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ABSTRACT:
The numerical simulation of weakly nonlinear ultrasound is important in treatment planning for focused ultrasound

(FUS) therapies. However, the large domain sizes and generation of higher harmonics at the focus make these

problems extremely computationally demanding. Numerical methods typically employ a uniform mesh fine enough

to resolve the highest harmonic present in the problem, leading to a very large number of degrees of freedom. This

paper proposes a more efficient strategy in which each harmonic is approximated on a separate mesh, the size of

which is proportional to the wavelength of the harmonic. The increase in resolution required to resolve a smaller

wavelength is balanced by a reduction in the domain size. This nested meshing is feasible owing to the increasingly

localised nature of higher harmonics near the focus. Numerical experiments are performed for FUS transducers in

homogeneous media to determine the size of the meshes required to accurately represent the harmonics. In

particular, a fast volume potential approach is proposed and employed to perform convergence experiments as the

computation domain size is modified. This approach allows each harmonic to be computed via the evaluation of an

integral over the domain. Discretising this integral using the midpoint rule allows the computations to be performed

rapidly with the FFT. It is shown that at least an order of magnitude reduction in memory consumption and

computation time can be achieved with nested meshing. Finally, it is demonstrated how to generalise this approach

to inhomogeneous propagation domains. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005655

(Received 9 November 2020; revised 27 June 2021; accepted 1 July 2021; published online 20 July 2021)

[Editor: Nail A. Gumerov] Pages: 441–453

I. INTRODUCTION

Focused ultrasound (FUS) is a non-invasive tumor abla-

tion therapy in which acoustic waves are focused at a target

location, thereby elevating the temperature sufficiently to

destroy the tumor tissue. Tissue death can be caused directly

via thermal ablation or via other mechanisms, such as cavi-

tation (Izadifar et al., 2017; Vlaisavljevich et al., 2013),

shock-scattering histotripsy (Maxwell et al., 2011), and boil-

ing histotripsy (Khokhlova et al., 2011). In the thermal abla-

tion setting, which is the focus of this article, the peak

acoustic pressure is often between 1 and 10 MPa, at which

linear acoustic theory is no longer accurate. Indeed, it has

been observed that the contributions from nonlinear effects

can increase the temperature at the focal point by an addi-

tional 20%, thus substantially reducing the time required for

ablation when compared to simulations using linear theory

(Solovchuk et al., 2014). To simulate the nonlinear acoustic

field, a popular model is the Westervelt equation, which

incorporates a quadratic pressure term. Numerically solving

the Westervelt equation in a FUS setting is computationally

challenging, since the domains are large compared to the

smallest wavelength present.

To put into context the scale of the computational prob-

lems presented by FUS, consider a bowl-shaped FUS trans-

ducer with radius 7.5 cm and geometric focal length 15 cm

operating at 1.1 MHz. Transducers of this size are suitable

for deep-seated tumors, located in the liver, for example. A

simulation domain spanning the face of the bowl and

extending to the focal region is approximately 100 wave-

lengths across in each dimension. If there are five harmonics

present in the nonlinear field, then this is 500 wavelengths at

the fifth harmonic. To obtain a reasonable accuracy level,

we can assume that at least six degrees of freedom (DOF)

per wavelength are required (Marburg, 2008). Then to simu-

late this problem in three dimensions, we would require

27� 109 DOF. Handling such a large system presents an

enormous computational load in terms of memory and time.

There has been a great deal of research effort aimed at

reducing the computational cost of nonlinear FUS simula-

tions. Much of this work employs at least one simplifying

assumption, such as axisymmetry, one-way wave propaga-

tion, or the parabolic approximation [see Gu and Jing (2015)

for a review]. Popular methods for solving the originala)Electronic mail: samuelpgroth@gmail.com
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Westervelt equation (or equivalent) include the finite-

difference time-domain method (FDTD) (Solovchuk et al.,
2013) and the k-space pseudospectral method (KSPS)

(Treeby et al., 2012). Although powerful techniques, these

full-wave solvers can still yield simulation times in excess

of a day for realistic problems when run on a large cluster

(Jaros et al., 2016). For efficiently simulating highly focused

problems with strong nonlinearities, shock-capturing numer-

ical schemes have been developed and applied for the para-

bolic approximation of the Westervelt equation, known as

the KZK equation (Bessonova et al., 2009), wide-angle par-

abolic approximation (Yuldashev et al., 2018), and the one-

way propagation version of the Westervelt equation

(Yuldashev and Khokhlova, 2011).

In this paper, we set out to improve upon the meshing

strategies employed in popular full-wave solvers for the

Westervelt equation. These solvers typically use uniform

meshes resolved according to the wavelength of the highest

harmonic. Such a meshing approach is inefficient, since the

higher harmonics are localised around the focus; therefore,

the extremely fine mesh far away from the focus is likely

overkill. It seems intuitive that a mesh that is gradually

refined as the focus is approached would be sensible, but at

what rate? And what saving can one expect to achieve?

Here, we address these questions via numerical experimen-

tation on realistic FUS transducers taken from Sonic

Concepts (2020).

We note similar strategies have previously been

employed to reduce the computational load of nonlinear

acoustics simulations (Karzova et al., 2017; Yuldashev and

Khokhlova, 2011). In these prior works, it was also observed

that far from the transducer focus, higher harmonics provide

negligible contributions to the acoustic field, and therefore,

to save on storage requirements, higher harmonics are stored

only on smaller domains, centred at the focus. However, the

grid step used in these works is not altered for the different

harmonic computations. By increasing the grid step for

lower harmonics, further computational savings can be

achieved, as we demonstrate in this article. Furthermore, we

detail an in-depth study of how to choose appropriate com-

putational domains for each harmonic, and we provide a

useful rule of thumb relating the domain dimensions to each

harmonic’s wavelength.

To perform these experiments efficiently, we consider a

simplified setting in which the propagation medium is

homogeneous, and the signal is assumed to have harmonic

time dependence. Furthermore, we consider settings in

which the peak amplitude is no more than 15 MPa and thus

the field is only weakly nonlinear. Under the time-harmonic

and weakly nonlinear assumptions, the full-wave Westervelt

equation reduces to a series of inhomogeneous Helmholtz

equations, one for each harmonic present in the field [as in,

e.g., Du and Jensen (2013)]. We note that the weak nonline-

arity permits us to reasonably neglect the transfer of energy

from higher to lower harmonics. This is, however, not valid

for extremely high amplitude fields, as encountered in histo-

tripsy applications.

Since we consider a homogeneous medium, each

Helmholtz equation is exactly solved by the evaluation of

the appropriate volume potential integral (Costabel, 2015).

Therefore, for each harmonic in the field, we look at the

convergence of the volume potential as the domain of inte-

gration is increased. To efficiently evaluate the volume

potential, we discretise the domain over a uniform voxel

mesh, which allows the summation (i.e., the discrete form of

the integration) to be performed rapidly using the fast-

Fourier transform (FFT). This is an extremely efficient tech-

nique for computing high-order harmonics in a homoge-

neous medium, and its application in this area is, to the best

of the authors’ knowledge, novel.

For numerical investigations with different transducer

configurations and within two different media (water and

liver), we deduce that (for the configurations considered) to

perform accurate computations of the second harmonic, the

computation domain must extend all the way back to the

transducer; however, it may be contracted slightly in

the transverse direction. For the third and higher harmonics,

the computation domain may be contracted in both the axial

and transverse directions, thus leading to substantial compu-

tational savings. In fact, we demonstrate that an accurate

approximation (less than 1% relative error) may be obtained

while contracting the width and length of the domain in pro-

portion to the wavelength of the harmonic. Thus, the number

of cells in every mesh is roughly equal. This amounts to a

reduction in the number of DOF by a factor of approxi-

mately ðn=2Þ3, where n is the number of harmonics being

computed.

In practice, this leads to a series of nested meshes, each

at the resolution required for the appropriate harmonic and

all with the same number of voxels. To perform computa-

tions for higher harmonics, solutions from lower harmonics

are interpolated onto the finer meshes. We outline an algo-

rithm for this more efficient computation of all the harmon-

ics in Sec. VI and examine its performance.

The layout of the paper is as follows. Section II outlines

the mathematical model we employ for our FUS setup. In

particular, we consider the Westervelt equation and review

how it reduces to a series of Helmholtz equations under the

time-harmonic assumption. We further simplify the equa-

tions via an assumption of weak nonlinearity. In Sec. III, we

describe how, in the homogeneous domain case, the

Helmholtz equations are solved exactly via volume poten-

tials. It is then described how these volume potentials are

efficiently approximated using a voxelised discretisation

approach. This leads to the discrete versions of the volume

potentials having block-Toeplitz form; thus, the potentials

may each be evaluated using a single fast matrix-vector

product with the FFT. Section III B discusses our model for

the time-harmonic bowl-shaped transducer. Section IV

presents a validation of our approach by comparing to simu-

lations performed with the HITU Simulator MATLAB toolbox

(Soneson, 2017). In Sec. V, we perform convergence tests

for each of the harmonics for a range of problem setups. We

present our findings on the rates of convergence of the
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approximation as the domain is increased and present a rule

of thumb for designing the meshes to ensure each harmonic

is accurately approximated. In Sec. VI, we present how the

hierarchy of meshes is used in practice with our volume

potential approach, including the interpolation of approxi-

mations between the meshes. Here, we present some perfor-

mance details for this three-dimension full-wave approach

on a single workstation. Finally, in Sec. VIII, we present our

conclusions and discuss the relevance of this work to other

numerical techniques for FUS.

II. NONLINEAR ACOUSTICS IN THE FREQUENCY
DOMAIN

Acoustic fields produced by FUS transducers are com-

monly modelled by the Westervelt equation (Hamilton and

Blackstock, 1998),

r2p� 1

c2
0

@2p

@t2
� 2a0

c1�g
0

@

@t
�r2ð Þg=2

p ¼ � b

q0c4
0

@2p2

@t2
;

(1)

where p is the acoustic pressure, c0 is the speed of sound, q0

is the medium density, b is the nonlinearity parameter, and

a0 and g are medium specific attenuation parameters. The

fractional Laplacian appearing in (1) was first introduced in

Chen and Holm (2004) to incorporate frequency-dependent

power law attenuation. More specifically, in the frequency

domain, it generates a complex wavenumber of the form

k ¼ x
c0

þ ia; a ¼ a0jxjg; (2)

for a0jxjg�1c0 < 0:1 (Szabo, 1994), where x is the angular

frequency of the transducer. The power law exponent is typ-

ically in the range 1 � g � 2. We note that this power law

attenuation can also be incorporated via a temporal convolu-

tion, as was originally proposed in Szabo (1994); we refer

the reader to Treeby and Cox (2010) for a review of power

law attenuation techniques. We note that the relation (2)

does not incorporate the effect of dispersion on the real part

of the wavenumber. However, for the frequencies and mate-

rials considered in this article, this effect is negligibly small.

For highly nonlinear and higher frequency problems, the

relation may be modified to more accurately incorporate dis-

persion, as discussed in Treeby and Cox (2010) and Waters

et al. (2005).

In this article, we assume that the operation time of the

transducer is long when compared to the period of the sig-

nal. Therefore, the total acoustic pressure can be written as

the following sum over harmonics [as in Du and Jensen

(2013) and Soneson (2017)]:

pðx; tÞ ¼ Re
X1
n¼1

pnðxÞe�inxt

( )
: (3)

Many numerical schemes in the literature consider the time-

harmonic form (3) (e.g., Campos-Pozuelo et al., 1999;

Du and Jensen, 2013; Soneson, 2017; van ’t Wout et al.,
2015), likely owing to the distinct advantages of a

frequency-domain approach:

• The challenging task of choosing/developing an efficient

time stepping scheme can be avoided;
• Arbitrary frequency-dependent attenuation power laws

can be easily incorporated (whereas in the time domain,

one has to contend with the fractional Laplacian);
• Methods such as the boundary element method and vol-

ume integral equation (VIE) method can be applied

directly;
• The computation regions for higher harmonics can be

reduced, thereby making simulations more efficient.

It is this final point that we study in this article.

The form (3) is not well suited for substitution into (1),

since the right-hand side of (1) requires the computation of a

product. For such a product, expressions in which real or

imaginary parts are required to be taken lead to cumbersome

algebra. Therefore, it is more straightforward to use the fol-

lowing expression, which is equivalent to (3):

pðx; tÞ ¼ 1

2

X1
n¼1

pnðxÞe�inxt þ p�nðxÞeinxt
� �

; (4)

where � denotes complex conjugation. Substituting (4) into

(1) and matching coefficients of e�inxt for n � 1 yields

r2pn þ k2
npn ¼

bx2

2q0c4
0

n2
X1
m¼1

pmðpn�m þ 2p�m�nÞ; (5)

for n ¼ 1; 2;…, where pn¼ 0 for n � 0, and the complex

wavenumbers are defined as

kn ¼
nx
c0

þ iaðnxÞ: (6)

Equation (5) can be further simplified by neglecting

small terms on the right-hand side, which is appropriate in

the weakly nonlinear case, as was considered in, e.g., Du

and Jensen (2013). Specifically, we neglect all terms pipj

and pip
�
j for which iþ j > n, for n ¼ 1; 2;…, thus giving

r2pn þ k2
npn ¼

bx2

2q0c4
0

n2
Xn�1

m¼1

pmpn�m: (7)

This is a cascade of inhomogeneous Helmholtz equations in

which each right-hand side is a combination of products of

lower harmonics. Therefore, we can solve the equations

sequentially, starting from n¼ 1.

We note that the assumption of weak nonlinearity is

valid for a range of FUS applications for thermal ablation,

for example, at a preclinical stage, when excitation protocols

and devices require characterisation (Kothapalli et al., 2018;

Ries et al., 2010). However, for extremely high focal pres-

sures such as those encountered in lithotripsy and histo-

tripsy, where pressures much higher than 30 MPa can be
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seen (Izadifar et al., 2017), the terms neglected above

become significant. Therefore, a modified approach would

be required; however, we do not consider this case here.

III. VOLUME POTENTIALS

Equations (7) are each of the general form

r2uþ k2u ¼ f ðxÞ; x 2 R3: (8)

Via Green’s theorem (see, e.g., Colton and Kress, 2013;

Costabel, 2015), it can be seen that the following volume

potential satisfies (8):

uðxÞ ¼ �
ð

R3
Gkðx; yÞf ðyÞdy; x 2 R3; (9)

where Gk is the fundamental solution to the Helmholtz equa-

tion, also known as Green’s function

Gkðx; yÞ ¼
eikjx�yj

4pjx� yj ; x 6¼ y: (10)

This function is singular when x ¼ y; however, integrals of

the function across this singularity may be evaluated using

principal value techniques or appropriate coordinate trans-

formations, as we shall see in Sec. III A. We note that the

integral in (9) is over an infinite domain; however, in prac-

tice, we replace this with a finite domain of integration, D.

Thus, we have that

uðxÞ ¼ �
ð

D

Gkðx; yÞf ðyÞdyþ eðDÞ; x 2 D � R3;

(11)

where eðDÞ is an error incurred by the introduction of a finite

integration domain. Since the FUS field is highly focused, a

sensibly chosen finite D will yield a negligibly small error.

It is the purpose of this article to investigate how small D
can be made whilst still yielding accurate approximations to

u.

For clarity, we write out this integral representation

(11) for each of the first five harmonics,

p2ðxÞ ¼ �
2bx2

q0c4
0

ð
D2

Gk2
ðx; yÞp2

1ðyÞdy; (12)

p3ðxÞ ¼ �
9bx2

q0c4
0

ð
D3

Gk3
ðx; yÞp1ðyÞp2ðyÞdy; (13)

p4ðxÞ ¼ �
8bx2

q0c4
0

ð
D4

Gk4
ðx; yÞðp2

2ðyÞ þ 2p1ðyÞp3ðyÞÞdy;

(14)

p5ðxÞ ¼ �
25bx2

q0c4
0

ð
D5

Gk5
ðx; yÞðp1ðyÞp4ðyÞ

þ p2ðyÞp3ðyÞÞdy; (15)

where we have introduced the domains Di, i ¼ 2; 3;…,

appropriate sizes of which are to be determined. In a homo-

geneous medium, the first harmonic p1 is merely the inci-

dent field generated by the transducer, which we can

compute anywhere in R3, as is discussed in Sec. III B. Note

finally that the Green’s functions in each of (12)–(15) pos-

sess the appropriate wavenumber for that harmonic, kn, for

n ¼ 2; 3; 4; 5.

A. Efficient computation of the volume potential

FUS problems are renowned for their challenging high-

frequency nature, with domain sizes up to hundreds of

wavelengths in each of the three dimensions. Therefore, the

(singular) integrals in (12)–(15) are potentially enormously

expensive to approximate.

We choose the integration domains Di to be cuboidal in

shape and to be discretised into uniform voxel grids VðDiÞ
so that the discrete form of the integral operator becomes a

Toeplitz matrix. A Toeplitz matrix of dimension N has the

property that it may be embedded in a circulant matrix of

dimension 2N, with which a matrix-vector product can be

computed with Oð2N log 2NÞ complexity using the FFT;

see, e.g., Groth et al. (2020) for more details.

For the voxels in which the Green’s function’s singular-

ity is located, we approximate the integral by the integral

over a sphere of radius a, chosen such that the sphere’s vol-

ume is equal to that of the voxel. This integral can then be

transformed into spherical coordinates, which is convenient

because the Jacobian determinant of the transformation

cancels the singularity in the Green’s function. In the

non-singular voxels, we approximate the volume potential

integral by the midpoint rule. This gives us the simple quad-

rature ruleð
Vj

Gðxi; yÞf ðyÞdy

¼
1

k2
eikað1� ikaÞ � 1
� �

f ðxjÞ; xi 2 Vj;

ðdxÞ3Gðxi; xjÞf ðxjÞ; xi 62 Vj;

8><
>: (16)

for i; j ¼ 1;…;N, where N is the number of voxels in the

grid and dx is the side length of each voxel Vj. This is remi-

niscent of the “discrete dipole approximation” often used in

electromagnetic scattering calculations (Draine and Flatau,

1994). One can opt for a more sophisticated quadrature rule

here; however, this simple approach suffices for our

purposes.

B. FUS incident field

In a homogeneous medium, there is no scattering, and

therefore the first harmonic, p1, can be obtained directly

from an appropriate model of the time-harmonic field gener-

ated by the FUS source. In this paper, we consider bowl-

shaped ultrasound transducers, which are designed to focus

acoustic energy at a prescribed location, typically the centre
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of curvature of the bowl. More specifically, we consider for

simplicity a single-element bowl-shaped transducer and dis-

cretise the surface using a Rayleigh integral type approach

described below. We note that we are not exploiting symme-

tries in our approach, and therefore more sophisticated

multi-element transducer arrays, such as those in Gavrilov

and Hand (2000), G�elat et al. (2011), and Kreider et al.
(2013), can be incorporated in a straightforward manner.

To discretise the surface of the bowl transducer, we use

evenly spaced points following (Deserno, 2004). At each of

the evenly spaced points, we place a monopole source, the

expression for which is given by (10). Summing over the

monopole sources gives the (unnormalised) first harmonic at

any x 2 R3 as

~pðxÞ ¼ A

np

Xnp

i¼1

Gkðx; riÞ; (17)

where np is the number of points, ri are their locations on

the bowl, and A is the total surface area of the bowl.

We note that in (17), no amplitude has been specified

for the monopole sources. We instead choose to normalise

the field to produce a prescribed total radiated power, P,

which is obtained by integrating the intensity over a sphere

surrounding the source (Kinsler et al., 1999). For a bowl-

shaped transducer, the field is directed, so rather than

integrating over a sphere, it suffices to integrate over a disk

covering the open end of the bowl. This can be written as

PðpÞ ¼ 1

2q0c0

ð2p

0

ðR

0

p2ðr; hÞdrdh; (18)

where R is the outer radius of the bowl. Thus, the normal-

ised first harmonic to yield a prescribed radiated power P0

is given as

p1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
P0

Pð~pÞ

s
~p: (19)

In our experiments, we take np ¼ 4096, which equates to

approximately ten monopole sources per fundamental wave-

length. Such a large value was required to avoid undesired

interference patterns between the bowl and focus.

The two bowl transducer geometries considered in this

article are taken from the Sonic Concepts website (Sonic

Concepts, 2020) and are detailed in Table I. Two propagation

media are considered throughout: water and liver. The acoustic

parameters for these are detailed in Table II.

C. How many points per wavelength?

Before deploying our scheme to compute high-order

harmonics, it is necessary to understand the convergence

rate as the mesh is refined, thereby enabling an adequate res-

olution to be chosen for later investigations. In this article,

we focus on achieving approximations with relative L2

errors close to 1%.

To determine the convergence rate, we consider com-

puting the second harmonic generated by the H131 trans-

ducer in liver, using Eq. (12). The configuration of the

transducer is shown in Fig. 1; the bowl transducer is located

at the origin and is directed along the x axis. For the integra-

tion domain D2 in (12), we take the white box in Fig. 1.

This box is illustrated with detailed dimension definitions in

Fig. 2. The domain D2 is defined as

D2 ¼ l� L; lþ d½ � � �R;R½ � � �R;R½ �; (20)

where d is the distance of interest beyond the focus, l is the

geometric focal length, and R is the outer radius (see Fig. 2).

The length L is defined as L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � R2
p

� � with � chosen

as a small displacement from the bowl to avoid the possibil-

ity of x ¼ ri in (17), for which the monopole sources are

undefined; we take � ¼ 0:1 mm. In this article, we suppose

that the region near the focus is of primary interest; there-

fore, from a computational point of view, we desire to shrink

the computation domain to be much shorter and narrower

than L and w, i.e., more localised around the focus, to reduce

TABLE I. Operating frequencies and geometrical parameters of bowl trans-

ducers considered, taken from Sonic Concepts (2020). The geometrical

parameters are the geometric focal length l and the outer radius R. These

can also be seen depicted in Fig. 1.

f0 (MHz) l (mm) R (mm)

H101 1.1 63.2 32

H131 1.1 35 16.5

TABLE II. Relevant medium parameters for water, liver, and kidney at

1 MHz (Azhari, 2010; Duck, 2013). The parameters a0 and g pertain to the

absorption power law in Eq. (2).

q0 (kg/m3) c (m/s) b a0 g (dB/m)

Water 1000 1480 3.5 0.2 2

Liver 1060 1590 4.4 90.0 1.1

Kidney 1050 1570 4.7 10 1

FIG. 1. (Color online) Magnitude of the first harmonic generated by the

H131 transducer in liver. The bowl transducer is represented by the arc at

the far left. The dashed white line outlines the computation domain D2 used

to compute the second harmonic shown in Fig. 4.
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computational load. The extent to which this shrinking can

be done without losing accuracy is the focus of Secs. V and

VI. The values of L and w defined above represent our

default computation domain. The value of the distance d
depends on the user’s interest in the region beyond the

focus. In the absence of scatterers beyond the focus, the field

in this region after the focus will not affect the intensity at

the focus. In the present example, the total radiated power of

the transducer is set as P0 ¼ 100 W, and the operating fre-

quency is f0 ¼ 1:1 MHz.

The volume potential in (12) is computed using the

method outlined in Sec. III A with increasingly refined voxel

meshes. Specifically, we build meshes with voxel dimension

dx ¼ k=ð2nwÞ, where k ¼ c=f0 is the fundamental wave-

length and nw is the “number of voxels per wavelength.”

The factor 2 in the denominator is to account for the fact

that we are computing a field with wavelength k=2, i.e., the

second harmonic. The values of nw considered are from 4 to

20, and a reference solution, denoted pr
2, is computed using

nw¼ 35. For each value of nw, the relative L2-error of the

field p2 along the x axis is computed; this is defined as

Error ¼ jjp2 � pr
2jj

jjpr
2jj

� 100%; (21)

where jj 	 jj denotes the L2-norm along the x axis, i.e.,

jjp2jj :¼
ðlþd

l�L

jp2ðx; 0; 0Þj2dx

 !1=2

: (22)

We approximate the integrals in (21) using the midpoint

rule with the mesh nodes of the reference solution, pr
2, being

used as the quadrature nodes.

The convergence results are shown in Fig. 3. As is to

be expected from the midpoint rule, quadratic conver-

gence is obtained. From the graph, we can read off that an

error smaller than 1% is achieved with nw > 5. Therefore,

we choose to take nw¼ 6 for all harmonics in the experi-

ments in the remainder of the article. The approximation

to the second harmonic with nw¼ 6 is shown in Fig. 4 and

can be seen to be indistinguishable from the reference

solution.

IV. VALIDATION OF NUMERICAL SCHEME

To validate our approach for the computation of higher

harmonics via the evaluation of the volume potentials in

(12)–(15), we present a qualitative comparison to approxi-

mations obtained using HITU Simulator (Soneson, 2017),

which we have chosen because of its computational effi-

ciency for the axisymmetric problems considered here.

HITU simulator is an open-source MATLAB implementation

of the high-order parabolic approximation to the axisymmet-

ric Westervelt equation, i.e., the wide-angle Khokhlov–

Zabolotkaya–Kuznetsov (WAKZK) equation. The method

is detailed by the author of HITU Simulator (Soneson,

2017). The assumption of axisymmetry allows the dimen-

sion of the problem to be reduced by one and hence facili-

tates rapid simulations.

FIG. 2. Description of a generic computation domain D with length Lþ d
and width (and depth) w. FIG. 3. (Color online) The convergence of the quadrature rule for the com-

putation of the second harmonic via (12). The convergence rate is quadratic

in nw, and an error of smaller than 1% is achieved with nw > 5.

FIG. 4. (Color online) The first and second harmonics along the x axis for

the H131 transducer in liver. With six voxels per wavelength, the approxi-

mation to the second harmonic is indistinguishable from the reference

solution.
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We consider two configurations:

(1) H131 transducer at output power 50 W in water;

(2) H101 transducer at output power 100 W in liver.

These power outputs are chosen because they are relevant

to thermal ablation with FUS (e.g., Kothapalli et al., 2018;

Ries et al., 2010) and are sufficiently low to ensure that we are

in the weakly nonlinear setting. The first five harmonics along

the x axis are shown in Figs. 5 and 6. In both cases, we

observe good qualitative agreement with the approximations

obtained using HITU Simulator in the region around the focus,

whereas toward the transducer the two methods disagree. This

is due to the parabolic assumption made in the derivation of

the WAKZK equation, which is only accurate when suffi-

ciently far from the transducer. The volume potential method

on the other hand approximates solutions to the Westervelt

equation and therefore can be taken to be accurate in this

“near field” region. Indeed, the computation of the first har-

monic in our approach, as outlined in Sec. III B, is equivalent

to a Rayleigh integral method.

We observe that the volume potential method predicts a

slightly larger amplitude for the first and second harmonics

than HITU Simulator, which may be because the energy flow

of the higher harmonics to lower harmonics is neglected in the

derivation of (7). However, the agreement for the third, fourth,

and fifth harmonics is almost perfect. The two examples con-

sidered have considerably different attenuation power law

parameters; thus, the strong agreement with HITU Simulator

for both examples demonstrates that the attenuation is being

handled correctly in the volume potential method.

V. COMPUTATION DOMAINS FOR SUCCESSIVE
HARMONICS

In this section, we aim to determine the amount by

which we can restrict the computation domain while

retaining accurate approximations and thus enable accelera-

tion of our simulations.

The main region of interest to practitioners is that

around the focus, since this is where tissue ablation occurs.

Ideally one would compute only on that small region. This,

however, leads to the second harmonic (and thus also the

third, fourth, etc.) being poorly approximated, since these

harmonics are generated by the accumulation of acoustic

energy over distance. Thus, we seek a balance between

accuracy and computational cost. Here, we shall aim to keep

the error in each harmonic below 1% (relative to the magni-

tude of the first harmonic) whilst shrinking the integration

regions Di in (12)–(15) as much as possible.

It is important to note that (in this homogeneous set-

ting), the field beyond the focal point has no influence on

the field in front of it, i.e., the waves propagate only in the

positive x-direction. This means that our exploration of

domain shrinking only applies to the region between the

transducer and the focal point. Beyond the focus, we keep

the domain length in the x-direction fixed. In most FUS set-

tings, the practitioners are not interested in the field far

beyond the focal region; therefore, the inability to shrink the

region beyond the focus does not greatly affect the gains

achieved from shrinking the computational domain before

the focus.

Each of Eqs. (12)–(15) has the form

pðxÞ ¼ C

ð
D

Gkðx; yÞf ðyÞdy; (23)

where f ¼ p2
1; p1p2;…, C is the appropriate constant, and k

is the appropriate wavenumber. To accurately approximate

p, the integration domain D must enclose the region where

the integrand is non-negligible. Outside of this region, we

can discard the contributions. The magnitude of the inte-

grand is dictated by the function f, which has the units of

FIG. 5. (Color online) Comparison of the VIE approach with HITU

Simulator for the first five harmonics generated by the H131 transducer

operating at a power of 50 W in water.

FIG. 6. (Color online) Comparison of the VIE approach with HITU

Simulator for the first five harmonics. H101 transducer at power 100 W in

liver.

J. Acoust. Soc. Am. 150 (1), July 2021 Groth et al. 447

https://doi.org/10.1121/10.0005655

https://doi.org/10.1121/10.0005655


intensity. To have an idea of how localised the different

functions f are, we plot them for a particular example in

Fig. 7. The setup considered in the figure is the H101 trans-

ducer at 100 W in liver. The figure shows the magnitudes of

f scaled by their maximum values (at the focus) and con-

verted to a log-scale. Consider the top-left image: this is the

f required for the computation of the second harmonic. We

can see that the magnitude is significant all the way back to

the transducer, implying that we must include all this area in

the integration domain D. For the remaining images, corre-

sponding to the third, fourth, and fifth harmonics, the func-

tions become increasingly more localised in both the x and

y/z dimensions, suggesting that the required integration

domain can be considerably smaller than that for the second

harmonic.

To investigate this more rigorously, we perform conver-

gence tests for each harmonic as the relevant integration

domain D is restricted. That is, we take the harmonics gen-

erated on the domain in (20) as the reference solutions

pr
l ; l ¼ 2; 3; 4; 5, and then compute the same harmonics on

successively smaller domains and compare the approxima-

tions to the reference. The error of an approximation pl is

computed along the x axis as

Error ¼ jjpl � pr
l jj

jjpr
1jj

� 100%: (24)

Note that the harmonic field in the denominator is that of the

first harmonic. This is done so that the error function incor-

porates the diminishing size of successive harmonics. For

example, if the fifth harmonic is negligibly small relative to

the first harmonic (and so not worth calculating), the error

will reflect this by being very small.

As a measure of the “localisedness” of the functions f,
we use the quantity plotted in Fig. 7, which we denote as Q,

QðxÞ :¼ log10

jf ðxÞj
maxjf ðxÞj

� �
: (25)

In the convergence tests, the integration domain is chosen as

the smallest cuboidal domain D such that QðxÞ < Q0 for

x 62 D, where Q0 is a given threshold.

The first configuration we perform the convergence

experiment for is the H131 transducer in water at an output

power of 100 W. The convergence for each harmonic is

shown in Fig. 8. We notice that the convergence of the

second harmonic drops suddenly once the error dips below

1%—this is because the computation domain is close to the

size of the reference domain by this point. This is illustrated

more clearly in Fig. 9, where the same data as in Fig. 8 are

shown but now plotted against the size of the computation

domain as a fraction of the reference domain, rather than

against Q0. By “fraction” of the domain, we mean the

FIG. 7. (Color online) The relative magnitudes of the right-hand side functions f as described in Eq. (23) for the H101 transducer in liver, at 100 W. These

plots show how the function to be convolved with the Green’s function becomes more localised as the harmonics increase.
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scaling factor such that the length L0 and width w0 of the

shrunken domain are given by

L0 ¼ fractionx � L; w0 ¼ fractiony;z � w:

Figure 9 shows that, to achieve less than 1% error in p2,

the computation domain must extend all the way to the

transducer. For the higher harmonics, however, a different

trend is evident. In Fig. 8, we observe that the error curves

for p3; p4; p5 each have the approximate behaviour

ErrorðpiÞ 
 10
jjpijj
jjp1jj

ffiffiffiffiffiffi
Q0

p
; i ¼ 3; 4; 5; (26)

where jj 	 jj represents the L2-norm. Although an interesting

observation, the utility of the relationship (26) for dictating

an appropriate computation domain for pi is not immediately

apparent, since it requires the computation of jjpijj before pi

has been computed. Determining an a priori approximation

for jjpijj to make use of (26) would be a useful endeavour;

however, we do not undertake such a task in this article.

Rather, we seek to develop an approximate rule of thumb

for choosing sensibly sized computation domains for the

harmonics. To this end, it is more straightforward to con-

sider the convergence of the approximations in terms of

physical distance, as is done in Fig. 9 and Table III.

By looking at the 1% error line in Fig. 9, it is possible to

read off the size of the domains as fractions of the reference

domain. The precise values are reported in Table III. A nested

series of domains constructed according to this specification is

shown in Fig. 10. Let us elaborate on the potential computa-

tional gain achieved using these nested domains compared to

computing all harmonics on the reference domain.

The reference domain for the H131 transducer in water

has dimensions ½4:1 cm; 3:3 cm; 3:3 cm� and is discretised into

voxels of dimension dx ¼ k5=6 
 45:1 lm, i.e., fine enough

to resolve the highest harmonic of interest. This mesh has

901� 732� 732 
 4:8� 108 voxels for the computation of

all the harmonics. Using the nested domains built according to

the specifications in Table III, we obtain a mesh for p2 with

dimensions ½4:1 cm; 2:4 cm; 2:4 cm�, which is discretised into

voxels of dimension dx ¼ k2=6 
 113 lm. This mesh has

FIG. 8. (Color online) Convergence of the approximations to harmonics pi,

i ¼ 2;…; 5, as the domain of integration Di for each is adjusted according

to the function Q � Q0, as defined in (25). The setup considered here is the

H131 transducer at a power of 100 W in water.

FIG. 9. (Color online) Convergence for H131 transducer at 100 W in water,

as in Fig. 8. The error is plotted against the fraction of the total domain in

the x-direction. This demonstrates that, to achieve an error smaller than 1%,

the computation domains can be contracted significantly in the x-direction

for harmonics higher than the second.

TABLE III. Sizes of domains required to achieve less than 1% error for

each harmonic as fractions of the reference domain [Eq. (20)]. Since all

domains are boxes, the fractions of the distances in the x and y/z directions

are provided.

p2 p3 p4 p5

H131 water, 100 W x 1 0.67 0.47 0.38

y/z 0.74 0.39 0.20 0.13

H131 water, 150 W x 1 0.67 0.58 0.52

y/z 0.71 0.40 0.39 0.21

H131 liver, 100 W x 1 0.56 0.25 0.26

y/z 0.90 0.20 0.05 0.06

Rule of thumb x 1 0.75 0.65 0.61

y/z 1 0.67 0.5 0.4

FIG. 10. (Color online) Nested domains for the computation of successive

harmonics while keeping relative error below 1%, for the H131 transducer

operating at 100 W in water. The domain used to compute the reference

solution is in (20).

J. Acoust. Soc. Am. 150 (1), July 2021 Groth et al. 449

https://doi.org/10.1121/10.0005655

https://doi.org/10.1121/10.0005655


360� 211� 211 
 1:6� 107 voxels, which is a factor of 30

smaller than the reference mesh. The meshes for the computa-

tion of p3, p4, and p5 have 1:22� 107; 6:1� 106, and

4:5� 106 voxels, respectively. Thus, the total number of voxels

required for all harmonics is 4� 4:8� 108 ¼ 19� 108 for the

single mesh approach and 3:9� 107 for the nested meshing

(summing over voxels in each of the four meshes). Hence, we

achieve close to a factor of 50 reduction in computational load.

This improvement is impressive; however, it is easily

seen in Table III that this particular domain scaling does not

apply to all transducer and material configurations.

Therefore, we decide upon a simple rule of thumb for

designing the separate computational domains that leads to

domains greater than or equal to those given in Table III.

Therefore, the errors incurred in using these domains will be

even smaller than those obtained when using the ideal

domains specified in the table.

A desirable rule for domain sizes would be the

following:

Let ½Lþ d;w;w� be the dimensions of domain D2 (see
Fig. 2) for harmonic p2, with corresponding wavelength
k2. Then choose the dimensions of domain Di, i > 2, as
½ðki=k2ÞLþ d; ðki=k2Þw; ðki=k2Þw�. That is, the domain
is scaled according to the wavelength of the harmonic
being considered.

With this rule for creating the domains, we observe that

the number of voxels in each mesh will almost be the same,

save for a slight increase due to the fact that the distance d is

not being scaled. This amounts to a reduction in the overall

number of DOF by a factor of approximately ðn=2Þ3 (in fact,

slightly lower than this due to the unscaled portion of length

d), where n is the number of harmonics being computed.

In Sec. VI, we outline an algorithm for evaluating the

volume potentials over a set of nested domains constructed

according to the rule of thumb proposed above.

VI. VOLUME POTENTIALS ON NESTED MESHES

To demonstrate the effectiveness of the volume poten-

tial evaluation on nested meshes, we present some final

results detailing the computational performance of this

approach. First, we outline the algorithm for computing the

first n harmonics.

Note that in Algorithm 1, for p2, the pressure field p1

is evaluated over the voxel mesh VðD2Þ as described

in Sec. III B, whereas for later harmonics, we perform

ALGORITHM 1: Algorithm for computing the first n harmonics.

for i ¼ 2! n do

1. Create domain Di for pi and voxel mesh VðDiÞ
2. Assemble components for integration (16):

(a) Evaluate/interpolate pi�1; pi�2;…; p1 at voxel centres in VðDiÞ
(b) Evaluate integral of Green’s function Gki

over each voxel

3. Compute pi via appropriate equation in (12)–(15)

end for

interpolation of the earlier harmonics down onto the new

mesh. In this work, we have used linear interpolation; how-

ever, if higher accuracy is required, we recommend qua-

dratic interpolation (albeit at a higher computational cost).

The second and third step each contain applications of the

FFT: for the circulant embedding of the Green’s function in

step 2 (see, e.g., Groth et al., 2020) and to perform the con-

volution required in the quadrature rule (16) in step 3. These

FFTs are performed using the PYTHON wrapper “pyfftw” to

the FFTW library (Frigo and Johnson, 2005).

As an example, we consider the H101 transducer oper-

ating at 100 W in water run on a workstation with two sock-

ets, each containing a 14-core Xeon E5–2690 v4 central

processing unit (CPU), each supporting hyper-threading

with two threads, and hence a total number of 56 threads.

The total amount of RAM available on this machine is

approximately 270 GB, which is ample for the problems

considered here. The first five harmonics along the x axis

are shown in Fig. 11, along with the approximation

obtained with HITU Simulator; again we see that the vol-

ume potential approach predicts a larger peak in the second

harmonic, but in general a good qualitative agreement is

observed.

To get a feel for the performance of our approach (of

evaluating the volume potentials on nested meshes designed

according to our proposed rule of thumb), the cost of each

step in the above algorithm is detailed in Table IV. The larg-

est mesh has 230� 106 voxels, as compared to 2.9� 109

voxels without nested meshing. This represents a large sav-

ing, in both time and memory. The most expensive step

reported in Table IV is the evaluation of the first harmonic

p1 on VðD2Þ. This process was described in Sec. III B and

has complexity OðneNÞ, where ne is the number of points

used to discretise the surface of the transducer, and N is the

FIG. 11. (Color online) The on-axis absolute pressure field for the first five

harmonics generated by the H101 transducer at 100 W in water, as com-

puted using the volume potential approach on nested domains, designed to

keep the relative error below 1%. The approximation obtained using HITU

Simulator is provided for comparison.
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number of voxels. Since we take ne¼ 4096, this is a rather

expensive procedure, even when parallelised over 56

threads. Therefore, a transducer model using far fewer ele-

ments and/or a machine with more threads will lead to a

large reduction in computation time for this step. Linear

interpolation is computed efficiently using the SCIPY (Jones

et al., 2001) RegularGridInterpolator command.

The evaluation of Gki
consists of a parallelised loop over the

N voxels and then an FFT of a three-dimensional complex-

valued array of size ð2Nx; 2Ny; 2NzÞ, where Nx;Ny;Nz are

the number of voxels in each dimension. Then the computa-

tion of pi consists of one forward and one inverse FFT of an

array of size ð2Nx; 2Ny; 2NzÞ. The FFTs take advantage of

multithreading and therefore can be easily accelerated

through the use of more cores. Furthermore, it seems likely

that optimising the FFT routine for the particular setting and

using the FFTW Cþþ library directly will lead to further

acceleration. Nevertheless, the current implementation

yields fast and accurate predictions of the first five harmon-

ics (in the cases considered).

VII. EXTENSION TO INHOMOGENEOUS DOMAINS

We briefly consider the extension of this approach to

the case of an inhomogeneous domain. That is, we suppose

that the wavespeed, cðxÞ, and nonlinearity parameter, bðxÞ,
are now spatially varying. Further, we assume that the den-

sity is close to constant, i.e., qðxÞ 
 q0 (we comment on

large density contrasts at the end of this section). The spatial

variation of c and b leads to backscattering of the field gen-

erated by the transducer, and thus, rather than computing the

harmonics via direct evaluation of volume potentials as

before, we must now in addition solve VIEs to account for

the scattering effects.

Let the first harmonic of the incident field generated by

the transducer be denoted as pinc. Then VIEs for the first five

harmonics are (see Costabel, 2015)

p1ðxÞ �
ð

D1

Gk1
ðx; yÞðk2

1ðyÞ � �k
2

1Þp1ðyÞdy ¼ pincðxÞ;

(27)

p2ðxÞ �
ð

D2

Gk2
ðx; yÞðk2

2ðyÞ � �k
2

2Þp2ðyÞdy

¼ � 2bðxÞx2

q0cðxÞ4
ð

D2

Gk2
ðx; yÞp2

1ðyÞdy; (28)

p2ðxÞ �
ð

D3

Gk3
ðx; yÞðk2

3ðyÞ � �k
2

3Þp3ðyÞdy

¼ � 9bðxÞx2

q0cðxÞ4
ð

D3

Gk3
ðx; yÞp1ðyÞp2ðyÞdy; (29)

p4ðxÞ �
ð

D4

Gk4
ðx; yÞðk2

4ðyÞ � �k
2

4Þp4ðyÞdy

¼ � 8bðxÞx2

q0cðxÞ4
ð

D4

Gk4
ðx; yÞðp2

2ðyÞ þ 2p1ðyÞp3ðyÞÞdy;

(30)

p5ðxÞ �
ð

D5

Gk5
ðx; yÞðk2

5ðyÞ � �k
2

5Þp5ðyÞdy

¼ � 25bðxÞx2

q0cðxÞ4
ð

D5

Gk5
ðx; yÞðp1ðyÞp4ðyÞ

þ p2ðyÞp3ðyÞÞdy; (31)

where �ki is the wavenumber of the background medium for

harmonic i, and kiðxÞ is the variable wavenumber. Note that

the integrals on the left-hand sides have non-zero contribu-

tions only where kiðxÞ 6¼ �ki, i.e., where the wavenumber dif-

fers from that of the background medium. If kiðxÞ � �ki, then

we are in the homogeneous case considered before.

To validate the rule of thumb for an inhomogeneous

medium, we consider a 2 cm layer of kidney tissue sur-

rounded by water. The layer is centred at the focus of the

transducer. As the tissue properties for water and kidney, we

use those given in Table II, except that we assume the den-

sity of kidney to be equal to that of water, to coincide with

our constant density assumption. We consider the H131

transducer operating at 50 W. A comparison with HITU

Simulator is presented in Fig. 12, where we observe good

agreement in terms of focus location as well as magnitudes

of the separate harmonics. Since HITU is a one-way solver,

it does not approximate the backscattering, whereas our full-

wave solver does. The backscattering can be observed as the

ripples in the VIE curves.

We note that in the above we assumed that qðxÞ 
 q0

throughout the inhomogeneous domain. This was done to

derive convenient VIEs, which can be solved in an efficient

manner. For strong density contrasts, the VIEs (27)–(31)

must be augmented with boundary integrals, as discussed in

Costabel (2015). This complicated issue could be resolved

by a coupling to an established boundary element code, such

as in van ’t Wout et al. (2015), but this is left to future work.

VIII. CONCLUSION

In this paper, we have set out to reduce the computa-

tional burden of numerical schemes for FUS simulations

through the construction of an efficient and simple meshing

strategy. This strategy can be employed with those numeri-

cal schemes that seek to approximate the Westervelt equa-

tion on a single non-uniform mesh and those that solve for

each harmonic on separate meshes, such as the frequency-

domain volume potential approach proposed here.

TABLE IV. Performance details for the volume potential approach on

nested meshes with a resolution of six voxels per wavelength (for each har-

monic). The configuration considered is the H101 transducer operating at

100 W in water. Total time taken was 1 h 23 min 11 s.

No. of voxels Meshing Interpolation Evaluate Gki
Compute pi

p2 1:86� 108 26.1 s 24 min 30 s 4 min 54 s 3 min 48 s

p3 2:01� 108 22.2 s 3 min 9 s 5 min 14 s 4 min 9 s

p4 2:15� 108 23.9 s 5 min 50 s 5 min 27 s 4 min 8 s

p5 2:30� 108 25.5 s 7 min 12 s 6 min 7 s 7 min 5 s
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The strategy exploits the increasingly localised nature

of the higher harmonics around the transducer’s focal region

so that the DOF in the mesh can be more efficiently distrib-

uted. If we were considering a single non-uniform mesh

approach in which we approximate the full Westervelt equa-

tion, this mesh would become increasingly more refined

toward the focus, since this is where the higher harmonics

are present. In the frequency-domain setting we considered,

this leads to a nested series of meshes, as was discussed in

detail in this article.

In the frequency domain, the Westervelt equation can

be rewritten as a series of inhomogeneous Helmholtz equa-

tions. When the propagation medium is taken to be homoge-

neous, these Helmholtz equations can be solved exactly by

volume potentials, which may be efficiently evaluated using

the quadrature method proposed in Sec. III. This novel

application of this approach allows us to explore efficiently

the convergence of each harmonic as the respective compu-

tation domain was changed in size, thus enabling us to deter-

mine the smallest domains we could use to achieve an error

of less than 1%.

We showed that the accurate approximation of the second

harmonic requires a computation domain that extends from

the focus all the way to the transducer, since the first harmonic

is not sufficiently localised near the focus to allow a smaller

domain to be employed. The third harmonic and above, how-

ever, can be approximated accurately on considerably reduced

domains. We found that scaling the computation domain’s

width and height relative to the wavelength under consider-

ation allowed for accurate approximations for the first five

harmonics for the FUS configurations considered here. This

leads to a reduction in the number of DOF of approximately

ðn=2Þ3, where n is the number of harmonics being computed.

Finally, we demonstrated how this approach general-

ises, via the introduction of volume integral operators, to

inhomogeneous media with low density variation. The

application to inhomogeneous media with large density con-

trast, such as between water and bone, requires the introduc-

tion of further boundary integral operators, which is left to

future work.

To conclude, we briefly comment on the generalisation

of the “rule of thumb” to other transducer configurations

and frequencies. In the present article, two different trans-

ducers were considered, both at 1.1 MHz and propagating

within three different media: water, liver, and kidney. All

the examples considered produced peak amplitudes of lower

than 15 MPa, at which the weakly nonlinear assumption

used in the derivation of the cascade of Helmholtz equations

is accurate. We believe that for different focused transducer

configurations and frequencies, our proposed rule of thumb

is accurate, provided the field can still be categorised as

weakly nonlinear. For highly nonlinear fields, a further

study would be required to test the rule of thumb and also a

modification of our volume potential approach required to

allow for the transfer of energy from higher to lower

harmonics.

A PYTHON implementation of this work is freely avail-

able (Groth, 2021).
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