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Abstract

This paper examines the effect of basal topography and strength on the grounding-line position,
flux and stability of rapidly-sliding ice streams. It does so by supposing that the buoyancy of the
ice stream is small, and of the same order as the longitudinal stress gradient. Making this scaling
assumption makes the role of the basal gradient and accumulation rate explicit in the lowest order
expression for the ice flux at the grounding line and also provides the transcendental equation for
the grounding-line position. It also introduces into the stability condition terms in the basal
curvature and accumulation-rate gradient. These expressions revert to well-established expres-
sions in circumstances in which the thickness gradient is large at the grounding line, a result
which is shown to be the consequence of the non-linearity of the flow. The behaviour of the
grounding-line flux is illustrated for a range of bed topographies and strengths. We show that,
when bed topography at a horizontal scale of several tens of ice thicknesses is present, the
grounding-line flux and stability have more complex dependencies on bed gradient than that
associated with the ‘marine ice-sheet instability hypothesis’, and that unstable grounding-line
positions can occur on prograde beds as well as stable positions on retrograde beds.

1. Introduction

The discovery that sections of the West Antarctic Ice Sheet are losing mass to the oceans
(Wingham and others, 1998; Rignot, 1998; Shepherd and others, 2018) with significant impli-
cations for global sea levels (e.g. Shepherd and others, 2018) has given practical importance to
understanding the evolution of the grounding line – the boundary between the grounded and
floating parts – of marine ice sheets. The general problem of the waxing and waning of a mar-
ine ice sheet is a time-variant problem involving varying external forcings, the ice sheet’s
adjustment to these and the interactions between them (e.g. Fyke and others, 2018).
Nonetheless, one can gain some insight into the dynamics by considering the much simpler
question of whether, in conditions of constant external forcing, a steady-state marine ice sheet
is possible at all, and if so, whether it is stable subjected to small perturbations. Since the ori-
ginal framing of Weertman (1974), the matter has received continuous theoretical attention
(e.g. Chugunov and Wilchinsky, 1996; Hindmarsh and Le Meur, 2001; Schoof, 2007a,
2007b, 2012; Nowicki and Wingham, 2008; Robel and others, 2014; Tsai and others, 2015;
Robel and others, 2016; Kowal and others, 2016; Schoof and others, 2017; Haseloff and
Sergienko, 2018; Pegler, 2018), principally arising from the contention of Weertman (1974)
that a marine ice sheet cannot exist in steady state on a retrograde bed (i.e. one that deepens
towards the ice-sheet interior), a hypothesis that has become known as the ‘marine ice-sheet
instability hypothesis’.

The most complete account has been given by Schoof (2007a, 2011), who, by restricting
attention to rapidly-sliding ice stream flow, reduced the problem to an ordinary differential
equation. In a later paper, Schoof (2012) showed that resulting grounding line locations require
prograde bed slopes to be stable. While recent work (Kowal and others, 2016; Schoof and
others, 2017; Haseloff and Sergienko, 2018; Pegler, 2018; Sergienko and Wingham, 2019)
has questioned the instability hypothesis, it remains a widely-accepted description of the
higher driving stress ice streams such as those in streams that characterise, for example, the
Amundsen Sea sector. Since the original proposition of Mercer (1968), melt-triggered instabil-
ity has been frequently invoked to describe the future evolution of sections of the West
Antarctic ice sheet, as, for example, do recent descriptions of the future of the Thwaites
Glacier basin (e.g. Joughin and others, 2014; Feldmann and Levermann, 2015; Cornford
and others, 2015; Seroussi and others, 2017).

The instability hypothesis arises from there being a monotonically increasing relationship
between the thickness at the grounding line and the discharge through it. This, in turn,
depends on the assumption that the thickness gradient in the momentum equation is large
in comparison with the basal gradient. While this is a reasonable description of ice streams
flowing over smooth beds offering considerable resistance to the flow, ice streams can experi-
ence a variety of frictional resistance at their beds and flow over bed topography that contains a
wide range of spatial scales as Figure 1 illustrates. Since surface expressions of shorter scale
topography (e.g. several tens of ice thicknesses wavelength) is generally greatly subdued in
the surface gradient (e.g. Gudmundsson, 2003), it follows that the basal and thickness
gradients must generally be of the same order, and in such a case there is no longer good
reason to suppose a monotonic relationship between grounding line thickness and flux, nor
a correspondingly simple relationship between basal gradient and stability.

Downloaded from https://www.cambridge.org/core. 04 Aug 2021 at 10:01:41, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/jog.2021.79
https://doi.org/10.1017/jog.2021.79
mailto:osergien@princeton.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/jog
https://orcid.org/0000-0002-5764-8815
https://crossmark.crossref.org/dialog?doi=10.1017/jog.2021.79&domain=pdf
https://www.cambridge.org/core


In this paper, we examine the role of the basal topography in
the existence and stability of steady grounding line locations. To
do so, we take a scaling approach that assumes that the buoyancy
force is small and similar in magnitude to the longitudinal-stress
gradient. By doing so, the effect of the basal gradient in the
momentum equation then naturally occurs in the lowest order
relation between ice flux and thickness at the grounding line,
which also supplies the transcendental equation for the steady
grounding-line locations, assuming these exist. We also find
that, in cases where the thickness gradient at the grounding line
is large, our result reduces algebraically to the monotonic depend-
ence of flux on the thickness of Schoof (2007a). We also consider
the stability of the steady-state grounding line locations, and find
that this now depends on the basal curvature in addition to the
basal gradient and the simple relationship between basal gradient
no longer holds. The stability condition that informs the ‘marine
ice-sheet instability hypothesis’ no longer generally applies.

2. Model description

The model is the same as that proposed by Schoof (2007a). Here
we provide a brief description. The flow of an unconfined ice
stream into an unconfined ice shelf (Fig. 2) can be described by
a vertically integrated momentum balance under assumptions of
a negligible vertical shear appropriate for ice-stream and ice-shelf
flow (MacAyeal, 1989)

2 A−(1/n)h ux| |(1/n)−1ux
( )

x−tb − rgh h+ b( )x= 0

for xd ≤ x ≤ xg
(1a)

and

2 A−(1/n)h ux| |(1/n)−1ux
( )

x − rg ′hhx = 0 for xg ≤ x ≤ xc. (1b)

Here u(x) is the depth-averaged ice velocity, h(x) ice thickness,
b(x) is bed elevation (negative below sea level and positive
above sea level), A−1/n is the ice stiffness parameter (assumed
to be constant), n is the exponent of Glen’s flow law, g is the accel-
eration due to gravity, tb is basal shear. g ′ is the reduced gravity
defined as

g ′ = dg (2)

where

d = rw − r

rw
(3)

is the buoyancy parameter. r and rw are the densities of ice and
water, respectively, xd is the location of the ice divide (assumed to
be xd = 0), xc is the location of the calving front and xg is the
location of the grounding line. Basal sliding is described by a
power-law function

tb = C u| |m−1u, (4)

where C and m are constant parameters.
The mass balance is

ht + (uh)x = ȧ for 0 ≤ x ≤ xg,
ṁ for xg , x ≤ xc,

{
(5)

where ȧ and ṁ are net accumulation/ablation (positive for accu-
mulation) rates of the ice stream and ice shelf, respectively.

Boundary conditions at the divide xd and the calving front xc
are

(h+ b)x = 0, u = 0 at x = xd, (6a)

and

2A−(1/n)h ux| |(1/n)−1ux = 1
2
rg ′h2 at x = xc. (6b)

At the grounding line xg the continuity conditions

ustream(xg) = ushelf (xg), (7a)

Fig. 1. Characteristics of the Pine Island Glacier and Thwaites Ice Stream region. (a) Magnitude of the surface gradient |�∇S|, S = b+ h; (b) magnitude of the driving
stress (kPa) computed as td = rgh|�∇S| derived from the BedMachine Antarctica data set (Morlighem and others, 2020); (c) surface S (blue line) and bed b (red line)
elevation along a flowline on Thwaites Glacier (red line in panel (b)).

Fig. 2. Model geometry: b – bed elevation (b ,0), h – ice thickness, xd – the ice divide
location, xg – the grounding line location; xc – the calving front location.
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hstream(xg) = hshelf (xg) (7b)

and

tstream(xg) = tshelf (xg), (7c)

where t = 2A−(1/n)h ux| |(1/n)−1ux is the longitudinal stress, and
the flotation condition

h(xg) = − rw
r
b(xg) (8)

are satisfied. The fact that the ice is grounded upstream of the
grounding line and is floating downstream of it is reflected by
two inequalities

h(x) ≥ − rw
r
b(x) for xd , x , xg, (9a)

and

h(x) , − rw
r
b(x) for xg , x , xc. (9b)

In circumstances where ice shelves are unconfined, the momen-
tum balance of the ice shelf (1b) can be integrated analytically
with the boundary condition at the calving front, xc, (6b) and
the continuity conditions (7), and the problem can be reduced
to the ice-stream part only with the boundary conditions at the
grounding line provided by the flotation condition (8) and the
stress condition

2A−(1/n)h ux| |(1/n)−1ux = 1
2
rg ′h2 at x = xg. (10)

3. Grounding-line position, flux and stability

In this paper, we wish to study the effect of the basal topography
and strength on the grounding line flux and stability. To gain
some analytic insight requires us to approximate the model of
section 2, which we achieve in this section by supposing the lon-
gitudinal stress gradient and the buoyancy to be small parameters.
We introduce the characteristic scales for the problem: the
bathymetry of a continental shelf [b], the length of an ice steam
[x] and its velocity [u]. With these scales, the scales of other para-
meters of the problem are

[h] = [b], [ȧ] = [h][u]
[x]

and [t] = [x]
[u]

, (11)

and three non-dimensional parameters then emerge. These are d,
given by (3),

1 = 2A−(1/n)[u]1/n

rg[h][x]1/n
(12a)

and

g = [C][u]m[x]

rg[h]2
, (12b)

where 1 is characteristic of the ice-stream deformation, and g is
characteristic of the ice-stream sliding.

The non-dimensional problem is

1 H UX| |(1/n)−1UX
( )

X−g U| |m−1U −H(H + B)X = 0

for 0 ≤ X ≤ Xg,
(13a)

HT + UH( )x= ȧ, (13b)

(H + B)X = 0, U = 0 at X = Xd, (13c)

1H UX| |(1/n)−1UX = 1
2
dH2 at X = Xg (13d)

and

H = − B
1− d

at X = Xg. (13e)

The behaviour of the system (13) depends on the relative magni-
tudes of the three non-dimensional parameters d, g and 1. In this
paper, we will concern ourselves with ice streams for which g is O
(1), describing a flow in which the driving stress and the basal
friction are of the same order. Indeed, we will set g equal to
one. Equation (12b) can then be regarded as a constraint on the
independence of the three scales; non-dimensionally it insists
that the driving stress and basal friction are of the same order.
In this and the next section, we will also limit ourselves to situa-
tions in which 1 is small, that is, in which the longitudinal stress
gradient is small in comparison with the two other terms of the
momentum equation.

There is then finally the choice of the parameter d.
Numerically, its value is 0.1, and in his treatment of (13),
Schoof (2007a, 2011) took d to be large in comparison with 1.
This has the consequence that at zeroth order in 1, the stress con-
dition at the grounding line (13d) becomes h = 0 at the grounding
line, and the velocity u becomes unbounded, leading Schoof
(2007a) to introduce a boundary layer solution near the ground-
ing line. As a consequence of the flotation condition, it then fol-
lows that the bed depth is also small at the grounding line.
We discuss his approximate solution in greater detail in
Appendix A. Here, however, we note that this solution is sensitive
to the bed topography only through its value at the grounding
line, and not, for example, to its gradient and curvature. The alter-
native, which we explore here, is to take d to be a small parameter
of the same order as 1, the approach taken by Sergienko and
Wingham (2019) in analysing the corresponding problem when
the bed is very weak.

When d � 1 the terms on either side of the stress condition
(13d) are of the same order, and, as noted by Schoof (2007a),
no boundary layer is needed to obtain a solution at lowest order.

3.1. Ice flux at the grounding line

It is convenient to use the flux Q = UH instead of the ice velocity.
Taking 1 � d ≪1, (13a)–(13d) then become to lowest order

− Q| |m−1Q− Hm+1(H + B)X = 0, (14a)

HT + QX = ȧ, (14b)

(H + B)X = 0, U = 0 at X = Xd (14c)

and

QXH
m+2 + Qm+1 + QHm+1BX = d

21

( )n

Hn+m+3 at X = Xg.

(14d)
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To obtain the stress condition (14d) we have used

UX = QX

H
− Q

HX

H2
(15)

in (13d). After rearranging terms, and using the momentum
balance (14a) to express HX

HX = − 1
H

Q
H

( )m

−BX , (16)

(13d) becomes (14d), which is the general form of the relationship
between the ice flux and the ice thickness at the grounding line.
For ice-sheet configurations evolving with time, according to
(14b), QX = ȧ−HT , and (14d) becomes

(ȧ−HT )H
m+2 + Qm+1 + QHm+1BX = d

21

( )n

Hn+m+3

at X = Xg.

(17)

3.2. Steady-state grounding-line ice flux, position and stability

In a steady state, HT = 0, and the relationship between ice flux
and ice thickness at the grounding line (17) becomes

Qm+1 + QHm+1BX = d

21

( )n

Hn+m+3 − ȧHm+2. (18)

This expression (18) is not new. The same equation can be found
in Schoof (2007a, 2007b) in slightly different guises.

If, at the grounding line, the ice thickness gradient HX is large
in comparison with the bed gradient BX in (16), and is also large
enough to dominate the velocity gradient in (15), then BX and ȧ
may be dropped from (18) to obtain

Qm+1
S = d

21

( )n

Hm+n+3, (19)

where QS is used to distinguish it from (18). This is the approxi-
mate solution obtained by Schoof (2007a, 2011) to his boundary
layer problem when 1 ≪ d ≪ 1. (18) provides (19) as a special
case when ȧ and BX are small at the grounding line. That the
two approaches provide the same algebraic solution is a conse-
quence of Schoof’s approximation, which is equivalent to suppos-
ing the longitudinal stress is negligible even within the boundary
layer. The fact that this approximation is successful even when d is
O(1) is a consequence of the non-linearity of the ice flow and the
chosen form of the sliding law. This is described in more detail in
Appendix A; for our purposes here it is sufficient to note that (18)
covers both cases with small and non-negligible basal slopes in
the vicinity of the grounding line.

The location of the grounding line Xg is determined through
the addition of a flotation condition to (14). Values of Xg are
then determined as the roots of the transcendental equation
(18) that satisfy the condition (of which there may be none,
one or several). When d � o(1), the flotation condition (13e),
becomes H = −B to lowest order. We have found, however,
that in contrast to (18), this order of approximation does not
provide accurate values of Xg. Formally, this can be overcome
by developing higher order approximations to (13). We have
found that while adding considerable algebraic complexity to
(18), the additional terms are very small numerically. It is only
in determining Xg that the increased accuracy in d is needed
and we therefore use (18) together with (13e). Physically, this is
not surprising. With gentle beds, the location of the steady-state
grounding line is very sensitive to the buoyancy.

We now turn to examining the stability of the steady-state
grounding-line locations. We use the same approach taken by
Schoof (2012). This is conceptually straightforward, in that we
subject the steady states to small, time-dependent perturbations
about the steady-state solutions, which we now distinguish with
the ˆ decoration, so that, for example, Xg(T) = X̂g + X̃g(T). We
substitute such expressions into (14), and by assuming that the
time-variant perturbations are small, formulate a linearised
perturbation problem. This results in solutions of the form

X̃g(T) = X̃g(0)e
LT (20)

for the grounding-line evolution. While the resulting problem is
an eigenvalue problem for L, and we are not able to provide a
closed form expression for L, we can as Schoof (2012) provide
conditions which, if satisfied, ensure all eigenvalues are negative,
and as a consequence the grounding-line position is a stable one.
The derivation is algebraically complex, and we relegate it to
Appendix B. It concludes that provided

ĤX , − 1
1− d

BX at X = X̂g (21a)

and

ĤX , − m
m+ 1

BX at X = X̂g (21b)

the grounding line is stable if, and only if,

− BX

1− d

{ d

21

( )n

(m+ n+ 3)Ĥn+m+2 − ȧ(m+ 2)Ĥm+1

− (m+ 1)Q̂ĤmBX

}
.

{
Ĥm+2ȧX + ȧ (m+ 1)Q̂m + Ĥm+1BX

[ ]+ Q̂Ĥm+1BXX

}
at X = X̂g. (22)

If the conditions (21) are not met, it is not possible to determine
the stability without solving the eigenvalue problem itself.
Condition (21a) is met if the stream remains grounded upstream
of the grounding line. It is satisfied for any steady-state solution of
interest. With m . 0 and d , 1, if BX(X̂g) . 0, and the bed is
retrograde, then (21b), is satisfied if (21a) is met. On the other
hand, if BX(X̂g) , 0 and the bed slope is pro-grade, (21b) must
be met independently of (21a) for (21) to be satisfied.

Under the same conditions of small BX and negligible ȧ, under
which (18) reduces to (19), the only remaining terms in (22) are

BX

1− d

d

21

( )n

(m+ n+ 3)Hn+m+2

on the left-hand side, and ȧ(m+ 1)Qm on the right-hand side.
With (19), (22) reduces to

m+ n+ 3
m+ 1

d

21

( ) n
m+1

Ĥ
m+n+3
m+1 − 1 − BX

1− d

( )
. ȧ. (23)

The left-hand side can be recognised as the derivative of QS of
(19), with the flotation condition applied, and so (23) may be
written

Q′
S . ȧ (24)
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which is the stability condition determined by Schoof (2012).
Schoof’s result is also subject to the condition (21a), but (21b)
is a new condition that arises from the additional terms in (18)
over those in (19).

4. The effect of bed shape and strength on steady-state
configurations

Through supposing 1 and d to be of the same order, section 3
provides expressions for the grounding line flux and stability
that acknowledge the role of the basal topography. These
expressions are considerably more complex than those that
result if the thickness gradient near the grounding line is suf-
ficiently large that the contributions of the basal topography
and the accumulation rate to the local strain rate UX are
small. We might expect that the thickness gradient will increase
as the strength of the bed, described here by the parameter C,
increases, and therefore that the significance of the bed topog-
raphy will become more marked as the bed weakens and the
thickness gradient reduces.

In this section, we examine the steady-state grounding line flux
and the grounding-line’s stability as the bed strength and bed top-
ography are varied, leaving investigations of time-evolving ice
sheets to future studies. We examine first the case in which the
bed varies only at the scale of the stream length, and then examine
the case in which short-scale bed topography is also present.

In this section, we work with dimensional coordinates and
variables. In particular, we use the dimensional form of (18),
namely

C
rg

qm+1 + qhm+1bx = A
1
n

4
rg ′

( )n

hn+m+3 − ȧhm+2 at x = xg,

(25)

of (19)

qS =
A rg
( )n+1

dn

4nC

( )(1/(m+1))

h
m+n+3
m+1 at x = xg, (26)

of (22)

− bx
1−d

A(1/n)

4
rg ′

( )n

(m+n+ 3)hn+m+2− ȧ(m+ 2)hm+1

[

−(m+ 1)qhmbx
]

. hm+2ȧx+ ȧ (m+ 1)
C
rg

qm+hm+1bx

( )
+ qhm+1bxx

[ ]
at x= xg ,

(27)

and of (24)

q′S . ȧ. (28)

To validate these approximate solutions, we compare them with
numerical solutions of the problem (1), (5), (6), (8) and (10)
obtained with the finite-element solver Comsol™ (COMSOL,
2021) that we term ‘exact’, acknowledging their numerical origin.
These equations are solved in a steady-state form, that is, ht = 0
in (5). Thesteady-statesolutionsareobtainedbysolvinganoptimiza-
tion problem using a minimization procedure based on the Bound
Optimization by Quadratic Approximation optimization algorithm
(Powell, 2009). In all simulations, the grid resolution is spatially

variable: it is 200m through 95% of the length of the domain, and
1m in the 5% closest to the grounding line position xg.

4.1. Long-wavelength bed topography

Figure 3 shows grounding line positions and the corresponding
ice fluxes for the smooth, sinusoidal bed shown in Figure 3a for
which the maximum magnitude of the basal slope is 1.6×10−3.
Each grounding line location corresponds to a particular value
of ȧ, which varies from 2 cm a−1 to 14.1 m a−1: as (25) implies,
the larger thicknesses required at the deeper grounding line
locations demand higher fluxes at the grounding line.
Figure 3b shows the values of the driving stress and the
thickness gradient at the grounding line for a set of grounding
line positions and for a range of bed strengths; for
C = 7.6× 106 Pa m−1/3s1/3 (the value used by Schoof (2007b))
the locations are those shown in Figure 3a. Figure 3b illustrates
that the thickness gradient at the grounding line is primarily
determined by the strength of the bed, and that with the
range of C we have presented, the thickness gradient ranges
from a value of the same order of magnitude as the basal topog-
raphy (with a maximum slope 1.6×10−3) to one more than an
order of magnitude higher. At the upper end of the range of
ice-thickness gradient, we might expect Eqn (26), in which the
grounding line flux is a monotonic function of thickness, to
be a sufficient approximation. This is confirmed by Figure 3c,
which shows flux as a function of thickness, and Figure 3d,
which shows the ratio of the numerically computed flux to
that predicted by (26). At the higher value of C, the flux has
the monotonic character of (26), but, as the bed weakens, the
nature of (25) and its dependence on the bed slope bx become
apparent, and the grounding line thickness no longer uniquely
determines the flux. Nonetheless, the disparity between (25)
and (26) is not large: as Figure 3d shows, it reaches only 40%
for the weakest bed with (26) consistently overestimating the
flux values. Figure 3 also includes a comparison between (25)
and ‘exact’ (numerically computed) solutions. In Figure 3a,
the ‘exact’ grounding locations are plotted as circles over the
locations determined as the roots of (25) plotted as diamonds.
The difference between the grounding line positions computed
numerically (circles) and as roots of expression (25) (diamonds)
ranges from 20 to 920 m as the grounding line location varies
from 100 to 800 km. The grounding line positions determined
from (25) are significantly more accurate than those obtained
from (26) for which the corresponding discrepancies are 3
and 40 km. Similarly, Figure 3c provides the same comparison
of the relationship between flux and thickness at the grounding
line. It is apparent that (25), and the scale choice that leads to it,
provides an accurate approximation of the ‘exact’ solutions.

Turning now to the stability of the grounding line positions,
Figure 4a shows the grounding line positions and their corre-
sponding stability as determined by (27). In general, for this
smooth bed, (27) is in agreement with (28), the negative bed gra-
dients are sufficient to ensure stability, while the positive bed gra-
dients are sufficient to ensure an unstable grounding line position.
However, there is one case, indicated by an arrow in Figure 4a, in
which (27) and (28) disagree as to the stability. This is the conse-
quence, in (27), of the terms in ȧ, which peak for the deepest
grounding line, coinciding with a grounding close to the largest
bed curvature. Here, although on a prograde slope, (27) predicts
that the grounding line position is unstable. The accuracy of
this prediction is confirmed by an ‘exact’ calculation illustrated
in Figure 4b, in which a slight displacement of the grounding
line upstream from its steady-state location results in an ongoing
retreat.
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4.2. Short-wavelength bed topography

The presence of the basal gradient in (25), and of the basal curva-
ture, in (27), suggests that as the length scale of the basal

topography shortens, its effects on grounding-line flux and stabil-
ity will be correspondingly larger. It is the purpose of this section
to investigate this hypothesis. To do so, we nonetheless need to
limit any shorter scale topography to undulations whose

a b

dc

Fig. 3. Grounding line locations and flux with a smooth bed topography. (a) The grounding line positions for sliding parameter C = 7.6× 106 Pa m−1/3s1/3 and
various values of the accumulation; (b) the magnitude of driving stress, |td| (kPa) as a function of the magnitude of the ice thickness gradient, |hx |, at the grounding
line. Note the logarithmic scale; td and hx are both negative. (c) The relationship between ice flux and ice thickness computed for various values of the accumu-
lation rate ȧ and sliding parameter C. The values of ȧ are discretely chosen, ranging from 2 cm a−1 to 14.1 m a−1. The size of symbols in panels (a) and (c) cor-
respond to the values of ȧ. In panels (a) and (c), circles are ‘exact’ solutions, diamonds are the roots of expression (25). (d) Ratio of the numerically computed flux
at the grounding line to the one computed with expression (26) derived by Schoof (2007a).The simulation parameters are the following: bed elevation
b(x) = b0 + ba cos ((px)/L), with b0 = −500m, ba = 250 m and L = 500 km; ice stiffness parameter A = 1.35×10−25Pa−3s−1(which corresponds to ice temperature
≈ −20◦C). In all simulations the ice flow is from left to right in (a).

a b

Fig. 4. Stability of grounding line locations with a smooth bed topography. (a) Grounding line positions for various values of C and ȧ shown in Figure 3c. Open
symbols denote stable positions (L ,0), crossed symbols denote unstable positions (L .0). A red arrow indicates an unstable position that nonetheless satisfies
the q′(h(Xg)) . ȧ(Xg) stability criterion (Schoof, 2012), the unstable grounding line position indicated by the red arrow in panel (a). (b) Time evolution of an unstable
grounding line position. The steady-state position marked by the black dashed line is for a sliding parameter C = 3.8×105 Pa m−1/3s1/3 and an accumulation rate
ȧ = 9.3 m a−1.
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length-scale remains large in comparison with the ice thickness,
in keeping with the scale assumptions that underlie (1).
Secondly, when short-scale topography is present, the longitu-
dinal stress gradient can be as important as the basal friction
and driving stress, in addition, it may no longer be appropriate
to drop BX from (25) to reach (28). Therefore, the investigation
must primarily depend on the ‘exact’ solutions.

Figure 5a shows a bed topography in which we have superim-
posed periodic undulations with a wavelength of 42 km and an
amplitude of 150 m on a smooth basal topography. Figure 5a
also shows the steady grounding line locations that result from
a sliding coefficient of 7.6×106 Pa m−1/3s1/3 and an accumulation
rate of 0.6 m a−1. In contrast to the smooth topography of
Figure 3, the undulating bed provides many solutions for the
grounding line location even at a fixed accumulation rate. The
bed undulations provide local gradients of up to 3.5×10−2, and,
as Figure 5b shows, the bed strength remains the dominant deter-
minant of the driving stress at the grounding line. However, the
driving stress is no longer sensitive to the thickness gradient irre-
spective of the sliding coefficient C.

In general, for this bed, the bed gradient is of the same order as
thickness gradient, and one might expect the distinctions between
the ice flux and and that predicted by (26) to become marked.
This is confirmed in Figures 5c and 5d, which show the relation-
ship between flux and thickness at the grounding line, and the
ratio of the grounding line flux from the ‘exact’ solutions to
that provided by (26). As apparent from Figure 5c, the

dependence of the ice flux on the ice thickness at the grounding
line is much less pronounced than is the case for a smooth basal
topography. Instead, the ice flux depends on a combination of the
ice thickness and the bed slope. The two branches in Figure 5c (-
qg ,0.005 m2s−1 and qg .0.01 m2s−1) correspond to the ground-
ing line positions on the up and down slope of the underlying
large-scale topography respectively. On the lower branch, the
ice flux increases with increasing ice thickness, while on the
upper branch it decreases. As Figure 5d shows, the flux no longer
bears the simple relation with the thickness that (26) suggests. At
the upper end of the bed strength, the flux ranges over values that
differ by an order of magnitude from (26); as the bed weakens,
this variation rises to over three orders of magnitude. Such behav-
iour illustrates the interplay between the bed shape (its elevation
and slope) and ice flow.

Figures 5a and 5c also show the grounding line positions and
fluxes determined as roots of (25). As can be seen, (25) continues
to provide accurate estimates of the grounding line flux and pos-
ition, even though, in these examples, the longitudinal stress gra-
dient can in places be of equal magnitude to the basal friction.
The maximum difference between the ‘exact’ grounding line posi-
tions and those determined from the roots of (25) range from 420
to 1200 m as the sliding coefficient C varies from 7.6×106 to
7.6×105 Pa m−1/3s1/3. These differences are substantially larger
for the grounding line positions computed with (26), whose cor-
responding range is 2.4–20.8 km. That (25) remains accurate
reflects that, in all of these examples, the property of the smooth

a b

cd

Fig. 5. Grounding line locations and flux with an undulating bed topography. (a) The grounding line positions for a sliding parameter C = 7.6× 106 Pa m−1/3s1/3

and an accumulation rate ȧ = 0.6 m a−1; (b) the magnitude of the driving stress, |td| (kPa) as a function of the magnitude of the ice thickness gradient, |hx |, at the
grounding line. Note the logarithmic scale; both are negative. (c) The relationship between ice flux and ice thickness computed for various values of the sliding
parameter C and the accumulation rate ȧ = 0.6 m a−1. In panels (a) and (a), diamonds are ‘exact’ solutions and circles are the roots of expression (18). (d) Ratio of
the numerically computed flux at the grounding line to the one computed with expression (26) derived by Schoof (2007a). The simulation parameters are the
following: bed elevation b(x) = b0 + ba cos px

L + ba1cos 12px
L − ba2 cos 24px

L , with b0 = −800 m, ba = 600, ba1 = ba2 = 150 m and L = 500 km; ice stiffness parameter
A = 1.35× 10−25Pa−3s−1 (which corresponds to Tice ≈ −20◦C). In all simulations the ice flow is from left to right in panel (a).
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bed solutions – that the longitudinal stress gradient is small near
the grounding line – is retained when the basal gradient and
curvature become larger. As we show in Appendix C, this again
arises from the non-linearity of the flow and the basal friction,
and provided 1 , d , 1, one can expect this to be the case.

The accuracy of (25) when short-scale topography is present
suggests that the stability criteria (27) will also correctly predict
the stability. In Figure 6, we illustrate the stability of the ground-
ing line locations shown in Figure 5a. Those locations for which
(27) and (28) agree are shown in blue, and this is frequently
the case, with 10 of the 14 cases in agreement, both stable and
unstable. These cases conform to the expectation that stable
grounding line positions occur on downsloping beds (bx , 0),
unstable ones on upsloping beds (bx . 0). However, where
grounding line locations are close to topographic maxima, and
the basal curvature is large, this is no longer the case. (27) and
(28) no longer agree as to their stability, and these locations are
shown as green in Figure 6, with two of them, zoomed, in
Figures 7a and 7b. We have verified that (27) correctly predicts
the stability by examining ‘exact’, time-variant solutions that are
initialised with a small perturbation from the steady states.
Figure 7c shows that the green grounding line location in
Figure 7a is stable even though the basal gradient is positive.
Figure 7d shows that the green location in Figure 7b is unstable
even though the bed gradient is negative. These examples illus-
trate that when short-scale topography is present, bed-slope
alone is not a determinant of grounding line stability.

5. Discussion and conclusions

We have revisited investigations of marine ice sheets considered
by Schoof (2007a, 2012) for which the driving stress and basal
friction are of the same order, and for which the longitudinal
stress gradient is, on average, smaller. We have done so to under-
stand what role the basal topography and strength may have in
determining the grounding line flux and stability. To make the
role of bed topography explicit, we make a distinct scale choice
by taking the buoyancy parameter d and ice deformation param-
eter 1 to be small and of the same order, which considerably sim-
plifies the problem by doing away with the need for a boundary
layer in the vicinity of the grounding line. This approach then
leads to expressions (18) and (22) which express explicitly the

role of basal gradient and curvature, and in their dimensional
form the basal strength, in determining the grounding line flux
and stability.

These equations are derived in the limit 1 � d. There are fea-
tures of the physical situation that argue for this choice in practical
circumstances, and notably that the thickness at the grounding line
can be of the same order as the interior without implying run-away
retreat. Figure 1 shows an example. Nonetheless, the equations
derived in this limit have the property that when the thickness gra-
dient at the grounding line is large, they reduce to the simpler
forms derived by Schoof (2007a, 2011, 2012) assuming 1 ≪ d.
As Appendix A shows, this results naturally if d is small, but
more generally it is also a consequence of the non-linearity of
the ice flow and the basal friction, and particularly an ice flow
law exponent with a value around 3 which, it turns out, subdues
the longitudinal stress gradient even when the scaling arguments
would imply it to have an important role near the grounding
line; a property which carries over at the grounding line even
when the undulating bed topography causes longitudinal stress gra-
dient to be locally significant over the length of the stream.

The original hypothesis of Weertman (1974) and further
investigated by Schoof (2007a, 2012) was developed for negligible
bed gradients. In consequence, the grounding line flux is a mono-
tonic function of grounding line thickness, and this results in the
conclusion that stable grounding lines do not occur on positive
bed gradients (bx . 0). However, the Amundsen sector streams,
such as the Thwaites Glacier, have topography at a wide range
of scales (as is apparent in Fig. 1 and also described by Hogan
and others (2020)). By taking 1 � d, we introduce into the ice
flux at the grounding line terms in the basal gradient bx arising
from the momentum equation and in the accumulation rate ȧ
from the mass equation, and in addition introduce into the stabil-
ity criteria (27) terms in their derivatives the basal curvature bxx
and accumulation-rate gradient ȧx . This allows us to extend con-
siderations of grounding line flux and stability to a greater range
of bed geometries than considered in earlier work. The resulting
expressions even appear to hold when the bed has scales of vari-
ation that are smaller than the scaling assumptions would appear
to allow.

For relatively strong (C = 7.6×106 Pa m−1/3s1/3) and smooth
beds (|bx| �10−3) the more complex flux and stability criteria
do not numerically differ greatly from those of Schoof (2007a,
2012), but as the bed weakens, and/or the accumulation rate,
bed gradient and curvature increase, the ice flux loses its mono-
tonic dependence on thickness and assumes its more general
implicit form (14d), which is (18) for steady-state configurations.
This, in particular circumstances, can differ from the simple
monotonic form by orders of magnitude. For this reason, the sim-
plified monotonic form is not suitable as a universal parameter-
isation of grounding line dynamics in ice-sheet models,
although it has been used that way (e.g. Pollard and DeConto,
2009; Pattyn, 2017).

Similarly, the more general stability criteria is also dependent
in a complex fashion on accumulation rate, bed geometry and
strength, and it is possible for stable grounding line positions to
lie on up-slopes and unstable positions on down-slopes. Bed
slope is no longer the determinant of stability. The gradients of
the bed profile shown in Figure 1 are two-to-three times larger
than the largest bed slopes considered here, suggesting that
Thwaites Glacier is most likely in the regime where the flux
through the grounding line is modulated by its topographic gra-
dients, and where it is in a steady state, its stability would be
determined by its bed curvature and spatial gradients of the net
accumulation/ablation rate in addition to the bed slope.

The results of this study as well as of earlier studies by
Chugunov and Wilchinsky (1996), Schoof (2007a, 2007b, 2012)

Fig. 6. Stability of grounding line locations with an undulating bed topography. (a)
The bed topography and grounding line locations are those shown in Figure 5a.
Blue open symbols are stable positions and crossed symbols are unstable positions
which satisfy (22) and (24), derived by Schoof (2012). Green symbols are positions, for
which stability conditions (22) and (24) produce opposite results. Zooms of regions I
and II are shown in Figures 7(a–b), the red and blue triangles indicate the green sym-
bols shown in Figures 7(a–b).
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and Tsai and others (2015) are obtained in the scaling regime
1 ≪ g �1, that is, for marine ice streams whose longitudinal
stress gradient is significantly smaller than the driving stress
and basal friction and which can be neglected in the momentum
balance. While the results in this paper are more general than its
predecessors, for extremely weak beds a different regime is appro-
priate, in which 1 � g ≪1. This regime has been investigated by
Sergienko and Wingham (2019) with the outcome that the corre-
sponding expressions for the grounding line flux and stability are
yet more complex than (25) and (27). In another important
respect too this study is limited. In one dimension, the flow
must go over bed undulations, whereas in two dimensions, it
also has the option of flowing around obstacles (e.g.
Gudmundsson, 2003; Sergienko, 2012). Particularly at shorter
scales, it is questionable how informative a one-dimensional
study can be. In addition, once the dimensionality of the problem
is acknowledged, the implications of lateral confinement of the
grounded flow, and ‘buttressing’ of the ice shelf flow substantially
complicate the grounding dynamics in comparison with uncon-
fined (one-dimensional) flow (e.g. Kowal and others, 2016;
Pegler, 2018). For laterally confined configurations, the ice flux
at the grounding line is an implicit function of the ice thickness
(Schoof and others, 2017; Haseloff and Sergienko, 2018), and as
numerical computations show (Reese and others, 2018), lead to
non-physical values of the ‘buttressing parameter’ introduced by
Schoof (2007b).

These previous studies on lateral confinement, our previous
work considering weak beds (Sergienko and Wingham, 2019)
and the present results examining the role of bed topography,
together indicate that the simple form of the marine ice-sheet

instability – with grounding-line flux monotonically increasing
with bed depth – is the exception rather than the rule of the mar-
ine ice-sheet behaviour.
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Appendix A. Schoof’s boundary layer

We have supposed that d and 1 may be regarded of the same order. If, how-
ever, 1 ≪ d, then to lowest order in 1 (13d) becomes H = 0 when X = Xg,
and U becomes discontinuous at Xg. To ensure continuity at Xg requires a sin-
gular perturbation, where one supposes the presence of a boundary layer as
X 
 Xg. A treatment of this problem in which the basal gradient is of the
same order as the thickness gradient has not been given, but the corresponding
problem in which BX in (13) can be regarded as negligible in comparison with
HX has been explored by Schoof (2007a), who rescaled (13) in the vicinity of
Xg using:

H = 1aH∗, B = 1aB∗, U = 1bU∗ and Xg − X = 1zX∗. (A1)

The choice of the coefficients in (A1), a, b and z depends upon whether one
takes H to be O(1) or o(1) in the vicinity of the grounding line, but in either
case Schoof (2007a) obtains as an inner, boundary layer problem

H∗ U∗
X∗

∣∣ ∣∣(1/n)−1
U∗
X∗

( )
X∗
− U∗| |m−1U∗ + H∗H∗

X∗ = 0 (A2a)

(U∗H∗)X∗ = 0 (A2b)

H∗ U∗
X∗

∣∣ ∣∣(1/n)= − d

2
H

∗2, at X∗ = 0 (A2c)

and

H∗ = − B∗

1− d
, at X∗ = 0. (A2d)

The problem (A2) cannot be solved analytically. The principal problem is
the momentum equation (A2a), in which the longitudinal stress gradient is
present. However, the approximate solution (19) for the relationship between
flux and thickness at the grounding line is in fact one that supposes the lon-
gitudinal stress gradient to be negligible throughout the boundary layer
(Schoof, 2007a, Appendix A.1), so that (A2a) may be replaced with

− U| |m−1U +HHX = 0. (A3)

Together with the mass balance (A2b), (A3) may then be integrated to provide
the inner solutions in the boundary layer,

H∗ = H∗m+2
g + (m+ 2)Qm

blX
∗

[ ]1/(m+2)
(A4a)
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and

U∗ = Qbl H
∗m+2
g + (m+ 2)Qm

blX
∗

[ ]−(1/(m+2))
, (A4b)

where H∗
g is the thickness at the grounding line and Qbl denotes the flux

through it, which in view of (A2b) is constant through the boundary layer.
Setting X∗ = 0 in (A4) and substituting in (A2d) provides

Qm+1
bl = d

2

( )n

H∗n+m+3
g , (A5)

which is the boundary layer flux in terms of the grounding line thickness.
Turning to the outer problem, this is obtained in steady state by setting

HT = 0 and dropping BX from (13) and writing (13a)–(13c) to lowest order
in 1:

− U| |m−1U −HHX = 0, (A6a)

(UH)X = ȧ (A6b)

and

HX = 0, U = 0, at X = Xd, (A6c)

whose solutions may be written

H(X) = C1 +m+ 2
m+ 1

Qm(Xg − X)

[ ]1/(m+2)

(A7a)

and

U(X) = Q C1 +m+ 2
m+ 1

Qm(Xg − X)

[ ]−(1/(m+2))

, (A7b)

where C1 is a constant of integration whose value is the thickness at the
grounding line of the outer solution. Its value, along with that of Qbl in
(A4), is determined by requiring the inner and outer solutions to satisfy the
matching equations

U∗ � 1−bU
H∗ � 1−aH

}
X∗ 
 1, X 
 Xg (A8)

in a matching region 1 ≪ X∗ ≪ 1−z, 1z ≪ Xg − X ≪ 1. On applying these
relations to (A4) and (A7), one finds that C1 must equal 0, and that Qbl

must equal the flux Q(Xg) that is known from the integration of (A6a).
Thus, the matching procedure provides an outer solution in which H = 0 at
the grounding line, and an inner solution whose thickness at the grounding
line is determined from (A5) by the flux provided to it.

A result of replacing the momentum equation (A2a) with (A3) is that the
inner and outer momentum equations are the same equation. In consequence,
if one ignores the mismatch of scales and includes in the outer equations the
stress boundary condition (13d), then one obtains in the steady-state solution

H(X) = Hm+2
g +m+ 2

m+ 1
Qm Xg − X

( )[ ]1/(m+2)

(A9a)

and

U(X) = Q Hm+2
g +m+ 2

m+ 1
Qm Xg − X

( )[ ]−(1/(m+2))

, (A9b)

where Hg is determined by (19). (A9) provides a single solution throughout
the domain with the appropriate limiting behaviour in the inner and outer
regions. It is the assumption of (A6) that results in the agreement of (19)
with (A5), in spite of the differing scale assumptions in their derivation.

The derivation of (A5) in the main text of Schoof (2007a) is in the context
of supposing that d is O(1) in (A2) and that H is o(1) near the grounding line.
However, there are weaknesses in this treatment. Schoof (2011) corrected this
in a later treatment (see the appendix to Schoof (2011)) which lifts the
restriction on H near the grounding line, and which shows that, in general,
the solution to (A2) satisfies

Qm+1
bl = f (d)H∗n+m+3

g (A10)

for some function f . Schoof (2011) then regains (A5) in the limit of small d,
which, in the context of the boundary layer, restricts (A5) to the scaling
assumption 1 ≪ d ≪ 1. That (A5) holds in this case is also shown in the
appendix of Schoof (2007a).

When d is O(1), (A2a) leads one to suppose that in the boundary layer, the
longitudinal stress gradient is of a similar order to the basal friction and driv-
ing stress. However, it is a striking feature of many numerical calculations that
the boundary layer of the momentum equation is extremely weak. Figure 8
illustrates a typical example, in which the longitudinal stress gradient is pre-
sent, but is some two orders of magnitude smaller than the remaining terms
in the momentum equation. We can gain some insight into the weakness of
the boundary layer by considering the error that results from using (A3)
over (A2a). This is

m+ 3− n
n

Q
m+1+mn

n
bl H∗m+2

g + (m+ 2)QblX
∗

[ ]−m+3−n
n(m+2) − 1

. (A11)

a b

Fig. 8. (a) Components of the momentum balance, tx = 2(A−(1/n)h ux| |(1/n)−1ux )x , td = rgh(h+ b)x and tb defined by (4), for C = 1.5×107 Pa m−1/3s1/3; (b) tx (kPa).

The simulation parameters are the following: bed elevation b(x) = b0 + bacos
px
L
, with b0 = −500 m, ba = 250, and L = 500 km; accumulation rate ȧ = 0.6 m a−1

ice stiffness parameter A = 1.35×10−25Pa−3s−1 (corresponds to Tice ≈-20◦C). In all simulations the ice flow is from left to right.
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The terms in this expression are, by assumption, O(1) in the boundary layer,
and it is the coefficient

f = m+ 3− n
n

(A12)

that determines its magnitude. With the commonly-chosen values of
m = 1

n = 1
3, f = 1

9, i.e. almost an order of magnitude smaller than 1. For com-
binations of m and n for which f = 0, (A5) provides an exact solution of (A2)
irrespective of the value of d. This result is illustrated in Figures 9a and 9b that
show the components of the momentum balance for n = 313 and m = 1

3. The
gradient of the longitudinal stress is four-and-a-half orders of magnitudes
smaller than the basal and driving stresses throughout the length of the ice
stream, and there is a complete absence of any boundary-layer like behaviour
in the vicinity of the grounding line. (While Schoof does not observe that for
particular combinations of m and n, (A5) is an exact solution to (A2) inde-
pendently of the value of d, the same result may be obtained fairly directly
from the treatment in the appendix of Schoof (2011).)

There are, then, two effects that contribute to the weakness of the bound-
ary layer. The first is the smallness of d, and that the more similar d becomes to
1 the weaker the boundary layer becomes. However, the non-linearity of the
flow and the basal friction are also important contributors. One might suppose
that a more distinct boundary layer behaviour will emerge as f becomes larger
and d closer to 1. This is illustrated in Figures 9c and 9d, which show an
example in which 1 = 6.4× 10−4. Linearising the flow and the basal friction
by setting n = m = 1, f takes the value of 3, and in this case (Fig. 9c) a distinct
boundary layer is visible in the longitudinal stress gradient. If we also allow d
to be close to 1, the boundary layer becomes pronounced (Fig. 9d) just as one
would suppose.

Appendix B. Stability analysis

Here we describe a linearised stability analysis of the steady-state problem.
Considering small perturbations (of the order of a small parameter s) around
the steady state,

H = Ĥ(X)+ sH̃(X, T), Q = Q̂(X)+ sQ̃(X, T) and Xg = X̂ + sX̃g(T),

(B1)
where we denote steady states by a symbol ,̂ and substituting these expressions
into (14) leads to the perturbation problem to the lowest order in s

mQ̂m−1Q̃+ Ĥm+1H̃X + (m+ 1)ĤmH̃(Ĥ + B)X = 0, (B2a)

H̃T + Q̃X = 0, (B2b)

Q̃ = 0, H̃X = 0 at X = 0, (B2c)

(m+ 2)Ĥm+1H̃Q̂X + Q̃XĤ
m+2 + (m+ 1)Q̂mQ̃+ Q̃Ĥm+1BX

+ (m+ 1)ĤmH̃Q̂BX + X̃g Ĥm+2Q̂X + Q̂m+1 + Q̂Ĥm+1BX
[ ]

X

= d

21

( )n

(m+ n+ 3)Ĥn+m+2H̃ + d

21

( )n

X̃g Ĥn+m+3
[ ]

X at X = X̂ (B2d)

and

H̃ + ĤXX̃g = − B
1− d

X̃g at X = X̂. (B2e)

From (B2a) and (14a)

Q̃ = m+ 1
m

Q̂

Ĥ
H̃ − 1

m
Ĥm+1

Q̂m−1
H̃X . (B3)

Substituting this expression into (B2b) leads to a parabolic partial differential
equation (PDE) for H̃

H̃T + m+ 1
m

Q̂

Ĥ
H̃ − 1

m
Ĥm+1

Q̂m−1
H̃X

[ ]
X

= 0. (B4)

Using the method of separation of variables one arrives at the form

H̃(X, T) = H̃(X)eLT . (B5)

Substituting H̃ in this form into (B4) and writing (B2b) as Q̃X = −LH̃ gives

m+ 1
m

Q̂

Ĥ
H̃ − 1

m
Ĥm+1

Q̂m−1
H̃X

[ ]
X

= −LH̃, (B6a)

H̃X = 0 at X = 0 (B6b)

and

− LH̃A1 + Q̃A2 = H̃(A3 − A4) at X = X̂, (B6c)

where

A1 = Ĥm+2, (B7a)

A2 = (m+ 1)Q̂m + Ĥm+1BX
[ ]

, (B7b)

A3 = d

21

( )n

(m+ n+ 3)Ĥn+m+2 − (m+ 2)Ĥm+1Q̂X − (m+ 1)ĤmQ̂BX

[ ]
(B7c)

and

A4 = 1

ĤX + BX

1− d

d

21

( )n

Ĥn+m+3

[ ]
X

− Ĥm+2Q̂X + Q̂m+1 + Q̂Ĥm+1BX
[ ]

X

{ }
,

(B7d)

which is a second-order eigenvalue problem with L being the eigenvalue. It is
not possible to obtain a closed form expression for the values of L. However,
the stability depends only on the sign of L.

If all L , 0, then small perturbations H̃ and Q̃ decay with time, and such a
steady-state ice-sheet configuration is stable; on the other hand, if at least one
eigenvalue L . 0, then small perturbations grow with time and such a
steady-state ice-sheet configuration is unstable.

To determine the sign of eigenvalues we follow Schoof (2012) in putting
(B6a) into a Sturm–Liouville form,

m(X)P(X)H̃X
[ ]

X−m(X)R(X)H̃ = LH̃, (B8)

using the integrating factor

m(X) = e

�X

0

F(x)
P(x)

dx

P(X)
, (B9)

where

P(X) = Ĥm+1

mQ̂m−1
, (B10a)

R(X) = m+ 1
m

Q̂

Ĥ

( )
X

(B10b)

and

F(X) = 1
m

Ĥm+1

Q̂m−1

( )
X

−(m+ 1)
Q̂

Ĥ

[ ]
. (B10c)

If one substitutes (B9) and (B10) into (B8) one can, with a little algebra,
recover (B6a) and so show that (B6a) can be put in a Sturm–Louville form.
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The functions m, P and R are continuous, m(X)P(X) is a positive function, and
the boundary conditions (B6b) and (B6c) can be written as homogeneous
functions of H̃ and H̃X .

However, in contrast to a Sturm–Lioville problem considered by Schoof
(2012), the problem (B6) is not a regular Sturm–Liouville problem, due to
the presence of the eigenvalue L in the boundary condition (B6c). There is
a body of literature devoted to Sturm–Liouville problems in which the eigen-
value appears in the boundary conditions (e.g. Amrein and others, 2005). In
particular, one can show using theorem 1 of Linden (1991) that for the
Sturm–Lioville problem (B8) with boundary conditions (B6b) and (B6c), the
kth eigenfunction has k− 1 zeros, and consequently, the eigenfunction corre-
sponding to the largest eigenvalue does not have zero crossings, provided that
in addition to the continuity, positivity and homogeneity conditions of the
regular problem, the inequality

(m+ 1)Q̂m + Ĥm+1BX . 0 (B11)

is satisfied. With the use of the steady-state momentum balance (14a) this con-
dition reduces to

ĤX , − m
m+ 1

BX . (B12)

From (B2b) and (B5) one has

Q̃(X̂g) = −L

∫X̂g

0
H̃dx. (B13)

Substituting (B13) into (B6c) and using the relations Q̂X = ȧ and (B2a), one
may arrive at:

L =− Ĥm+2 + mQ̂m − Ĥm+1ĤX
( ) �X̂g

0 H̃dx

H̃

⎡
⎣

⎤
⎦

−1[
ĤX + BX

1− d

]−1

×
[

BX

1− d

{ d

21

( )n

(m+ n+ 3)Ĥn+m+2 − ȧ(m+ 2)Ĥm+1

− (m+ 1)Q̂ĤmBX

}
+
{
Ĥm+2ȧX + ȧ (m+ 1)Q̂m + Ĥm+1BX

[ ]

+ Q̂Ĥm+1BXX

}]
.

(B14)

The sign of L in the above expression is determined by the steady-state prop-
erties at the steady-state grounding-line position, except the term (

�X̂g

0 H̃dx)/H̃

that appears in the first square-bracketed term on the right-hand side of (B14).
As we have noted, the largest eigenvalue (that corresponds to the fastest
growing or slowest decaying perturbations of the steady states) is associated
with eigenfunction with no zeros. In consequence, for these eigenvalues, the

term (
�X̂g

0 H̃dx)/H̃ is positive. This does not of itself suffice to determine the
sign of the largest eigenvalues. However, one can show using the steady-state
momentum balance (14a) that with (B12) satisfied, the first square-bracketed
term on the right-hand side of (B14) is positive for this maximum eigenvalue;
and if

ĤX , − BX

1− d
(B15)

the second square-bracketed term is negative. As Schoof (2012) observes, (B15)
must be satisfied if the steady solution is to remain grounded upstream of the
grounding line, and it may be regarded as satisfied for any steady solution to
the problem. With m . 0, d , 1 and BX . 0, (B12) is satisfied if (B15) is sat-
isfied, and in this case, the stability can be determined from the sign of the
third square-bracketed term of (B14): if

− BX

1− d

{ d

21

( )n

(m+ n+ 3)Ĥn+m+2 − ȧ(m+ 2)Ĥm+1 − (m+ 1)Q̂ĤmBX

}

.
{
Ĥm+2ȧX + ȧ (m+ 1)Q̂m + Ĥm+1BX

[ ]+ Q̂Ĥm+1BXX

}
(B16)

the grounding line is stable. However, if BX , 0, it is (B15) that is satisfied if
(B12) is satisfied, and it is then (B12) that must be satisfied for stability to be
determined by (B16).

To validate the above results, we solve (B6) numerically with the
finite-element solve ComsolTM (COMSOL, 2021). We compute eigenvalues
and eigenfunctions for the steady-state ice-sheet configurations for the smooth
and undulating bed topographies. Figures 10 and 11 show examples of the ten
largest eigenvalues and first four eigenfunctions for stable and unstable
grounding-line positions. For all stable positions, all the eigenvalues are negative
(Figs 10b and 11b); for all unstable positions, the largest eigenvalue is positive,
and all others are negative (Figs 10d and 11d). The eigenfunctions
corresponding to the largest eigenvalues for both stable and unstable steady-state
configurations do not have zeros, consistent with the theorem of Linden (1991).

Appendix C. The longitudinal stress gradient at the
grounding line

Equations (18) and (19) assume that the longitudinal stress gradient in the
momentum equation is negligible. For the case in which the basal gradient

a b

c d

Fig. 9. Effects of the buoyancy parameter d, the flow-law
exponent n and the sliding-law exponent m on the
momentum balance (a–b) d = 0.1, n = 3 1

3, m = 1
3; (c)

d = 0.1, n = m = 1; (d) d = 0.9, n = m = 1. The simulation
parameters are the following: bed elevation

b(x) = b0 + bacos
px
L
, with b0 = −500 m, ba = 250, and

L = 500 km; (a–b) C = 1.5×107 Pa m−1/3s1/3,
A = 1.35×10−25Pa−3s−1, ȧ = 0.1 m a−1; (c) C = 1.5×1010 Pa
m−1s1, A = 5.13×10−15Pa−1s−1, ȧ = 0.7 m a−1; (d)
C = 3.8×1010 Pa m−1s1, A = 5.13×10−15Pa−1s−1, ȧ = 510 m
a−1, d = 0.9. In all simulations ice flow is from left to right.
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is dropped from the momentum equation, we examined in Appendix A the
error that results from ignoring the longitudinal stress gradient by substituting
the solutions of the reduced equation (A6) back into the full equation (A2a).
When the basal gradient can not be ignored, the corresponding equations are
(14a) and (13a) but for these we do not have solutions. However, even without
the solutions, we can estimate the longitudinal stress gradient at Xg, which is
what we do in this appendix. Specifically, we write the longitudinal stress
gradient in the form

tXX = 1 HXU
1
n
X + 1

n
HU (1/n)−1

X UXX

[ ]
(C1)

and use the reduced Eqns (14a) to estimate the terms in (C1), from which we
can determine the circumstances in which it may be regarded as a small.

To compute various terms of this expression we use (14), that yields

HX = −Um

H
− BX , (C2a)

UX = 1
H

ȧ− UHX( ) (C2b)

and

UX = d

21

( )n

Hn at X = Xg. (C2c)

Differentiating (C2b) to obtain an expression for UXX and eliminating from it
HXX through differentiating (C2a) one can obtain with a second use of (C2a)

UXX = −(m+ 2)
HX

H
UX −m

BX

H
UX −HX

H3
Um+1 + 1

H
ȧX + UBXX( ). (C3)

Eliminating Q from (18) using Q = UH one can with (C2c) obtain an expres-
sion for Um+1/H3 which, when substituted into the RHS of (C3) provides

UXX = −(m+ 3)
HX

H
UX −m

BX

H
UX +HX

H2
UBX + ȧ( ) + 1

H
ȧX + UBXX( ).

(C4)

Substituting (C4) into the RHS of (C1)

tXX = 1

{
n−m− 3

n
HXU

(1/n)
X −m

n
BXU

(1/n)
X

+ 1
n
U (1/n)−1
X

HX

H
UBX + ȧ( ) + ȧX + UBXX

[ ]}
. (C5)

a

b c

d e

Fig. 10. Eigenvalues and eigen-functions for the long-wavelength bed topography. (a) Stable (open circle) and unstable (crossed circle) steady-state grounding line
positions; (b) first ten eigenvalues L (s−1) for the stable position (open circle); (c) first four eigen-functions H̃ (m) for the stable position (open circle); (d) first ten
eigenvalues L (s−1) for the unstable position (crossed circle); (e) first four eigen-functions H̃ (m) for the unstable position (crossed circle).
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Using (C2a) and (C2c) and eliminating U using U = Q/H provides, finally

tXX = (m+ 3− n)
n

d

2
Qm

Hm
+ (3− n)

n
d

2
BXH + 1

n
21
d

( )n−1

× 1
Hm+n+2

ȧXH
m+3 + QHm+2BXX − QBX + ȧH( ) Qm +Hm+1BX

( )[ ]
.

(C6)

With d = 0.1 and n = 1
m = 3, the leading coefficient of the first term on

the right is 0.006; the leading coefficient of the second term is zero; and
with 1 = 0.07, the largest value of those in Fig. 5, the leading coefficient of
the third term is 0.05. Thus, we expect in these circumstances that the drop-
ping of the longitudinal stress gradient in forming (18) and its dimensional
form (25) will remain a good approximation.

a

b c

d e

Fig. 11. Same as Figure 10 for the short-wavelength bed topography. The grounding line positions are the same as those shown in Figure 7 by green symbols.
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