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a b s t r a c t 

Quantitative susceptibility mapping (QSM) is a promising non-invasive method for obtaining information relating 

to oxygen metabolism. However, the optimal acquisition sequence and QSM reconstruction method for reliable 

venous susceptibility measurements are unknown. Full flow compensation is generally recommended to correct 

for the influence of venous blood flow, although the effect of flow compensation on the accuracy of venous 

susceptibility values has not been systematically evaluated. In this study, we investigated the effect of different 

acquisition sequences, including different flow compensation schemes, and different QSM reconstruction methods 

on venous susceptibilities. 

Ten healthy subjects were scanned with five or six distinct QSM sequence designs using monopolar readout 

gradients and different flow compensation schemes. All data sets were processed using six different QSM pipelines 

and venous blood susceptibility was evaluated in whole-brain segmentations of the venous vasculature and single 

veins. The quality of vein segmentations and the accuracy of venous susceptibility values were analyzed and 

compared between all combinations of sequences and reconstruction methods. 

Abbreviations: χ, magnetic susceptibility; ANOVA, analysis of variance; CS, Compressed SENSE; dTIK, direct Tikhonov; GRE, gradient-recalled echo; ICVs, internal 

cerebral veins; iLSQR, iterative least-squares; iTIK, iterative Tikhonov; MEDI, Morphology Enabled Dipole Inversion; MVF, multiscale vessel filtering; OEF, oxygen 

extraction fraction; PCA, phase contrast angiography; PDF, projection onto dipole fields; PE, phase encoding; QSM, quantitative susceptibility mapping; ROI, region 

of interest; SNR, signal-to-noise ratio; SSS, superior sagittal sinus; STAR, streaking artifact reduction; STI, Susceptibility Tensor Imaging; StrS, straight sinus; SvO 2 , 

venous oxygen saturation; TE, echo time; TGV, total generalized variation; TIK, Tikhonov; TR, repetition time; TraS, transverse sinuses; V-SHARP, sophisticated 

harmonic artifact reduction for phase data with variable kernel sizes. 
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. Introduction 

Venous quantitative susceptibility mapping (QSM) aims to quantify
he magnetic susceptibility ( χ) of venous blood based on the phase of
he gradient-recalled echo (GRE) magnetic resonance imaging (MRI)
ignal, which reflects the paramagnetic susceptibility of deoxygenated
emoglobin and venous oxygen saturation (SvO 2 ) 

( Jain et al., 2012 ; Spees et al., 2001 ; Weisskoff and Kiihne, 1992 ).
vO 2 is linearly related to χ of blood and can be calculated as ( Fan et al.,
020 ; Fan et al., 2016 ; McFadden et al., 2021 ; Weisskoff and Ki-
hne, 1992 ): 

𝑣 𝑂 2 = 1 − 

(
Δχblood − Δχ𝑜𝑥𝑦 ∗ 𝐻𝑐𝑡 

)
∕ 
(
Δχ𝑑𝑜 ∗ 𝐻𝑐𝑡 

)
(1)

here Δχblood is the measured susceptibility difference between blood
nd water (or soft tissue), Δχ𝑜𝑥𝑦 the constant susceptibility shift of fully
xygenated blood relative to water, Δχ𝑑𝑜 the known susceptibility differ-
nce between fully oxygenated and fully deoxygenated red blood cells,
nd 𝐻𝑐𝑡 the hematocrit. Venous QSM is suitable for measuring SvO 2 

n regions containing purely venous voxels. Depending on the chosen
mage resolution, this assumption is most often met in large cerebral
eins. 

Based on Eq. (1) , previous studies have successfully quantified SvO 2 

n healthy subjects ( Fan et al., 2014 ; Ward et al., 2017 ; Xu et al.,
014 ) and patients with cerebrovascular disease ( Biondetti et al., 2019 ;
an et al., 2020 ; Schneider et al., 2020 ). For assessing brain oxygenation,
SM represents a non-invasive and more feasible alternative to the gold

tandard 15 O PET ( Mintun et al., 1984 ). Indeed, PET employs short-lived
5 O radiotracers that require on-site production by a cyclotron, whereas
SM exploits the oxygenation status of hemoglobin, a naturally occur-

ing endogenous contrast mechanism ( Cho et al., 2020 ; Fan et al., 2015 ;
udo et al., 2016 ). However, for venous QSM, neither the acquisition
equence nor the image processing pipeline has yet been standardized
 Bilgic et al., 2020 ; Langkammer et al., 2018 ). 

Spins moving during signal encoding gradients accumulate addi-
ional non-zero phase, which results in flow-induced signal loss. Flow
ompensation involves applying gradient lobes before readout to com-
ensate for this additional motion-induced dephasing and restore zero
hase at the echo time for spins moving at constant velocity or accel-
ration. Therefore, it has been suggested that GRE images acquired for
enous QSM require full first-order (i.e., velocity) flow compensation
 Brown et al., 2014 ). Indeed, in the absence of flow compensation, ves-
els containing flowing blood can appear displaced on GRE magnitude
 Deistung et al., 2009 ), GRE phase ( Xu et al., 2014 ), SWI ( Deistung et al.,
009 ), and QSM images ( Biondetti et al., 2020 ), potentially affecting
he accuracy of both image-based vessel segmentation and venous sus-
eptibility estimation inside segmented vessels. Fully flow-compensated
equences aim to suppress the additional phase induced by flowing spins
velocity range in intracranial veins: 10–25 cm/s ( Stolz et al., 1999 )) at
ach echo time (TE) and along all three signal encoding directions of
he Cartesian k-space trajectory. 

Acquiring multi-echo 3D GRE images for QSM is desirable because
t enables optimization of the signal-to-noise ratio (SNR) in multiple
issue types simultaneously ( Haacke et al., 2015 ; Wu et al., 2012a )
nd fitting over echo times for accurate field map estimation for QSM
2 
truction method on average venous susceptibility values was found to be 2.7–

nce of the acquisition sequence, including flow compensation. The majority of

ion methods tended to underestimate venous susceptibility values in the vein

. 

lti-echo gradient-echo acquisition sequences without full flow compensation

es comparable to sequences with full flow compensation. However, the QSM

t influence on susceptibility values and thus needs to be selected carefully for

 Biondetti et al., 2020 ). However, commercially available scanner op-
ions typically enable full flow compensation only for single-echo proto-
ols or at the first TE of multi-echo protocols. Moreover, the longer TE
mages of a multi-echo GRE protocol are usually only flow-compensated
long the frequency-encoding direction ( Denk and Rauscher, 2010 ;
ilbert et al., 2012 ). Therefore, pulse sequence programming is required

o enable acquisition of fully flow-compensated multi-echo GRE images
 Deistung et al., 2009 ; Xu et al., 2014 ), limiting the use of these se-
uences in clinical settings. 

In addition to image acquisition, the QSM reconstruction method
s expected to impact on measurement accuracy for venous suscepti-
ility. While optimization and standardization of QSM reconstruction
lgorithms and processing pipelines is an active area of research within
he QSM community ( Bilgic et al., 2020 ; Langkammer et al., 2018 ;
obinson et al., 2017 ; Schweser et al., 2017 ), only a few studies have
roposed methods specifically optimized for venous QSM reconstruction
 Biondetti et al., 2019 ; Haacke et al., 2015 ; Liu et al., 2013 ; Wei et al.,
015 ; Xu et al., 2014 ). Critically, the effect of distinct QSM reconstruc-
ion pipelines on the accuracy of venous QSM has never been systemat-
cally compared. 

In this study, we systematically assessed the effect of flow compen-
ation as well as different QSM reconstruction methods on the accuracy
f measured venous susceptibility values in both automated whole-brain
ein segmentations and single large vein segmentations. To this end, we
et up distinct 3D multi-echo GRE sequences with flow compensation ap-
lied at all TEs, at the first TE only, or without any flow compensation.
urthermore, because time constraints are known to limit the clinical
pplicability of multi-echo QSM sequences, we investigated the possi-
ility of using a state-of-the-art acceleration technique, namely Com-
ressed SENSE ( Geerts-Ossevoort et al., 2018 ), compared to the stan-
ard SENSE technique ( Pruessmann et al., 1999 ). To independently as-
ess venous anatomy and facilitate vein segmentation, we also acquired
hase contrast angiography (PCA) with velocity encoding targeting ve-
ous flow. With respect to QSM reconstruction pipelines, we focused pri-
arily on methods featured in the most popular toolboxes available for
SM, since these can be employed by non-specialist users and are there-

ore feasible in clinical settings. To evaluate their performance, these
on-optimized pipelines were compared to a QSM processing method
hat had been specifically optimized for venous QSM in a previous study
 Biondetti et al., 2019 ) and to an iterative version of the same method
 Karsa et al., 2020 ). 

. Methods 

.1. Subjects 

This study was approved by the local medical ethical committee at
he Klinikum rechts der Isar, Technical University of Munich (TUM).
fter providing informed written consent for participation in this study,

en healthy volunteers (five females, age range: 22–50 years, average
ge: 29 years) underwent MRI at the Department of Neuroradiology,
linikum rechts der Isar, TUM. 
The influence of the QSM r

11.6 times greater than the 

the investigated QSM recon

segmentations that were ob

In summary, we found tha

yielded venous susceptibilit

reconstruction method had 

accurate venous QSM. 
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Table 1 

Key acquisition parameters and flow compensation schemes for all of the 3D GRE sequences for QSM and the 3D GRE phase contrast angiography 

(PCA). Parameters deviating from the most common value are marked in bold. Differences between sequences relevant for QSM include differences in the flow 

compensation scheme (influencing the bandwidth / water-fat shift), the number of echoes and echo times, and the image acceleration technique (influencing the 

scan duration). Common parameters were 1 × 1 × 1 mm 

3 resolution, 246 × 188 × 144 mm 

3 field-of-view, transverse slice orientation, and right-left fold-over 

direction. TE: echo time, ΔTE: echo spacing, TR: repetition time, PC: phase contrast, RL: right-left, FH: foot-head, Full-FC: Full multi-echo FC, TE1-FC: conventional 

FC for the first echo only, TE1-FC-CS: first-echo FC with CS acceleration, No-FC: no FC with echoes matched to the Full-FC sequence, No-FC-7ech: no FC with 

maximum number (7) of TEs, No-FC-3ech: no FC with 3 echoes maximizing SNR. 

Full-FC TE1-FC TE1-FC-CS No-FC No-FC-7ech No-FC-3ech PCA 

Acceleration SENSE, RL: 2, FH: 1 SENSE, RL: 2, FH: 1 Compressed SENSE: 4 SENSE, RL: 2, FH: 1 SENSE, RL: 2, FH: 1 SENSE, RL: 2, FH: 1 SENSE, RL: 2, FH: 1 

# echoes 4 4 4 4 7 3 1 

TE1/ ΔTE [ms] 5.7/11 5.7/11 5.7/11 5.7/11 shortest (3.4/6.1) 7/14 6.7 

TR [ms] shortest (43) shortest (43) shortest (43) shortest ( 44 ) shortest ( 44 ) shortest (43) shortest (11) 

Monopolar gradients (flyback) yes yes yes yes yes yes - 

Flip angle [°] 17 17 17 17 17 17 10 

Water-fat shift [pix] 2.068 2.068 2.068 3.396 2.068 max (5.352) max (2.585) 

Bandwidth [Hz] 210.0 210.0 210.0 127.9 210.0 min (81.2) min (168) 

Flow compensation (FC) Full multi-echo FC First-echo FC First-echo FC No FC No FC No FC First-echo FC 

Scan duration [min:s] 9:40 9:40 5:37 10:01 9:59 9:44 10:12 

PC V enc [cm/s] - - - - - - 30 

# data sets 10 10 10 10 10 4 10 

To investigate reproducibility across different MRI systems from the 
same vendor, data from five healthy volunteers (three females, age 
range: 30–54 years, average age: 44 years) who had been scanned previ- 
ously in a pilot study were included in the analysis. The pilot study was 
performed at the Queen Square Multiple Sclerosis Centre (University 
College London (UCL), UCL Institute of Neurology, London, UK). This 
study was approved by the local ethics review board and all subjects 
provided written informed consent. 

2.2. Image acquisition 

Data acquisition was performed on a Philips Ingenia Elition X 3 T MR 

system (Philips Healthcare, R5.6.1.0, Best, NL) using a 32-channel head 
coil. All imaging sequences for QSM and PCA were based on a 3D GRE se- 
quence. For QSM, these sequences contained several echoes to optimize 
SNR in different tissues. Images were acquired in transverse orientation 
with 1 mm isotropic resolution (compatible with the diameter of large 
veins ( Curé et al., 1994 ; Durst et al., 2016 )), 246 × 188 × 144 mm 

3 field- 
of-view (read x phase encoding (PE) 1 x PE 2 ), with frequency encoding in 
the anterior-posterior direction and a right-left primary phase encoding 
(fold-over) direction. SENSE (2-fold acceleration in the PE 1 direction) 
was used as the standard imaging acceleration technique. All GRE se- 
quences for QSM had monopolar (flyback) readout gradients enabled, 
flip angle 17°, and the shortest achievable repetition time (which was 
43 or 44 ms for all sequences). Other acquisition parameters, namely 
the number of echoes and the readout bandwidth, were optimized in 
line with each sequence’s flow compensation scheme (see Table 1 for a 
detailed overview). Additionally, in one sequence, Compressed SENSE 
(CS) ( Geerts-Ossevoort et al., 2018 ) was applied (4-fold acceleration) to 
evaluate the effect of reducing acquisition time by sparse sampling of k- 
space. The following flow compensation schemes were tested: full flow 

compensation for all echoes and along all encoding directions (Full-FC) 
as in a previous study ( Xu et al., 2014 ); a conventional flow compensa- 
tion scheme for the first echo only as implemented by the vendor using 
SENSE (TE1-FC) or Compressed SENSE (TE1-FC-CS); and no flow com- 
pensation with TEs matched either to the Full-FC sequence (No-FC) or 
with the maximum number of TEs within the repetition time (TR) (No- 
FC-7ech). Finally, to investigate the effect of maximizing the SNR over 
the same TR on multi-echo QSM accuracy, a sequence was implemented 
with no flow compensation and three TEs (No-FC-3ech), which is the 
minimum number of TEs for multi-echo QSM using the Morphology En- 
abled Dipole Inversion (MEDI) toolbox (see Section 2.3.2 ). All sequences 
were run on all subjects except No-FC-3ech, which, because of time re- 
strictions, was only tested on four subjects. Additionally, PCA data were 
acquired to independently locate and segment major cerebral veins. The 

PC velocity encoding threshold ( V enc ) was chosen in line with the ex- 
pected peak systolic forward velocity of flow in the major intracranial 
veins and sinuses, which, on average, ranges between 7 and 20 cm/s in 
healthy subjects ( Stolz et al., 1999 ). The GRE sequence implementation 
with full flow compensation was enabled by research software made 
available by the scanner manufacturer. 

The data of the pilot study had been acquired on a Philips Achieva 
3 T system (software version R3.2.1) using a 32-channel head coil. The 
acquisition protocol comprised three of the sequences used in the main 
study: Full-FC, No-FC, and No-FC-7ech with identical parameter settings 
except for a 1.1 × 1.1 × 1.1 mm 

3 resolution and a 246 × 180 × 144 mm 

3 

field-of-view. 

2.3. Image processing and analysis 

Where not stated otherwise, all data processing and analyses were 
performed using MATLAB (R2020a, The Mathworks, Natick, MA, United 
States). 

2.3.1. Brain mask calculation 

For each subject, brain masks for QSM were calculated based 
on the longest-TE magnitude image from each sequence. This en- 
abled exclusion of anatomical areas near air-tissue interfaces, which 
cause artifacts due to signal dropout at longer TEs. The mag- 
nitude images were segmented into tissue compartments using 
the “segment ” module of the Statistical Parametric Mapping tool- 
box (SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ) for 
MATLAB. Each brain mask was calculated as the sum of the gray mat- 
ter, white matter, and cerebrospinal fluid tissue compartments. In each 
transverse slice, residual holes in the brain mask were filled using an in- 
house script written in MATLAB to evaluate each voxel in the mask in 
relation to its four direct within-slice neighbors. The superior sagittal si- 
nus was added to the brain mask using ITK-SNAP’s semi-automated seg- 
mentation tool ( Yushkevich et al., 2006 ) ( www.itksnap.org ) on the first- 
echo magnitude image as detailed in a previous study ( Biondetti et al., 
2019 ). 

2.3.2. QSM processing pipelines 

Each 3D QSM data set was processed using six different QSM recon- 
struction pipelines (see Fig. 1 for a schematic overview). Three methods 
were based on two publicly available toolboxes: the MEDI toolbox 
(version 11/2017; http://pre.weill.cornell.edu/mri/pages/qsm.html ) 
and the Susceptibility Tensor Imaging (STI) Suite (v3.0_05/2017; 
https://people.eecs.berkeley.edu/~chunlei.liu/software.html ), both 
with default settings applied. Additionally, we tested total generalized 

3 
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Fig. 1. Schematic diagram of the processing 

steps in each QSM reconstruction pipeline . 

The input data consisted of magnitude and 

phase images from each of the different GRE 

sequences listed in Table 1 . Multi-echo com- 

bination was performed after Laplacian phase 

unwrapping when using STI Suite and before 

phase unwrapping in all other pipelines. In 

TGV, background field removal and field-to- 

susceptibility inversion were performed within 

the same step. All other QSM pipelines per- 

formed these two steps separately. 

variation (TGV) ( Langkammer et al., 2015 ), a one-step algorithm, 
and two Tikhonov (TIK)-based QSM reconstruction methods, the 
latter having been optimized and applied previously for venous QSM 

( Biondetti et al., 2020 ; Biondetti et al., 2019 ). All methods except TGV 

used the same brain mask, calculated as described above. Calculated 
susceptibility values were not referenced to a specific brain tissue 
to avoid combining the effects of acquisition or QSM reconstruction 
method in a reference region of interest (ROI) with those in venous 
ROIs. 

For multi-step processing using the MEDI toolbox, the total field 
map was calculated by fitting the complex GRE signal over TEs. 
Phase unwrapping was performed using a Laplacian-based technique 
( Schofield and Zhu, 2003) and background fields were removed via pro- 
jection onto dipole fields (PDF) ( de Rochefort et al., 2010 ; Liu et al., 
2011 ). Local field-to-susceptibility inversion was performed using the 
Morphology Enabled Dipole Inversion “MEDI_L1 ” ( Liu et al., 2012 ; 
Liu et al., 2011 ) method with a reduced radius of 3 for the spherical 
mean value operator “SMV ” to avoid excessive erosion of the brain 
mask, and otherwise default values. This included a default value of 
1000 for the regularization parameter (recommended by the developers 
for brain applications and verified by checking several values on these 
data), since the toolbox did not provide any options for optimizing this 
parameter. 

In the STI Suite, Laplacian-based phase unwrapping was applied and 
the multi-echo unwrapped phase images were then combined via TE- 
weighted averaging ( Li et al., 2015 ; Wei et al., 2015 ). Background fields 
were removed using sophisticated harmonic artifact reduction for phase 
data with variable kernel sizes (V-SHARP) ( Li et al., 2011 ; Wu et al., 
2012b ). Local field-to-susceptibility inversion was performed using two 
distinct methods: iterative least-squares (iLSQR) ( Li et al., 2011 ) and an 
algorithm specifically designed for reducing streaking artifacts poten- 
tially arising from high-susceptibility sources such as large veins (streak- 
ing artifact reduction, STAR) ( Wei et al., 2015 ). 

One-step TGV-based QSM ( Langkammer et al., 2015 ) was performed 
using Singularity (Sylabs Inc., Albany, CA, USA; https://github.com/ 
CAIsr/qsm ) and the default parameter values 𝛼1 , 𝛼0 = 0.0015, 0.0005 
based on the criterion that 𝛼1 ∶ 𝛼0 = 3:1 is optimal for medical imaging 
applications ( Knoll et al., 2011 ). The inputs for TGV QSM were the field 
map combined using the nonlinear fitting function in the MEDI toolbox 
( Liu et al., 2013 ) and the echo spacing. 

The input for the Tikhonov-based QSM calculations was the lo- 
cal field map calculated by the MEDI-based pipeline. Local field- 
to-susceptibility inversion was performed using direct Tikhonov reg- 
ularization (dTIK; https://xip.uclb.com/i/software/mri_qsm_tkd.html ) 
as well as an iterative implementation (iterative Tikhonov, iTIK; 

https://xip.uclb.com/i/software/mri_qsm_tkd.html ), both with correc- 
tion for susceptibility underestimation. For dTIK, the average opti- 
mal regularization parameter “alpha ” ( 𝛼𝑑𝑇 ) across subjects was calcu- 
lated separately for each acquisition sequence using the L-curve method 
( Hansen and O’Leary, 1993) . The values for 𝛼𝑑𝑇 ranged between 0.070 
and 0.074 and can be found in Table S1 in the supplementary material. 
For iTIK, an empirical fixed value of 𝛼𝑖𝑇 = 0.05, recommended by the 
developer for brain applications, was used as the regularization param- 
eter. 

In summary, the processing pipelines differed in three main steps: 
multi-echo combination, background field removal, and local field-to- 
susceptibility inversion. A detailed comparison of the individual pro- 
cessing steps within the investigated QSM processing pipelines is shown 
in Table S2 in the supplementary material. 

As some of the QSM reconstruction methods resulted in slightly 
eroded brain volumes, we calculated a minimum-size brain mask to have 
a common volume for all our analyses. This minimum-size brain mask 
was calculated for each acquisition sequence and subject separately as 
the intersection of brain volumes in each of the processed QSM images. 

2.3.3. Whole-brain vessel filtering 

The automated multiscale vessel filtering (MVF) method 
( Bazin et al., 2015 ) (version 3.0.7) from the JIST-LayoutTool (v1.8, 
08/2013; https://www.nitrc.org/projects/jist/ ) of MIPAV (v8.0.2, 
02/2018; https://mipav.cit.nih.gov/ ) was used for whole-volume 
vessel segmentation of the susceptibility maps from each QSM pipeline. 
The segmentation was performed using default parameter settings 
including a recursive ridge filter and a scale number (kernel size) equal 
to 4 ( Biondetti et al., 2019 ). 

2.3.4. Single-vein segmentation 

Based on the PCA venogram, semi-automated segmentation of ma- 
jor representative veins (superior sagittal sinus (SSS), straight sinus 
(StrS), transverse sinuses (TraS), and internal cerebral veins (ICVs)) 
was performed using ITK-SNAP’s “active contour segmentation mode ”
( Bettoni et al., 2018 ; Law and Chung, 2013 ). Here, the TraS segment 
comprised the transverse sinuses, extending into the sigmoid sinuses 
and the internal jugular veins. This segment was defined to investigate 
the global performance of venous QSM in the inferior part of the brain. 
The PCA-based venous ROIs were aligned with each susceptibility map 
using SPM12 (nearest neighbor interpolation) via rigid alignment of the 
PCA magnitude image with the corresponding first-echo GRE magnitude 
image. To mitigate partial volume effects between veins and surround- 
ing brain tissue, the co-registered ROIs of larger veins (i.e., SSS, StrS, 
and TraS) were eroded with a spherical shaped structural element by 
one voxel for further analyses. 

4 
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2.3.5. Quantitative analysis 

All vein segmentations (whole-brain and single-veins) were multi- 
plied with the minimum-size brain mask. The average and standard 
deviation of susceptibility values were calculated in both the masked 
whole-brain MVF-based and single-vein segmentations. For each sus- 
ceptibility map, venous density was calculated as the fraction of MVF- 
segmented venous voxels over the total number of voxels in the brain 
mask. 

To assess the accuracy of MVF-based automated segmentation, two 
different analyses were performed. First, a consensus segmentation map 
was calculated from the six MVF-based automated segmentations from 

different QSM reconstructions per sequence and subject. This consensus 
map was thresholded at a probability of 50% resulting in a map of pixels 
classified as blood vessel in at least three out of the six MVF-based seg- 
mentations. The fraction of correctly segmented venous voxels ( “true 
positives ”) was then determined within this consensus segmentation. 
Second, the non-eroded PCA-based single-vein ROIs were considered as 
a gold-standard reference and the fraction of venous voxels correctly 
detected by the MVF segmentation within these ROIs was calculated. 

To assess the similarity between segmentation outcomes across sus- 
ceptibility maps from different acquisition sequences and reconstruc- 
tion methods, Sørensen-Dice similarity coefficients were calculated be- 
tween automated whole-brain segmentations from different susceptibil- 
ity maps. The coefficients were computed as ( Dice, 1945) DSC ( 𝐴, 𝐵) = 

2 ∗ ( 𝐴 ∩𝐵) 
|A |+ |B | , where |A| is the number of voxels in the segmentation of sus- 

ceptibility map (A), |B| the number of voxels in the segmentation of 
susceptibility map (B), and ( 𝐴 ∩ 𝐵) the number of voxels in the intersec- 
tion of both segmentations. Additionally, Sørensen-Dice similarity co- 
efficients were calculated between each of the automated whole-brain 
segmentations from different susceptibility maps and the consensus seg- 
mentation. 

For accurate vein imaging, susceptibility maps need to represent 
veins as tubular connected structures. To investigate this aspect, the con- 
nectedness of voxels within the intersection of the PCA-based segmenta- 
tion of ICVs and the MVF-segmentation was evaluated. To this end, the 
“bwconncomp ” MATLAB function was utilized to find the largest con- 
nected component within the intersection map. The number of voxels 
within this largest connected component was then divided by the total 
number of voxels in the PCA-based ICVs segmentations. Additionally, 
subject-mean values of vessel diameters and partial volume contribu- 
tions of veins obtained from the MVF algorithm were calculated within 
the PCA-based single-vein segmentations. Note that “partial volume ” = 0 
in a given voxel means absence of vessels in that voxel. 

To estimate the respective influence of QSM reconstruction methods 
and imaging sequences, venous susceptibilities from data acquired with 
different sequences but reconstructed with the same QSM reconstruc- 
tion method were averaged to obtain a method-mean venous suscepti- 
bility value, χ̄𝑚𝑒𝑡ℎ𝑜𝑑 . Equivalently, susceptibilities calculated from data 
acquired with the same sequence but reconstructed with different QSM 

reconstruction methods were averaged to obtain a sequence-mean ve- 
nous susceptibility value, χ̄𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 . The maximal difference between the 
six method-mean venous susceptibility values ( Δχ̄𝑚𝑒𝑡ℎ𝑜𝑑 ) and the maxi- 
mal difference between the six sequence-mean venous susceptibility val- 
ues ( Δχ̄𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ) were determined, and their ratio was calculated to assess 
the relative importance of the two factors. 

Finally, venous oxygenation values were calculated according to 
Eq. (1) with 𝐻𝑐𝑡 = 0.4, Δχ𝑑𝑜 = 0.27 ∗ 4 𝜋 ppm ( Spees et al., 2001 ), 
and Δχ𝑜𝑥𝑦 = -0.03 ∗ 4 𝜋 ppm ( Weisskoff and Kiihne, 1992 ). 

2.3.6. Statistical analysis 

Statistical analyses were performed using SPSS (IBM Corp. Released 
2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY). For 
whole-brain MVF-based and semi-automated single-vein segmentations, 
separate two-way repeated measures analyses of variance (ANOVAs) 
were applied to test whether there was a statistically significant dif- 
ference in average venous susceptibility when using different imag- 

ing sequences and applying distinct QSM reconstruction pipelines. The 
Shapiro-Wilk test and Mauchly’s Test of Sphericity were applied to test 
and verify the normality of each data set’s distribution and sphericity, 
respectively, as requirements for performing the ANOVA. Effect sizes 

( 𝜂2 ) were calculated as ( Lakens, 2013) 𝜂2 = 

𝑆 𝑆 𝑒𝑓 𝑓 𝑒𝑐𝑡 

𝑆 𝑆 𝑡𝑜𝑡𝑎𝑙 
, where 𝑆 𝑆 𝑒𝑓 𝑓 𝑒𝑐𝑡 is 

the sum of squares of an effect (in this study, e.g., QSM reconstruction 
method or QSM sequence) and 𝑆 𝑆 𝑡𝑜𝑡𝑎𝑙 the total sum of squares (in the 
study, variability of venous susceptibility values). Simple main effects 
were analyzed for all average venous susceptibilities of segmentations 
that showed a significant interaction between both effects (QSM recon- 
struction method and QSM sequence). Therefore, paired samples t -tests 
were run for all possible combinations of the six QSM reconstruction 
methods (15 per sequence) for the five sequences that were acquired in 
all ten subjects (75 combinations) and for all pairs of sequences per re- 
construction method (60 combinations). The Benjamini-Hochberg pro- 
cedure was then applied to control for the false discovery rate. 

2.4. Data availability statement 

In line with local ethics guidelines and subject privacy policies, the 
full set of acquired data are available via a request to the authors, as in- 
stitutional policies require a formal data sharing agreement. However, 
an example data set of the participant shown in Figs. 2 to 4 (including 
defaced raw magnitude and phase images, brain mask, susceptibility 
maps, multiscale vessel filtering segmentations, and PCA-based single- 
vein segmentations aligned to the QSM images) can be downloaded via 
the following link: https://doi.org/10.5281/zenodo.4947237 . The full 
MATLAB code applied for susceptibility map calculation is available 
upon request and all the QSM reconstruction methods ( Fig. 1 ) are pub- 
licly available via the links in Section 2.3.2 . Sharing of any sequence 
modification applied here is limited by a nondisclosure agreement with 
the scanner manufacturer. 

3. Results 

3.1. Overall vessel appearance on QSM 

Multi-echo GRE images acquired using the different acquisition se- 
quences appeared similar on visual inspection ( Fig. 2 ). Likewise, dif- 
ferences between reconstructed susceptibility maps from data acquired 
using different flow compensation schemes appeared small on simple 
visual inspection ( Fig. 3 ). Conversely, susceptibility maps reconstructed 
with the six different QSM reconstruction methods exhibited clear dif- 
ferences in overall tissue contrast, extent of brain erosion, also affecting 
SSS visibility, and vein delineation performance ( Fig. 3 ). Some streaking 
artifacts were found in the MEDI reconstructions ( Fig. 3 , MEDI, sagit- 
tal slices), while the Tikhonov-based reconstructions seemed to contain 
residual low-frequency (background) field contributions ( Fig. 3 , dTIK 

and iTIK). Generally, in the MEDI, TGV, and dTIK susceptibility maps, 
veins had a higher contrast relative to the surrounding brain tissue, but 
substantially decreased susceptibility values in the immediate vicinity of 
venous areas ( Fig. 3 , arrowheads). In the STI-STAR susceptibility maps, 
veins often appeared less well defined. Additionally, in some of the sus- 
ceptibility maps reconstructed with both STI-based methods, the suscep- 
tibility in specific veins or venous segments, e.g., within the SSS or StrS, 
appeared lower than in the surrounding brain tissue ( Fig. 3 , arrows), 
resulting in an overall reduced conspicuity of these veins. 

3.2. Performance of automated whole-brain vessel segmentation 

For the same acquisition sequence, the number and location of auto- 
matically segmented venous voxels differed across QSM reconstructions 
( Fig. 4 A). While about 10–25% of automatically MVF-based segmented 
venous voxels were recognized by the MVF algorithm in all six suscep- 
tibility maps from the same sequence ( Fig. 4 A, blue squares and yel- 
low arrows), others were only segmented in some or just a single QSM 
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Fig. 2. Representative GRE magnitude im- 

ages of the first (top rows) and last (bottom 

rows) echo for each of the six sequences. 

Similar slices (not perfectly aligned) were se- 

lected for each sequence. Zoomed-in regions of 

the first echo and last echo GRE (orange rectan- 

gles) are shown in the second and fourth row, 

respectively. The magnitude image quality was 

comparable across all multi-echo GRE imaging 

sequences. All images are scaled in arbitrary 

units. The magnitude image brightness can be 

affected by automatic adjustment of the scan- 

ner. 

Fig. 3. Representative transverse and sagit- 

tal slices of the same healthy subject shown 

in Fig. 2 are shown for all susceptibility 

maps reconstructed with the six different 

QSM pipelines (columns) for three of the 

imaging sequences. Similar transverse and 

sagittal slices were selected for (A) Full-FC, (B) 

No-FC, and (C) TE1-FC-CS sequences. Differ- 

ences in the susceptibility maps can be seen 

between the six reconstruction methods includ- 

ing the degree of SSS erosion, substantially de- 

creased susceptibility values around veins (ar- 

rowheads), and reduced susceptibility values 

within venous areas (arrows). 

reconstruction ( Fig. 4 A, arrowheads). MEDI and TGV had the highest 
fractions (~80%) of correctly segmented voxels compared to the con- 
sensus segmentations, while STI-STAR had the lowest fractions (~45%) 
of correctly detected voxels ( Fig. 5 A). Susceptibility maps reconstructed 
with both TIK-based reconstructions showed high fractions of true pos- 
itive voxels (~70%) in the segmentation ( Fig. 5 A) and resulted in the 
highest Dice similarity scores (0.7–0.9) with the consensus segmentation 
( Fig. 5 B). 

Dice scores quantifying the relative overlap between individual 
whole-brain segmentations are reported in Supplementary Fig. S3. For 
all imaging sequences, the highest Dice scores (range: 0.5–0.7) were 
found between the two TIK-based susceptibility maps, whereas the low- 
est Dice scores (range: 0.2–0.45) were found between STI-STAR and all 
non-STI-based pipelines (Supplementary Fig. S3). 

Automated whole-brain segmentations were compared to indepen- 
dent PCA-based semi-automated segmentations of single representative 
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Fig. 4. Representative results of vein segmentations for (A) MVF-based automated whole-brain segmentations of different QSM reconstructionsand (B) 

PCA-based semi-automated segmentation of single representative veins. In (A), the same transverse and sagittal slices are shown for each QSM reconstruction 

(columns) of the Full-FC data with the segmented voxels overlaid (orange). The arrows point to the superior sagittal sinus (red dotted arrows) and an internal cerebral 

vein (yellow arrows) and the blue square shows the location of the zoomed-in region (bottom row) encircling the straight sinus. White arrowheads point to voxels 

uniquely segmented in the corresponding susceptibility map. In (B), the superior sagittal sinus (SSS), the straight sinus (StrS), both transverse sinuses (TraS), and the 

internal cerebral veins (ICVs) are colored in red, blue, green, and yellow, respectively. 

Fig. 5. Agreement of automated whole- 

brain segmentations with a consensus seg- 

mentation map across sequences and pro- 

cessing pipelines. For each QSM reconstruc- 

tion method and acquisition sequence, panel 

(A) shows boxplots of the fraction of true 

positives (correctly segmented voxels) of the 

various segmentations, i.e., voxels conform- 

ing with the consensus segmentation. In panel 

(B), Sørensen-Dice similarity coefficients be- 

tween whole-brain segmentations of suscepti- 

bility maps reconstructed with different QSM 

reconstruction methods and the consensus seg- 

mentation are shown. Each acquisition se- 

quence is represented using a different color 

and the six QSM reconstruction methods are 

grouped by column. In both panels, the box- 

plots represent distributions across subjects. 

veins ( Fig. 4 B). MEDI and TGV reconstructions had the highest fractions 
of voxels correctly segmented within the representative veins ( Fig. 6 ). 
Subject-mean vessel diameters of the PCA-based single-vein ROIs ranged 
between 2 mm for the ICVs and 3 mm for the TraS (Supplementary 
Fig. S4, A-D). Additionally, the partial volume contributions of veins 
were determined within the single-vein ROIs. The contribution of veins 
in these segmentations ranged mainly between 70–85% (Supplemen- 
tary Fig. S4, E-H). Slightly lower partial volume contributions of veins 

and thus higher contributions of surrounding tissue were found for 
STI-STAR (60–70%) and in superficial veins for TGV (~60% in the 
SSS). 

Supplementary Fig. S5 shows the fraction of connected voxels in 
the MVF-based segmentations within the corresponding semi-automated 
ICVs segmentation. STI-STAR reconstructions had the lowest fractions 
of connected voxels (average: 7–9%), STI-iLSQR and both Tikhonov- 
based reconstructions had a slightly higher fraction (average: 9–28%), 

7 



R.C. Berg, C. Preibisch, D.L. Thomas et al. NeuroImage 240 (2021) 118399 

Fig. 6. True positives (correctly segmented 

voxels) of the automated whole-brain seg- 

mentations identified in the gold-standard 

PCA-based segmentations of single repre- 

sentative veins within (A) the superior 

sagittal sinus (SSS), (B) the straight sinus 

(StrS), (C) both transverse sinuses (TraS), 

and (D) the internal cerebral veins (ICVs). 

The four different (bilateral) vein segmenta- 

tions were obtained using semi-automated seg- 

mentation on PCA images and used as a gold 

standard after co-registration to each individ- 

ual susceptibility map. Each acquisition se- 

quence is represented using a different color 

and the six QSM reconstruction methods are 

grouped by column. In all four panels, the box- 

plots represent distributions across subjects. 

Fig. 7. Whole-brain (A) mean and stan- 

dard deviations of venous susceptibility val- 

ues across subjects and (B) subject-mean 

venous densities for the six acquisition 

sequences (different colors) and six QSM 

reconstruction methods (columns). Venous 

susceptibility and venous density values were 

calculated across all voxels obtained from mul- 

tiscale vessel filtering on individual susceptibil- 

ity maps within a common minimum-size brain 

mask. Differences in mean venous susceptibil- 

ity and subject-mean venous density are greater 

for different QSM reconstruction methods than 

for different acquisition settings. 

whereas MEDI and TGV reconstructions had the highest fraction of con- 
nected voxels (average: 22–35%). 

Similar results were obtained from automated whole-brain vessel 
segmentation of the pilot study data (including five different subjects 
imaged on another scanner model from the same vendor). The highest 
fractions of correctly segmented venous voxels within the consensus seg- 
mentation map (Supplementary Fig. S6A) were again highest for MEDI 
and TGV and lowest for STI-STAR reconstructions, while the Dice scores 
were highest for iTIK susceptibility maps (Supplementary Fig. S6B). Fur- 
thermore, Dice scores between pairs of QSM reconstruction methods in 
the pilot study data (Supplementary Fig. S7) correlated well with the 
corresponding Dice scores of the main study (Supplementary Fig. S3). 
Analyses requiring PCA for segmentation could not be performed on the 
pilot study data, since PCA images were only acquired in three of the five 
subjects, resulting in a sample size too small for meaningful statistical 
analysis. 

3.3. Susceptibility quantification inside venous segmentations 

In all subjects, STI-based reconstructions yielded the lowest av- 
erage susceptibility values for both the whole-brain automated vein 

segmentations ( Fig. 7 A) and the single-vein semi-automated segmen- 
tations ( Fig. 8 ). Notably, TIK-based versus STI-based reconstructions 
yielded similar whole-brain venous densities (~0.7–1.0%), but consis- 
tently higher average susceptibility values ( Fig. 7 ). MEDI and TGV re- 
constructions resulted in slightly higher venous densities in the brain 
(~1.0–1.4%) ( Fig. 7 B). In all venous segmentations, dTIK reconstruc- 
tions resulted in the highest venous susceptibility values and thereby in 
the lowest SvO 2 values (Supplementary Table S8), but also had the most 
variable venous susceptibility values ( Figs. 7 A and 8 ). 

Similar average susceptibility values and venous densities (~0.6 - 
1.3%) were obtained from five different subjects acquired on another 
scanner model from the same vendor (Supplementary Fig. S9). 

Two-way repeated measures ANOVA with Greenhouse-Geisser 
correction for non-sphericity revealed that significant differences 
in the average whole-brain venous susceptibility were linked to 
both the type of imaging sequence ( F (4, 36) = 4.19, p = 0.007, 
𝜂2 = 0.006) and the QSM reconstruction method employed ( F (2.36, 
20.32) = 222.10, p < 0.001, 𝜂2 = 0.866). Additionally, there was a sta- 
tistically significant interaction between the effects of imaging sequence 
and QSM reconstruction method on venous susceptibility ( F (5.38, 
48.38) = 5.13, p = 0.001, 𝜂2 = 0.028). Similar results were found for 
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Fig. 8. Mean and standard deviations of 

venous susceptibility values in single-vein 

segmentations of (A) the superior sagittal 

sinus (SSS), (B) the straight sinus (StrS), 

(C) both transverse sinuses (TraS), and (D) 

the internal cerebral veins (ICVs). Data are 

shown for the six acquisition sequences (differ- 

ent colors) and six QSM reconstruction meth- 

ods (columns). Mean venous susceptibility was 

calculated across all voxels obtained from semi- 

automated segmentation on PCA images after 

co-registration to each individual susceptibility 

map. Differences in mean venous susceptibil- 

ity are greater for different QSM reconstruction 

methods than for different acquisition settings. 

Table 2 

Maximal differences between the method-mean 𝛘̄𝒎 𝒆 𝒕 𝒉 𝒐 𝒅 and sequence-mean 

𝛘̄𝒔 𝒆 𝒒 𝒖 𝒆 𝒏 𝒄 𝒆 venous susceptibility values and their quotient. The method-mean val- 

ues were calculated by averaging over venous susceptibility values acquired with six 

different sequences but reconstructed with the same QSM reconstruction method. Ac- 

cordingly, sequence-mean values were calculated by averaging over venous suscep- 

tibility values acquired with the same sequence but reconstructed with six different 

QSM reconstruction methods. 

Maximal average differences in 𝜒̄-venous MVF SSS StrS TraS ICVs 

𝚫𝝌̄𝒔 𝒆 𝒒 𝒖 𝒆 𝒏 𝒄 𝒆 [ppm] 0.009 0.058 0.045 0.054 0.053 

𝚫𝝌̄𝒎 𝒆 𝒕 𝒉 𝒐 𝒅 [ppm] 0.104 0.236 0.263 0.143 0.231 

𝚫𝝌̄𝒎 𝒆 𝒕 𝒉 𝒐 𝒅 / 𝚫𝝌̄𝒔 𝒆 𝒒 𝒖 𝒆 𝒏 𝒄 𝒆 11.56 4.07 5.84 2.65 4.36 

the average susceptibility in single-vein segmentations (Supplementary 
Table S10). 

Paired samples t -tests with Benjamini-Hochberg correction for a false 
discovery rate revealed that most average venous susceptibility val- 
ues calculated with different QSM reconstruction methods were signifi- 
cantly different from each other (Supplementary Table S11). However, 
for various acquisition sequences and across several venous segments, 
no significant differences in average venous susceptibility were found 
between iTIK and MEDI as well as between iTIK and TGV. Furthermore, 
some pairs of reconstruction methods did not show statistically signif- 
icantly different mean susceptibility values within single venous seg- 
ments, such as STI-iLSQR and TGV within the SSS or MEDI and dTIK 

within the TraS segmentations. 
Much smaller differences in venous susceptibility values were found 

between data acquired with different imaging sequences than across 
the six QSM reconstruction methods ( Figs. 7 A and 8 ). However, ve- 
nous susceptibility values acquired with the No-FC-7ech sequence were 
frequently slightly increased compared to other sequences. Similarly, 
paired samples t -tests with Benjamini-Hochberg correction comparing 
mean susceptibilities from different acquisition sequences revealed only 

a few statistically significant differences (Supplementary Table S12). 
These differences were mainly found between the No-FC-7ech sequence 
and any of the other sequences. 

For all single-vein segmentations, Δχ̄𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , the maximal difference 
between the six sequence-mean venous susceptibility values ( ̄χ𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ), 
was almost constant (varying between 0.05 and 0.06 ppm), while 
Δχ̄𝑚𝑒𝑡ℎ𝑜𝑑 , the maximal difference between the six method-mean venous 
susceptibility values ( ̄χ𝑚𝑒𝑡ℎ𝑜𝑑 ), varied more strongly across the segmen- 
tations (between 0.14 and 0.26 ppm) ( Table 2 ). These results show that 
the influence of the QSM reconstruction method on the average venous 
susceptibility values was much stronger than the influence of the acqui- 
sition sequence, ranging from a factor of 2.7 (TraS) to 5.8 (StrS). Whole- 
brain segmentations, which contained many more voxels compared to 
single-vein segmentations, resulted in smaller maximal differences be- 
tween sequence-mean and method-mean susceptibilities. However, in 
the whole-brain segmentations, the influence of the QSM reconstruction 
method on the average venous susceptibility was 11.6 times larger than 
the influence of the sequence ( Table 2 ), which concurs with a factor of 
12.4 obtained for the pilot study data acquired on a different scanner 
model (Supplementary Table S13). 
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4. Discussion 

This study aimed to compare acquisition sequences and QSM recon- 
struction pipelines for venous QSM. The effect of flow compensation 
during image acquisition was evaluated by applying sequences incorpo- 
rating different flow compensation schemes versus no flow compensa- 
tion when using monopolar readout gradients. The effect of using dif- 
ferent QSM reconstruction methods was evaluated by testing pipelines 
from popular QSM toolboxes compared to pipelines previously opti- 
mized for venous QSM. The effects of acquisition sequence and QSM 

reconstruction method on the accuracy of venous susceptibility val- 
ues were assessed by applying all combinations of sequences and QSM 

pipelines to the multi-echo GRE data acquired in ten healthy volunteers. 
The results were validated in a second smaller cohort of five healthy 
volunteers who were scanned using a subset of the same acquisition se- 
quences at a different site. 

4.1. Influence of the imaging sequence on venous QSM 

Generally, there was a high similarity in the visual appearance of 
susceptibility maps, venous susceptibility values, and the performance 
of whole-brain segmentation between acquisition sequences. Slight dif- 
ferences were only found for the two sequences without flow compen- 
sation (No-FC-3ech and No-FC-7ech) that had a different number of 
echoes from all other sequences (which had four echoes). Susceptibility 
maps reconstructed from the No-FC-3ech sequence (maximizing SNR 

over the minimum number of TEs needed for multi-echo fitting using 
MEDI) resulted in slightly lower average venous susceptibility values 
within single-vein segmentations ( Fig. 8 ) and in slightly lower variances 
in susceptibility in the whole-brain segmentations (for the MEDI, dTIK, 
and iTIK pipelines) ( Fig. 7 A). However, the smaller sample size acquired 
with this sequence (four subjects) did not allow a direct comparison with 
other sequences (ten subjects). 

Sequences with four echoes had more consistent mean susceptibility 
values and it is possible that including more echoes in the nonlinear fit 
(used for all but the STI-based methods) slightly improved the accuracy 
of venous QSM. The No-FC-7ech sequence resulted in slightly higher 
venous susceptibility values compared to all other sequences ( Figs. 7 A 

and 8 ). Here, a possible cause for measuring higher venous susceptibility 
values may be phase accumulation due to the lack of flow compensa- 
tion. Moreover, compared to the two other sequences without any type 
of flow compensation, the No-FC-7ech sequence had a lower signal-to- 
noise ratio (due to its higher bandwidth). Venous susceptibility values 
differed least between the fully flow compensated sequence (Full-FC) 
and the sequences with only first-echo flow compensation (TE1-FC and 
TE1-FC-CS) or the sequence without flow compensation and matched 
echo times (No-FC). This suggests that the number of echoes had more 
of an effect on the susceptibility values than the flow compensation 
scheme. 

Generally, different flow compensation implementations yielded 
comparable venous susceptibility values. Even in the largest cerebral 
veins, such as the superior sagittal sinus or the transverse sinuses, ve- 
nous susceptibility values were not statistically significantly different 
between sequences with and without flow compensation. It is possi- 
ble that the monopolar readout gradients employed in all imaging se- 
quences mitigated the lack of flow compensation by effectively applying 
a partial form of incidental flow compensation in the frequency encod- 
ing direction, even when full flow compensation was not explicitly im- 
plemented. However, the effect of monopolar read gradients on flow 

compensation in the three encoding directions could be further evalu- 
ated, e.g., using a flow phantom experiment similar to Xu et al. (2014) . 
For this purpose, three water-filled tubes, each connected to a pump gen- 
erating constant flow with known velocities, could be oriented parallel 
to the three encoding directions. Nonetheless, sequences without flow 

compensation or with only first-echo flow compensation appear just as 

suitable for quantitative analyses as sequences with full flow compensa- 
tion when monopolar read gradients are used. 

No significant differences in image quality and venous susceptibil- 
ity were detected when comparing the Compressed SENSE-accelerated 
sequence (TE1-FC-CS) with the other SENSE-accelerated sequences. Fur- 
thermore, the TE1-FC-CS sequence enabled reliable whole-brain seg- 
mentations, resulting in slightly higher Dice similarity scores with the 
consensus segmentation compared to other sequences for most of the 
QSM reconstruction methods ( Fig. 5 B). Therefore, our results suggest 
that, for venous QSM, Compressed SENSE could be used to obtain clin- 
ically feasible scan times (5–6 min) without introducing significant 
venous susceptibility differences compared to SENSE-accelerated se- 
quences. 

4.2. Influence of the QSM reconstruction pipeline on venous QSM 

Our results show that the choice of QSM processing pipeline is crucial 
for correctly reconstructing high susceptibility values in veins. The QSM 

reconstruction method had a much (2.7 to 11.6 times) greater effect on 
the average venous susceptibility than the acquisition sequence in gen- 
eral or the use of flow compensation in particular ( Table 2 , Figs. 7 A 

and 8 ). These findings were reproduced using data acquired on a dif- 
ferent scanner model from the same vendor (Supplementary Table S13 
and Supplementary Fig. S9). Furthermore, different vein segmentation 
approaches did not influence our results: similar trends were seen when 
using either automated whole-brain or semi-automated single-vein seg- 
mentation methods ( Figs. 7 A and 8 ). 

4.3. Accuracy of automated whole-brain segmentations 

Higher fractions of correctly segmented voxels within the consensus 
segmentation ( Fig. 5 A) and within the gold-standard single-vein seg- 
mentations ( Fig. 6 ), and higher fractions of connected voxels within the 
PCA-segmented ICVs (Supplementary Fig. S5) were regarded as indi- 
cators of higher quality of the automated whole-brain vein segmenta- 
tion. Higher Dice overlaps with the whole-brain consensus segmenta- 
tion ( Fig. 5 B) and lower contributions of partial volume effects in the 
PCA-based single vein segmentations (higher influence of vein, Supple- 
mentary Fig. S4, E-H) were regarded as additional indicators of more 
accurate vein segmentation. The latter is the case, as partial volume ef- 
fects of surrounding tissue can artificially decrease the susceptibilities 
in veins. Based on these indicators, QSM reconstruction methods en- 
abling more accurate automatic whole-brain segmentation (TIK-based 
methods and MEDI) also resulted in the highest venous susceptibilities 
within both the whole-brain and single-vein segmentations ( Figs. 7 A and 
8 ). These same methods also resulted in fewer partial volume effects 
between veins and the surrounding brain tissue (Supplementary Fig. 
S4, E-H). In contrast, susceptibility maps from STI-STAR, which showed 
the lowest average venous susceptibility values, appeared to yield inac- 
curate automated whole-brain segmentations. STI-STAR’s lower venous 
susceptibility values and the smoother tissue-vein boundaries probably 
impeded detectability by the MVF algorithm and led to increased partial 
volume contributions from surrounding tissue. 

However, it must be noted that partial volume estimates (and, thus, 
diameter estimates) were probably inaccurate in large superficial veins, 
as all QSM processing methods eroded the brain volume. Such brain 
erosion was found to be most prominent in susceptibility maps recon- 
structed with TGV, resulting in fewer true positives and greater partial 
volume contributions from surrounding tissue in the SSS and the TraS 
segmentations (Supplementary Fig. S4, E-H). TGV-based susceptibility 
maps were slightly more affected by brain mask erosion during process- 
ing compared to susceptibility maps reconstructed with other methods 
and this is likely to have impeded accurate representation and reliable 
automated detection of superficial veins. 
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4.4. Differences between processing pipelines 

Susceptibility maps reconstructed using methods from the STI Suite 
were found to differ most from the other QSM reconstructions, e.g., re- 
sulting in comparatively low venous susceptibility values ( Figs. 7 A and 
8 ) and low fractions of correctly segmented voxels ( Fig. 6 ). These differ- 
ences between susceptibility maps calculated using STI-based pipelines 
and those reconstructed using all other pipelines could be caused by 
differences in multi-echo GRE signal combination. For the STI-based 
pipelines, the phase at each echo was first unwrapped and then averaged 
over all echoes using a TE-based weighting approach ( Li et al., 2015 ; 
Wei et al., 2015 ). Conversely, all other pipelines combined the complex 
GRE signal by nonlinear fitting over TEs before performing spatial phase 
unwrapping ( Liu et al., 2013 ). Unlike fitting over TEs, averaging over 
TEs does not allow removal of phase offsets from the fitted field map. 
Moreover, Laplacian-based phase unwrapping could alter the linearity 
of the signal phase over time by inherently performing some degree 
of background field suppression, thus yielding inaccurate values if the 
phase is combined over TEs after Laplacian unwrapping ( Biondetti et al., 
2016 ; Schweser et al., 2013 ). These two aspects could have jointly con- 
tributed to the generally lower accuracy of STI-based venous QSM. Ad- 
ditionally, in the STI-STAR pipeline, high-susceptibility areas are recon- 
structed separately from the surrounding tissue by applying a two-step 
algorithm ( Wei et al., 2015 ). In the first step, the regularization param- 
eter is tuned to “high-susceptibility sources ”, which are reconstructed 
separately, and then the forward model ( Marques and Bowtell, 2005 ) is 
applied to estimate and remove field variations from these sources from 

the original field map. In the second step, “low-susceptibility sources ”
are reconstructed in the rest of the brain by tuning the regularization pa- 
rameter to brain parenchyma ( Wei et al., 2015 ). However, the first reg- 
ularization parameter was originally tuned for detecting hemorrhages, 
which are characterized by much higher susceptibility values (up to 
~1 ppm) than normal appearing veins (~0.3–0.4 ppm) ( Wei et al., 
2015 ). Thus, in our study, it is possible that voxels within a normal 
venous susceptibility range were largely omitted in the first step of the 
STI-STAR method, but then over-regularized in the second step, result- 
ing in unrealistically low venous susceptibilities. Note that tuning the 
regularization parameters to different values was not possible because 
the corresponding function in the STI toolbox is designated as private. 

Generally, differences between QSM reconstruction methods in the 
regularization used in the local field-to-susceptibility inversion step can 
influence the appearance of susceptibility maps and the variability of 
susceptibility values. A lower degree of regularization could explain the 
higher variance of venous susceptibility found for dTIK and the lower 
overall homogeneity generally seen in TIK-based susceptibility maps 
possibly caused by residual background fields. Additionally, differences 
in the background field removal method affect the field maps and could 
thus influence the resulting susceptibility maps, especially in regions 
near the brain mask boundary such as superficial veins ( Schweser et al., 
2017 ). A previous study found that V-SHARP (used in both STI-based 
QSM reconstructions) resulted in less accurate field maps near the brain 
surface ( Schweser et al., 2017 ) compared to other methods such as PDF 
(used in MEDI and TIK-based QSM reconstructions). This could have 
been another factor contributing to the lower accuracy of STI-based ve- 
nous QSM. 

4.5. Quantification of venous oxygenation 

In this study, unreferenced susceptibility values were used to cal- 
culate SvO 2 values, as referencing would have introduced an additional 
component of variation between the methods. Evaluation of susceptibil- 
ity values in an established reference region, i.e., the lateral ventricles 
within the CSF ( Straub et al., 2017 ), revealed slight differences between 
QSM processing methods. However, referencing the susceptibility maps 
to the average susceptibility within the lateral ventricles did not affect 
the overall trends and findings of our study. As CSF susceptibility val- 

ues within the reference region were small for all reconstruction tech- 
niques, and referencing did not influence our overall results, we chose to 
omit this step in our comparison study. However, in quantitative studies 
comparing venous oxygenation values in different subjects or subject co- 
horts using a fixed QSM processing method, susceptibility values could 
be referenced before calculating SvO 2 values, although this may slightly 
increase the variance across subjects. 

In most of the combinations of acquisition sequence and QSM recon- 
struction method, the venous susceptibility tended to be underestimated 
and consequently the resulting SvO 2 was overestimated compared to 
literature values ( Biondetti et al., 2019 ; Fan et al., 2014 ; Xu et al., 
2014 ). Whole-brain SvO 2 was overestimated even using MEDI and TGV, 
which seemed promising for automatically quantifying whole-brain ve- 
nous oxygenation since they provided the most accurate automatic seg- 
mentation results. QSM reconstructions from dTIK yielded venous oxy- 
genation values (Supplementary Table S8) closest to venous oxygenation 
obtained by gold-standard PET measurements of the oxygen extraction 
fraction (OEF, SvO 2 = 1 – OEF). In all single-vein segmentations, the 
average venous susceptibility in dTIK QSM ranged between 0.19 ppm 

and 0.38 ppm corresponding to an SvO 2 of 60.9–74.9%, which is in good 
agreement with literature values measured using 15 O PET (i.e., 59–72%) 
( Cho et al., 2020 ; Ibaraki et al., 2008 ; Ishii et al., 1996 ) and MRI based 
on (apparent) transverse relaxation times (T 2 

∗ and T 2 ) (i.e., 63–70.6%) 
( Barhoum et al., 2015 ; Cho et al., 2020 ; Fan et al., 2016 ; Jain et al., 
2013 ). In MEDI and iTIK reconstructions, accurate SvO 2 values were 
only found in the StrS and ICVs segmentations, whereas SvO 2 values in 
the SSS and TraS were overestimated. 

Generally, whole-brain venous susceptibility distributions within 
dTIK reconstructions had the highest variance ( Fig. 7 A), suggesting 
less efficient noise or streaking artifact reduction compared to other 
pipelines. Nevertheless, the good correspondence of SvO 2 from dTIK 

(and partly also from iTIK or MEDI) QSM with SvO 2 measured using 
15 O PET suggests that susceptibility maps with the best overall visual 
appearance might not provide the most accurate susceptibility quantifi- 
cation (and SvO 2 measurement) in veins. Similarly, the QSM reconstruc- 
tion challenge 2.0 showed that errors in the estimation of susceptibility 
values in the veins were particularly high, even for many of the top- 
ranked QSM algorithms ( Bilgic et al., 2020 ). These findings indicate 
that the quantification of susceptibilities in venous blood remains prone 
to errors and needs further optimization. 

4.6. Limitations and recommendations for future studies 

To investigate differences in susceptibility values within the same 
venous voxels, all evaluations were performed using a minimum-size 
brain mask, calculated as the intersection of brain volumes in each of 
the processed QSM images. Even though the same original brain mask 
was used as an input for all QSM processing methods, the output brain 
regions differed slightly between the QSM pipelines. These differences 
arose as some methods (especially TGV and MEDI) inherently applied 
additional steps that include erosion, which are not easily modifiable, es- 
pecially for non-expert users. However, after applying the minimum-size 
brain mask to each individual susceptibility map, the semi-automated 
SSS and TraS segmentations were significantly reduced in size and a 
large portion of these superficial vessels was excluded from both the 
whole-brain and the single-vein analyses. When designing the image re- 
construction pipeline, future studies for venous QSM should account for 
the degree of brain erosion. For venous QSM, further work is needed to 
evaluate the accuracy of methods that do not require brain erosion dur- 
ing background field removal ( Liu et al., 2017 ) and could thus enable 
segmentation of the entire venous vasculature. 

Partial volume effects of vessels with the surrounding brain tissue 
are a common confounding factor in venous QSM leading to decreased 
venous susceptibility. This problem was addressed automatically for 
MVF-based whole-brain segmentations through a model-based approach 
( Bazin et al., 2015 ) and using erosion for single-vein segmentations. 
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However, in smaller veins, erosion was not feasible since it would have 
removed most segmented venous voxels. Thus, our single-vein analy- 
ses were mainly limited to large dural sinuses and one ROI drawn on 
smaller veins (the ICVs) that was analyzed without applying erosion. 

Flow acceleration effects on the measured venous susceptibility and 
SvO 2 values were not investigated. However, it has been shown us- 
ing the related method of susceptibility-based oximetry ( Cheng et al., 
2021 ) that flow acceleration could influence SvO 2 measurements in a 
TE-dependent fashion when applying flow compensation along the fre- 
quency encoding direction at the first TE, similar to our TE1-FC and 
TE1-FC-CS sequences. Although the present study highlights a substan- 
tially larger effect of image processing than imaging sequence on ve- 
nous QSM, further investigation of TE-dependent acceleration effects 
on velocity-compensated venous QSM measurements is required. 

In this study, image acquisition was limited to a single vendor and 
one field strength. Future studies on 3 T systems from different ven- 
dors are needed to evaluate, for example, the feasibility of multi-echo 
GRE MRI using compressed sensing. Moreover, since T 2 

∗ values shorten 
with increasing field strength and the optimal phase SNR for a given 
tissue is achieved when TE equals T 2 

∗ of that tissue ( Wu et al., 2012a ), 
ultra-high fields (e.g., 7 T) could be used to further reduce scan time for 
venous QSM. In fact, venous QSM has already been successfully used to 
image the brain vasculature at 7 T ( Huck et al., 2019 ). Future studies 
could build on these results to investigate the potential reduction in ac- 
quisition time achievable by reaching the optimal phase SNR at shorter 
TEs. 

5. Conclusion 

To conclude, the effect of different QSM reconstruction methods on 
mean venous susceptibility values was several times greater than the 
effect of varying acquisition settings including flow compensation. This 
indicates that specific optimization of QSM algorithms and pipelines is 
essential for accurate venous QSM and, in turn, to enable reproducible 
venous susceptibility quantification across studies. Future venous QSM 

studies need to carefully select their QSM reconstruction method based 
on their individual research question and to consider that the high sus- 
ceptibilities in veins could most accurately be quantified by QSM re- 
construction methods that do not necessarily provide the “best-looking ”
maps in other tissue types. Towards this aim, processing pipelines based 
on Tikhonov regularization or, alternatively, the MEDI toolbox appeared 
to provide a good overall performance in both successful automated vein 
segmentation and accurate quantification of venous susceptibility. 
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