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Quantum scars and bulk coherence in a symmetry-protected topological phase
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Formation of quantum scars in many-body systems provides a novel mechanism for enhancing coherence of
weakly entangled states. At the same time, coherence of edge modes in certain symmetry-protected topological
(SPT) phases can persist away from the ground state. In this work we show the existence of many-body scars and
their implications on bulk coherence in such an SPT phase. To this end, we study the eigenstate properties and the
dynamics of an interacting spin-1/2 chain with three-site “cluster” terms hosting a Z2 × Z2 SPT phase. Focusing
on the weakly interacting regime, we find that eigenstates with volume-law entanglement coexist with area-law
entangled eigenstates throughout the spectrum. We show that a subset of the latter can be constructed by virtue
of repeated cluster excitations on the even or odd sublattice of the chain, resulting in an equidistant “tower” of
states, analogous to the phenomenology of quantum many-body scars. We further demonstrate that these scarred
eigenstates support nonthermal expectation values of local cluster operators in the bulk and exhibit signatures of
topological order even at finite energy densities. Studying the dynamics for out-of-equilibrium states drawn
from the noninteracting “cluster basis,” we unveil that nonthermalizing bulk dynamics can be observed on
long timescales if clusters on odd and even sites are energetically detuned. In this case, cluster excitations
remain essentially confined to one of the two sublattices such that inhomogeneous cluster configurations cannot
equilibrate and thermalization of the full system is impeded. Our work sheds light on the role of quantum
many-body scars in preserving SPT order at finite temperature and the possibility of coherent bulk dynamics
in models with SPT order beyond the existence of long-lived edge modes.
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I. INTRODUCTION

The out-of-equilibrium dynamics of many-body quantum
systems has been of great interest for a number of years
now [1,2]. While a generic interacting quantum system is
expected to thermalize and lose all local memory of its initial
conditions [3,4], it is an active frontier of modern theoretical
and experimental physics to identify effective mechanisms
which can impede this thermal fate and allow for coherent
quantum dynamics on long timescales. In fact, various exam-
ples are known by now where thermalization can be avoided.
One such example is integrability, meaning that a system has
an extensive number of conserved quantities which prevent
equilibration to standard ensembles of statistical mechanics
[5,6]. While integrable models represent isolated points in pa-
rameter space, the concept of many-body localization (MBL)
in strongly disordered systems provides a means to break
ergodicity for non-fine-tuned models as well [7,8].

While the question of thermalization is usually concerned
with states at finite energy densities or even at infinite tem-
perature in the middle of the spectrum, symmetry-protected
topological (SPT) phases at zero temperature are well known
to host robust edge modes which cease to decay due to an
energy gap in the bulk [9–15], and such phases have been
detected experimentally [16,17]. At finite temperatures, on
the contrary, these edge modes are expected to quickly deco-
here due to interactions with thermal excitations. Remarkably,
however, strong disorder and the onset of MBL have been

shown to provide a means to stabilize long-lived edge degrees
of freedom also at nonzero temperatures [18]. In this case,
the lifetime of the edge mode increases exponentially with the
size of the system such that in the thermodynamic limit, the
edge mode stays coherent on indefinite timescales. Similarly,
it was recently demonstrated in Ref. [19] that such prethermal
edge qubits can also persist in certain parameter regimes of
disorder-free SPT models thanks to the presence of (almost)
strong zero modes [20–24]. Specifically, Ref. [19] introduced
a “dimerization” parameter which causes a decoupling of
bulk and boundary, leading to exponentially long coherence
times of the edge mode. In the present paper, we extend the
investigations of Ref. [19] and show that the dimerized model
can additionally host anomalously long-lived dynamics in the
bulk of the system.

Thermalization in isolated quantum systems is often un-
derstood in terms of the eigenstate thermalization hypothesis
(ETH) [3,25–27]. In essence, the ETH asserts that expecta-
tion values of physical operators evaluated with respect to
individual eigenstates form a smooth function of energy and
agree with the corresponding microcanonical ensemble av-
erage. While the ETH is clearly violated in integrable and
many-body localized systems [7], there has been substantial
numerical evidence that the ETH is fulfilled in a multitude
of generic (nonintegrable) models [3,28–35]. More recently,
intermediate cases which fall outside the paradigms of “fully
ETH” or “fully MBL” have received an upsurge of interest. In
particular, fascinating experiments on Rydberg atoms led to
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the discovery of so-called quantum many-body scars [36,37].
These scars are rare ETH-violating states which are embedded
in an otherwise thermal spectrum and typically make up a
vanishing proportion in the thermodynamic limit [38].

The presence of such scar states means that a system will
thermalize for most initial conditions, but when initialized in
certain specific states (which are often experimentally acces-
sible), atypical dynamics are observed [37]. Subsequent work
has substantiated the existence of quantum scars in a variety
of models [39–47]. In such cases, scars often appear in the
form of a “tower of states,” i.e., a set of eigenstates with
almost equidistant energy spacing forming a nonthermaliz-
ing subspace which can be constructed by applying certain
raising-type operators [48,49].

Furthermore, there are examples of (weak) ergodicity
breaking, where kinetic constraints, additional conservation
laws, or high levels of frustration can cause the emergence
of slow dynamics or even a fragmentation of the Hilbert space
into disconnected subspaces [50–56].

While quantum many-body scars exhibiting topological
order have been constructed for certain models [57–59], their
impact on the nonequilibrium dynamics in models hosting
SPT phases is far less explored. In the present paper, we
provide evidence that scarred eigenstates indeed appear nat-
urally in certain SPT models and that these nonthermal states
provide a means to preserve topological order even at fi-
nite energy densities, similarly to eigenstates of many-body
localized systems [60,61]. Moreover, we demonstrate the oc-
currence of nonthermalizing dynamics for certain operators
and initial states, not only at the edges but even in the bulk
of the system. To this end, we consider an interacting spin-
1/2 chain with three-site “cluster” terms hosting a Z2 × Z2

SPT phase [62–66] (often called the ZXZ model), which has
also recently gathered interest in the context of thermalization
[18,19].

The ZXZ chain [as defined below in Eq. (2)] can also be
understood as a triangular ladder with the two legs comprising
the even and odd lattice sites of the chain, respectively, as well
as an integrability-breaking interaction acting on the rungs;
see Fig. 1(a). Focusing on the weakly interacting regime,
we study the eigenstate properties of this model and unveil
that volume-law entangled eigenstates coexist with area-law
entangled eigenstates throughout the spectrum; see Fig. 1(b).
While we refrain from classifying all the putative area-law
entangled states, we show that a subset of them can be
constructed in terms of a “tower” of states, similar to the phe-
nomenology of quantum many-body scars. Here, this tower
is constructed by virtue of repeated cluster excitations on one
of the two sublattices, with the cluster operators on the other
sublattice all remaining in their ground state. Motivated by
this construction we study the real-time dynamics of out-
of-equilibrium states with definite expectation values ±1 of
local clusters, i.e., eigenstates of the ZXZ model for vanishing
interactions; see Fig. 1(c) and Appendix A. If clusters on odd
and even sites are energetically detuned due to dimerization
[19], we demonstrate that some of these states exhibit atypical
nonthermalizing dynamics on long timescales. This is exem-
plified in Fig. 1(d) by the Loschmidt echo L(t ),

L(t ) = |〈ψ (t )|ψ〉|2, |ψ (t )〉 = e−iHt |ψ〉. (1)

FIG. 1. (a) The Hamiltonian (2) can be interpreted as a triangular
ladder with the two legs comprising the even and odd lattice sites,
respectively. The integrability-breaking perturbation of strength V
acts on the rungs. Note that the global field �

∑
� X� is not shown

here, and that X�, Z� denote the usual Pauli operators σ x,z
� at site

�. (b) For the weakly interacting limit, we show that there is a
coexistence throughout the spectrum between eigenstates with a
volume-law scaling of the entanglement entropy and nonthermal
eigenstates which follow an area law. (c) We show that a full basis
of the Hilbert space can be constructed from states with definite
expectation values ±1 of K� for 2 � � � L − 1; see Appendix A.
These “cluster-basis” states are eigenstates of the clean ZXZ model
(� = V = 0). (d) Loschmidt echo |〈ψ (t )|ψ〉|2 for two different ex-
emplary initial states from the cluster basis showing drastically
different dynamics. The parameters in (d) are chosen as L = 12,
V = 0.05, � = 0.1, λe = 0.6, and λo = 1. Consistent with Eq. (2),
we denote the dimerization parameter as λe = λ and drop λo = 1 in
the following.

Specifically, L(t ) is found to decay very slowly for an initial
state |ψ〉 where all clusters of the even sublattice are excited,
while the clusters of the odd sublattice are in the ground state
[blue curve in Fig. 1(d)]. We argue that the slow dynamics can
be understood as an effective restriction of the cluster excita-
tions to one of the two sublattices, such that inhomogeneous
cluster configurations cannot equilibrate and thermalization of
the full system is impeded. As a consequence, such initial
states, where the clusters of one sublattice are all either in
the ground state or all in the excited state, are found to be
particularly stable. In contrast, other initial states with a finite
number of excitations on both sublattices can thermalize
quickly [red curve in Fig. 1(d)].

This paper is structured as follows. First, in Sec. II,
we provide an introduction to the model studied in this
work. In Sec. III, we then characterize the properties of the
scarred eigenstates, showing that they support nonthermal
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expectation values of cluster operators in the bulk and exhibit
signatures of topological order. In Sec. IV, we turn to the
dynamical aspects of the ZXZ model where we particularly
focus on quenches starting from eigenstates of the noninter-
acting model. We close with a discussion of our results in
Sec. V, where we also mention some directions of future
research.

II. THE MODEL

We study a generalized version of the ZXZ or “cluster”
model which, in addition to the bare cluster terms, also in-
cludes an integrability-breaking perturbation and a global
transverse field. The Hamiltonian for a chain with open
boundary conditions (OBCs) and L lattice sites is given by
[19] [see also Fig. 1(a)]

H =
L/2−1∑
�=1

(λK2� + K2�+1) + �

L∑
�=1

X� + V
L−1∑
�=1

X�X�+1, (2)

where the cluster operators K� are defined as

K� = Z�−1X�Z�+1, (3)

and in this work X�, Y�, Z� denote the usual Pauli operators
σ

x,y,z
� at site �. H obeys a Z2 × Z2 symmetry [65], consisting

of spin inversion symmetry on odd and even sites, respec-
tively. When λ = 1, the model also has an additional Z2 parity
symmetry corresponding to inverting the chain about the cen-
tral site. Note that throughout this paper, it is understood that
while H has L lattice sites with subscripts 1 � � � L, due
to OBCs there are only L − 2 cluster terms K� labeled by
2 � � � L − 1.

The cluster operators K� in Eq. (3) are mutually com-
muting and have eigenvalues ±1; see Fig. 1(c). Therefore,
they define a complete basis of states within each symmetry
sector (see Appendix A), labeled by the eigenvalues of the
cluster operators on each site. These states are known in the
quantum information literature as “cluster states” [62]. When
� = V = 0 (i.e., the clean ZXZ model), these states are exact
eigenstates of H, and the ground state |gs〉 in each sector is
the state with

〈gs|K�|gs〉 = −1, 2 � � � L − 1. (4)

Below in Sec. IV, we will study the dynamics of such cluster-
basis states for quenches in the interacting model with � �= 0,
V �= 0. Note that in Fig. 1 and also further below we label the
cluster-basis states |ψ〉 by their expectation values of the K�,
e.g., |ψ〉 = |11̄1 · · · 〉.

While the spectrum of H is trivial in the case of � =
V = 0, H in fact still remains integrable for � �= 0. In this
case, the model can be recast in terms of fermionic opera-
tors by means of a Jordan-Wigner transform [19,60,65,66],
where the three-spin cluster operators become next-nearest-
neighbor interactions between fermions. This means that
the even sites and odd sites become entirely discon-
nected, and the model can be separated into two copies
of the transverse-field Ising model (TFIM), H(V = 0) ∼
He

TFIM(λ, �) + Ho
TFIM(λo = 1, �), which is well known to be

integrable [67],

He/o
TFIM(λ, �) = λ

∑
� ∈ e/o

Z�Z�+2 + �
∑

� ∈ e/o

X�, (5)

where the sums in Eq. (5) should be understood as either
running over the even (e) or odd (o) lattice sites.

However, the introduction of a nonzero V adds couplings
between these two chains, breaking their integrability. The
model in Eq. (2) can hence be viewed as a ladder, with one
leg given by the even sites and the other by the odd sites,
as shown in Fig. 1. In this work, we focus on the weakly
interacting regime and choose � = 0.1 and V = 0.05, sim-
ilarly to Refs. [18,19]. While H becomes nonintegrable in
this case, we find that, at least for the system sizes L which
are numerically available, H is not strongly thermalizing but
rather exhibits an intermediate behavior between integrability
and full quantum chaos. This fact reflects itself for instance in
comparatively broad distributions of eigenstate entanglement
entropies (Sec. III C) and eigenstate expectation values of
cluster operators K� (Sec. III D), as well as in the distribution
of adjacent level spacings (see Appendix B).

The ZXZ model (2) exhibits symmetry-protected topo-
logical order, protected by the Z2 × Z2 spin-flip symmetry
[65]. As a result, the model hosts robust boundary degrees
of freedom at zero temperature. While such edge modes
typically decohere at finite temperature, due to interaction
with thermal excitations in the bulk, Ref. [18] showed that
they can be stabilized by means of strong disorder and the
onset of MBL. In this case, the lifetime of the zero modes
increases exponentially with the size of the system such that
in the thermodynamic limit, L → ∞, the boundary qubit
remains coherent on indefinite timescales. Moreover, even
without disorder, it has been demonstrated in Ref. [19] that
such prethermal boundary modes can survive at infinite tem-
perature in certain parameter regimes if λ �= 1 in Eq. (2).
(Note that λ �= 1 breaks the Z2 “swap” symmetry between
chains while still preserving the SPT-protecting Z2 × Z2 spin-
flip symmetry.) This choice leads to a “dimerization” of the
chain such that each leg of the ladder has a different cost
for excitations. Motivated by this work, we here set λ = 0.6
(as in Ref. [19]) and scrutinize the eigenstate properties and
the dynamics of H. In particular, we provide evidence that
the spectrum of H hosts scarred sub-volume-law entangled
eigenstates which exhibit signatures of SPT order at finite
energy densities. Moreover, we demonstrate that in the same
parameter regime where Ref. [19] reported the existence of
long-lived edge modes, the bulk dynamics becomes anoma-
lous as well, at least when considering appropriate operators
and initial states. Specifically, for cluster-basis states |ψ〉 with
a particular initial configuration 〈ψ |K�|ψ〉 of clusters, we
observe long coherence times as cluster excitations essentially
remain confined to one of the two sublattices.

III. NONTHERMAL EIGENSTATES IN THE ZXZ MODEL

Quantum many-body scars are states which violate the
ETH in an otherwise chaotic system, despite having finite
energy density. This stands in contrast with integrable and
many-body localized systems, in which every state violates
the ETH, and fully chaotic systems, in which every state with
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finite energy density is thermal. In this section, starting from
low-energy excitations in the regime of perturbatively small �

and zero V , we will show that a tower of nonthermal eigen-
states exists in the ZXZ model, which is well approximated by
a generalization of the low-energy excitations. We provide a
detailed characterization of these eigenstates and demonstrate
that they feature low entanglement entropies and atypical ex-
pectation values of local cluster operators. Furthermore, we
will show that these states may preserve a fourfold-degenerate
entanglement spectrum, a key signature of Z2 × Z2 SPT
order.

A. Low-energy excitations

Because the noninteracting (V = 0) Hamiltonian can be
separated into two copies of the transverse-field Ising model,
corresponding to the odd and even sublattices, respectively,
the excitations of the model should be equivalent in both
cases. In the regime we investigate, the ZXZ model maps
onto the ferromagnetic phase of the TFIM—that is, where
λ 	 � in Eq. (5). In this phase of the TFIM, excitations
are given by domain walls between two regions of aligned
spins, while the X� term causes these walls to hop, resulting
in delocalized excitations [60]. The domain walls in the TFIM
map onto cluster excitations in the ZXZ model [19,60,65] and
by expressing a bulk X� operator as

(K+
�−1 + K−

�−1)K�(K+
�+1 + K−

�+1) = X�, (6)

where K±
� are cluster raising and lowering operators,

K±
� = 1

2 (Z� ∓ iZ�−1Y�Z�+1), (7)

it is clear that the X� term flips two next-nearest cluster opera-
tors. This will cause an isolated excitation to hop two sites at a
time, at zero energy cost. The term can also create or destroy
two such excitations; however this changes the energy of the
state. Considering a perturbatively small �, the zero-energy
parts of this term mix the cluster states under degenerate
perturbation theory, with a first-order effect in the energy,
while the other parts act only to first order on the state and
second order on the energy. Therefore, in the regime of very
small �, we should expect that the low-lying eigenstates in the
ZXZ model with periodic boundary conditions resemble de-
localized cluster excitations. A full demonstration of this can
be found in Appendix C, but the relevant result is that there
exist low-lying states |k〉 with energy εk = 2 − 2� cos(k),

|k〉 =
√

2

L

L/2−1∑
�=0

e+ik�|2� + 1〉, (8)

with k = 2πη/(L/2), 0 � η < L/2. |2� + 1〉 = K+
2�+1|gs〉 de-

scribes a localized cluster excitation at site 2� + 1, such that
|k〉 describes a delocalized cluster excitation with momentum
k on the odd sublattice. While the excitations |k〉 in Eq. (8)
apply to periodic boundary conditions, perturbatively small
�, and V = 0, we find that with some modifications, these
states also convincingly approximate low-lying excitations in
the model with OBCs and nonzero V . More surprisingly, we
find that states with multiple such excitations provide good
approximations even for eigenstates closer to the center of the
spectrum.

B. Approximate tower of states

Working with OBCs, the sum over � in Eq. (8) now starts
at � = 1, as the first odd cluster site is K2�+1 = K3; cf. Eq. (2).
Moreover, the allowed values of k are k = 2πη/(L/2 − 1),
0 � η < L/2 − 1, and the normalization changes. With these
changes, we find that the states (|+k〉 ± |−k〉)/

√
2 each have

a high overlap with a particular eigenstate of the model, for
every allowed value of k, even with V > 0.

To generalize this result to multiple excitations, we will
introduce an operator which creates a single delocalized ex-
citation at a time. To start with, consider the cluster raising
(lowering) operator (7), which creates (destroys) an excitation
at a given site. Using this and focusing on excitations at zero
momentum (k = 0), we then construct an operator acting upon
the entire chain by

O =
L/2−1∑
�=1

K+
2�+1. (9)

We then apply the operator repeatedly to the ground state
|gs〉 (4) of the clean ZXZ model to produce a tower of states
[39–42,44,48,49]. That is, we generate a set of states |Tj〉
given by

|Tj〉 = O j |gs〉
|O j |gs〉| . (10)

Because the operator (9) produces a single delocalized excita-
tion, each set of states has an energy spacing of approximately
2; this spacing is exact in the � = V = 0 model. In the insets
of Figs. 2(a) and 2(b), we show that the states |Tj〉 have large
overlaps with certain eigenstates of H in both the noninteract-
ing (V = 0) and the interacting (V = 0.05) case.

In the following, we label those eigenstates |n〉 which max-
imize the overlap |〈n|Tj〉|2 for a given tower index j by |Sj〉.
In particular, the comparatively simple structure of the |Tj〉 al-
ready indicates that the eigenstates |Sj〉 might exhibit atypical
properties, which we will analyze in more detail below. Note,
however, that |T7〉 in fact has large and comparable overlaps
with a pair of adjacent eigenstates, but it is only the one with
the larger overlap that we label |S7〉. This feature of |T7〉 may
indicate that the corresponding scar state loses stability for
increasing L, as this was not observed for any of the |Tj〉 in
the L = 14 case and is only weakly apparent for L = 16 for
certain j.

If an initial state |ψ〉 can be found whose spectral decom-
position is dominated by the scarred eigenstates |S j〉, such
a |ψ〉 should yield periodic oscillations in time. As shown
in Figs. 2(a) and 2(b), such a state indeed exists and can
be constructed by applying cluster-lowering operators on the
even cluster sites to a spin-basis product state (for details, see
Appendix A). The resulting state |ψ1̄/0〉 is a superposition of
cluster basis states and has expectation values

〈ψ1̄/0|K2�|ψ1̄/0〉 = −1, 〈ψ1̄/0|K2�+1|ψ1̄/0〉 = 0, (11)

although it is important to note that these expectation values
alone do not define this state uniquely (see Appendix A). In
Fig. 2(c), we show the Fourier-transformed Loschmidt echo
L(ω) = F[L(t )] of the state |ψ1̄/0〉. As expected from the
high overlap with the almost equidistant states |Sj〉, L(ω)
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FIG. 2. (a), (b) Squared overlaps of the eigenstates of H with
the state |ψ1̄/0〉, plotted against energy, for L = 18, in the subspace
with positive spin-flip symmetry on both sublattices. Panel (a) shows
the results for the noninteracting case (V = 0) and (b) for the in-
teracting case (V = 0.05). The highlighted eigenstates |Sj〉 exhibit a
significant and atypically high overlap with |ψ1̄/0〉, and can be well
approximated by the tower of states |Tj〉 [see insets to panels (a) and
(b)]. (c) Fourier-transformed Loschmidt echo (1) of the state |ψ1̄/0〉
for system sizes from L = 12 up to L = 20, with V = 0.05. The inset
shows the original time-domain data. λ = 0.6, � = 0.1 in all cases.

exhibits peaks at frequencies ω which are multiples of 2. For
increasing system size L, the spectral contributions of peaks at
higher ω become slightly more pronounced. Correspondingly,
we find that the revivals of L(t ) in time [see inset of Fig. 2(c)]
become less distinct for increasing L.

Note that in addition to the |Tj〉 discussed above, there are
in fact three other towers starting from the ground state of each
symmetry sector. These can be obtained by replacing the rais-
ing operators in Eq. (9) with lowering operators and starting
from the most excited state, or by applying the operators to
even sites, or by a combination of both. Physically, these cor-
respond to the transformations K� → −K� and K2� ↔ K2�+1,
respectively. Moreover, while the operator O produces a zero-
momentum excitation, we find that generalizations to k �= 0
as well as to half-integer values of η seem to also yield
good approximations to eigenstates of H (see Appendix D for
details). Interestingly, if we start the construction of the tower
from some state besides the ground state (e.g., with a single
excitation on the even sites), the above results do not hold; i.e.,
the states generated are poor matches to eigenstates of H.

Eventually, let us mention one technical detail. Specif-
ically, the operator O in Eq. (9) changes the Z2 spin-flip
symmetry on the odd sublattice such that the tower produced
starting from a state in one symmetry sector will alternate be-
tween that and one other symmetry sector. For computational
convenience, we choose to shift the entire tower into the same
symmetry sector. This is achieved by applying the operator Z1

after every application of the operator O, as Z1 anticommutes
with the spin-flip symmetry on odd sites, but commutes with
all cluster operators. As the states |Tj〉 in each symmetry
sector are equivalent, this should not affect the results, and we
have checked this by performing the same analysis in different
symmetry sectors.

C. Entanglement entropy

Given a state |ψ〉, its entanglement entropy for a bipartition
into subsystems A and B is given by

SA = −Tr[ρA ln ρA], ρA = TrB{|ψ〉〈ψ |}, (12)

where ρA is the reduced density matrix for a subsystem A.
For an eigenstate of a Hamiltonian obeying the ETH, one

generally expects that SA scales with the system size, and in
particular at infinite temperature it approaches the Page value
[68], which is the average entropy for a random pure state.
A state with an extensive entanglement entropy is said to be
obeying a volume law. In contrast, the ground state of gapped
systems is always area law [69], even in chaotic systems.
Surprisingly, states with subextensive entanglement entropies
have been found even at finite energy densities in a number of
otherwise chaotic models, now usually referred to as quantum
many-body scars [37].

Figures 3(a) and 3(b) show the half-system bipartite en-
tanglement entropy for the eigenstates of the ZXZ model
(2) when LA = L/2, in both the noninteracting (V = 0) and
the interacting (V = 0.05) models. While the entanglement
entropies take a broad range of values in both cases, with
V = 0.05 and especially toward the middle of the spectrum,
the distribution becomes strongly skewed toward higher en-
tropies, and most of the states become volume law.

However, some states retain much lower entropies, and this
is especially true for the eigenstates |Sj〉 which we identified
in Sec. III B as exhibiting a large overlap with the tower of
states |Tj〉. In particular, the |S j〉 have very low entanglement
entropies in the noninteracting case, and most retain these
when interactions are turned on. Surprisingly, some of the |Sj〉
have even lower entropies than their approximations |Tj〉. On
the other hand, some of the states |Sj〉 with larger j do attain
significantly higher entanglement entropies in the interacting
case, though still small compared to most states nearby in
energy: we attribute this to the large number of excitations
in these states, which increases their complexity and pro-
vides more ways for the interaction V to destabilize them.
In addition to the half-chain entanglement entropy, Figs. 3(c)
and 3(d) show SA versus subsystem size LA for the states
|S j〉. The data show that the entanglement of the |Sj〉 scales
subextensively for both V = 0 and V = 0.05, except for |S7〉,
where this is not clear. This is in contrast to eigenstates which
are nearby in energy, which obey a clear volume law.
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FIG. 3. (a) Half-system bipartite entanglement entropy of the
eigenstates of the noninteracting (V = 0) Hamiltonian, plotted
against energy, for L = 18 in the subspace with positive spin-flip
symmetry on both sublattices. Darker colors indicate a greater num-
ber of states at that value. Additionally, the tower of states |Tj〉
and their corresponding eigenstates |Sj〉 are highlighted by crosses.
(b) The same as (a), but for the interacting (V = 0.05) model. (c) The
scaling of entanglement entropy with subsystem size in the non-
interacting model is shown for the states |Sj〉. A typical thermal
eigenstate (dotted black line) exhibiting a volume law is shown for
comparison. (d) The same as (c), but for the interacting (V = 0.05)
model. λ = 0.6, � = 0.1 in all cases.

In fact, we show in Appendix E that the exact states |Tj〉
may be represented by a matrix-product state (MPS) of bond
dimension χ = 4[min( j + 1, L/2 − j)] � L + 4. Since the
entanglement entropy of an MPS is at most log χ , this places a
logarithmic bound on their entropy. We note, however, that it
does not necessarily follow that the eigenstates |Sj〉 will obey
this bound as well.

D. Distribution of cluster excitations

The ETH predicts that the expectation values of (local)
physical operators, evaluated with respect to individual eigen-
states of chaotic Hamiltonians H, should form a smooth
function of energy and agree with the microcanonical ensem-
ble average for that operator. As a result, a distinguishing
feature of ETH-violating eigenstates is a significant departure
of these expectation values from the energy-resolved average.
In the case of the ZXZ model, it is instructive to consider the
expectation values of the cluster operators K� for the eigen-
states of the model, taking particular note of the values for the
eigenstates |S j〉.

Figures 4(a) and 4(b) show the cloud of matrix elements
〈K�〉 = 〈n|K�|n〉 for two central sites in the chain with L = 16,
for the noninteracting and interacting Hamiltonians, respec-
tively. The states |S j〉 are highlighted. They show that in the
noninteracting case, the expectation values for the central two
sites fall close to a discrete set of values with little systematic
dependence on energy. This discretization might be explained
by proximity to the � = V = 0 point at which the K� are

FIG. 4. (a) 〈K�〉 at sites � = 8, 9 for energy eigenstates of the
noninteracting (V = 0) model, L = 16, in the subspace with posi-
tive spin-flip symmetry on both sublattices. Darker colors indicate
a greater number of states at that value. Circular markers indicate
the states |Sj〉. (b) The same, but for the interacting model (V =
0.05). (c) Probability distribution of 〈K�o〉 for eigenstates in a narrow
window around the state |SL/2−2〉, with the data shifted such that
the distributions have zero mean. �o = 7, 9, 9 for L = 14, 16, 18,

respectively, and V = 0.05. The values for the states |SL/2−2〉 are
indicated by circles, with vertical dotted lines as guides to the eye,
and we include data from all four symmetry sectors. (d) 〈K�〉 vs �,
for the state |SL/2−2〉 and a volume-law state adjacent to it in energy,
for L = 16 and V = 0.05. λ = 0.6, � = 0.1 in all cases.

constants of motion. Once interactions are turned on, the
distribution of 〈K�〉 smoothens, though there is still substantial
variation. However, some states stay close to their original
values, and this is particularly prominent for the states |Sj〉
which clearly deviate from the microcanonical average.

For a more refined analysis, Fig. 4(c) looks at the distribu-
tion of expectation values on a central odd site �o, focusing
on a narrow energy window centered around the penultimate
tower state |SL/2−2〉. This state was chosen as it is closest to
zero energy for the chosen parameters. While the distribution
appears to narrow down with increasing system size L, we find
that the expectation values 〈Sj |K�o|S j〉 remain distinct outliers
for all L.
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FIG. 5. Ordered “entanglement energies” ϕα [cf. Eq. (13)] of
selected exemplary states in {|Sj〉}. For comparison, we also show the
entanglement spectrum of a typical eigenstate close to zero energy.
We have for L = 18, � = 0.1, V = 0.05 in all cases.

The behavior of the cluster excitations is explored further
in Fig. 4(d) by looking at their expectation values for par-
ticular states and their variation in space. On the one hand,
the expectation value 〈n|K�|n〉 for an eigenstate |n〉 directly
adjacent to |Sj〉 is fairly uniform and thermal (as it is the
case for the majority of states once interactions are turned on).
However since eigenstates |Sj〉 are well approximated by the
tower states |Tj〉, they have similar cluster expectation values.
In particular, this means that the values between sublattices
differ substantially with the even sublattice being almost fully
polarized.

E. Signatures of SPT order

SPT order is usually associated with properties of the
ground state of a system, and in normal circumstances lost
at any finite energy density. Despite this, it has been shown
that eigenstates in a many-body localized system can remain
in a sharply defined topological phase, even at infinite tem-
peratures [18,60,61]. More recently, it has been shown that
quantum many-body scars embedded into the spectrum of a
topologically ordered model can themselves have topological
order, despite having a finite energy density relative to the
ground state [57–59]. It is therefore natural to wonder whether
the nonthermal states |S j〉 discussed in this work might also
retain signatures of topological order. To this end, we here
study the so-called entanglement spectrum, defined as the
eigenvalues ϕα of an “entanglement Hamiltonian,”

Hent = − ln(ρA), (13)

and we choose subsystem A to be the first L/2 sites of the
system.

A consequence of SPT order in the ZXZ model (2) is
that the entanglement spectrum is fourfold degenerate in the
ground state, as long as � and V are chosen such that H
remains in the Z2 × Z2 SPT phase. This statement is also
true of every eigenstate in the � = V = 0 model. However
for nonzero �, V , the entanglement spectrum of a state in the
middle of the energy spectrum should not have this degener-
acy.

In spite of this, we find signs of this degeneracy for all
of the states in the tower, |S j〉. Figure 5 gives illustrative
examples, as follows. As |S0〉 is of course also the ground
state, the fourfold degeneracy is clear throughout the entangle-

FIG. 6. Infinite-temperature autocorrelation functions [Eq. (14)]
at the edge and in the bulk for (a) Z� and (b) K�. Data are obtained
by exact diagonalization for different system sizes L as indicated
by the arrows. Note that data in (a) are analogous to Ref. [19]. The
dashed lines in (b) signal the equipartition value 1/(L − 2). The other
parameters are chosen as V = 0.05, � = 0.1, and λ = 0.6.

ment spectrum, and there is a large gap between the “ground”
quadruplet and the next set of values. This serves as a bench-
mark for the behavior of the other |S j〉. States |S1〉 and |S2〉 still
retain a fourfold degeneracy, though with smaller gaps, and a
slight breakdown of this degeneracy at higher entanglement
energies. Moreover, even though |S7〉 is close to the middle of
the spectrum, the first dozen ϕα clearly form well-separated
quadruplets. Finally, even the highest state in the tower, |S8〉,
keeps the degeneracy in the first quadruplet with a gap almost
comparable to that of the ground state |S0〉. This may be a
signature that these nonthermal states retain SPT order. In
particular, the entanglement spectrum of the |Sj〉 is in stark
contrast to a typical state in the spectrum (in this case, chosen
to have close to zero energy), which shows no signs of the
fourfold degeneracy.

We leave it to future work to study this finding in more
detail, e.g., by looking at other indicators such as the topo-
logical entanglement entropy or the appropriate string order
parameter [70].

IV. NONEQUILIBRIUM DYNAMICS OF THE ZXZ MODEL

Having established the presence of scarred eigenstates
throughout the spectrum of H, we now turn to the dynamical
properties of the ZXZ model. Given the nonthermal character
of the states |S j〉, combined with their signatures of topo-
logical order, it is plausible that the dynamics of H shows
anomalous behavior as well. In contrast to Ref. [19], where
the focus was on the long-lived edge mode, here we mainly
scrutinize the dynamics in the bulk of the system.

A. Infinite-temperature dynamics

As a starting point, Figs. 6(a) and 6(b) show the infinite-
temperature autocorrelation functions |〈A�(t )A�〉∞| of local
spin (A� = Z�) or cluster operators (A� = K�), respectively,

〈A�(t )A�〉∞ = Tr[A�(t )A�]

2L
, (14)

where A(t ) = eiHt Ae−iHt .
Specifically, Fig. 6(a) shows |〈Z�(t )Z�〉∞| for sites � = 1

and � = L/2, i.e., at the edge and in the bulk of H. Set-
ting λ = 0.6 and plotting results for different system sizes
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L, we find that |〈Z�(t )Z�〉∞| quickly decays toward zero for
� = L/2 on a timescale which is essentially independent of
L. In contrast, for � = 1, |〈Z�(t )Z�〉∞| only starts to decay
after a time that increases exponentially with L, illustrating
the intriguing result of Ref. [19] that H hosts a long-lived edge
mode which is stable even at infinite temperature if the model
(2) is dimerized with λ �= 1.

Contrary to |〈Z�(t )Z�〉∞|, the autocorrelation function
|〈K�(t )K�〉∞| of local cluster operators does not exhibit such a
distinct dependence on the choice of the site �. In Fig. 6(b), we
exemplarily show |〈K�(t )K�〉∞| for � = L/2 which is found
to decay rapidly to a constant long-time value (the dynamics
for other � are very similar). Interestingly, this asymptotic
long-time value is nonzero [in contrast to the data for Z�

in panel (a)] and also clearly larger than 1/(L − 2) [dashed
lines in Fig. 6(b)], which would have indicated that the sin-
gle cluster excitation has uniformly spread over the whole
system. While the long-time value is a direct consequence
of the broad distribution of 〈n|K�|n〉 shown in Fig. 4, we
note that |〈K�(t → ∞)K�〉∞| seems to decrease slightly with
increasing L. This could indicate that the fraction of scarred
low-entangled eigenstates in the spectrum of H (which were
found to yield rather extremal values of 〈n|K�|n〉) becomes
smaller when approaching the thermodynamic limit L → ∞.

In the following, we argue that the apparent nonthermal
long-time value of 〈K�(t )K�〉∞ can be understood as a con-
sequence of the stability of local cluster expectation values
〈ψ |K�(t )|ψ〉 for specific out-of-equilibrium initial states |ψ〉
chosen from the cluster basis. In particular, we show that this
stability is related to the dimerization of the ZXZ model with
λ = 0.6, which causes cluster excitations to remain essentially
confined to one of the two sublattices.

B. Dynamics of cluster-basis initial states

To proceed, we study the dynamics of initial states |ψ (0)〉
drawn from the cluster basis, i.e., eigenstates of the clean ZXZ
model with � = V = 0. At time t = 0, such states therefore
yield definite expectation values ±1 for local cluster opera-
tors,

〈ψ (0)|K�|ψ (0)〉 = ±1, 2 � � � L − 1. (15)

Under evolution with respect to H with �,V > 0, however,
the expectation values 〈ψ (t )|K�|ψ (t )〉 are not conserved and
can decay with time. We here investigate the dependence of
the resulting dynamics on the choice of the particular initial
state |ψ (0)〉 and the dimerization parameter λ.

This analysis provides a phenomenological picture of the
obstruction to thermalization in this model. We investigate
the scenario where two subsystems (odd and even sublat-
tices) are prepared at different energy densities and study the
relaxation between them. The dynamics of the cluster exci-
tations between the odd and even sublattices are suppressed
where the relaxation time between the two subsystems even
appears to diverge for dimerization parameters deviating from
1. We show that when the even sublattice is kept at zero
temperature, although the odd sublattice is highly excited, the
dynamics only leads to thermalization within the sublattices
but not between them thus providing a novel feature where a

FIG. 7. Quench dynamics 〈K�(t )〉|ψ〉 = 〈ψ (t )|K�|ψ (t )〉 for three
exemplary states |ψ1〉–|ψ3〉 from the cluster basis. Panels (a)–
(c) show data for the dimerized model with λ = 0.6, while panels
(d)–(f) show data for λ = 1. (a), (d) Three excitations on even
sublattice, |ψ1〉 = |11̄11̄11̄1̄ · · · 〉. (b), (e) Fully excited even sub-
lattice, |ψ2〉 = |11̄11̄ · · · 〉. (c), (f) Excitations on both sublattices,
|ψ3〉 = |1̄1̄1̄1̄1111111̄1̄〉. We have � = 0.1,V = 0.05, and L = 14
in all cases.

finite-temperature thermalizing system is unable to heat up a
zero-temperature state.

In Fig. 7, we study the quench dynamics 〈K�(t )〉|ψ〉 for
three exemplary initial states |ψ1〉–|ψ3〉,

〈K�(t )〉|ψ〉 = 〈ψ (t )|K�|ψ (t )〉, (16)

where we particularly compare the dynamics for λ = 0.6
[Figs. 7(a)–7(c)] and λ = 1 [Figs. 7(d)–7(f)]. The choice of
the states |ψ1〉–|ψ3〉 is motivated by the construction of the
tower of states |Tj〉 (and the corresponding nonthermal eigen-
states |S j〉) in Sec. III B above. Specifically, in the case of
|ψ1〉 and |ψ2〉, the clusters of the odd sublattice are all in their
ground state, while cluster excitations are present on the even
sublattice. In contrast, the state |ψ3〉 features a finite number
of cluster excitations on both sublattices.

The data in Fig. 7 exemplify a strong dependence of
〈K�(t )〉|ψ〉 = 〈ψ (t )|K�|ψ (t )〉 on the choice of λ. On the one
hand, in the case of λ = 0.6, we observe that even though the
cluster excitations spread through the system, they do so by re-
maining almost perfectly confined to the even sublattice. This
is especially clear for the state |ψ1〉 in Fig. 7(a). As a conse-
quence, the initial inhomogeneous cluster configuration does
not equilibrate, such that thermalization of the full system is
prevented even on the very long timescales t � 105 shown
here. This is in contrast to the state |ψ3〉 in Fig. 7(c), which
appears to thermalize very rapidly. As cluster excitations are
already present on both sublattices, the effective restriction of
the cluster excitations to one sublattice does not have a strong
effect in this case. Let us note that such a discrepancy between
initial states with or without excitations on both sublattices has
been already exemplified in terms of the Loschmidt echo L(t )
in Fig. 1(d).

On the other hand, in the case of λ = 1, we find that
especially for the states |ψ1〉 and |ψ2〉, 〈K�(t )〉|ψ〉 behaves very
differently. In particular, the initial cluster profile is found to
spread very rapidly through the whole system; i.e., the cluster
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FIG. 8. Averaged cluster expectation value 〈Ke/o(t )〉|ψ2〉 on
even/odd sublattice [Eq. (17)] for the initial state |ψ2〉 [see Figs. 7(b),
7(e)]. Data are shown for system sizes L = 14, 16, 18, 20. In panels
(a) and (b), we show data for the dimerized model with λ = 0.6,
while panel (c) shows data for λ = 1. In (a) and (c), we have � = 0.1
and V = 0.05. Panel (b) considers slightly stronger perturbations
� = 0.2 and V = 0.1.

excitations can move freely onto the other sublattice as well.
This strong dependence of the quench dynamics on the dimer-
ization parameter λ is an important result of the present paper.
Moreover, connecting the dynamics in Fig. 7 to the eigenstate
properties discussed above in Sec. III C, let us mention that the
states |ψ1〉 and |ψ2〉 appear to overlap dominantly with a sub-
volume-law entangled eigenstate, while most of the spectral
weight of |ψ3〉 is on a volume-law entangled eigenstate instead
(see Appendix F for details).

In order to analyze the quench dynamics in more detail,
we now focus on the initial state |ψ2〉 from Figs. 7(b) and
7(e). Specifically, in Fig. 8, we show the averaged cluster
expectation value 〈Ke/o(t )〉|ψ〉 on the even (e) and odd (o)
sublattice,

〈Ke(t )〉|ψ〉 = 2

L − 2

L/2−1∑
�=1

〈ψ (t )|K2�|ψ (t )〉, (17)

where K2� → K2�+1 in the case of 〈Ko(t )〉|ψ〉. Note that in
Fig. 8(b), we now also include data for slightly larger values
of the perturbations � = 0.2 and V = 0.1.

As already expected given Fig. 7, the data in Figs. 8(a)–8(c)
confirm that 〈Ke/o(t )〉|ψ〉 clearly depends on the choice of λ.
In the case of λ = 0.6 [Figs. 8(a), 8(b)], the dynamics of
〈Ke/o(t )〉|ψ〉 is very slow (although it is somewhat faster for
the larger values of �,V ) and the even and odd sublattices do
not equilibrate on the timescales t � 200 shown here. Interest-
ingly, comparing data for different system sizes L = 14–20, it
appears that the dynamics becomes even slower for increasing
L. While it is difficult to decide with numerical means whether
〈Ke/o(t )〉|ψ〉 will eventually thermalize for L → ∞ and t → ∞
[although we note that the cluster profiles in Figs. 7(a) and
7(b) stay nonthermal even for t > 104], the results in Fig. 8
strongly suggest that the timescale of (potential) thermal-
ization is significantly longer in the dimerized model with
λ = 0.6 (even for the larger values of � and V ). In particular,
as shown in Fig. 8(c), 〈Ke/o(t )〉|ψ〉 quickly approaches zero
for λ = 1 on an L-independent timescale t � 10. Thus, by
virtue of the dimerization parameter λ �= 1 (i.e., in the same
parameter regime where Ref. [19] reported the long-lived edge
mode) it is possible to induce dynamics with long coherence
times in the bulk degrees of freedom of the ZXZ model (2), at
least when looking at appropriate operators and initial states.

FIG. 9. (a) Time- and space-averaged correlation function
K|ψ〉(t ) and (b) Loschmidt echo L(t ) = |〈ψ (t )|ψ〉|2, for the dimer-
ized model with λ = 0.6 and fixed system size L = 12. Data are
shown for those states |ψ〉 from the cluster basis with an energy
E|ψ〉 ∈ [−0.5, 0.5] in the center of the spectrum. Initial states where
one of the two sublattices is fully excited/fully in the ground state
(red curves) saturate to high values of K|ψ〉(t ) and exhibit distinct
oscillations in L(t ).

Having exemplified the dynamics of local cluster operators
K� in Fig. 7 for the three states |ψ1〉-|ψ3〉, we now study the
quench dynamics for a wider class of initial states from the
cluster basis. In this context, a useful quantity to probe the
“stability” of the initial cluster distribution for some state |ψ〉
is the time- and space-averaged correlation function K|ψ〉(t )
(cf. Ref. [50]),

K|ψ〉(t ) = 1

L − 2

L−1∑
�=2

1

t

∫ t

0
〈ψ |K�(τ )K�|ψ〉dτ. (18)

If the long-time value of K|ψ〉(t ) remains nonzero or even
relatively close to K|ψ〉(t → ∞) ≈ 1, this can be interpreted as
an indication that at least some of the local cluster information
is preserved.

While there are 2L−2 different initial states |ψ〉 in a given
symmetry sector (as there are L − 2 cluster sites), we here
consider only those states which have a mean energy E|ψ〉
relatively close to the center of the spectrum,

−0.5 � E|ψ〉 � 0.5, E|ψ〉 = 〈ψ |H|ψ〉. (19)

For a thermalizing system, one would expect that initial states
with approximately the same energy will yield very similar
outcomes of local observables at long times. In Fig. 9(a), we
find that this expectation is clearly violated for the dimer-
ized model with λ = 0.6. In particular, while the time- and
space-averaged correlator K|ψ〉(t ) decays toward zero for the
majority of initial states, we identify a rare number of |ψ〉
where K|ψ〉(t → ∞) is clearly nonzero. Upon inspection, it
turns out that these rare |ψ〉 are exactly those states where
the clusters of one sublattice are all either excited or in the
ground state. Note that this finding is perfectly consistent
with our previous results from Figs. 7(a)–7(c). Namely, as
cluster excitations remain essentially confined to their original
sublattice, inhomogeneous cluster distributions cannot equi-
librate over the whole system, such that thermalization of
the full system is impeded. Consequently, for initial states
|ψ〉 where cluster excitations are present only on one sub-
lattice, the cluster expectation values on the other sublattice
remain almost unchanged and one obtains a saturation value
K|ψ〉(t → ∞) � 0.5.
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The nonthermal dynamics of the local cluster operators K�

for some of the states |ψ〉 also reflects itself in the Loschmidt
echo L(t ) = |〈ψ (t )|ψ〉|2, which is shown in Fig. 9(b). Focus-
ing again on those states with E|ψ〉 ∈ [−0.5, 0.5], we find that
L(t ) quickly decays and stays close to zero for the majority of
|ψ〉. However, once again, we observe that those states where
the clusters of one sublattice are all either excited or in the
ground state behave drastically different. Specifically, these
rare |ψ〉 also decay toward zero initially, but exhibit distinct
revivals of L(t ) at short to intermediate times. These pro-
nounced revivals can be understood as a direct consequence
of the restricted mobility of cluster excitations for λ = 0.6.
Specifically, the detuning of the two sublattices causes states
|ψ〉 with cluster excitations only on one sublattice to be rel-
atively weakly connected to other states with excitations on
both sublattices. As a consequence, such initial states explore
only a smaller part of the Hilbert space, and local memory
of the initial state (at least on one of the two sublattices) is
preserved even at long times. While not shown here, we have
checked that such strong revivals of L(t ) are absent in the
nondimerized model with λ = 1.

V. DISCUSSION

We have studied the eigenstate properties and the dynamics
of an interacting spin-1/2 chain with three-site cluster terms,
hosting a symmetry-protected topological phase. We have
particularly focused on the weakly interacting regime in the
presence of a dimerization parameter λ �= 1, which energeti-
cally detunes the clusters on odd and even sites. This region
in parameter space has been recently identified in Ref. [19]
to stabilize a long-lived edge mode even at infinite tempera-
ture. In the present work, we have scrutinized this intriguing
parameter regime with respect to quantum many-body scars
and the out-of-equilibrium dynamics of the bulk degrees of
freedom in the SPT phase.

Summarizing our main results, we have shown that there
is a coexistence of volume-law and area-law entangled eigen-
states throughout the spectrum of H. The latter are akin to
quantum many-body scars in the sense that an equidistant
“tower” of such states can be constructed by the repeated
application of a certain type of “raising” operator. In the
present case, this construction consists of coherent cluster ex-
citations on one of the two sublattices with the other sublattice
remaining in the ground state. Furthermore, we have provided
a detailed characterization of the properties of the scarred
eigenstates and demonstrated that they feature nonthermal
expectation values of local cluster operators in the bulk and
remarkably exhibit signatures of topological order even at
finite temperature. In contrast to the usual phenomenology of
quantum scars, where the scar states are distinct outliers in
an otherwise strongly thermalizing spectrum with extensive
entanglement, the ZXZ models appears to be less chaotic,
e.g., in the sense that a large number of eigenstates exhibits
comparatively low entanglement. This fact might be partially
attributed to the definition of H with open boundary con-
ditions and the presence of edge modes, as well as to the
integrability-breaking interactions being comparatively weak.
In fact, as shown in Appendix B, the level spacing distribution
of H indicates that the ZXZ model for weak interactions ac-

tually resides in an intermediate regime between integrability
and full quantum chaos, although we here cannot rule out the
impact of finite-size effects.

In addition to the properties of eigenstates, we have stud-
ied the out-of-equilibrium dynamics of H. We particularly
considered quantum quenches starting from eigenstates of the
noninteracting model which have definite eigenvalues of local
cluster operators, 〈ψ (0)|K�|ψ (0)〉 = ±1. We have shown that
the dynamics of the clusters drastically depends on the choice
of the dimerization parameter λ. Specifically, we have found
that a finite detuning (here λ = 0.6) effectively restricts the
mobility of cluster excitations to within each of the two sub-
lattices, such that inhomogeneous cluster distributions cannot
equilibrate over the whole system. As a consequence, es-
pecially for those initial states where cluster excitations are
present on only one sublattice, the cluster expectation values
of the other sublattice remain almost unchanged even on very
long timescales. This nonthermal dynamics is in stark contrast
to the nondimerized model (λ = 1), where the two sublattices
are found to mix rapidly and thermalization is observed. Thus,
in the same parameter regime where Ref. [19] has found
robust edge modes at infinite temperature, the bulk dynam-
ics likewise exhibits long coherence times when considering
appropriate operators and initial states. Let us note, however,
that the occurrence of nonthermal cluster dynamics in the bulk
does not necessarily require the presence of a long-lived edge
mode. In particular, we have checked that a phenomenology
similar to Fig. 7 holds for periodic boundary conditions as
well.

Our work raises a number of questions. While the discus-
sion of quantum many-body scars is usually concerned with
strongly thermalizing models where all but a few eigenstates
obey the ETH, it might be interesting to extend the notion of
scars to quantum integrable models as well. In this work, we
have shown that the noninteracting version of the ZXZ model
(corresponding to two uncoupled Ising chains) also hosts a
number of area-law entangled eigenstates, some of which ap-
pear to remain stable for finite interactions. On the one hand,
it would be interesting to better understand the connection
between such states and the well-known local conservation
laws in the transverse-field Ising model with open boundaries
[71], as well as the stability of such conservation laws against
perturbations. In this context, let us note that connections
between quantum many-body scars and the proximity to in-
tegrable points have already been discussed in Refs. [47,72].
On the other hand, thermalization in integrable models is usu-
ally understood with respect to a suitable generalized Gibbs
ensemble (GGE), which accounts for the extensive number
of conservation laws [5,6]. Analogous to chaotic models, one
might speculate that the presence of “scars” in integrable
models can prevent thermalization to a GGE for certain out-
of-equilibrium states which exhibit a dominant overlap with
such eigenstates.

The role of disorder on the topological nature of quantum
scars in the ZXZ model is a question of interest in the context
of many-body localization. It has been shown for example
that the PXP model can be localized [73], but the constraints
in the model also induce interactions which in certain cases
prevents MBL [74]. Moreover, relatively weak disorder may
destroy scars [75], even though at strong disorder many-body
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localization reinstates the topological edge modes. It would be
interesting to study the phase transition between the various
excited state phases with topological features in intermediate
regimes between scars and localization.
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APPENDIX A: EIGENSTATES OF THE CLEAN ZXZ
MODEL (� = V = 0)

There exists a set of states |ψge,go
{±�} 〉 which are mutual

eigenstates of the cluster operators and have definite Z2 × Z2

symmetry values, forming a complete basis within each sym-
metry sector.

Let us define the state |ψge,go
{±�} 〉 such that

Ĝe/o

∣∣ψge,go
{±�}

〉 = ge/o

∣∣ψge,go
{±�}

〉
, (A1)

K�

∣∣ψge,go
{±�}

〉 = ±�

∣∣ψge,go
{±�}

〉
, 2 � � � L − 1, (A2)

where Ĝe/o are the symmetry operators for even and odd site
spin-flip symmetry, respectively, and ge/o = ±1 their eigen-
values. Moreover, {±�} is here used as an abbreviation for the
local cluster expectation values being either +1 or −1 on each
site �. Equations (A1) and (A2) do not uniquely specify the
phase of these states, but they can be defined concretely for
our purposes as

∣∣ψge,go
{±�}

〉 =
√

2L

(
L−1∏
�=2

K±�

�

)
Pg′

e
e Pg′

o
o |↑〉⊗L, (A3)

where P±
e/o = (1 ± Ĝe/o)/2, and g′

e/o = gL/2−1
e/o = ±1. The

state |ψ1̄/0〉 considered in the context of Fig. 2 is constructed
by applying lowering operators only on the even sites, and
adjusting the normalization accordingly.

It is easy to check that the states |ψge,go
{±�} 〉 have the cor-

rect symmetry eigenvalues, after noting that {K±
2�, Ge} =

[K±
2�, Go] = 0 and likewise [K±

2�+1, Ge] = {K±
2�+1, Go} = 0.

Noting also that K�K±
� = ±K±

� shows that they yield the cor-
rect cluster-operator eigenvalues.

It is simple to show that these states are mutually orthogo-
nal. Take two states which differ in their cluster eigenvalues at
at least one site. Since (K±)† = K∓, taking the inner product
of these states, substituting in (A3), and grouping the oper-
ators by site (using the fact that operators on different sites
commute) will lead to at least one factor (K±)2 = 0. Hence
the inner product must vanish. It is clear also that states with
different symmetry eigenvalues must be orthogonal.

Since there are L − 2 sites each with two choices for clus-
ter eigenvalues, and also four symmetry sectors, there are
4 × 2L−2 = 2L cluster states—exactly the number of states
in a system of size L. Hence this is a complete, orthonormal
basis.

FIG. 10. (a) Distribution of r̃ for L = 18, � = 0.1, V = 0.05, to-
gether with expected distributions for different level statistics. Level
spacings are calculated per symmetry sector, in the middle 1/3 of
energies, but values from all sectors are included. (b) Finite-size
scaling of the mean value 〈r̃〉, for two different choices of � and
V . The dashed horizontal lines indicate the values corresponding to
Poisson, semi-Poisson, and GOE level statistics.

APPENDIX B: ONSET OF CHAOS

A useful indicator of whether a system is integrable or
chaotic is given by the ratio of adjacent level spacings r̃
[76,77],

r̃ = min{�n,�n+1}
max{�n,�n+1} , (B1)

where �n = En+1 − En is the spacing between consecutive
energy levels. On the one hand, for an integrable system,
the energy levels follow a Poisson distribution [78]. On the
other hand, for a nonintegrable “chaotic” system, the levels
will follow a similar distribution to that of a random matrix
drawn from a Gaussian ensemble [79,80], e.g., the Gaussian
orthogonal ensemble (GOE) in case of H having real entries.
Such “chaotic” systems are expected to obey the ETH [3,4].

In Fig. 10(a), the probability distribution P(r̃) of the ZXZ
model is shown for the weakly interacting regime � = 0.1,
V = 0.05. Data are obtained from the central third of the
spectrum of H with system size L = 18. We find that P(r̃)
exhibits clear level repulsion and is inconsistent with a Pois-
sonian distribution. Thus, the small but nonzero V is sufficient
to break the integrability of H. However, comparing P(r̃) to
the theoretically expected distribution of a GOE, we also ob-
serve distinct deviations. Instead, it appears that P(r̃) is much
better described by a so-called semi-Poisson distribution [81],
indicating that while H is nonintegrable, full quantum chaotic
behavior is absent. This might be consistent with our findings
from Figs. 3 and 4, i.e., that there are many states throughout
the spectrum of H which appear to be not entirely in accord
with the predictions of the ETH. In this context, let us note that
it is well known from other quantum scar models that P(r̃) can
in fact drift from semi-Poisson to GOE for increasing L [37].

To analyze the onset of quantum chaos further, Fig. 10(b)
shows the mean value 〈r̃〉 versus system size L. In agreement
with our previous observation in Fig. 10(a), we find that
〈r̃〉 does not reach the expected value 〈r̃〉GOE ≈ 0.53, instead
seeming to approach the value for semi-Poisson statistics,
although we cannot rule out that the GOE value is eventu-
ally reached for even larger values of L. In contrast, if we
consider slightly larger values of the perturbations, V = 0.1
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and � = 0.2, we find a convincing agreement 〈r̃〉 ≈ 〈r̃〉GOE for
L = 16. This suggests that full quantum chaos is restored in
this parameter regime. Importantly, however, let us emphasize
that the slow and atypical dynamics of some initial states
occurs for these larger values of � and V as well; see Fig. 8(b).

APPENDIX C: DETAILS ON LOW-LYING EXCITATIONS

Let us define the following operators for periodic boundary
conditions,

X̃� = (K+
� + K−

� ) = Z�, (C1)

Z̃� = K�. (C2)

These operators obey a spin algebra acting on the cluster basis
of Appendix A: X̃� inverts the cluster eigenvalue at site �,
and Z̃� measures it. The Hamiltonian (2) for V = 0 may be
expressed purely in terms of these operators as

H =
L/2−1∑
�=1

(λZ̃2� + Z̃2�+1) + �

L∑
�=1

X̃�−1Z̃�X̃�+1. (C3)

If we are in a regime such that � � 1, λ, then we can work in
the space of a fixed number of cluster excitations. The action
of the � term is then to cause an excitation to hop to its next-
nearest neighbor—keeping to either the even or odd sublattice.
Assume that there is just one excitation and that it is on the
even sublattice. The effective Hamiltonian in this space is then

Heff|2� + 1〉 = 2|2� + 1〉 − �(|2� − 1)〉 + |2� + 3〉), (C4)

where |�〉 = K+
� |gs〉 is a single excitation localized at site

�, and energies are relative to the ground state. This can
be solved by introducing momentum states |k〉 via a Fourier
transform (8),where k can take the values 2πη/(L/2) for inte-
ger η, 0 � η < L/2. Applying this transform to Eq. (C4), and
noting that the states |k〉 are mutually orthogonal, we obtain

Heff|k〉 = (2 − 2� cos k)|k〉. (C5)

This is the same result as for an excitation in the transverse-
field Ising model, showing again the mapping between the
ZXZ model and two copies of the TFIM. Note that with minor
changes, similar excitations can be shown to exist as holes in
a fully excited sublattice, and also when the other sublattice is
fully excited.

APPENDIX D: NONZERO-MOMENTUM EXCITATIONS

We can generalize Eq. (9) to create excitations with an
arbitrary momentum k simply by introducing a location-
dependent phase,

O(k) =
L/2−1∑
�=1

eik�K+
2�+1. (D1)

Because the Hamiltonian is real symmetric, the eigenstates
can be taken to be real. However, the towers |Tj (k)〉 formed
from these operators are in general complex, so we must take
linear combinations to produce real states. Since |Tj (k)〉 and

FIG. 11. Overlaps of the states |S±
j (k)〉 and |T ±

j (k)〉, in analogy
with the inset of Fig. 2, for states constructed with a generalized
excitation operator O(k) (D1). Data for the noninteracting (V = 0)
model is in blue, and for the interacting model (V = 0.05) in orange.
Other parameters: L = 16, λ = 0.6, � = 0.1, Ge = Ge = +1.

|Tj (−k)〉 are complex conjugates, we can consider the states,

|T ±
j (k)〉 = 1√

2
[|Tj (k)〉 ± |Tj (−k)〉], (D2)

which are either real or have a global phase which can be
eliminated by multiplication by a constant. We can also define
|S±

j (k)〉 in analogy with the definition in the main text. Note
that |T0(k)〉 = |gs〉, and |TL/2−1(k)〉 is the state with a fully
excited odd sublattice and ground-state even sublattice, for
all values of k, and so for these states we do not take linear
combinations.

Figure 11 shows exemplary data on the squared overlap,
|〈T ±

j (k)|S±
j (k)〉|2, between these states and the eigenstates of

the model. In Figs. 11(a) and 11(b) we show data for η = 2, 3.
For η = 2, the first excited state ( j = 1) and the penultimate
state ( j = L/2 − 1) are close approximations, regardless of
interactions; however the states in the middle of the tower
are significantly worse. For η = 3, all the states are close ap-
proximations to eigenstates in the noninteracting model, and
remain the dominant spectral contribution when interactions
are turned on. The overlaps for other integers η generally
follow a similar pattern to one of these two cases.

Figure 11(c) shows that half-integer values of η can pro-
duce good overlaps too; in particular, we find that for η = 1/2
the overlap for the first excited state is very high, and even
better than for k = 0 in the main text.

APPENDIX E: MATRIX-PRODUCT STATE
REPRESENTATION OF THE TOWER OF STATES

In this section we show that the states |Tj (k)〉 in fact admit
an MPS representation with a maximum bond dimension lin-
ear in L. We do this in two steps; see Fig. 12 for reference.
First, we construct j cluster-wave excitations of momentum
k on the odd sublattice (tensors A, B, in blue), and then we
map that state from the cluster basis to the spin basis via a
matrix-product operator (MPO) of dimension χ = 4 (tensors
C, in green).

We demonstrate this construction first for the simple case
j = 1, i.e., a single delocalized cluster excitation on the
odd sublattice. We can write this state in the cluster basis
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FIG. 12. Matrix product state representation of a tower state
|Tj (k)〉. The tensors A, B generate j delocalized excitations with
momentum k on the odd sublattice, and the tensors C map this
from a cluster basis description to the physical spin basis. When the
vertical edges K� are contracted, we obtain an MPS of maximal bond
dimension χ = 4[max( j + 1, L/2 − j)] � L + 4. Triangles indicate
legs which are held constant (achieved by contracting with boundary
vectors Al and Ar).

(Appendix A) as

|ψ〉 =
L/2−1∑
�=1

eik�|1̄1̄ · · · 12�+1 · · · 1̄1̄〉. (E1)

We can then write this in matrix-product form as

|ψ〉 =
∑
{K�}

Al

(
L/2−1∏
�=1

BK2�
AK2�+1

)
Ar |K2K3 · · · KL−1〉, (E2)

A+1 =
(

0 0
1 0

)
, A−1 =

(
1 0
0 α

)
, (E3)

where Al = (0, 1) and Ar = (1, 0)T, α = eik , and BK =
IδK,−1 selects states with K2� = −1 on even sites.

Consider a single element of the summation in Eq. (E2).
Note that An

−1Ar = Ar but An
−1A+1Ar = αnAT

l , while A2
+1 =

0. Hence it is clear there must be exactly one A+1 in the matrix
product or else it will vanish, while we accumulate a factor α

for each site to the left of this A+1. This gives the desired state,
up to a constant phase factor which we can ignore.

In the above example, the index n of the nonzero entry in
the vector as we moved from right to left counted the number
of excitations to the right of the current site. To extend this
idea to j such excitations, we need a bond dimension of j + 1
such that 0 � n � j,

A+1 =

⎛
⎜⎜⎜⎜⎜⎝

0
1 0

α
. . .
. . . 0

α j−1 0

⎞
⎟⎟⎟⎟⎟⎠,

A−1 =

⎛
⎜⎜⎜⎜⎝

1
α

α2

. . .

α j

⎞
⎟⎟⎟⎟⎠, (E4)

FIG. 13. Overlap of the states |ψ1〉–|ψ3〉 (cf. Fig. 7) with the
eigenstates |n〉 of H. The insets show the entanglement entropy SA

versus subsystem size for the eigenstate |n〉 which has the largest
overlap (indicated by the blue asterisk). The parameters are chosen
as � = 0.1, V = 0.05, and λ = 0.6. The system size is L = 14.

where we now take Al = (1, 0, . . . , 0) and Ar =
(0, . . . , 0, 1)T. Note that now a factor αn is accumulated
at each site when there are n excitations to the right.

We now transform this state |ψ〉 = |Tj (k)〉 to the physical
spin basis using an MPO formed of the rank-4 tensors CK

σ =
diag (cK

σ , cK
σ ), where

cK
↓ =

(
0 K
0 −K

)
, cK

↑ =
(

1 0
1 0

)
. (E5)

The tensors cK
� here form the known MPS description for a

cluster state, where K = ±1 is the eigenvalue of K� for the
state at each site [82]. Finally, the tensors Cl and Cr are the
contraction of the left or right leg, respectively, of C+1

σ with
an appropriate boundary vector; this determines the symmetry
sector. This MPO hence has bond dimension χC = 4.

When the vertical edges representing K� are contracted,
the resultant MPS will have maximal bond dimension χ =
χAχC = 4( j + 1), which is O(L) since j < L/2. Certain op-
timizations can improve this to 4 max( j + 1, L/2 − j). This
bounds the entropy growth of the |Tj (k)〉 by O(log L).

APPENDIX F: SPECTRAL DECOMPOSITION
OF CLUSTER-BASIS STATES

In Figs. 13(a)–13(c), we plot the overlap |〈ψ |n〉|2 of the
three cluster-basis states |ψ1〉–|ψ3〉 (cf. Fig. 7) with the eigen-
states |n〉 of H. While the spectral weight of each |ψ〉 is
different, we here particularly focus on the eigenstate |n〉
which shows the largest overlap with the respective |ψ〉
(marked by an asterisk). For this particular |n〉, the insets in
Figs. 13(a)–13(c) show its entanglement entropy SA versus
subsystem size. While an area law (or at least sub-volume-
law) is observed for the first two states, we find a clear volume
law of |n〉 in the case of the quickly thermalizing state |ψ3〉.
The atypical dynamics of some of the initial states thus ap-
pears to be linked to the existence of and their overlap with
low-entangled eigenstates in the spectrum of H.

[1] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[2] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 124
(2015).

014424-13

https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1038/nphys3215


JEYARETNAM, RICHTER, AND PAL PHYSICAL REVIEW B 104, 014424 (2021)

[3] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.
Phys. 65, 239 (2016).

[4] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky, Phys.
Rep. 626, 1 (2016).

[5] L. Vidmar and M. Rigol, J. Stat. Mech.: Theory Exp. (2016)
064007.

[6] F. H. L. Essler and M. Fagotti, J. Stat. Mech.: Theory Exp.
(2016) 064002.

[7] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter
Phys. 6, 15 (2015).

[8] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod.
Phys. 91, 021001 (2019).

[9] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[10] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107

(2011).
[11] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103

(2011).
[12] M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).
[13] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys.

Rev. B 85, 075125 (2012).
[14] T. Senthil, Annu. Rev. Condens. Matter Phys. 6, 299

(2015).
[15] D. E. Parker, R. Vasseur, and T. Scaffidi, Phys. Rev. Lett. 122,

240605 (2019).
[16] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N.

Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Science 365,
775 (2019).

[17] P. Sompet, S. Hirthe, D. Bourgund, T. Chalopin, J. Bibo, J.
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