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Exploring data-driven building energy-

efficient design of envelopes based on 

their quantified impacts 

Abstract 

Building performance design plays a key role in reducing the energy consumption of buildings. 

However, the widely used simulation-based design is facing several challenges, such as the 

labor-intensive modeling process and the performance gaps between design stage estimations 

and operational energy use. For these reasons, artificial intelligent methods are expected by 

designers to improve the efficiency and reliability of building energy-efficient design. To date, 

there has not been a practical data-driven design method of envelopes. This study aimed at 

exploring data-driven building energy-efficient design of envelopes based on their quantified 

impacts. A feature selection method and a game-theoretic method were applied to quantify 

the impacts of envelopes on space heating and cooling energy, which were performed on two 

building datasets, one of which is from the U.S. and the other from China. Random forest 

classifiers were developed to conduct the study. Based on discovered energy patterns and 

quantified impacts of envelopes on energy consumption, a rectified linear design method of 

envelopes was proposed with the idea of improving the performance of high-impact envelopes. 

Besides, a validation study was conducted on two office buildings in the hot-summer cold-

winter region. To design the envelopes of a building, the data-driven analysis was driven by its 

similar buildings other than the whole dataset. Moreover, a detailed energy simulation was 

conducted to evaluate the energy performance of different design solutions. The results 

showed that compared with baseline design solutions, new strategies could save 1.05% to 21.2% 

energy for space heating and cooling for these two case buildings. The proposed method is a 

general building envelope design approach and allows designers to easily find an energy-

efficient configuration of envelopes. This study demonstrated the feasibility and effectiveness 

of the data-driven energy-efficient design of building envelopes. 

Keywords:  

Building envelopes, data-driven, energy-efficient design.  
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Abbreviations and Nomenclature 

AIRTGT The airtight level of fenestration 

AREA Building area 

BEDID Building Energy Design Information Dataset  

CBECS Commercial Building Energy Consumption Survey 

CELV Cooling energy-efficient level 

CLLD Cooling load 

CLMT Climate zone 

DDBED Data-driven building energy-efficient design 

GLSSPC Percent exterior glass 

HDD65 Heating degree days 

HELV Heating energy-efficient level 

HSCW Hot-summer-cold-winter 

HTLD Heating load 

NFLOOR Number of floors 

NFLOOR Number of floors 

PFCN Principle function 

PUBCLIM Climate region 

RFCNS Roof construction 

SC Solar coefficient 

SC Solar coefficient 

SHAP SHapley Additive exPlanations 

SHGC solar heat gain coefficient 

SQFT Square footage 

URF U-value of roofs 

UWIN U-value of windows 

UWLL U-value of exterior walls 

WINTYP Window glass type 

WLCNS Wall construction 

WWRE WWR east orientation 

WWRN WWR north orientation 

WWRS WWR south orientation 

WWRW WWR west orientation 
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1. Introduction 

For decades, the world has recognized the necessity of improving building energy 

efficiency to achieve sustainable development. Up to now, green building rating programs have 

been adopted to construct green buildings [1]. The energy efficiency of buildings has been 

emphasized in those programs by weighting more scores on energy-related measures and 

setting baseline performance for the passive components [2]. In the early design stage, building 

envelopes, as the main part of passive systems, determine the heating and cooling demands of 

a building, and affect the construction cost and building operation energy consumption. Thus, 

stricter energy standards and regulations have been formulated, especially on envelopes. For 

instance, the latest national energy efficiency standard for public buildings in China poses higher 

requirements than the last generation [3]. Besides, researchers have developed several building 

energy-efficient design methods. The heating- and cooling-loads-based design and the 

simulation-based design are two primary methods in this field [4]. The former focuses on 

reducing the heating and cooling loads rather than the actual operational energy use. While for 

the latter, the building energy modeling process is time-consuming and labor-intensive and has 

a steep learning curve [5, 6]. In addition, these performance gaps involving discrepancies 

between design stage estimations and operational energy use jeopardize the reliability of the 

simulation-based design [7-9]. Although researchers are dedicating to remedying the 

shortcomings of this method [10, 11], there still exists a strong demand for effective and smart 

methods.  

Recently, data-driven building energy-efficient design (DDBED) is gaining much attention 

with the establishment of many building energy databases, such as the building performance 

database [12, 13] and the Commercial Building Energy Consumption Survey (CBECS) [14]. These 

databases make it possible to analyze building energy from the perspectives of big-data and 

data-mining, rather than traditional energy simulation programs, in which it is difficult to 

include actual operation circumstances, especially human behaviors [10, 11, 15]. As for building 

envelopes, their quantified impacts can conduce to intuitive knowledge for designers before 

conducting energy-efficient design. To the authors’ knowledge, the impacts of envelopes on 

energy use have not been quantified with the data-driven methods based on a large amount of 

building energy data till now. 

Data-driven methods can be applied to select heating, ventilation, and air-conditioning 

systems (HVAC) [16], [17]. When building data-driven models for heating energy-efficient 

design, Tian et al. [18] found that supervised learning can mainly be applied in the design of 

important designable features. Although envelope features have been utilized as input 

parameters in several data-driven studies, envelopes performed a little function in those 

models. In other words, building envelopes cannot be designed by traditional machine learning 

models. There are still no practical data-driven building energy-efficient design methods of 

building envelopes. Therefore, this study aims to explore new design approaches of envelopes 
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with data-driven methods. 

The remaining parts of this paper are organized as follows. A focused literature review is 

given in Section 2 to elucidate the research status of building envelope design and DDBED. 

Section 3 presents the methodology. The results are presented in Section 4. Discussions and 

Conclusions are addressed in the final two sections.  

2. Literature review 

2.1. Impacts of building envelopes 

The impacts of envelopes on energy consumption should always be quantified before 

conducting energy-efficient designs. Previously, parametric or even optimization techniques 

have been performed to investigate the impacts of building envelopes on energy consumption 

[19-21]. However, most of these experiments were conducted only on a single building [19]. In 

other words, these studies may not be instructive to other buildings.  

Data-driven analysis on a large amount of building energy use data can unveil important 

energy patterns [22-24]. Brom et al. [22] analyzed the energy saving effects of thermal retrofits 

with data of almost 90,000 retrofitted dwells in the Netherlands. They found that the energy-

savings of deep renovations were lower than expectations, but could still reach the highest 

average values. Scofield and Doane [23] compared the energy consumption between LEED-

certified school buildings and conventional school buildings in Chicago. Their findings indicated 

that LEED-certified buildings consumed 17% more source energy than other buildings. 

Even used in several data-driven studies, however, building envelopes only exert a scarce 

impact on the machine learning models [18, 25]. With the 219,000 airtightness measurements 

mainly from residential buildings, Mélois et al. [26] analyzed the impacts of insulation, 

ventilation systems, and main building materials on building leakage measurement results. 

Their study identified influential factors of air leaks for both single-family and multi-family 

houses. To identify the most significant retrofit strategy, Pistore et al. [27] proposed a stepwise 

approach to analyze the impacts of different building envelopes, including walls, roofs, and 

windows. Tian et al. [18] ranked the impacts of building features on heating energy 

consumption for office buildings in the cold region. The results showed that heating equipment 

has a tremendous impact on heating energy. Bartusch et al. [28] estimated the impacts of 

household features on electricity with t-tests and analyses of variance. They found that the 

boiler and heat pump were determinant features of energy consumption. In a nutshell, the 

impacts of building envelopes have not been quantified specifically with data-driven methods 

in any study. 
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2.2. Design methods of envelopes 

Before introducing the methodology, this section attempts to summarize existing design 

methods of envelopes to figure out whether data-driven methods have been adopted to design 

building envelopes. The design of envelopes has been explored in many studies based on 

numeric equations [4, 29], load-calculations [30, 31], or energy simulation programs [32]. Yu et 

al. [4] explored the optimum insulation thickness of the external walls for buildings with 

numeric heat transfer equations. Yong et al. [30] investigated the impacts of envelope design 

factors on heating and cooling loads of the reference building in different climate zones of the 

U.S. They concluded that among ten variables related to the envelope design, solar heat gain 

coefficient (SHGC) and window-wall-ration (WWR) are two determinant features of cooling 

loads under different climate zones of the U.S. Koo et al. [31] proposed a finite element model 

for heating and cooling demand prediction of a residential building. This study did not, however, 

prove that the model can apply to other residential buildings. To explore the impacts of 

envelopes, Košir et al. [33] conducted a series of energy simulations on a fictional building.  

3. Methodology 

To quantify the impacts of envelopes on energy consumption and figure out a new design 

method with data-driven approaches, a four-step scheme is designed, as shown in Fig. 1. The 

general design procedure of building envelopes for a design building is depicted in the dotted 

box on the top of Fig. 1. The first step is to select suitable datasets that contain available energy 

data and building envelope information. Two datasets, one from the U.S. and the other from 

China, are adopted to carry out the following study. To mine underline wisdom, using a group 

of similar buildings to drive the analysis is a brilliant strategy [18]. Therefore, only similar 

buildings are adopted to train and test the supervised learning models. The second step involves 

quantifying the impacts of building envelopes on space heating and cooling energy by 

explaining random forest models. Subsequently, an innovative rectified linear method is 

proposed by distributing more resources on high-impact features. Finally, a case study on two 

office buildings is conducted with the proposed method. Detained energy simulation is adopted 

to evaluate the effectiveness of the new design solutions, with details depicted in the following 

several sub-sections. On the ground that building function has a profound influence on energy 

consumption. This study only focuses on office buildings that account for the largest proportion 

of these two datasets. Due to the limitation of the features included in existing datasets, only 

such major components of the building envelopes as windows, walls, and roofs would be 

analyzed in this study. 
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Fig. 1 The scheme of data-driven design of envelopes based on their quantified impacts  

3.1. Data and preprocessing 

3.1.1. CBECS dataset 

To investigate the energy uses of 560 million commercial buildings, the U.S. Energy 

Information Administration conducted large-scale surveys [14]. The CBECS dataset 2012 was 

generated from a survey finished in 2012. Because it has a large number of buildings and 

features, many of which relate to envelopes, it was used to quantify the impacts of building 

envelopes on space heating and cooling energy. Table 1 presents the main features used in this 

study. Because it does not contain the detailed performance of envelopes, such as the U-values 

of exterior walls, the exact values of envelopes cannot be given by traditional supervised 

learning models. 

Table 1 Main features of CBECS used in this study 

Abbreviation Explanation Abbreviation Explanation 

GLSSPC Percent exterior glass SQFT Square footage 

HDD65 Heating degree days WINTYP Window glass type 

NFLOOR Number of floors WLCNS Wall construction 

PUBCLIM Climate region HELV Heating energy-efficient level 

RFCNS Roof construction  CELV Cooling energy-efficient level 

3.1.2. BEDID dataset 

The Building Energy Design Information Dataset (BEDID) is a customized dataset 

summarized from the design energy reports of about 2500 buildings in Jiangsu, China. Because 

those reports only recorded the design details in the design stage, the BEDID dataset does not 

contain on-site energy consumption but heating and cooling loads. Table 2 presents the main 

features of the BEDID dataset. Since building envelopes are strongly related to cooling and 

heating loads, this dataset provides excellent foundations for exploring their impacts on energy 

demands. Besides, this dataset has advantages over a detailed description of building envelopes, 

especially WWRs in four orientations. 

Table 2 Main features of BEDID 

Abbreviation Explanation Abbreviation Explanation 

PFCN Principle function WWRN WWR north orientation 

CLMT Climate zone UWIN U-value of windows, W/(m2K) 
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AREA Building area UWLL U-value of exterior walls, W/(m2K) 

NFLOOR Number of floors URF U-value of roofs, W/(m2K) 

SC Solar coefficient AIRTGT The airtight level of fenestrations 

WWRE WWR east orientation CLLD Cooling Load, W/m2 

WWRW WWR west orientation HTLD Heating Load, W/m2 

WWRS WWR south orientation   

3.1.3. Data preprocessing 

To conduct successful data-driven analysis, raw data need cleaning, integration, and 

selection. As a common practice, missing values, which refer to non-application in these 

datasets, were filled with 0. Based on the reasonable ranges of envelope parameters, outliers 

were detected and excluded. According to China’s thermal design code for civil buildings, the 

HDD65 of HSCW ranges from 1260oF/day to 3600oF/day. Because this study only focused on 

office buildings in the HSCW region, buildings that satisfied this requirement were picked out. 

3.1.4. Similar buildings 

Data-driven building energy-efficient design aims at finding energy-efficient design 

solutions for buildings with a large amount of building data. In other words, data-driven 

algorithms can evacuate underlying design wisdom from existing buildings. Thus, buildings used 

to drive the analysis shall be similar to the design building. Similar buildings could be sorted out 

with the Euclidian distance algorithm [16]. However, the threshold of similarity of this method 

is difficult to define. In building fields, energy benchmarking involves selecting a group of 

buildings based on their function, area, year of construction, climate, and so forth [34]. Similarly, 

a similarity analysis was conducted by restricting the ranges of key features, including building 

area, climate zone, and function. Table 3 presents features and their ranges for filtering similar 

buildings for a design building.  

Table 3 Features and their ranges for filtering similar buildings 

Feature Range 

Building area, m2 10000, 100000 

Function Office 

Climate zone HSCW 

HDD65, oF/day 1260, 3600 

In the early design stage, only several features have already been determined, such as 

climate zone, building function, and area. Thus, only these basic features and envelope features 

would be used in the following study, as shown in Tables 1 and 2. 

3.2. Random forest classifiers 

This study adopts random forest classifiers to predict the energy categories of the design 

buildings. As an ensemble learning, random forest combines many simple decision tree models 

to output an average prediction. When training, Random Forest can correct the overfitting of a 

decision tree. Previous studies indicate that ensemble learning algorithms, like Random Forest, 

Jo
urn

al 
Pre-

pro
of



outperform traditional machine learning algorithms, such as decision trees [35-38]. Although 

attracted huge attention, deep learning is not a good choice. For one reason, deep learning is 

always applied to image recognition, natural language processing, and speech recognition. For 

another one, compared with deep learning, ensemble learning can achieve better results under 

the condition that features have actual meanings [39]. In this study, Sklearn [40], a python 

machine learning algorithm library, was employed to construct the random forest classifiers. 

To increase models’ reliability, cross-validation was adopted to minimize the overfitting due 

to the random division of training and testing datasets [41]. K-fold cross-validation cuts the 

original data randomly into k equal-size parts, known as folds. Generally, k would be selected as 

either 5 or 10. K-fold cross-validation is popular for its effectiveness in minimizing the imperfect 

effect of partitioning data. In this study, K was set to 4 in the feature selection process. ROC_AUC 

is a magical strategy that can remedy the drawback of arbitrary positive score thresholds used 

by many classification algorithms. In this study, the ROC_AUC was applied as the criterion to 

assess the performance of the random forest classifiers. 

3.3. Quantifying the impacts of building envelopes 

Unearthing determinant features is a common but successful data-driven analysis in 

existing studies. Just as depicted in the literature review section, two types of methods, i.e., 

statistical and supervised learning, can be used to quantify the impacts of envelopes on energy 

consumption. Because statistical methods, such as Pearson Correlation Coefficient, cannot 

consider the combined effects of features on energy consumption, supervised learning 

algorithms, such as decision tree [25, 42-45] and Random Forest [27, 46], have been adopted 

in many studies to unveil the impacts of features on energy consumption. Feature analysis 

usually serves as a preprocessing or a by-product of supervised learning [44, 47]. In this study, 

classification learning was adopted. For one thing, it can produce high accuracy outcomes; for 

another, for building energy design, we want to design high-performance buildings, other than 

predicting the energy consumption of a building. In this study, office buildings were classified 

into three categories, i.e., high-efficient, medium-efficient, and low-efficient buildings. 

Previously, buildings were classified into 2, 3, and 5 categories in data-driven studies on building 

energy, in which 2 categories achieved the highest classification accuracy [47]. In this study, 2 

parts of the data, i.e., high- and low-efficient ones, were adopted to train the models. 

3.3.1. Feature selection 

To select a subset of relevant features, feature selection is an indispensable process for 

supervised learning. Feature selection can help to improve prediction accuracy, build cost-

effective models, and gain a thorough understanding of the data [48]. In this study, step forward 

feature selection was adopted to improve the prediction accuracy and select high-impact 

features. In each step, a feature that results in the highest prediction accuracy is picked out. 

This method can be employed to rank features based on the order to be selected.  
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3.3.2. SHAP methods 

 Visualization is an intuitive method to show the impacts of each feature. The decision tree 

allows designers to visualize the structures that are top-down generated by the splitting metric 

[25]. For other supervised learning algorithms that are hard to achieve visualization, Lundberg 

and Lee [49] proposed the SHAP (SHapley Additive exPlanations) method, a game-theoretic 

approach to explain the outcome of any machine learning model. SHAP provides several 

methods to visualize the impacts of features on the output. The SHAP method can remedy the 

shortcoming of feature selection that cannot quantify the impacts of features on energy 

consumption. This method was adopted to quantify the impacts of different envelopes on 

energy use. Furthermore, design solutions could be formulated based on the impacts, which 

would be described in the following section in detail.  

3.4. A rectified linear design method of envelopes 

Design solutions should also reflect the impacts of envelopes on energy consumption 

except complying with design standards or regulations. A solution that satisfied the basic 

requirements of energy standards is treated as the baseline. The performance of envelopes can 

be enhanced based on their impacts. Therefore, we proposed a rectified linear design method 

of envelopes. The core idea is to increase the performance of high-impact features linearly 

according to their impacts, as shown in Fig. 2. The turning point is defined by the average 

impacts of different envelopes. For those envelopes whose impacts are smaller than the 

average value, their performances can just satisfy the baseline requirements. For envelopes 

whose impacts exceed the average value, their performance should be improved linearly.  

 

Fig. 2 A schematic diagram of the rectified linear design method 

3.5. Evaluation with detailed simulation 

3.5.1. Case buildings 

In this study, two office buildings were selected to evaluate the effectiveness of the new 

design method. If the size of the exterior window system is treated as the criterion to classify 
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office buildings, the Green Office represents a typical office building in the HSCW region. As a 

symbol of modern high-class buildings, the Internet High Rising has a large curtain wall system. 

The basic parameters of these two buildings are presented in Table 4. Since the linear distance 

between these two buildings is about 100 km, they have similar climate conditions. In the early 

design stage, the design team only has limited information about the building, such as building 

area, main function, and location. From this point, these two buildings are akin to each other. 

This study used same criteria to select similar buildings for both buildings as shown in Table 3. 

Table 4 Main features of the two case buildings 

Feature Green Office Internet High Rising 

Function Office Office 

Area, m2 25,500 30,000 

Height, m 42.9 96.8 

Climate zone HSCW HSCW 

City Changzhou Nanjing 

Number of floors 9 22 

WWRE 0.025 0.630 

WWRW 0.025 0.680 

WWRN 0.246 0.650 

WWRS 0.234 0.660 

 

3.5.2. Detailed energy simulation 

To evaluate the energy performance of new and conventional design solutions, the 

EnergyPlus was utilized as the energy simulation engine. Developed by the National Renewable 

Energy Laboratory and several other laboratories in the U.S., EnergyPlus is a dynamic building 

energy simulation software for modeling various building components, including envelopes, 

lights, people, heating ventilation, and air-conditioning systems [50]. The 3D geometry of the 

model was established with the Openstudio SketchUp plugin, as shown in Fig. 3. The idea of a 

standard floor was employed to decrease the calculation time, as shown in Fig. 3.  

  

Fig. 3 EnergyPlus models of Green office (left) and Internet-High-Rising) 

In the early design stage, when the design team wants to select suitable building geometry 
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and envelopes, the HVAC systems have not been defined yet. Therefore, these two buildings 

are supposed to be conditioned with packaged rooftop heat pumps (PTHP). Heat pump is one 

of the most commonly used air-conditioning systems in office buildings in China. Other input 

parameters, including people, lights, equipment, and their schedules, are tuned to reflect the 

actual building operation status according to the on-site surveys. For each building, several 

detailed energy models are built to model the energy consumption of different solutions. For 

each building, except for the envelope features, all other parameters are kept the same. 

4. Results 

4.1. Impacts of envelopes 

4.1.1. By the feature selection 

Table 5 presents the feature selection results when predicting HLLV on two groups of 

similar buildings of those two case buildings. Steps 1, 2, and 3 represent the prediction of the 

HLLV with 1, 2, and 3 features, respectively. Both models got the highest prediction accuracy 

within three steps. With the CBECS dataset, SQFT is the feature with the highest impact. With 

the BEDID dataset, UWIN was found to have the highest impact on HLLV.  

Table 5 Feature selection results on predicting HLLV 

 On similar buildings from CBECS On similar buildings from BEDID  

Step Features ROC_AUC Features ROC_AUC  

1 SQFT 0.58 UWIN 0.62  

2 WINTYP 0.71 UROOF 0.66  

3 NFLOOR 0.74 AIRTGT 0.67  

 

Table 6 shows the feature selection results when predicting CLLV on two groups of similar 

buildings from two datasets. Among many envelope parameters, GLSSPC was found to be a 

predominant feature by the CBECS. Whether a building is energy-efficient in cooling can almost 

be predicted only with the parameter of GLSSPC. While, as for the BEDID, solar coefficient is a 

high-impact feature. The results also indicate that the prediction accuracy on CBECS is much 

higher than that on BEDID.  

Table 6 Feature selection results on predicting CLLV 

 On similar buildings from CBECS On similar buildings from BEDID 

Step Features ROC_AUC Features ROC_AUC 

1 GLSSPC 0.83 SC 0.68 

2 NFLOOR 0.86 AIRTGT 0.75 

3 PUBCLIM 0.88   

4 WLCNS 0.90   

Jo
urn

al 
Pre-

pro
of



4.1.2. By the SHAP method 

In this section, all the features were employed to build classifiers. The SHAP algorithm 

interprets those random forest models to obtain the impact of each feature on the outcome. 

Fig. 4 and Fig. 5 show the impacts of each feature on heating and cooling energy respectively. 

Each point in these figures represents a building. In these figures, features were ranked by the 

summation of their SHAP values. As for heating, the U-values of exterior walls have the highest 

impacts. As for cooling, WWR and airtightness are the high-impact features. Fig. 6 and Fig. 7 

show the mean SHAP values for each feature on energy demand for space heating and cooling, 

respectively. Fig. 8 shows that those envelopes have weak impacts on heating energy 

consumption. Referring to previous studies by Tian et al.[18], the main heating equipment type 

has the highest impact on heating energy consumption among usual passive and active 

components and devices. However, results from both datasets verify that window size is a 

determinant feature of cooling energy consumption.  

 

Fig. 4 Impacts of features on heating energy levels with CBECS (left) and BEDID (right) 

 

Fig. 5 Impacts of envelopes on cooling energy levels with CBECS (left), and BEDID (right) 

Jo
urn

al 
Pre-

pro
of



 

Fig. 6 Mean SHAP values of each feature for heating on CBECS (left) and BEDID (right) 

 

Fig. 7 Mean SHAP values of each feature for cooling on CBECS (left) and BEDID (right) 

4.2. Envelope design strategies 

Table 7 and Table 8 present the average SHAP impacts of building envelopes. The results 

indicate that the WWRs especially in the east and west orientations have tremendous impacts 

on energy consumption. Besides, the impacts of wall constructions are a little higher than the 

mean value. Thus, the design strategies should focus on the AIRTGT, UWLL, and especially 

WWRs.  

Table 7 Impacts of envelopes on energy consumption with the CBECS dataset 

Features Heating Cooling Mean 

GLSSPC 0.045 0.192 0.119 

WLCNS 0.043 0.036 0.040 

WINTYP 0.012 0.024 0.018 

RFCNS 0.050 0.025 0.038 

Mean 0.037 0.069 0.053 

 

Table 8 Impacts of envelopes on heating or cooling loads with the BEDID dataset 

Features Heating Cooling Mean 

WWRE 0.044 0.078 0.061 

WWRW 0.030 0.062 0.046 
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WWRS 0.049 0.035 0.042 

WWRN 0.019 0.013 0.016 

UWIN 0.022 0.028 0.025 

UWLL 0.065 0.034 0.060 

URF 0.039 0.043 0.041 

AIRTGT 0.045 0.072 0.059 

Mean 0.039 0.046 0.042 

The new design strategies conduce to improving the performance of windows and walls 

and keeping the performance of other envelopes on the baseline level. As for the Green Office, 

since it has small WWRs in four orientations, the design solution can only improve the insulation 

of walls. Table 9 lists the design solutions for the Green Office. Fig. 8 shows the distribution of 

WWRs for office buildings in the BEDID dataset. As for the Internet High Rising, because it has 

much larger WWRs, the design solutions can decrease the WWRs or increase the performance 

of windows. Thus, the first design solution is to decrease the WWRs in east and west 

orientations. The second design solution is to alter the window construction to the triple-panel 

with interior blinds window systems for windows in the east and west orientation. Table 11 

shows the new design solutions for the Internet High Rising. 

 

Fig. 8 Distribution of WWRs for office buildings in BEDID dataset 

Table 9 Design solutions of building envelopes for the Green Office 

 Baseline Conventional New 

UWLL, W/(m2K)  1.00 0.80 0.84 

URF, W/(m2K) 0.80 0.50 0.80 

UWIN, W/(m2K) 2.60 2.60 2.60 

SHGC 0.497 0.497 0.497 

 

Table 10 Design solutions of building envelopes for the Internet High Rising 

 Baseline Conventional New 1 New 2 

Jo
urn

al 
Pre-

pro
of



UWLL, W/(m2K) 1.00 0.80 0.84 0.84 

URF, W/(m2K) 0.80 0.50 0.80 0.80 

UWIN, W/(m2K) 2.60 2.60 2.60 1.273 

SHGC 0.704 0.704 0.704 0.525 

WWRE 0.630 0.630 0.150 0.630 

WWRW 0.680 0.680 0.150 0.680 

WWRN 0.650 0.650 0.650 0.650 

WWRS 0.660 0.660 0.660 0.660 

 

Table 11 Window constructions of these design solutions 

New solution Conventional and baseline 

6mmLow-e + 13mmAir+ 6mmClear+ 50mm (Blind inside) 

+6mmClear 

6mmClear + 13mmAir + 

6mmClear 

4.3. Validation 

To evaluate the reliability of the proposed design method, detailed energy simulation was 

adopted to evaluate the energy performances of different solutions of two case buildings. Table 

12 shows the simulation results of different envelope design solutions. As for the Green Office, 

compared with the baseline solution, the energy saved by conventional and new solutions is 

less than 2%. Although installed with better wall and roof constructions, the conventional 

solution only saves less than 1% than the new design solution. As for the Internet High Rising, 

two new design solutions save 10.6% and 21.2% energy, respectively, for maintaining a 

comfortable indoor climate. While the conventional solution only saves less than 1%. These 

results indicate that for a building if the performances of these high-impact envelopes are low, 

the energy-saving potential will be large. Besides, the improvement of low-impact envelopes 

will not bring much energy-saving. 

Table 12 Annual energy consumption for space heating and cooling of two case buildings 

 Green Office Internet High Rising 

 Energy, kWh/m2 Savings Energy, kWh/m2 Savings 

Baseline 56.4 -- 84.9 -- 

Conventional 55.4 -1.86% 85.5 0.75% 

New 1 55.8 -1.05% 76.4 -10.6% 

New 2   66.9 -21.2% 

 

5. Discussion 

This study focused on exploring the impacts of different envelopes on building energy 

consumption and proposing a data-driven design method for building envelopes. To quantify 
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the impacts of building envelopes, a feature selection and the SHAP approach were adopted to 

interpret the random forest models. Each data-driven analysis has been conducted on a group 

of similar buildings other than the whole dataset. As for energy prediction, data-driven models 

have commonly been built only with few features [37, 51]. The impacts of envelopes may be 

neglected because that they were not determinant features of energy consumption or the 

dataset does not contain envelope features [37, 46, 52, 53]. This study ranked envelope features 

based on their impacts. The feature selection results indicate that, with the CBECS dataset, 

WINTYP and GLSSPC are high-impact features for space heating and cooling energy. With the 

BEDID dataset, transparent features and U-values of the roof are favorable indicators for 

predicting heating or cooling energy consumption.  

However, feature selection is weak in quantifying the contributions of each feature in 

predicting the energy. The results of the SHAP analysis show that envelopes exert little impact 

on the heating energy consumption as the mean SHAP values are smaller than 0.05. However, 

features related to transparent envelopes, especially WWRs, have high mean SHAP values, 

which indicates that they have high impacts on cooling energy. In the HSCW region, cooling 

energy is typically higher than heating energy and residents are less tolerant of the hot season 

than that of the cold season [54].  

Based on the quantified impacts of envelopes on energy consumption, a data-driven 

design method of building envelopes was proposed. Compared with existing methods, it 

emphasizes the design of high-impact features. Design solutions are formulated for two case 

buildings. Previously, parametric analyses, even optimization techniques have been applied to 

find out a favorable configuration of envelopes [19]. However, the computational burden is one 

of those main obstacles to adopt building energy simulation and optimization methods [55]. 

The energy simulation results demonstrate that the improvements in low-impact features 

would not save much energy. By comparing the energy savings between different design 

solutions, it can be concluded that the improvement of high-impact features will bring much 

energy savings. The results also manifest the effectiveness of the proposed design method. 

This study implies that a large amount of realistic building energy data can provide insights 

into the energy patterns of various building features. From the perspective of a policymaker, to 

increase the energy efficiency of buildings in a specific region, it is not necessary to pose strict 

requirements for all kinds of envelopes. A large scale of building data makes it possible to 

conduct similar analyses such as the design of building heating and cooling systems.  

Before concluding, it is also necessary to expound the limitation of the proposed method. 

First, initial construction cost is one of the main factors considered by building owners, but it is 

omitted on the ground that it outreaches the scope of this study. The objective of this study is 

to explore the energy patterns of building envelopes with data-driven methods based on big 

on-site building data of office buildings, which would arouse the reconsideration of possible 

solutions from real-world practices, other than only with physical functions. Second, other key 

features, such as the heating equipment and opening of windows, are not taken into account. 
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The major reason is that these datasets do not contain some of the fundamental features. 

Future research is expected to include more building features.  

6. Conclusions 

Designers desire smart and effective design methods of building envelopes, instead of the 

time-consuming and labor-intensive simulation-based design. This study quantified the impacts 

of envelopes on energy use for office buildings with two data-driven methods, i.e., the feature 

selection method and the SHAP method. Two datasets, one from China and the other from the 

U.S., were employed to perform the analyses. For each building, random forest classifiers were 

built on a group of its similar buildings. A rectified linear design method of envelopes was 

proposed based on quantified impacts of envelopes on energy use. Based on the impacts of 

different envelopes, new design strategies can be generated. Finally, this study evaluated the 

performances of new design solutions with detailed energy simulation for two case buildings. 

Several remarkable findings stem from the results. Quantifying the impacts of envelopes 

can provide designers with an intuitive understanding of the contributions of each envelope. A 

new design method of envelopes was proposed and successfully applied in two case buildings. 

It helps designers to figure out energy-efficient design solutions instead of the trial-and-error 

process of the simulation-based design. The proposed method is able to generate specific 

values of the performance of envelopes for an individual building. The results indicate that no 

outstanding envelope can exert a major influence on heating energy for office buildings in the 

HSCW region. As per the analysis of office buildings in the HSCW region as an instance, the 

proposed method can be applied to any building in the design stage when a number of similar 

buildings can be found to perform the analysis. The informative findings provide guidelines for 

designers and useful references for policymakers and standard-setters. To sum up, the proposed 

method exhibits the effectiveness, feasibility, and practicability of data-driven building energy-

efficient design in the early design stage. 
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 Smart and effective design methods of building envelopes are needed.  

 The impacts of building envelopes on energy consumption are quantified with a data-mining 

method.  

 A rectified linear design method is proposed based on quantified impacts of envelopes. 

 The proposed method can be applied to any building in the design stage. 

 This study exhibits the practicability of data-driven building energy efficient design of envelopes. 
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