Note that ft is a vector containing elements that have a range from 0 to 1. A number
closer to 0 means the LSTM should not recall it, whilst a number closer to 1 means the LSTM should recall and
carry on to the next operation. This process helps the LSTM select which elements are to forget and remember,
respectively. The second one is the input and activation gates (Hochreiter and Schmidhuber 1997). This process
concatenates the previous output with the new input, determines which element should be ignored, and updates
the internal cell state. The cell state is then updated by a combination of the output and a transformation of the
input. The third one is the output gate (Hochreiter and Schmidhuber 1997). This process helps determine the
output of the cell. Finally, the output of the LSTM cell is the Hadamard product of the current internal cell state
and the output of the output gate (Christopher 2015; Adam 2015).

We use Root Mean Square Propagation (RMSprop) (Tieleman and Hinton 2012) – a stochastic gradient
descent optimizer – to train the neural network, with the learning rate divided by the exponentially weighted
average. Optimizer, learning rate, and loss function are core concepts in machine learning models. Optimizer
ties together the loss function and model parameters by updating the model in response to the output of the
loss function. Loss function is a method of evaluating how well the algorithm models a given dataset, it tells
the optimizer whether it is moving in the right or wrong direction. The learning rate is a hyperparameter that
controls how much the weight values should change in response to the estimated error each time the model’s
weights are updated.

6 F. FANG ET AL.

Figure 2. An overview of a simple trading system.

In our experiments, we also tested the use of an adaptivemoment estimation, Adam in short, as the optimizer.
While we observed that Adam helps the neural network to converge faster, we noted a tendency to overfit the
data: the validation set has an increasing loss while the training set has a decreasing loss. This motivates our
choice of RMSprop as optimizer.

2.2. Limit order books

The limit order book is technically a log file in the exchange showing the queue of the outstanding orders based
on their price and arrival time. Let pb be the highest price at the buy side, which is called the best bid. The best
bid is the highest price that a trader is willing to pay to buy the asset. Let pa be the lowest price at the sell side,
which is called the best ask. The best ask is the lowest price a trader is willing to accept for selling the asset.

The mid-price of an asset is the average of the best bid and the best ask of the asset in the market.

Mp = (pb + pa)
2

.

There are other metrics that are also useful for describing the state of the limit order book: Spread, Depth, and
Slope.

2.3. Data source and overview of the envisioned trading system

Numerous exchanges provide Application Programming Interface (API) for systematic traders or algorithmic
traders to connect to the exchange via software. Usually, an exchange provides two types of API, a RESTful API,
and WebSocket API. Some exchanges also provide a Financial Information eXchange (FIX) protocol. In this
study, a WebSocket API from an exchange called GDAX (Global Digital Asset Exchange) is used to retrieve the
level-2 limit order book live data (GDAX 2018). The level-2 data provides prices and aggregated depths for top
50 bids and asks. GDAX is one of the largest exchanges in the world owned by the Coinbase company.

Our focus is to design a model that can successfully predict the mid-price movement in the context of cryp-
tocurrencies. Such a model is a component of a trading system, as shown in Figure 2. There are a few essential
components for the trading system. First of all, the WebSocket is used to subscribe to the exchange and receive
live data including tickers, order flows, and the limit order book’s update. Tickers data usually appears when
two orders of the opposite side are matched and the opening of a candle on a candlestick chart. Tickers contain
the best bid, best ask, and the price, thus reflecting the change in price in real time.

THE EUROPEAN JOURNAL OF FINANCE 7

The ways the updates to the limit order book are communicated differ. Some exchanges provide a real-time
snapshot of the order book. Some exchanges, including GDAX, only provide the update, i.e. updated data of a
specific price and volume on the limit order book. Therefore, a local real-time limit order book is required to
synchronize with the exchange limit order book. Additionally, we need to store all the data in a database. In this
study, a non-relational database called MongoDB has been used to this purpose. Unlike a traditional relational
database,MongoDB stores unstructured data in a JSON-like format as a collection of documents. The advantage
of using a non-relational database is that data can be stored in a more flexible way. The local copy of the limit
order book is reconstructed by using level-2 limit order book updates. The reconstructed limit order book can
provide information on the shape and status of the actual exchange limit order book. This limit order book can
be used for calculating order imbalance and can provide quantified features of the limit order book. The input to
the model is then finalized by a vectorizer, used as a data parser, combining information and extracting features
from the ticker data and the local limit order book. Features are then reshaped into the format that can fit into
an LSTMmodel.

We leave to future research the design and experimentation of a decisionmaker, which shouldmake use of the
prediction given by the trainedmodel and helpmanage the inventory. If the inventory and certain thresholds are
met, the decision-maker would place an order to the exchange based on the prediction from the trained LSTM
model through RESTful API.

3. Experimental study

3.1. Objective

The purpose of this research is to process real-time tick data using machine learning neural network approach
on cryptocurrency trading system. As a machine learning model based on high-frequency trading, accuracy of
prediction and computational efficiency are both important factors to consider in this research; accuracy here
refers to the percentage of correct predictions made by the model.

3.2. Dataset

The data used in this study is live data recorded via a WebSocket through the GDAX exchange WebSocket API.
The data contain the ticker data, level-2 order book updates, and the order submitted to the exchange. The time
range of the collected data is from the time of 2018-07-02 17:22:14 to 2018-07-03 23:32:53. BTC-USD data from
2018-08-08 14:31:54 to 2018-08-09 09:01:13, BTC-USD data from 2018-08-11 12:09 to 2018-08-16 23:59, and
from 2018-08-24 12:07 to 2018-08-29 23:59 are collected for live back-testing. The order flow data contain 61,
909, 286 records, the tickers data include 128, 593 ticker data points, and the level-2 data contain 40, 951, 846
records. Table 2 lists the available assets on the GDAX exchange and the corresponding number of records.

Following Brandvold et al. (2015), we statistically analyze our datasets in Table 3; ‘Dataset1 – Dataset3’ refer
to data collected from three time periods as discussed in the previous paragraph.We remark that there is no bias
of statistical significance in the collected data. Moreover, there are no outliers or extreme trades are present.

Table 2. Amount of data collected.

Product id \data type Ticker Level-2 Order Flow

BCH-USD 15,213 1,600,474 2,442,323
BTC-EUR 9769 4,656,627 7,002,588
BTC-GBP 3726 8,849,556 13,280,280
BTC-USD 25,904 4,110,818 6,282,022
ETH-BTC 4016 1,250,202 1,893,851
ETH-EUR 3180 4,876,886 7,323,178
ETH-USD 27,089 6,087,574 9,276,806
LTC-BTC 2167 611,682 923,070
LTC-EUR 4243 1,260,024 1,897,731
LTC-USD 32,203 2,391,377 3,700,271
BCH-EUR 4243 5,822,103 7,934,653

8 F. FANG ET AL.

Table 3. Data statistics.

Mean Median Max Min St. Dev Skew Kurtosis

Dataset1 7,362.338 7,448.725 7,747.219 6,687.066 244.084 −0.578 −1.192
Dataset2 6,260.872 6,298.001 6,596.083 5,904.602 144.310 −0.459 −0.585
Dataset3 6,408.662 6,322.626 7,132.121 5,904.602 335.889 1.045 −0.06

Table 4. Feature set.

Basic features Description (i denotes time step)

f1 = {Pi} price
f2 = {Vi} last size
f3 = {ln(Pi/Pi−1)} log return
f4 = {Pi − Pi−1} price difference
f5 = {emat = βPt + (1 − β)emat−1,β = (2/5)} EMA 4 periods
f6 = {emat = βPt + (1 − β)emat−1,β = (1/5)} EMA 9 periods
f7 = {emat = βPt + (1 − β)emat−1,β = (2/19)} EMA 18 periods
f8 = {rsi = 100 − 100/(1 + RS), RSI 3 period
RS = AvgGain/AvgLoss in 3 periods}

Order Book Features Description (n = 7)

f9 = {[(Paski − Pbidi)/2]ni=1} bid-ask spread

f10 = {[(Paski + Pbidi)/2]ni=1} mid-price

f11 = {[(Paski + Pbidi)/2]ni=1 − [(Paski−1 + Pbidi−1)/2]
n
i=2} mid-price difference

f12 = {[Paski , Pbidi]ni=1} bids and asks

f13 = {[Daski ,Dbidi]ni=1} depths of bids and asks

f14 = {∑n
i=1[D

ask
i + Dbidi]} cumulative sum of the depths

f15 = {[Pbidi /Paski]ni=1} slope of bids and asks

f16 = {cumsum[(Paski − Pbidi)ni=1]} Cumulative sum of bid-ask diff

In Table 4, we have identified the set of features that we use as out input data; these are divided into two
categories: basic and order book features. All of these can be directly computed from the aforementioned data.

3.3. Methodology

3.3.1. Model architecture
The simple architecture in Figure 3 served as the predictive model in this study. This neural network contains
two layers of LSTM cells, one layer of fully connected neurons and one layer of softmax as the output layer which
outputs the probability of price movements. The two layers of LSTM cells can be viewed as a filter for capturing
non-linear features from the data, and the fully connected layer can be viewed as the decision layer based on the
features provided by the last LSTM layer. This neural network is designed as simple as possible because in the
tick data environment, every millisecond matters. Reducing the number of layers and neurons can significantly
reduce the computational complexity, thus the time required for the data processing.

3.3.2. Multi-label prediction
Binary classification can be scarcely informative to a trader, as ‘small’ variations are not differentiated from ‘big’
ones. One might want to hold one’s position in the former case and transact only in the latter.

We use 1-min and 5-min data to demonstrate the rate of price change, defined as the ratio between the
price change and the transaction (close) price. In both cases, most relative price changes fall in −0.25% and
0.25%. Often these percentages are less than the transaction fees and traders should be able to know when this
is the case to develop a successful trading strategy. Therefore, we also investigate multi-label prediction based
on trading strategy needs. In this multi-label prediction, we replace binary target prediction with four-target
prediction. At the structure level, we have four softmax units as output layer instead of two units. By effectively
set the boundaries of four units, we can transform the original two-class classifier into a four-class classifier.

THE EUROPEAN JOURNAL OF FINANCE 9

Figure 3. LSTMmodel architecture.

Figure 4. Distribution of historical price changes.

Table 5. Multi-label prediction.

Label Relative price change Type

Significant increase (+0.2%,+∞) Sensitive Interval
Significant decrease (−0.2%,−∞)

Insignificant increase (0,+0.2%] Insensitive Interval
Insignificant decrease [−0.2%, 0)

Using the fees used by Coinbase Pro (Pro 2018), we use±0.2% of the transaction price as a reasonable threshold
to differentiate large and small changes (see Table 5 where we also name the intervals for future references)
(Figure 4).

3.3.3. Walkthrough training
Prediction model in financial market has timeliness; this is especially true for the high-frequency financial mar-
ket. For example, should we use historical financial data from 2015 to train a model and test it on 2017 data for
predictions, this model might not have a good performance. The old model might not adapt well to the new

10 F. FANG ET AL.

market environment as it has been trained and tailored on old market conditions. Although a machine learn-
ing approach can largely increase prediction accuracy of stock market, such models need to adapt themselves
because the stock market is constantly changing. Wan and Banta (2006) propose the parameter incremental
learning (PIL) method for neural networks; the main idea is that the learning algorithm should not only adapt
to the newly presented input-output training pattern by adjusting parameters but also preserve the prior results.
Inspired from this, we propose a method called Walkthrough Training in machine learning for our task. This
approach is designed to retrain the original machine learning model itself when it ‘appears’ to no longer be
valid. We consider two different Walkthrough training methods.

(i). Walkthrough with stable retrain frequency. Considering different trading cycles based on the data obtained
from theAPI, we retrain ourmodel at fixed time intervals. The length of the interval depends on our trading
strategy and accuracy from data we obtained. This way of retraining helps the model to adjust to the newly
acquired features and retain the knowledge gained from the original training.

(ii). Walkthrough with dynamic retrain frequency.We useMaximumAccuracy Drawdown (MAD), which is the
maximum observed accuracy loss from a peak to a trough before a new peak is attained, as a condition of
dynamic retraining. The idea is that stable retraining is not suitable for every condition in retrainingmodel.
More specifically, if the old model is aimed for long-term prediction, stable retraining will lead to waste of
computing resources and overfitting problem (the model fits the data too well and leads to low prediction
accuracy on unseen data).
During the process of prediction based on this method, we monitor accuracy of prediction over time. In
the following formula, ‘Min Accuracy Value’ and ‘Max Accuracy Value’ identify the highest and lowest
prediction accuracy, respectively. All parameters in the formula are in interval between last retraining time
and current calculation time. After calculation, ‘Modified MAD’ is considered as hyper-parameter in the
whole prediction model to optimize the retraining time.

Modified MAD = Max Accuracy Value − Min Accuracy Value
Min accuracy Value

.

The modified MAD is a measure of accuracy loss that looks for greatest effective period of model. When
modified MAD is over 15%, we consider the original machine learning model to be no longer applicable
for latest market data. In such a case, we use historical data up to the point when the MAD is measured as
training data to retrain original machine learning model. This process will be used throughout the whole
time series prediction.

3.4. Research questions

We investigate four specific research questions (RQs, for short) in our general context of interest, price
predictions through a machine learning model within the cryptocurrency markets.

RQ1: How well does a universal machine learning model perform?
Sirignano and Cont (2019) found that a universal machine learning model would predict well the price formation in

relation to stock market. We ask this question to understand if a similar conclusion can be drawn for more emergent, less
mature and more volatile cryptocurrency market.

RQ2: How many successive data points should we use to train machine learning models?
The sequential nature of time series naturally puts forward the question of optimizing the number of subsequent data

points (i.e. time steps) used to train the deep network. Does it make sense to use more than one data point at a time? If so,
how many time steps should be used?

RQ3: How well do machine learning models work on live data?
A good offline prediction based on machine learning may fail to perform well on live data, due to evolving patterns in a

highly volatile environment like ours. Is there an accuracy decay on live data? If yes, would Walkthrough training methods
help address the issue? Moreover, we want to understand if lean and fast architectures can perform well with tick online
data.

THE EUROPEAN JOURNAL OF FINANCE 11

RQ4:What is the best Walkthrough method in the context of multi-label prediction?
Making profit on tick data predictions might be too hard for a number of reasons. First, the execution time of the order

might make the prediction on the next tick obsolete. Second, in the context of multi-label predictions, there might be very
few data points in the sensitive intervals which would make transactions potentially more profitable than transaction costs.
We therefore wish to determine the best Walkthrough method when we use minute-level data for the task of multi-label
classification.

Our research questions are novel for a number of reasons. In RQ1, we analyze the effects of universality
in cryptocurrency markets, which is an extension of Sirignano and Cont (2019). Given that the asset classes
considered are rather different, it is interesting to study whether a sort of transfer learning translates across
different markets. Similarly, whilst RQ2 has been studied by others, few researchers considered the problem for
cryptocurrency prediction models. As for RQ3, we are not aware of any study in which the proposed models
are tested on live data; this requires a balance between model complexity and performance. In RQ4, we test the
performances of a brand new method in re-training the machine learning model. Ultimately, the findings from
the questions above will help a cryptocurrency trader to design a better model and ultimately devise a more
profitable trading strategy (i.e. the decision maker in the system of Figure 2).

3.5. Results and analysis

We organize the discussion of our results according to the research questions of interest. The answer to each
question informs the design used to address the challenges of the subsequent questions. In this sense, we use an
incremental approach to find our results.

3.5.1. Howwell does a universal machine learningmodel perform?
We begin by examining RQ1, through training product specific networks of Figure 3 in order to establish the
baseline for comparison. For each product (i.e. currency pair), five neural networks with the same architecture
are initialized. Five training sets are then created by extracting the first 10%, 20%, 50%, 70%, and 85% from
the total data of the product. The neural networks are trained and tested with each data split. For example, a
product-specific, such as BCH-USD, neural network is trained with the first 10% of the total data using only one
time step; the rest of the data are then used to evaluate the performance of the neural network. Subsequently,
another neural network is trained and tested with a different amount of data and so on.

The purpose of using this training approach is to evaluate the importance of the amount of data used. The
high-frequency markets are often considered extremely noisy and full of unpredictability. If neural networks for
the same product showed no performance gain with increasing amount of training data, then it may actually
be the case that the majority of the data is noise. In these circumstances, a stochastic model might be a better
option than a data-driven model, because a simpler model generally tends to be less overfitting compared to a
complex model under noisy environment.

From the result in Table 6, the currency pairs with very little samples, such as BCH-EUR, BTC-GBP, ETH-
EUR, and BTC-EUR, show a decreasing performance after using training data with a size greater than 50%
(shown as Figure 5). The decrease in the performance could be a direct result of the lack of testing cases. For
other currency pairs, the currency-pair-specified neural network models show a general rise in accuracy when
increasing the size of the training data (Figure 6), which suggests that there might be some recognizable patterns
in the data. The box plots (Figure 7) show the comparison of currency pairs with and without improvement. The
result above suggests that, at least for our architecture, the neural network is able to learn the hidden pattern
from within a dataset when given a sufficient amount of data for most of the currency pairs.

We are now ready to test the findings of Sirignano and Cont (2019) about the existence of a universal pre-
dictive model in the context of cryptocurrencies. We are interested to see whether a universal predictive model
for all available currency pairs can outperform the product-specific ones introduced above. Table 7 displays the
performance of different models using F1-score as performance measure. We selected F1 score as an indicator
of measuring accuracy. F1 score is defined as

2 ∗ Precision ∗ Recall
Precision + Recall

,

12 F. FANG ET AL.

Figure 5. Currency pairs without improvement.

Table 6. Out-of-sample accuracy with respect to training sample sizes.

Sample size used in training

Currency pair 10% 20% 50% 70% 85%

BCH-USD 0.619 0.664 0.674 0.699 0.662
BTC-EUR 0.554 0.561 0.551 0.596 0.470
BTC-GBP 0.611 0.551 0.634 0.565 0.540
BTC-USD 0.702 0.789 0.797 0.825 0.814
ETH-BTC 0.788 0.825 0.839 0.775 0.743
ETH-EUR 0.633 0.640 0.714 0.658 0.597
ETH-USD 0.599 0.608 0.555 0.703 0.736
LTC-BTC 0.579 0.687 0.738 0.751 0.730
LTC-EUR 0.505 0.503 0.586 0.602 0.672
LTC-USD 0.574 0.620 0.767 0.787 0.814
BCH-EUR 0.540 0.540 0.540 0.432 0.526

where Precision is the fraction of relevant instances among the retrieved instances (i.e. the ratio between True
Positives and the sum of true and false positives) and Recall is the fraction of the total amount of relevant
instances that were actually retrieved (that is, the ratio between true Positives and the sum of true positives
and false negatives). F1 score is an important evaluation measure when we are not familiar with the target class
distribution. The label ‘AVG’ represents the mean performance of all the individual currency models. The label
‘Universal’ represents using joint data (merging all models as a new model). We know from the analysis above
(Figures 5 and 6) that for some currency pairs, the current neural network architecture is not performing very
well. Therefore, for more precise and targeted analysis, those currency pairs are excluded from the original
dataset, and a new dataset is generated without them. The label of ‘Selected’ represents the mean performance

THE EUROPEAN JOURNAL OF FINANCE 13

Figure 6. Currency pairs with improvement.

Table 7. Models’ performance with different sample sizes used in training.

Model F1-score on testing set

Sample size AVG Selected Universal Universal selected

10% 0.58626 0.59067 0.64580 0.66039
20% 0.60633 0.64687 0.66634 0.68183
50% 0.66004 0.69423 0.68740 0.69205
70% 0.65757 0.73317 0.70973 0.72945
85% 0.61961 0.73457 0.71476 0.74087

of all models excluding those pairs, namely, BCH-EUR, BTC-GBP, ETH-EUR, and BTC-EUR. The ‘Universal
selected’ neural network is trained with the ‘selected’ approach but with joined data across all available products.

We can see that the universalmodel slightly outperforms themean of product-specificmodels, for each size of
the training set, by an average of 5.88% in terms of F1-score. Similarly, the universal with selected currency pairs
outperforms the selected product-specificmodel by an average of 7.50%. In general, both of the universalmodels
achieved higher F1-score than the product-specific ones. Therefore, we can conclude that the universal model
has better performance than the currency-pair specificmodel. The performance gain in the universal model and
the universal model with selected currency pairs may be explained with the following rationale. First, there are
some universal features on the limit order book which could be observed by the LSTM neural network for most
of the currency pairs on the exchange. Second, the increased amount of the training data helps the network to
generalize better, since 10% of joined data is much larger than 10% of one currency pair data. It also means that
the LSTM model can learn the pattern from the data of multiple currency pairs having the same time horizon,
then apply the pattern to another currency pair. To test whether this difference is statistically significant, we ran

14 F. FANG ET AL.

Figure 7. Box plots of currency pair with and without improvement.

the t-test andWilcoxon test between the performance of product-specific and universal models (using accuracy
as criteria). The t-test has the result that statistic is−53.885 and p-value is 3.0302e-22 (≪ 0.0000). TheWilcoxon
test shows a p-value of 8.5745e-05 (≪ 0.0000). From both tests, we can conclude that the product-specific and
universal models are statistically different.

We reach the following conclusion from this section. The answer to RQ1 is that the universal model has
better performance than the currency-pair specific model for all the available currency pairs in (the chosen)
cryptocurrency market.

3.5.2. Howmany successive data points should we use to trainmachine learningmodels?
In this section, we examine RQ2. Informed by our findings in relation to RQ1, we next fix the training set size
to 70% of the total sample size and focus our attention to the universal and universal selected neural networks.
To investigate RQ2, we train both networks with 70% of the total data using increasing time steps of 1, 3, 5, 7,
10, 20, 40. For example, the 3-time-steps input contains the feature vector of the current tick Ft , feature vector of
the previous tick Ft−1, and feature vector of two ticks prior Ft−2. This approach aims to discover whether there
are any observable patterns related to the sequence of data and how persistent it is.

The results are shown in Table 8. To make sense of them, we fit the data points in a linear regression model,
with ordinary least squares, and obtain the coefficients in Table 9, where Const represents the intercept and X
the slope.

As depicted in Figure 8, the slopes of the linear equations are very close to zero, and are negative. This result
suggests that increasing the time steps of the training data does not have a significant effect on the perfor-
mance of the model. On the contrary, increasing the time steps too much may also have a negative impact
to the model’s performance. We here stress that Tran et al. (2018) studied this problem by applying a tempo-
ral attention-augmented bilinear network and testing using three types of movement (decrease, stationary and
increase). The prediction horizon considered is 10, 20, and 50. Theirmethod gives a comparison among different
machine learning methods, whilst we here focus on our particular universal model.

THE EUROPEAN JOURNAL OF FINANCE 15

Table 8. Performance of the models for different time steps
using F1-score.

Time steps Universal Universal selected

1 0.7097 0.7294
3 0.7260 0.7442
5 0.7200 0.7419
7 0.7086 0.7369
10 0.7146 0.7389
20 0.7114 0.7421
40 0.7131 0.7273

Table 9. Coefficients of model F1-score in OLS regression.

Universal Universal selected

Const 0.7162 0.7400
X −0.0001 −0.0002

Figure 8. Relationship between accuracy and number of time steps used in training.

The answer to RQ2 is that one time step/data point is the best choice in our context. Choosing one time
step carries some further advantages; one step, in fact, opens the possibility of using different machine learning
algorithms since most of them are not designed to handle sequential input.

3.5.3. Howwell domachine learningmodels work on live data?
We here examine RQ3. In this section, the challenges and performances of using our predictive models on live
data are discussed.

The horizontal line in Figure 9 is the baseline of the performance, and the black line is the performance of
the predictive model on live data. This figure shows that the performance of the universal model slowly decays
to almost random guessing over the period of interest. This behavior could be caused by some non-stationary
features of the limit order book, which means that the hidden pattern captured by the universal model is no
longer applicable to the new data.

To resolve this problem, an autoencoder is used (Figure 10). The characteristic of the autoencoder is that
the input layer and the output layer usually have the same number of neurons, and the hidden layers of the
autoencoder must have a lower number of neurons compared to the input and output layers. The reason for
using such an architecture is that the reduced number of neurons in the hidden layers can form a bottleneck in
the neural network. Thus the autoencoder cannot learn by simply remembering the input only. This architecture,
in fact, forces the autoencoder to compress the input data and then decompress the data before outputting it.

16 F. FANG ET AL.

Figure 9. Performance decay on the live data.

Figure 10. Architecture of the autoencoder.

Therefore, the autoencoder can learn from the input structure. The trained autoencoder performs two tasks.
The first one is to remove noise; the trained autoencoder can suppress abnormal features by reconstructing the
input data. This process usually removes abnormal spikes in a feature. The second one is to map the new data
into a more familiar space for the LSTMmodel.

Figure 11 shows the prediction of the LSTMwith an autoencoder by using live data of BTC-USD from 2018-
08-01 15:10:43 to 2018-08-02 08:33:50. Bitcoin has a great dominance and the BTC-USD is also the most traded
product on the market. The performance decays slower with the autoencoder than the original LSTM model.
Figure 12 is the distribution of the predictionsmade by the universalmodel with autoencoder and the aggregated
real-time target; each point of the aggregated real-time target is equal to the mean of upticks and downticks for
every 20 samples. The darker line depicts the ratio of downticks given by the predictivemodel, and the lighter line
is the ratio of downticks given by real-time target. From the distribution of prediction and real-time target, we
can observe that the autoencoder is slightly biased to the downtrend market. This explains the gradual decrease
in the accuracy under the uptrend market after the 3000 predictions mark (cf. Figure 11) because small errors
accumulate over time and eventually affect the overall accuracy. In other words, the biased training data could

THE EUROPEAN JOURNAL OF FINANCE 17

Figure 11. Performance of the universal model with autoencoder.

Figure 12. Predictions distribution and real-time target distribution.

cause a biased model. For example, the training data used to train the model could be experiencing a bearish
market so that the model is more sensitive to the downtrends.

An intuitive way to adjust the bias of the model is walkthrough training, i.e. retraining the model with recent
data. This way, the model can learn from the most recent data and integrate it with the knowledge learnt from
the original data. We implement a walkthrough with stable retrain time as follows. First, a queue buffer is set up
to collect features from the live data. After every 196 predictions made by the model, the model retrains by the
newly collected features in the buffer.

To test the effectiveness of this modification, we use live data of BTC-USD from 2018-08-08 14:31:54 to
2018-08-09 09:01:13. The results are plotted in Figure 13. We observe that before the first retraining, the model
lacks the predictive power on live data. It starts with an accuracy of less than 50%, which is worse than random
guessing. After the first few instances of retrain, however, the model improves accuracy from 58% to 78%, to
finally stabilize around 76%. Moreover, the distribution of the predictions of the model shows a similar shape to
the real-time target distribution, and no apparent bias can be observed, cf. Figure 14.

We have ran an augmented Dickey–Fuller test (ADF) testing the null hypothesis that a unit root is present in
the time series comprised of the live data samples. The results showed that the p-value of BTC-USD data from
2018-08-11 12:09 to 2018-08-16 23:59 is 0.781425 and the t-statistics value is −0.919673. We have a value of
−3.431 when the confidence level is 1 %, value of−2.862 when the confidence level is 5%, value of−2.567 when
the confidence level is 10%. We can see that the value is larger than the critical values in 1%, meaning that we
can accept the null hypothesis and in turn conclude that the time series is non-stationary.

18 F. FANG ET AL.

Figure 13. Performance of the universal model with autoencoder.

Figure 14. Predictions distribution and real-time target distribution.

A further improvement of the model to work on live data is needed to improve the execution speed and
reduce the chance of overfitting. This is achieved by reducing the dimension of the input data. The intermediate
output of the autoencoder, which is the output of the encoder part, is used instead of using the original data.
Because of the architecture of the autoencoder, the hidden layer contains fewer neurons than the output layer.
Although the hidden layer contains fewer neurons, it preserves all the essential information of the input data.
By using this approach, the universal model can use fewer neurons to capture the information that is needed
to make predictions. Therefore, the neural network has less freedom to be overfitted, and the reduction of the
size of the neural network also improves the execution speed. Our architecture uses the intermediate encoder
output as the input for the LSTMmodel, cf. Figure 15. The advantage of using the autoencoder instead of using
Principal Component Analysis (PCA) directly is that autoencoder can map the 3D sequential data (sample size,
time steps, features) into a vector. This process helps to capture the information from the sequence which could
not be done by PCA only (PCA can only deal with 2D data).

The answer to RQ3 is summarized in Table 10, where we display the performance metrics of the predictive
model with a reduced architecture on the same live data of BTC-USD from 2018-08-08 14:31:54 to 2018-08-09
09:01:13. In the table, ‘autoencoder as denoiser’ refers to architecture in Figure 10 (including encoder, decoder,
PCA, universal model and output) whilst ‘autoencoder as reducer’ refers to the architecture in Figure 15 (includ-
ing encoder, PCA, universal model and output). The difference of the precision score and the accuracy score is
much lower than the originalmodel, which suggests that there is less overfitting. Interestingly, the reducedmodel
has a 2.43% increase in the accuracy score. Compared to research of Easley et al. (2019), our method gives an

THE EUROPEAN JOURNAL OF FINANCE 19

Figure 15. LSTMmodel with autoencoder.

Table 10. Classification report.

Classification report of autoencoder as denoiser
Class Precision Accuracy F1-score

↑ 0.72 0.86 0.78
↓ 0.81 0.65 0.72
avg 0.77 0.76 0.75

Classification report of autoencoder as reducer

Precision Accuracy F1-score

↑ 0.79 0.78 0.79
↓ 0.77 0.78 0.77
avg / total 0.78 0.78 0.78

optimization in LSTM structure; in particular, the machine learning model we designed is more suitable for live
data prediction. Furthermore, we optimize the process of retraining, which can also be applied in multi-class
prediction.

We also collected and displayed the performancemetrics in the predictive model with the latest model on the
live data of BTC-USD inOkEX.We separate the live dataset into to pieces: from 2018-08-11 12:09 to 2018-08-16
23:59 and from 2018-08-24 12:07 to 2018-08-29 23:59 (cf. Table 11). The results are slightly worse than the ones
in Table 10 considering Precision and F1-score, especially in down classification. This might be due to a very
unstable spread in those periods; this affects the hyper-parameters of our predictive model. A better and more
stable live model against the cryptocurrency fluctuations is one question left open by our work.

3.5.4. What is the best walkthroughmethod in the context of multi-label prediction?
Lastly, we discuss RQ4. In this section, we concentrate onmulti-label prediction using the four classes identified
in Table 5. We use the last model in RQ3 but we use multi-label as target classification and walkthroughmethod
as a research variable. We use 1-min live data in 2018 for 1 month-window and the time interval of data is
randomly selected.

Figure 16 gives an overview of the comparison between the three different walkthrough methods we tested.
For the first method, we train the machine learning model statically without walkthrough, which means

we will not retrain or update the model when the accuracy decays. We can observe how the accuracy drops

20 F. FANG ET AL.

Table 11. Classification report 2.

Classification report of 2018/8/11-2018/8/16 (P1)
Class Precision Accuracy F1-score

↑ 0.49 0.79 0.64
↓ 0.55 0.65 0.58
avg 0.52 0.76 0.61

Classification report of 2018/8/24-2018/8/29 (P2)

Precision Accuracy F1-score

↑ 0.51 0.81 0.67
↓ 0.55 0.71 0.59
avg / total 0.53 0.76 0.63

Figure 16. Snapshot of comparison between different walkthrough methods.

significantly after roughly 1500 predictions and reaches a value of less than 40%, almost as low as random-
guessing (25%), in the end.

When we use stable walkthrough to train our model, we will retrain at regular time periods. Our tests are
based on trading period or a financial trading cycle of 5 days. On our data, this leads to four retrains (identified
by rectangular points on the accuracy line). The first retrain point has obvious effects in improving accuracy and
it starts to go up slightly before retraining. After four instances of retrain, the accuracy stabilizes around 80%.

When we use MAD-DynamicWalkthrough method, we retrain the original model when the accuracy drops
by more than 15%. In our test, there is only one such instance (circle point at around 2000 mark). The accuracy
has apparent growth after this model adjustment.

We also perform the experiment for 20 times to compare the different walkthroughmethods in order to have
a stronger statistical guarantee; results are shown in Figure 17. (Considering that repeated experiments cost
significant computation power and time, we repeat the experiment 20 times to gather the results.) The results
are in line with those discussed above, i.e. stable walkthrough is better than the other two methods. The results
also show that, for dynamic (MAD) walkthroughmethod, only 2/3 retraining points occur in most experiments
(90%) while 2 experiments require 5 retraining points. As a comparison, for stable walkthrough method, all
the experiments need 4 retraining points. Therefore, when retrain time is a factor to consider, dynamic (MAD)
walkthrough method is better because it needs less retraining in most cases.

THE EUROPEAN JOURNAL OF FINANCE 21

Figure 17. Comparison of different walkthrough methods.

The answer to RQ4 is multifold. First, in multi-label prediction with machine learning model, walkthrough
training significantly improves the prediction accuracy. The reason is that, as discussed above, machine learn-
ing prediction models need to update itself. When the model is not fit for the new market conditions, then it
must be updated to achieve accurate results. Second, stable walkthrough method is better than MAD-dynamic
walkthrough method, unless retrain time is important.

4. Validity of findings

The model is based on trading system; we select historical data and collect live data for a long time span. The
selection of data has no bias because historical trading contains all available transaction data and available cur-
rency pairs in cryptocurrency market. Moreover, the experiments are not affected by bull or bear market, policy
impact and other factors. The experiments use an extensive data selection, including bull-market condition,
bear-market condition, high-transaction-volume condition, low-transaction-volume condition, etc.

Quality of data is another important factor to discuss. As the data is collected live from Coinbase Pro, poor
connectionmight affect the data (e.g. missing values). Tomitigate this risk, we have compared the data collected
from Coinbase Pro with other third party service providers to make sure the experiment have not been affected
by inappropriate financial data.

5. Conclusion

This paper analyzes a data-driven approach to predict mid-price movements in cryptocurrency markets, and
covered a number of research questions en route regarding parameter settings, design of neural networks and
universality of the models. The main finding of our work is the successful combination of an autoencoder and
a walkthrough retraining method to overcome the decay in predictive power on live data due to non-stationary
features on the order book. Our results show that our model has achieved good performance, quantified in a
consistent F1-score of around 78%. By comparing different retraining methods (we call that Walkthrough), we

22 F. FANG ET AL.

found some tradeoffs between fixed and dynamic retraining. Prediction in high-frequency cryptocurrencymar-
kets is a challenging task because the environment contains noisy information and is highly unpredictable. We
believe that our results can inform the design of higher level trading strategies and our networks architecture can
be used as a feature to another estimator. One interesting direction for future researchmight be amore extensive
treatment of how time persistent the performances of the model are, similarly to Sirignano and Cont (2019).

However, we must also realize that machine learning has obvious limitations, which must be overcome
to reach artificial general intelligence (Marcus 2018). Marcus pointed out that machine learning models are
data-hungry and the knowledge gathered by deep learning systems is primarily concerned with correlations
between features, rather than abstractions like quantified statements. These characteristics have negative impacts
on machine learning in financial prediction. Moreover, we know that when applying out-of-sample tests in
non-stationary data, the prediction made are not entirely ‘honest’ (Inoue and Kilian 2005). The corresponding
forecast error may underestimate the magnitude of the error that will arise when the model is used to forecast
the future, as the data may overfit the squared error and the model and inadvertently fit some ‘noise’ during the
estimation. To deal with these aspects, our model uses retraining and is tested on different live time series (and
perform consistently well).

Disclosure statement

No potential conflict of interest was reported by the author(s).

References
Abergel, F., and A. Jedidi. 2015. “Long-Time Behavior of A Hawkes Process–Based Limit Order Book.” SIAM Journal on Financial

Mathematics 6 (1): 1026–1043.
Adam, P. 2015. “Lstm Implementation Explained.” https://apaszke.github.io/lstm-explained.html.
Ahamad, S., M. Nair, and B. Varghese. 2013. “A Survey on Crypto Currencies.” In Proceedings of the 4th International Conference

on Advances in Computer Science, AETACS, NCR, India’, 42–48. Citeseer.
Altay, E., and M. H. Satman. 2005. “Stock Market Forecasting: Artificial Neural Network and Linear Regression Comparison in An

Emerging Market.” Journal of Financial Management & Analysis 18 (2): 18.
Barbon, A. 2019. “Focusing at High Frequency: An Attention-Based Neural Network for Limit Order Books.”
Biais, B., P. Hillion, and C. S. Spatt. 1995. “An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse.”

Journal of Finance 50 (5): 1655–1689.
Brandvold, M., P. Molnár, K. Vagstad, and O. C. A. Valstad. 2015. “Price Discovery on Bitcoin Exchanges.” Journal of International

Financial Markets, Institutions and Money 36: 18–35.
Brooks, C., A. G. F. Hoepner, D. McMillan, A. Vivian, and C. W. Simen. 2019. “Financial Data Science: The Birth of a

New Financial Research Paradigm Complementing Econometrics?” The European Journal of Finance 25 (17): 1627–1636.
doi:10.1080/1351847X.2019.1662822.

Christopher,O. 2015. “Understanding IstmNetworks –Colah’s Blog.” http://colah.github.io/posts/2015-08-Understanding-LSTMs.
Dixon, M. 2018. “Sequence Classification of the Limit Order Book Using Recurrent Neural Networks.” Journal of Computational

Science 24: 277–286.
Easley, D., M. L. de Prado, M. O’Hara, and Z. Zhang. 2019. “Microstructure in the Machine Age.” Available at SSRN 3345183.
En.wikipedia.org. 2018. “List of Cryptocurrencies.” https://en.wikipedia.org/wiki/List_of_cryptocurrencies.
Fischer, T., and C. Krauss. 2018. “Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions.”

European Journal of Operational Research 270 (2): 654–669.
Fletcher, T. 2012. Machine learning for financial market prediction. PhD diss., University College London.
GDAX. 2018. “Gdax Api Reference.” https://docs.gdax.com/#protocol-overview.
Gu, S., B. Kelly, andD.Xiu. 2020. “Empirical Asset PricingViaMachine Learning.”TheReview of Financial Studies 33 (5): 2223–2273.
Güresen, E., G. Kayakutlu, and T. U. Daim. 2011. “Using Artificial Neural Network Models in Stock Market Index Prediction.”

Expert Systems with Applications 38 (8): 10389–10397.
Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation 9 (8): 1735–1780.
Huang, W., Y. Nakamori, and S.-Y. Wang. 2005. “Forecasting Stock Market Movement Direction with Support Vector Machine.”

Computers and Operations Research 32 (10): 2513–2522.
Inoue, A., and L Kilian. 2005. “In-Sample Or Out-of-Sample Tests of Predictability: Which One Should We Use?” Econometric

Reviews 23 (4): 371–402.
Kelly, F., and E. Yudovina. 2017. “A Markov Model of a Limit Order Book: Thresholds, Recurrence, and Trading Strategies.”

Mathematics of Operations Research 43 (1): 181–203.

https://apaszke.github.io/lstm-explained.html
http://doi.org/10.1080/1351847X.2019.1662822
http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://en.wikipedia.org/wiki/List_of_cryptocurrencies
https://docs.gdax.com/{#}protocol-overview

THE EUROPEAN JOURNAL OF FINANCE 23

Kercheval, A., and Y. Zhang. 2015. “Modelling High-Frequency Limit Order Book Dynamics with Support Vector Machines.”
Quantitative Finance 15 (8): 1315–1329.

Mäkinen, Y., J. Kanniainen, M. Gabbouj, and A. Iosifidis. 2019. “Forecasting Jump Arrivals in Stock Prices: New Attention-Based
Network Architecture Using Limit Order Book Data.” Quantitative Finance 19 (12): 2033–2050.

Marcus, G. 2018. “Deep Learning: A Critical Appraisal.” arXiv preprint arXiv:1801.00631.
Nakamoto, S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
Nousi, P., A. Tsantekidis, N. Passalis, A. Ntakaris, J. Kanniainen, A. Tefas, M. Gabbouj, and A. Iosifidis. 2019. “Machine Learning

for Forecasting Mid-Price Movements Using Limit Order Book Data.” Ieee Access 7: 64722–64736.
Pro, C. 2018. “Global Charts — Coinmarketcap.” https://support.pro.coinbase.com/customer/en/portal/articles/2945310-fees.
Silantyev, E. 2019. “Order Flow Analysis of Cryptocurrency Markets.” Digital Finance 1 (1-4): 191–218.
Sirignano, J., and R. Cont. 2019. “Universal Features of Price Formation in Financial Markets: Perspectives From Deep Learning.”

Quantitative Finance 19 (9): 1449–1459.
Sundarapandian, V. 2009. Probability, Statistics and Queuing Theory. PHI Learning Pvt. Ltd, India.
Tieleman, T., and G. Hinton. 2012. “Lecture 6.5-rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude.”

COURSERA: Neural Networks for Machine Learning 4 (2): 26–31.
Toke, I. M., and F. Pomponio. 2012. “Modelling Trades-through in a Limit Order Book Using Hawkes Processes.” Economics: The

Open-Access, Open-Assessment E-Journal 6 (2012-22): 1–23.
Tran, D. T., A. Iosifidis, J. Kanniainen, and M. Gabbouj. 2018. “Temporal Attention-Augmented Bilinear Network for Financial

Time-Series Data Analysis.” IEEE Transactions on Neural Networks and Learning Systems 30 (5): 1407–1418.
Tsantekidis, A., N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis. 2017. “Using Deep Learning to Detect Price

Change Indications in Financial Markets.” In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), IEEE,
Nice, France, Vol. 4.

Verstyuk, S. 2020. “Modeling Multivariate Time Series in Economics: From Auto-Regressions to Recurrent Neural Networks.”
Available at SSRN 3589337.

Wan, S., and L. E. Banta. 2006. “Parameter Incremental Learning Algorithm for Neural Networks.” IEEE Transactions on Neural
Networks 17 (6): 1424–1438.

Zhang, X.-D., A. Li, and R. Pan. 2016. “Stock Trend Prediction Based on a New Status Box Method and Adaboost Probabilistic
Support Vector Machine.” Applied Soft Computing 49: 385–398.

https://support.pro.coinbase.com/customer/en/portal/articles/2945310-fees

	1. Introduction
	1.1. Related work
	1.2. Roadmap

	2. Our tools
	2.1. Machine learning
	2.2. Limit order books
	2.3. Data source and overview of the envisioned trading system

	3. Experimental study
	3.1. Objective
	3.2. Dataset
	3.3. Methodology
	3.3.1. Model architecture
	3.3.2. Multi-label prediction
	3.3.3. Walkthrough training

	3.4. Research questions
	3.5. Results and analysis
	3.5.1. How well does a universal machine learning model perform?
	3.5.2. How many successive data points should we use to train machine learning models?
	3.5.3. How well do machine learning models work on live data?
	3.5.4. What is the best walkthrough method in the context of multi-label prediction?

	4. Validity of findings
	5. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [536.003 697.493]
>> setpagedevice

