
Computer Methods and Programs in Biomedicine 208 (2021) 106236

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

TorchIO: A Python library for efficient loading, preprocessing,

augmentation and patch-based sampling of medical images in deep

learning

Fernando Pérez-García

a , b , c , ∗, Rachel Sparks c , Sébastien Ourselin

c

a Department of Medical Physics and Biomedical Engineering, University College London, UK
b Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
c School of Biomedical Engineering & Imaging Sciences (BMEIS), King’s College London, UK

a r t i c l e i n f o

Article history:

Received 2 December 2020

Accepted 9 June 2021

Keywords:

Medical image computing

Deep learning

Data augmentation

Preprocessing

a b s t r a c t

Background and objective: Processing of medical images such as MRI or CT presents different challenges

compared to RGB images typically used in computer vision. These include a lack of labels for large

datasets, high computational costs, and the need of metadata to describe the physical properties of vox-

els. Data augmentation is used to artificially increase the size of the training datasets. Training with im-

age subvolumes or patches decreases the need for computational power. Spatial metadata needs to be

carefully taken into account in order to ensure a correct alignment and orientation of volumes.

Methods: We present TorchIO, an open-source Python library to enable efficient loading, preprocessing,

augmentation and patch-based sampling of medical images for deep learning. TorchIO follows the style

of PyTorch and integrates standard medical image processing libraries to efficiently process images dur-

ing training of neural networks. TorchIO transforms can be easily composed, reproduced, traced and ex-

tended. Most transforms can be inverted, making the library suitable for test-time augmentation and

estimation of aleatoric uncertainty in the context of segmentation. We provide multiple generic prepro-

cessing and augmentation operations as well as simulation of MRI-specific artifacts.

Results: Source code, comprehensive tutorials and extensive documentation for TorchIO can be found at

http://torchio.rtfd.io/ . The package can be installed from the Python Package Index (PyPI) running pip
install torchio . It includes a command-line interface which allows users to apply transforms to

image files without using Python. Additionally, we provide a graphical user interface within a TorchIO

extension in 3D Slicer to visualize the effects of transforms.

Conclusion: TorchIO was developed to help researchers standardize medical image processing pipelines

and allow them to focus on the deep learning experiments. It encourages good open-science practices,

as it supports experiment reproducibility and is version-controlled so that the software can be cited pre-

cisely. Due to its modularity, the library is compatible with other frameworks for deep learning with

medical images.

© 2021 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

p

C

t

c

t

c

c

s

o

i

h

0

. Introduction

Recently, deep learning has become a ubiquitous research ap-

roach for solving image understanding and analysis problems.

onvolutional neural networks (CNNs) have become the state of

he art for many medical imaging tasks including segmentation [1] ,

lassification [2] , reconstruction [3] and registration [4] . Many of
∗ Corresponding author.

E-mail address: fernando.perezgarcia.17@ucl.ac.uk (F. Pérez-García).

p

a

ttps://doi.org/10.1016/j.cmpb.2021.106236

169-2607/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article
he network architectures and techniques have been adopted from

omputer vision.

Compared to 2D red-green-blue (RGB) images typically used in

omputer vision, processing of medical images such as MRI, ultra-

ound (US) or CT presents different challenges. These include a lack

f labels for large datasets, high computational costs (as the data

s typically volumetric), and the use of metadata to describe the

hysical size and position of voxels.

Open-source frameworks for training CNNs with medical im-

ges have been built on top of TensorFlow [5–7] . Recently, the pop-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cmpb.2021.106236
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106236&domain=pdf
http://torchio.rtfd.io/
http://creativecommons.org/licenses/by/4.0/
mailto:fernando.perezgarcia.17@ucl.ac.uk
https://doi.org/10.1016/j.cmpb.2021.106236
http://creativecommons.org/licenses/by/4.0/

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

u

i

f

c

p

o

p

i

l

m

(

p

d

a

i

i

l

1

t

S

n

S

l

1

v

m

b

m

t

r

g

t

M

a

p

o

c

e

r

i

m

o

e

e

p

e

d

a

r

r

b

o

g

t

t

v

C

i

r

a

N

c

s

l

s

t

t

r

c

f

t

t

p

c

r

n

D

a

t

i
f

n

i

t

c

a

d

m

s

A

i

p

c

b

m

o

m

i

t

2

u

m

w

h

t

s

v

g

d

o

c

t

c

s

e

larity of PyTorch [8] has increased among researchers due to its

mproved usability compared to TensorFlow [9] , driving the need

or open-source tools compatible with PyTorch. To reduce dupli-

ation of effort among research groups, improve experimental re-

roducibility and encourage open-science practices, we have devel-

ped TorchIO: an open-source Python library for efficient loading,

reprocessing, augmentation, and patch-based sampling of medical

mages designed to be integrated into deep learning workflows.

TorchIO is a compact and modular library that can be seam-

essly used alongside higher-level deep learning frameworks for

edical imaging, such as the Medical Open Network for AI

MONAI). It removes the need for researchers to code their own

reprocessing pipelines from scratch, which might be error-prone

ue to the complexity of medical image representations. Instead, it

llows researchers to focus on their experiments, supporting exper-

ment reproducibility and traceability of their work, and standard-

zation of the methods used to process medical images for deep

earning.

.1. Motivation

The nature of medical images makes it difficult to rely on a

ypical computer-vision pipeline for neural network training. In

ection 1.1.1 , we describe challenges related to medical images that

eed to be overcome when designing deep learning workflows. In

ection 1.1.2 , we justify the choice of PyTorch as the main deep

earning framework dependency of TorchIO.

.1.1. Challenges in medical image processing for deep learning

In practice, multiple challenges must be addressed when de-

eloping deep learning algorithms for medical images: 1) handling

etadata related to physical position and size, 2) lack of large la-

eled datasets, 3) high computational costs due to data multidi-

ensionality and 4) lack of consensus for best normalization prac-

ices. These challenges are very common in medical imaging and

equire certain features that may not be implemented in more

eneral-purpose image processing frameworks such as Albumen-

ations [10] or TorchVision [8] .

etadata. In computer vision, picture elements, or pixels , which

re assumed to be square, have a spatial relationship that com-

rises proximity and depth according to both the arrangement of

bjects in the scene and camera placement. In comparison, medi-

al images are reconstructed such that the location of volume el-

ments, or cuboid-shaped voxels , encodes a meaningful 3D spatial

elationship. In simple terms, for 2D natural images, pixel vicin-

ty does not necessarily indicate spatial correspondence, while for

edical images spatial correspondence between nearby voxels can

ften be assumed.

Metadata, which encodes the physical size, spacing, and ori-

ntation of voxels, determines spatial relationships between vox-

ls [11] . This information can provide meaningful context when

erforming medical image processing, and is often implicitly or

xplicitly used in medical imaging software. Furthermore, meta-

ata is often used to determine correspondence between images

s well as voxels within an image. For example, registration algo-

ithms for medical images typically work with physical coordinates

ather than voxel indices.

Fig. 1 shows the superposition of an MRI and a corresponding

rain parcellation [12] with the same size (181 × 181) but different

rigin, spacing and orientation. A native user would assume that,

iven that the superimposition looks correct and both images have

he same size, they are ready for training. However, the visualiza-

ion is correct only because 3D Slicer [13] , the software used for

isualization, is aware of the spatial metadata of the images. As
2
NNs generally do not take spatial metadata into account, train-

ng using these images without preprocessing would lead to poor

esults.

Medical images are typically stored in specialized formats such

s Data Imaging and Communications in Medicine (DICOM) or

euroimaging Informatics Technology Initiative (NIfTI) [11] , and

ommonly read and processed by medical imaging frameworks

uch as SimpleITK [14] or NiBabel [15] .

Limited training data. Deep learning methods typically require

arge amounts of annotated data, which are often scarce in clinical

cenarios due to concerns over patient privacy, the financial and

ime burden associated with collecting data as part of a clinical

rial, and the need for annotations from highly-trained and expe-

ienced raters. Data augmentation techniques can be used to in-

rease the size of the training dataset artificially by applying dif-

erent transformations to each training instance while preserving

he relationship to annotations.

Data augmentation performed in computer vision typically aims

o simulate variations in camera properties, field of view (FOV), or

erspective. Traditional data augmentation operations applied in

omputer vision include geometrical transforms such as random

otation or zoom, color-space transforms such as random chan-

el swapping or kernel filtering such as random Gaussian blurring.

ata augmentation is usually performed on the fly, i.e., every time

n image is loaded from disk during training.

Several computer vision libraries supporting data augmenta-

ion have appeared recently, such as Albumentations [10] , or

mgaug [16] . PyTorch also includes some computer vision trans-

orms, mostly implemented as Pillow wrappers [17] . However,

one of these libraries support reading or transformations for 3D

mages. Furthermore, medical images are almost always grayscale,

herefore color-space transforms are not applicable. Additionally,

ropping and scaling are more challenging to apply to medical im-

ges without affecting the spatial relationships of the data. Meta-

ata should usually be considered when applying these transfor-

ations to medical images.

In medical imaging, the purpose of data augmentation is de-

igned to simulate anatomical variations and scanner artifacts.

natomical variation and sample position can be simulated us-

ng spatial transforms such as elastic deformation, lateral flip-

ing, or affine transformations. Some artifacts are unique to spe-

ific medical image modalities. For example, ghosting artifacts will

e present in MRI if the patient moves during acquisition, and

etallic implants often produce streak artifacts in CT. Simulation

f these artifacts can be useful when performing augmentation on

edical images.

Computational costs. The number of pixels in 2D images used

n deep learning is rarely larger than one million. For example,

he input size of several popular image classification models is

24 × 224 × 3 = 150 528 pixels (588 KiB if 32 bits per pixel are

sed). In contrast, 3D medical images often contain hundreds of

illions of voxels, and downsampling might not be acceptable

hen small details should be preserved. For example, the size of a

igh-resolution lung CT-scan used for quantifying chronic obstruc-

ive pulmonary disease (COPD) damage in a research setting, with

pacing 0 . 66 × 0 . 66 × 0 . 30 mm, is 512 × 512 × 1069 = 280 231 936

oxels (1.04 GiB if 32 bits per voxel are used).

In computer vision applications, images used for training are

rouped in batches whose size is often in the order of hun-

reds [18] or even thousands [19] of training instances, depending

n the available graphics processing unit (GPU) memory. In medi-

al image applications, batches rarely contain more than one [1] or

wo [20] training instances due to their larger memory footprint

ompared to natural images. This reduces the utility of techniques

uch as batch normalization, which rely on batches being large

nough to estimate dataset variance appropriately [21] . Moreover,

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 1. Demonstration of the importance of spatial metadata in medical image processing. The size of both the MRI and the segmentation is 181 × 181 . When spatial metadata

is taken into account (a), images are correctly superimposed (only the borders of each region are shown for clarity purposes). Images are incorrectly superimposed if (b)

origin, (c) orientation or (d) spacing are ignored.

l

h

e

n

t

t

t

t

v

u

i

m

c

t

o

c

c

f

m

o

i

t

f

c

h

f

c

s

m

i

1

g

p

t

b

t

n

p

t

A

f

p

T

e

t

c

t

f

w

s

T

1

l

c

l

s

u

w

a

a

d

m

l

b

2

l

t

3

a

i

t

w

f

t

T

N

a

d

a

t

a

o

b

1 https://github.com/PhoenixDL/rising .
arge image size and small batches result in longer training time,

indering the experimental cycle that is necessary for hyperparam-

ter optimization. In cases where GPU memory is limited and the

etwork architecture is large, it is possible that not even the en-

irety of a single volume can be processed during a training itera-

ion. To overcome this challenge, it is common in medical imaging

o train using subsets of the image, or image patches , randomly ex-

racted from the volumes.

Networks can be trained with 2D slices extracted from 3D

olumes, aggregating the inference results to generate a 3D vol-

me [22] . This can be seen as a specific case of patch-based train-

ng, where the size of the patches along a dimension is one. Other

ethods extract volumetric patches for training, that are often

ubes, if the voxel spacing is isotropic [23] , or cuboids adapted to

he anisotropic spacing of the training images [24] .

Transfer learning and normalization. One can pre-train a network

n a large dataset of natural images such as ImageNet [25] , which

ontains more than 14 million labeled images, and fine-tune on a

ustom, much smaller target dataset. This is a typical use of trans-

er learning in computer vision [26] . The literature has reported

ixed results using transfer learning to apply models pretrained

n natural images to medical images [27,28] .

In computer vision, best practice is to normalize each training

nstance before training, using statistics computed from the whole

raining dataset [18] . Preprocessing of medical images is often per-

ormed on a per-image basis, and best practice is to take into ac-

ount the bimodal nature of medical images (i.e., that an image

as a background and a foreground).

Medical image voxel intensity values can be encoded with dif-

erent data types and intensity ranges, and the meaning of a spe-

ific value can vary between different modalities, sequence acqui-

itions, or scanners. Therefore, intensity normalization methods for

edical images often involve more complex parameterization of

ntensities than those used for natural images [29] .

.1.2. Deep learning frameworks. There are currently two major

eneric deep learning frameworks: TensorFlow [5] and PyTorch [8] ,

rimarily maintained by Google and Facebook, respectively. Al-

hough TensorFlow has traditionally been the primary choice for

oth research and industry, PyTorch has recently seen a substan-

ial increase in popularity, especially among the research commu-

ity [9] .

PyTorch is often preferred by the research community as it is

ythonic , i.e., its design, usage, and application programming in-

erfaceAPI follow the conventions of plain Python. Moreover, the

PI for tensor operations follows a similar paradigm to the one

or NumPy multidimensional arrays, which is the primary array

rogramming library for the Python language [30] . In contrast, for

ensorFlow, researchers need to become familiar with new design
3
lements such as sessions, placeholders, feed dictionaries, gradient

apes and static graphs. In PyTorch, objects are standard Python

lasses and variables, and a dynamic graph makes debugging in-

uitive and familiar to anyone already using Python. These dif-

erences have decreased with the recent release of TensorFlow 2,

hose eager mode makes usage reminiscent of Python.

TorchIO was designed to be in the style of PyTorch and uses

everal of its tools to reduce the barrier to learning how to use

orchIO for those researchers already familiar with PyTorch.

.2. Related work

NiftyNet [7] and the Deep Learning Toolkit (DLTK) [6] are deep

earning frameworks designed explicitly for medical image pro-

essing using the TensorFlow 1 platform. Both of them are no

onger being actively maintained. They provide implementations of

ome popular network architectures such as U-Net [1] , and can be

sed to train 3D CNNs for different tasks. For example, NiftyNet

as used to train a 3D residual network for brain parcellation [23] ,

nd DLTK was used to perform multi-organ segmentation on CT

nd MRI [31] .

The medicaltorch library [32] closely follows the PyTorch

esign, and provides some functionalities for preprocessing, aug-

entation and training of medical images. However, it does not

everage the power of specialized medical image processing li-

raries, such as SimpleITK [14] , to process volumetric images.

Similar to DLTK, this library has not seen much activity since

018.

The batchgenerators library [33] , used within the popu-

ar medical segmentation framework nn-UNet [34] , includes cus-

om dataset and data loader classes for multithreaded loading of

D medical images, implemented before data loaders were avail-

ble in PyTorch. In the usage examples from GitHub, preprocess-

ng is applied to the whole dataset before training. Then, spa-

ial data augmentation is performed at the volume level, from

hich one patch is extracted and intensity augmentation is per-

ormed at the patch level. In this approach, only one patch is ex-

racted per volume, diminishing the efficiency of training pipelines.

ransforms in batchgenerators are mostly implemented using

umPy [30] and SciPy [35] .

More recently, a few PyTorch-based libraries for deep learning

nd medical images have appeared. There are two other libraries,

eveloped in parallel to TorchIO, focused on data preprocessing

nd augmentation. Rising 1 is a library for data augmentation en-

irely written in PyTorch, which allows for gradients to be prop-

gated through the transformations and perform all computations

n the GPU. However, this means specialized medical imaging li-

raries such as SimpleITK cannot be used. pymia [36] provides

https://github.com/PhoenixDL/rising

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 2. General diagram of TorchIO, its dependencies and its interfaces. Boxes with a red border () represent elements implemented in TorchIO. Logos indicate lower-level

Python libraries used by TorchIO. : NiBabel [15] ; : SimpleITK [14] ; : NumPy [30] ; : PyTorch [8] .

f

e

t

i

i

t

s

d

a

t

f

t

p

a

p

u

c

m

T

d

i

a

T

t

o

b

2

l

d

m

e

e

f

a

t

i

w

T

t

c

s

p

q

m

e

a

c

s

l

2

2

p

t

d

w

m

o

c

(

2

a

t

r

d

t

S
s

t

i

o

a

S
c

s

r

eatures for data handling (loading, preprocessing, sampling) and

valuation. It is compatible with TorchIO transforms, which are

ypically leveraged for data augmentation, as their data handling

s more focused on preprocessing. pymia can be easily integrated

nto either PyTorch or TensorFlow pipelines. It was recently used

o assess the suitability of evaluation metrics for medical image

egmentation [37] .

MONAI [38] and Eisen [39] are PyTorch-based frameworks for

eep learning workflows with medical images. Similar to NiftyNet

nd DLTK, they include implementation of network architectures,

ransforms, and higher-level features to perform training and in-

erence. For example, MONAI was recently used for brain segmen-

ation on fetal MRI [40] . As these packages are solving a large

roblem, i.e., that of workflow in deep learning for medical im-

ges, they do not contain all of the data augmentation transforms

resent in TorchIO. However, it is important to note that an end

ser does not need to select only one open-source package, as Tor-

hIO transforms are compatible with both Eisen and MONAI.

TorchIO is a library that specializes in preprocessing and aug-

entation using PyTorch, focusing on ease of use for researchers.

his is achieved by providing a PyTorch-like API, comprehensive

ocumentation with many usage examples, and tutorials showcas-

ng different features, and by actively addressing feature requests

nd bug reports from the many users that have already adopted

orchIO. This is in contrast with other modern libraries released af-

er TorchIO such as MONAI, which aims to deliver a larger umbrella

f functionalities including federated learning or active learning,

ut may have slower development and deployment.

. Methods

We developed TorchIO, a Python library that focuses on data

oading and augmentation of medical images in the context of

eep learning.

TorchIO is a unified library to load and augment data that

akes explicit use of medical image properties, and is flexible

nough to be used for different loading workflows. It can accel-

rate research by avoiding the need to code a processing pipeline

or medical images from scratch.

In contrast with Eisen or MONAI, we do not implement network

rchitectures, loss functions or training workflows. This is to limit

he scope of the library and to enforce modularity between train-

ng of neural networks and preprocessing and data augmentation.

Following the PyTorch philosophy [8] , we designed TorchIO

ith an emphasis on simplicity and usability while reusing Py-

orch classes and infrastructure where possible. Note that, al-

hough we designed TorchIO following PyTorch style, the library
4
ould also be used with other deep learning platforms such as Ten-

orFlow or Keras [41] .

TorchIO makes use of open-source medical imaging software

latforms. Packages were selected to reduce the number of re-

uired external dependencies and the need to re-implement basic

edical imaging processing operations (image loading, resampling,

tc.).

TorchIO features are divided into two categories: data structures

nd input/output (torchio.data), and transforms for prepro-

essing and augmentation (torchio.transforms). Fig. 2 repre-

ents a diagram of the codebase and the different interfaces to the

ibrary.

.1. Data

.1.1. Input/Output

TorchIO uses the medical imaging libraries NiBabel and Sim-

leITK to read and write images. Dependency on both is necessary

o ensure broad support of image formats. For instance, NiBabel

oes not support reading Portable Network Graphics (PNG) files,

hile SimpleITK does not support some neuroimaging-specific for-

ats.

TorchIO supports up to 4D images, i.e., 2D or 3D single-channel

r multi-channel data such as X-rays, RGB histological slides, mi-

roscopy stacks, multispectral images, CT-scans, functional MRI

fMRI) and diffusion MRI (dMRI).

.1.2. Data structures

Image. The Image class, representing one medical image, stores

 4D tensor, whose voxels encode, e.g., signal intensity or segmen-

ation labels, and the corresponding affine transform, typically a

igid (Euclidean) transform, to convert voxel indices to world coor-

inates in millimeters. Arbitrary fields such as acquisition parame-

ers may also be stored.

Subclasses are used to indicate specific types of images, such as

calarImage and LabelMap , which are used to store, e.g., CT

cans and segmentations, respectively.

An instance of Image can be created using a filepath, a PyTorch

ensor, or a NumPy array. This class uses lazy loading, i.e., the data

s not loaded from disk at instantiation time. Instead, the data is

nly loaded when needed for an operation (e.g., if a transform is

pplied to the image).

Fig. 3 shows two instances of Image . The instance of

calarImage contains a 4D tensor representing a dMRI, which

ontains four 3D volumes (one per gradient direction), and the as-

ociated affine matrix. Additionally, it stores the strength and di-

ection for each of the four gradients. The instance of LabelMap

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 3. Usage example of ScalarImage , LabelMap , Subject and SubjectsDataset . The images store a 4D dMRI and a brain parcellation, and other related metadata.

c

a

a

S
n

T

a

S
s

i

l

l

d

d

(

t
t

2

t

w

d

s

r

n

t

o

a

l

t

p

c

u

a

s

t

p

p

a

i

a

a

e

u

b

b

h

b

q

l

T

T

h

t

t

A

S
l

m

t

a

i

s

b

n

m

n

u

p

ontains a brain parcellation of the same subject, the associated

ffine matrix, and the name and color of each brain structure.

Subject. The Subject class stores instances of Image associ-

ted to a subject, e.g., a human or a mouse. As in the Image class,

ubject can store arbitrary fields such as age, diagnosis or eth-

icity.

Subjects dataset . The SubjectsDataset inherits from the Py-

orch Dataset . It contains the list of subjects and optionally

 transform to be applied to each subject after loading. When

ubjectsDataset is queried for a specific subject, the corre-

ponding set of images are loaded, a transform is applied to the

mages and the instance of Subject is returned.

For parallel loading, a PyTorch DataLoader may be used. This

oader spawns multiple processes, each of which contains a shal-

ow copy of the SubjectsDataset . Each copy is queried for a

ifferent subject, therefore loading and transforming is applied to

ifferent subjects in parallel on the central processing unit (CPU)

 Fig. 4 a).

An example of subclassing SubjectsDataset is

orchio.datasets.IXI , which may be used to download

he Information eXtraction from Images (IXI) dataset. 2

.1.3. Patch-based training

Memory limitations often require training and inference steps

o be performed using image subvolumes or patches instead of the

hole volumes, as explained in Section 1.1.1.3 . In this section, we

escribe how TorchIO implements patch-based training via image

ampling and queueing.

Samplers. A sampler takes as input an instance of Subject and

eturns a version of it whose images have a reduced FOV, i.e., the

ew images are subvolumes, also called windows or patches . For

his, a PatchSampler may be used.

Different criteria may be used to select the center voxel of each

utput patch. A UniformSampler selects a voxel as the center

t random with all voxels having an equal probability of being se-

ected. A WeightedSampler selects the patch center according

o a probability distribution image defined over all voxels, which is

assed as input to the sampler.

At testing time, images are sampled such that a dense inference

an be performed on the input volume. A GridSampler can be
2 https://brain-development.org/ixi-dataset/.

5
sed to sample patches such that the center voxel is selected using

 set stride. In this way, sampling over the entire volume is en-

ured. The potentially-overlapping inferred patches can be passed

o a GridAggregator that builds the resulting volume patch by

atch (or batch by batch).

Queue. A training iteration (i.e., forward and backward pass)

erformed on a GPU is usually faster than loading, preprocessing,

ugmenting, and cropping a volume on a CPU. Most preprocess-

ng operations could be performed using a GPU, but these devices

re typically reserved for training the CNN so that the batch size

nd input tensor can be as large as possible. Therefore, it is ben-

ficial to prepare (i.e., load, preprocess and augment) the volumes

sing multiprocessing CPU techniques in parallel with the forward-

ackward passes of a training iteration.

Once a volume is appropriately prepared, it is computationally

eneficial to sample multiple patches from a volume rather than

aving to prepare the same volume each time a patch needs to

e extracted. The sampled patches are then stored in a buffer or

ueue until the next training iteration, at which point they are

oaded onto the GPU to perform an optimization iteration. For this,

orchIO provides the Queue class, which inherits from the Py-

orch Dataset (Fig. 4 b). In this queueing system, samplers be-

ave as generators that yield patches from volumes contained in

he SubjectsDataset .
The end of a training epoch is defined as the moment af-

er which patches from all subjects have been used for training.

t the beginning of each training epoch, the subjects list in the

ubjectsDataset is shuffled, as is typically done in machine

earning pipelines to increase variance of training instances during

odel optimization. A PyTorch loader begins by shallow-copying

he dataset to each subprocess. Each worker subprocess loads and

pplies image transforms to the volumes in parallel. A patches list

s filled with patches extracted by the sampler, and the queue is

huffled once it has reached a specified maximum length so that

atches are composed of patches from different subjects. The inter-

al data loader continues querying the SubjectsDataset using

ultiprocessing. The patches list, when emptied, is refilled with

ew patches. A second data loader, external to the queue, may be

sed to collate batches of patches stored in the queue, which are

assed to the neural network.

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 4. Diagram of data pipelines for training with whole volumes (top) and patches (bottom). Boxes with a red border represent PyTorch classes () or TorchIO classes

that inherit from PyTorch classes ().

2

m

d

i

i

(

c

p

p

a

a

i

f

S

S
s

s

b

i

o

e

o

(

a

L
t

(

i

a

l

2

t

a

S

i

i

i

f

i

f

o

n

c

r

d

i

f

w

t

q

2

d

m

3 In this context, standardization refers to correcting voxel intensity values to
.2. Transforms

The transforms API was designed to be similar to the PyTorch

torchvision.transforms module. TorchIO includes aug-

entations such as random affine transformation (Fig. 5 e) or ran-

om blur (Fig. 5 b), but they are implemented using medical imag-

ng libraries [14,15] to take into account specific properties of med-

cal images, namely their size, resolution, location, and orientation

see Section 1.1.1.1). Table 1 shows transforms implemented in Tor-

hIO v0.18.0 and their main corresponding library dependencies.

Transforms are designed to be flexible regarding input and out-

ut types. Following a duck typing approach, they can take as in-

ut PyTorch tensors, SimpleITK images, NumPy arrays, Pillow im-

ges, Python dictionaries, and instances of Subject and Image ,
nd will return an output of the same type.

TorchIO transforms can be classified into either spatial and

ntensity transforms, or preprocessing and augmentation trans-

orms (Table 1). All are subclasses of the Transform base class.

patial transforms and intensity transforms are related to the

patialTransform and IntensityTransform classes, re-

pectively. Transforms whose parameters are randomly chosen are

ubclasses of RandomTransform .
Instances of SpatialTransform typically modify the image

ounds or spacing, and often need to resample the image us-

ng interpolation. They are applied to all image types. Instances

f IntensityTransform do not modify the position of vox-

ls, only their values, and they are only applied to instances

f ScalarImage . For example, if a RandomNoise transform

which is a subclass of IntensityTransform) receives as input

 Subject with a ScalarImage representing a CT scan and a

abelMap representing a segmentation, it will add noise to only

he CT scan. On the other hand, if a RandomAffine transform

which is a subclass of SpatialTransform) receives the same

nput, the same affine transformation will be applied to both im-
h

6
ges, with nearest-neighbor interpolation always used to interpo-

ate LabelMap objects.

.2.1. Preprocessing

Preprocessing transforms are necessary to ensure spatial and in-

ensity uniformity of training instances.

Spatial preprocessing is important as CNNs do not gener-

lly take into account metadata related to medical images (see

ection 1.1.1.1), therefore it is necessary to ensure that voxels across

mages have similar spatial location and relationships before train-

ng. Spatial preprocessing transforms typically used in medical

maging include resampling (e.g., to make voxel spacing isotropic

or all training samples) and reorientation (e.g., to orient all train-

ng samples in the same way). For example, the Resample trans-

orm can be used to fix the issue presented in Fig. 1 .

Intensity normalization is generally beneficial for optimization

f neural networks. TorchIO provides intensity normalization tech-

iques including min-max scaling or standardization, 3 which are

omputed using pure PyTorch. A binary image, such as a mask rep-

esenting the foreground or structures of interest, can be used to

efine the set of voxels to be taken into account when comput-

ng statistics for intensity normalization. We also provide a method

or MRI histogram standardization [48] , computed using NumPy,

hich may be used to overcome the differences in intensity dis-

ributions between images acquired using different scanners or se-

uences.

.2.2. Augmentation

TorchIO includes spatial augmentation transforms such as ran-

om flipping using PyTorch and random affine and elastic defor-

ation transforms using SimpleITK. Intensity augmentation trans-
ave zero mean and unit variance.

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 5. A selection of data augmentation techniques available in TorchIO v0.18.0 . Each example is presented as a pair of images composed of the transformed image

and a corresponding transformed label map. Note that all screenshots are from a 2D coronal slice of the transformed 3D images. The MRI corresponds to the Montreal

Neurological Institute (MNI) Colin 27 average brain [49] , which can be downloaded using torchio.datasets.Colin27 . Label maps were generated using an automated

brain parcellation algorithm [12] .

f

(

T

R

f

u

f

l

a

f

g

t

c

t

orms include random Gaussian blur using a SimpleITK filter

 Fig. 5 b) and addition of random Gaussian noise using pure Py-

orch (Fig. 5 d). All augmentation transforms are subclasses of

andomTransform .
Although current domain-specific data augmentation trans-

orms available in TorchIO are mostly related to MRI, we encourage

sers to contribute physics-based data augmentation techniques

or US or CT [50] .
7
We provide several MRI-specific augmentation transforms re-

ated to k -space, which are described below. An MR image is usu-

lly reconstructed as the magnitude of the inverse Fourier trans-

orm of the k -space signal, which is populated with the signals

enerated by the sample as a response to a radio-frequency elec-

romagnetic pulse. These signals are modulated using coils that

reate gradients of the magnetic field inside the scanner. Ar-

ifacts are created by using k -space transforms to perturb the

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Table 1

Transforms included in TorchIO v0.18.0 . Logos indicate the main library used to process the images. : NiBabel

[15] ; : SimpleITK [14] ; : NumPy [30] ; : PyTorch [8] .

F

a

p

m

d

s

k

i

F

e

l

s

t

a

b

a

t

p

n

d

t

fi

s

c

i

2

t

g

u

f

t

t

T

a

t

m

2

j

t

c

e

r

s

t

m

t

t

ourier space and generate corresponding intensity artifacts in im-

ge space. The forward and inverse Fourier transforms are com-

uted using the Fast Fourier Transform (FFT) algorithm imple-

ented in NumPy.

Random k -space spike artifact. Gradients applied at a very high

uty cycle may produce bad data points, or noise spikes, in k -

pace [51] . These points in k -space generate a spike artifact, also

nown as Herringbone, crisscross or corduroy artifact, which man-

fests as uniformly-separated stripes in image space, as shown in

ig. 5 i. This type of data augmentation has recently been used to

stimate uncertainty through a heteroscedastic noise model [44] .

Random k -space motion artifact . The k -space is often populated

ine by line, and the sample in the scanner is assumed to remain

tatic. If a patient moves during the MRI acquisition, motion ar-

ifacts will appear in the reconstructed image. We implemented

 method to simulate random motion artifacts (Fig. 5 h) that has

een used successfully for data augmentation to model uncertainty

nd improve segmentation [42] .

Random k -space ghosting artifact . Organs motion such as respira-

ion or cardiac pulsation may generate ghosting artifacts along the

hase-encoding direction [51] (see Fig. 5 j). We simulate this phe-

omenon by removing every n th plane of the k -space along one

irection to generate n ghosts along that dimension, while keeping

he center of k -space intact.

Random bias field artifact. Inhomogeneity of the static magnetic

eld in the MRI scanner produces intensity artifacts of very low

patial frequency along the entirety of the image. These artifacts

an be simulated using polynomial basis functions [52] , as shown

n Fig. 5 g.

.2.3. Composability

All transforms can be composed in a linear fashion, as in

he PyTorch torchvision library, or building a directed acyclic

raphDAG using the OneOf transform (as in [10]). For example, a

ser might want to apply a random spatial augmentation trans-

orm to 50% of the samples using either an affine or an elas-

ic transform, but they want the affine transform to be applied
8
o 80% of the augmented images, as the execution time is faster.

hen, they might want to rescale the volume intensity for all im-

ges to be between 0 and 1. Fig. 6 shows a graph representing the

ransform composition. This transform composition can be imple-

ented with just three statements:

Compose and OneOf are implemented as TorchIO transforms.

.2.4. Extensibility

The Lambda transform can be passed an arbitrary callable ob-

ect, which allows the user to augment the library with custom

ransforms without having a deep understanding of the underlying

ode.

Additionally, more complex transforms can be developed. For

xample, we implemented a TorchIO transform to simulate brain

esection cavities from preoperative MR images within a self-

upervised learning pipeline [53] . The RandomLabelsToImage
ransform may be used to simulate an image from a tissue seg-

entation. It can be composed with RandomAnisotropy to

rain neural networks agnostic to image contrast and resolu-

ion [46,47,54] .

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 6. Graph representation of the composed transform described in Section 2.2.3 .

2

s

m

r

p

t

F

t

r

2

n

t

b

c

d

c

t

a

t

3

3

s

l

t

p

D

p

l

b

L

i

s

d

3

t
a

v

a

b

c

t

m

a

t

C

a

p

3

m

t

m

3

w

o

t

a

d

t

a

p

s

a

(

n

c

(

s

r

(

3

m

p

t

v

i

l

i

i

a

.2.5. Reproducibility and traceability

To promote open science principles, we designed TorchIO to

upport experiment reproducibility and traceability.

All transforms support receiving Python primitives as argu-

ents, which makes TorchIO suitable to be used with a configu-

ation file associated to a specific experiment.

A history of all applied transforms and their computed random

arameters is saved in the transform output so that the path in

he DAG and the parameters used can be traced and reproduced.

urthermore, the Subject class includes a method to compose

he transforms history into a single transform that may be used to

eproduce the exact result (Section 2.2.3).

.2.6. Invertibility

Inverting transforms is especially useful in scenarios where one

eeds to apply some transformation, infer a segmentation on the

ransformed data and then apply the inverse transformation to

ring the inference into the original image space. The Subject
lass includes a method to invert the transformations applied. It

oes this by first inverting all transforms that are invertible, dis-

arding the ones that are not. Then, it composes the invertible

ransforms into a single transform.

Transforms invertibility is most commonly applied to test-time

ugmentation [55] or estimation of aleatoric uncertainty [56] in

he context of image segmentation.

. Results

.1. Code availability

All the code for TorchIO is available on GitHub 4 . We follow the

emantic versioning system [57] to tag and release our library. Re-

eases are published on the Zenodo data repository 5 to allow users

o cite the specific version of the package they used in their ex-

eriments. The version described in this paper is v0.18.0 [58] .

etailed API documentation is hosted on Read the Docs and com-

rehensive Jupyter notebook tutorials are hosted on Google Co-

aboratory, where users can run examples online. The library can

e installed with a single line of code on Windows, macOS or

inux using the Pip Installs Packages (PIP) package manager: pip
nstall torchio .

TorchIO has a strong community of users, with more than 900

tars on GitHub and more than 70 0 0 Python Package Index (PyPI)

ownloads per month

6 as of July 2021.

.1.1. Additional interfaces

The provided command-line interface (CLI) tool

orchio-transform allows users to apply a transform to

n image file without using Python. This tool can be used to

isualize only the preprocessing and data augmentation pipelines

nd aid in experimental design for a given application. It can also
4 https://github.com/fepegar/torchio .
5 https://zenodo.org/ .
6 https://pypistats.org/packages/torchio .

a

C

u

c

9
e used in shell scripts to preprocess and augment datasets in

ases where large storage is available and on-the-fly loading needs

o be faster.

Additionally, we provide a graphical user interface (GUI) imple-

ented as a Python scripted module within the TorchIO extension

vailable in 3D Slicer [13] . It can be used to visualize the effect of

he transforms parameters without any coding (Fig. 7). As with the

LI tool, users can experimentally assess preprocessing and data

ugmentation before network training to ensure the preprocessing

ipeline is suitable for a given application.

.2. Usage examples

In this section, we briefly describe the implementations of two

edical image computing papers from the literature, pointing out

he TorchIO features that could be used to replicate their experi-

ents.

.2.1. Super-resolution and synthesis of MRI

In [54] , a method is proposed to simulate high-resolution T 1 -

eighted MRIs from images of different modalities and resolutions.

First, brain regions are segmented on publicly available datasets

f brain MRI. During training, an MRI (ScalarImage) and

he corresponding segmentation (LabelMap) corresponding to

 specific subject (Subject) are sampled from the training

ataset (SubjectsDataset). Next, the same spatial augmen-

ation transform is applied to both images by composing an

ffine transform (RandomAffine) and a nonlinear diffeomor-

hic transform (RandomElasticDeformation). Then, a Gaus-

ian mixture modelGMM conditioned on the labels is sampled

t each voxel location to simulate an MRI of arbitrary contrast

 RandomLabelsToImage) [46] . Finally, multiple degrading phe-

omena are simulated on the synthetic image: variability in the

oordinate frames (RandomAffine), bias field inhomogeneities

 RandomBiasField), partial-volume effects due to a large

lice thickness during acquisition [47] (RandomAnisotropy),
egistration errors (RandomAffine), and resampling artifacts

 Resample).

.2.2. Adaptive sampling for segmentation of CT scans

In [59] , CT scans that are too large to fit on a GPU are seg-

ented using patch-based training with weighted sampling of

atches. Discrepancies between labels and predictions are used

o create error maps and patches are preferentially sampled from

oxels with larger error.

During training, a CT scan (ScalarImage) and its correspond-

ng segmentation (LabelMap) from a subject (Subject) are

oaded and the same augmentation is performed to both by apply-

ng random rotations and scaling (RandomAffine). Then, voxel

ntensities are clipped to [−10 0 0 , 10 0 0] (RescaleIntensity)
nd divided by a constant factor representing the standard devi-

tion of the dataset (can be implemented with Lambda). As the

T scans are too large to fit in the GPU, patch-based training is

sed (Queue). To obtain high-resolution predictions and a large re-

eptive field simultaneously, two patches of similar size but differ-

https://github.com/fepegar/torchio
https://zenodo.org/
https://pypistats.org/packages/torchio

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

Fig. 7. GUI for TorchIO, implemented as a 3D Slicer extension. In this example, the applied transforms are RandomBiasField , RandomGhosting , RandomMotion ,
RandomAffine and RandomElasticDeformation .

e

g

f

o

p

r

l

a

t

d

4

p

t

i

p

t

p

m

p

t

i

u

s

a

d

c

N

b

p

p

f

w

w

m

i

w

f

w

a

i

w

a

b

c

t

D

A

t

p

G

i

e

d

T

[

a

t

t

p

e

R

nt FOV are generated from each sampled patch: a context patch

enerated by downsampling the original patch (Resample) and a

ull-resolution patch with a smaller FOV (CropOrPad). At the end

f each epoch, error maps for each subject (Subject) are com-

uted as the difference between the labels and predictions. The er-

or maps are used in the following epoch to sample patches with

arge errors more often (WeightedSampler). At inference time,

 sliding window (GridSampler) is used to predict the segmen-

ation patch by patch, and patches are aggregated to build the pre-

iction for the whole input volume (GridAggregator).

. Discussion

We have presented TorchIO, a new library to efficiently load,

reprocess, augment and sample medical imaging data during the

raining of CNNs. It is designed in the style of the deep learn-

ng framework PyTorch to provide medical imaging specific pre-

rocessing and data augmentation algorithms.

The main motivation for developing TorchIO as an open-source

oolkit is to help researchers standardize medical image processing

ipelines and allow them to focus on the deep learning experi-

ents. It also encourages good open-science practices, as it sup-

orts experiment reproducibility and is version-controlled so that

he software can be cited precisely.

The library is compatible with other higher-level deep learn-

ng frameworks for medical imaging such as MONAI. For example,

sers can benefit from TorchIO’s MRI transforms and patch-based

ampling while using MONAI’s networks, losses, training pipelines

nd evaluation metrics.

The main limitation of TorchIO is that most transforms are not

ifferentiable. The reason is that PyTorch tensors stored in Tor-

hIO data structures must be converted to SimpleITK images or

umPy arrays within most transforms, making them not compati-

le with PyTorch’s automatic differentiation engine. However, com-

atibility between PyTorch and ITK has recently been improved,

artly thanks to the appearance of the MONAI project [60] . There-

ore, TorchIO might provide differentiable transforms in the future,

hich could be used to implement, e.g., spatial transformer net-

orks for image registration [61] . Another limitation is that many

ore transforms that are MRI-specific exist than for other imag-
10
ng modalities such as CT or US. This is in part due to more users

orking on MRI applications and requesting MRI-specific trans-

orms. However, we welcome contributions for other modalities as

ell.

In the future, we will work on extending the preprocessing

nd augmentation transforms to different medical imaging modal-

ties such as CT or US, and improving compatibility with related

orks. The source code, as well as examples and documentation,

re made publicly available online, on GitHub. We welcome feed-

ack, feature requests, and contributions to the library, either by

reating issues on the GitHub repository or by emailing the au-

hors.

eclaration of Competing Interest

The authors declare no conflicts of interest.

cknowledgments

The authors would like to acknowledge all of the contributors

o the TorchIO library. We thank the NiftyNet team for their sup-

ort, and Alejandro Granados, Romain Valabregue, Fabien Girka,

hiles Reguig, David Völgyes and Reuben Dorent for their valuable

nsight and contributions.

This work is supported by the Engineering and Physical Sci-

nces Research Council (EPSRC) [EP/R512400/1]. This work is ad-

itionally supported by the EPSRC-funded UCL Centre for Doctoral

raining in Intelligent, Integrated Imaging in Healthcare (i4health)

EP/S021930/1] and the Wellcome / EPSRC Centre for Interventional

nd Surgical Sciences (WEISS, UCL) [203145Z/16/Z]. This publica-

ion represents, in part, independent research commissioned by

he Wellcome Innovator Award [218380/Z/19/Z/]. The views ex-

ressed in this publication are those of the authors and not nec-

ssarily those of the Wellcome Trust.

eferences

[1] O. Çiçek , A. Abdulkadir , S.S. Lienkamp , T. Brox , O. Ronneberger , 3D

U-Net: learning dense volumetric segmentation from sparse annotation, in:
S. Ourselin, L. Joskowicz, M.R. Sabuncu, G. Unal, W. Wells (Eds.), Medical

Image Computing and Computer-Assisted Intervention MICCAI 2016, Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2016,

pp. 424–432 .

http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0001

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[2] D. Lu, K. Popuri, G.W. Ding, R. Balachandar, M.F. Beg, Alzheimers Disease Neu-
roimaging Initiative, Multimodal and multiscale deep neural networks for the

early diagnosis of Alzheimer’s disease using structural MR and FDG-PET im-
ages, Sci. Rep. 8 (1) (2018) 5697, doi: 10.1038/s41598- 018- 22871- z .

[3] F. Chen, V. Taviani, I. Malkiel, J.Y. Cheng, J.I. Tamir, J. Shaikh, S.T. Chang,
C.J. Hardy, J.M. Pauly, S.S. Vasanawala, Variable-density single-shot fast spin-

echo MRI with deep learning reconstruction by using variational networks, Ra-
diology 289 (2) (2018) 366–373, doi: 10.1148/radiol.2018180445 .

[4] S. Shan , W. Yan , X. Guo , E.I.-C. Chang , Y. Fan , Y. Xu , Unsupervised end–

to-end learning for deformable medical image registration, arXiv:1711.08608
[cs] (2018) . ArXiv: 1711.08608.

[5] M. Abadi , P. Barham , J. Chen , Z. Chen , A. Davis , J. Dean , M. Devin , S. Ghemawat ,
G. Irving , M. Isard , M. Kudlur , J. Levenberg , R. Monga , S. Moore , D.G. Mur-

ray , B. Steiner , P. Tucker , V. Vasudevan , P. Warden , M. Wicke , Y. Yu , X. Zheng ,
TensorFlow: a system for large-scale machine learning, in: Proceedings of the

12th USENIX conference on Operating Systems Design and Implementation, in:

OSDI’16, USENIX Association, USA, 2016, pp. 265–283 .
[6] N. Pawlowski , S.I. Ktena , M.C.H. Lee , B. Kainz , D. Rueckert , B. Glocker , M. Rajchl ,

DLTK: state of the art reference implementations for deep learning on medical
images, arXiv:1711.06853 [cs] (2017) . ArXiv: 1711.06853.

[7] E. Gibson, W. Li, C. Sudre, L. Fidon, D.I. Shakir, G. Wang, Z. Eaton-Rosen, R. Gray,
T. Doel, Y. Hu, T. Whyntie, P. Nachev, M. Modat, D.C. Barratt, S. Ourselin,

M.J. Cardoso, T. Vercauteren, NiftyNet: a deep-learning platform for medical

imaging, Comput. Methods Programs Biomed. 158 (2018) 113–122, doi: 10.1016/
j.cmpb.2018.01.025 .

[8] A. Paszke , S. Gross , F. Massa , A. Lerer , J. Bradbury , G. Chanan , T. Killeen , Z. Lin ,
N. Gimelshein , L. Antiga , A . Desmaison , A . Kopf , E. Yang , Z. DeVito , M. Rai-

son , A. Tejani , S. Chilamkurthy , B. Steiner , L. Fang , J. Bai , S. Chintala , PyTorch:
an imperative style, high-performance deep learning library, in: H. Wallach,

H. Larochelle, A. Beygelzimer, F.d. Alch-Buc, E. Fox, R. Garnett (Eds.), Advances

in Neural Information Processing Systems 32, Curran Associates, Inc., 2019,
pp. 8026–8037 .

[9] H. He, The State of Machine Learning Frameworks in 2019, 2019, http://bit.ly/
3cjpliJ .

[10] A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
A .A . Kalinin, Albumentations: Fast and Flexible Image Augmentations, Informa-

tion 11 (2) (2020) 125, doi: 10.3390/info11020125 . Number: 2 Publisher: Multi-

disciplinary Digital Publishing Institute
[11] M. Larobina, L. Murino, Medical image file formats, J. Digit. Imaging 27 (2)

(2014) 200–206, doi: 10.1007/s10278- 013- 9657- 9 .
[12] M.J. Cardoso, M. Modat, R. Wolz, A. Melbourne, D. Cash, D. Rueckert,

S. Ourselin, Geodesic information flows: spatially-variant graphs and their ap-
plication to segmentation and fusion, IEEE Trans. Med. Imaging 34 (9) (2015)

1976–1988, doi: 10.1109/TMI.2015.2418298 .

[13] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol,
C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller,

S. Pieper, R. Kikinis, 3D slicer as an image computing platform for the quan-
titative imaging network, Magn. Reson. Imaging 30 (9) (2012) 1323–1341,

doi: 10.1016/j.mri.2012.05.001 .
[14] B.C. Lowekamp, D.T. Chen, L. Ibez, D. Blezek, The design of SimpleITK, Front.

Neuroinformatics 7 (2013) 45, doi: 10.3389/fninf.2013.0 0 045 .
[15] M. Brett, C.J. Markiewicz, M. Hanke, M.-A. Ct, B. Cipollini, P. McCarthy, C.P.

Cheng, Y.O. Halchenko, M. Cottaar, S. Ghosh, E. Larson, D. Wassermann, S. Ger-

hard, G.R. Lee, H.-T. Wang, E. Kastman, A. Rokem, C. Madison, F.C. Morency,
B. Moloney, M. Goncalves, C. Riddell, C. Burns, J. Millman, A. Gramfort, J. Lep-

pkangas, R. Markello, J.J. van den Bosch, R.D. Vincent, H. Braun, K. Subrama-
niam, D. Jarecka, K.J. Gorgolewski, P.R. Raamana, B.N. Nichols, E.M. Baker, S.

Hayashi, B. Pinsard, C. Haselgrove, M. Hymers, O. Esteban, S. Koudoro, N.N.
Oosterhof, B. Amirbekian, I. Nimmo-Smith, L. Nguyen, S. Reddigari, S. St-Jean,

E. Panfilov, E. Garyfallidis, G. Varoquaux, J. Kaczmarzyk, J.H. Legarreta, K.S.

Hahn, O.P. Hinds, B. Fauber, J.-B. Poline, J. Stutters, K. Jordan, M. Cieslak, M.E.
Moreno, V. Haenel, Y. Schwartz, B.C. Darwin, B. Thirion, D. Papadopoulos Or-

fanos, F. Pérez-García, I. Solovey, I. Gonzalez, J. Palasubramaniam, J. Lecher, K.
Leinweber, K. Raktivan, P. Fischer, P. Gervais, S. Gadde, T. Ballinger, T. Roos, V.R.

Reddam, freec84, nipy/nibabel: 3.0.1, 2020, https://zenodo.org/record/3628482.
XlyGkJP7S8o . doi: 10.5281/zenodo.3628482

[16] A.B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J. Baner-

jee, G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, B.
Cook, I. Fernndez, F.-M. De Rainville, C.-H. Weng, A. Ayala-Acevedo, R. Meudec,

M. Laporte, others, imgaug, 2020, https://github.com/aleju/imgaug .
[17] wiredfool, A. Clark, Hugo, A. Murray, A. Karpinsky, C. Gohlke, B. Crowell, D.

Schmidt, A. Houghton, S. Johnson, S. Mani, J. Ware, D. Caro, S. Kossouho, E.W.
Brown, A. Lee, M. Korobov, M. Grny, E.S. Santana, N. Pieuchot, O. Tonnhofer, M.

Brown, B. Pierre, J.C. Abela, L.J. Solberg, F. Reyes, A. Buzanov, Y. Yu, eliempje, F.

Tolf, Pillow: 3.1.0, 2016, https://zenodo.org/record/44297.Xlx04pP7S8o . doi: 10.
5281/zenodo.44297 .

[18] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep con-
volutional neural networks, in: Proceedings of the 25th International Confer-

ence on Neural Information Processing Systems - Volume 1, in: NIPS’12, Curran
Associates Inc., USA, 2012, pp. 1097–1105 .

[19] T. Chen , S. Kornblith , M. Norouzi , G. Hinton , A simple framework for con-

trastive learning of visual representations, in: International Conference on Ma-
chine Learning, PMLR, 2020, pp. 1597–1607 . ISSN: 2640-3498

20] F. Milletari, N. Navab, S.-A. Ahmadi, V-Net: fully convolutional neural networks
for volumetric medical image segmentation, in: 2016 Fourth International
11
Conference on 3D Vision (3DV), 2016, pp. 565–571, doi: 10.1109/3DV.2016.
79 .

[21] S. Ioffe , C. Szegedy , Batch normalization: accelerating deep network training
by reducing internal covariate shift, in: International Conference on Machine

Learning, PMLR, 2015, pp. 448–456 . ISSN: 1938-7228
22] O. Lucena, R. Souza, L. Rittner, R. Frayne, R. Lotufo, Convolutional neural net-

works for skull-stripping in brain MR imaging using silver standard masks, Ar-
tif. Intell. Med. 98 (2019) 48–58, doi: 10.1016/j.artmed.2019.06.008 .

23] W. Li, G. Wang, L. Fidon, S. Ourselin, M.J. Cardoso, T. Vercauteren, On the com-

pactness, efficiency, and representation of 3d convolutional networks: brain
parcellation as a pretext task, in: M. Niethammer, M. Styner, S. Aylward,

H. Zhu, I. Oguz, P.-T. Yap, D. Shen (Eds.), Information Processing in Medical
Imaging, Lecture Notes in Computer Science, Springer International Publishing,

Cham, 2017, pp. 348–360, doi: 10.1007/978- 3- 319- 59050- 9 _ 28 .
24] S. Nikolov , S. Blackwell , R. Mendes , J. De Fauw , C. Meyer , C. Hughes ,

H. Askham , B. Romera-Paredes , A. Karthikesalingam , C. Chu , D. Carnell ,

C. Boon , D. D’Souza , S.A. Moinuddin , K. Sullivan , D.R. Consortium , H. Mont-
gomery , G. Rees , R. Sharma , M. Suleyman , T. Back , J.R. Ledsam , O. Ron-

neberger , Deep learning to achieve clinically applicable segmentation of head
and neck anatomy for radiotherapy, arXiv:1809.04430 [physics, stat] (2018) .

ArXiv: 1809.04430
25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale

hierarchical image database, in: 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009, pp. 248–255, doi: 10.1109/CVPR.2009.5206848 . ISSN:
1063-6919

26] K. Weiss, T.M. Khoshgoftaar, D. Wang, A survey of transfer learning, J. Big Data
3 (1) (2016) 9, doi: 10.1186/s40537- 016- 0043- 6 .

27] V. Cheplygina, Cats or CAT scans: transfer learning from natural or medical
image source data sets? Curr. Opin. Biomed. Eng. 9 (2019) 21–27, doi: 10.1016/

j.cobme.2018.12.005 .

28] M. Raghu , C. Zhang , J. Kleinberg , S. Bengio , Transfusion: understanding trans-
fer learning for medical imaging, in: H. Wallach, H. Larochelle, A. Beygelzimer,

F.d. Alch-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Process-
ing Systems, volume 32, Curran Associates, Inc., 2019 .

29] L.G. Nyl, J.K. Udupa, On standardizing the MR image intensity scale, Magn.
Reson. Med. 42 (6) (1999) 1072–1081, doi: 10.1002/(sici)1522-2594(199912)42:

6 < 1072::aid-mrm11 > 3.0.co;2-m .

30] S. van der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: a struc-
ture for efficient numerical computation, Comput. Sci. Eng. 13 (2) (2011)

22–30, doi: 10.1109/MCSE.2011.37 . Conference Name: Computing in Science
Engineering.

[31] V.V. Valindria, N. Pawlowski, M. Rajchl, I. Lavdas, E.O. Aboagye, A.G. Rock-
all, D. Rueckert, B. Glocker, Multi-modal learning from unpaired images: ap-

plication to multi-organ segmentation in CT and MRI, in: 2018 IEEE Winter

Conference on Applications of Computer Vision (WACV), 2018, pp. 547–556,
doi: 10.1109/WACV.2018.0 0 066 .

32] C.S. Perone, cclauss, E. Saravia, P.L. Ballester, MohitTare, perone/medicaltorch:
Release v0.2, 2018, https://zenodo.org/record/1495335.XlqwUZP7S8o . doi: 10.

5281/zenodo.1495335 .
33] F. Isensee, P. Jger, J. Wasserthal, D. Zimmerer, J. Petersen, S. Kohl, J. Schock,

A. Klein, T. Ro, S. Wirkert, P. Neher, S. Dinkelacker, G. Köhler, K. Maier-Hein,
batchgenerators - a python framework for data augmentation, 2020, https://

zenodo.org/record/3632567.Xlqnb5P7S8o . doi: 10.5281/zenodo.3632567 .

34] F. Isensee, P.F. Jaeger, S.A .A . Kohl, J. Petersen, K.H. Maier-Hein, nnU-Net: a self-
configuring method for deep learning-based biomedical image segmentation,

Nat. Methods 18 (2) (2021) 203–211, doi: 10.1038/s41592- 020- 01008- z . Num-
ber: 2 Publisher: Nature Publishing Group

35] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt,

M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern,

E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald,

A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0: fundamental algorithms
for scientific computing in Python, Nat. Methods (2020) 1–12, doi: 10.1038/

s41592- 019- 0686- 2 .
36] A. Jungo, O. Scheidegger, M. Reyes, F. Balsiger, pymia: a Python package for

data handling and evaluation in deep learning-based medical image analysis,

Comput. Methods Programs Biomed. 198 (2021) 105796, doi: 10.1016/j.cmpb.
2020.105796 .

37] F. Kofler , I. Ezhov , F. Isensee , F. Balsiger , C. Berger , M. Koerner , J. Paetzold , H. Li ,
S. Shit , R. McKinley , S. Bakas , C. Zimmer , D. Ankerst , J. Kirschke , B. Wiestler ,

B.H. Menze , Are we using appropriate segmentation metrics? Identifying cor-
relates of human expert perception for CNN training beyond rolling the DICE

coefficient, arXiv:2103.06205 [cs, eess] (2021) . ArXiv: 2103.06205

38] N. Ma, W. Li, R. Brown, Y. Wang, B. Gorman, Behrooz, H. Johnson, I. Yang,
E. Kerfoot, Y. Li, M. Adil, Y.-T. Hsieh, charliebudd, A. Aggarwal, C. Trentz,

adam aji, B. Murray, G. Daroach, P.-D. Tudosiu, myron, M. Graham, Bal-
amurali, C. Baker, J. Sellner, L. Fidon, A. Powers, G. Leroy, Alxaline, D.

Schulz, Project-MONAI/MONAI: 0.5.0, 2021, https://zenodo.org/record/4679866.
YImZHZNKgWo . doi: 10.5281/zenodo.4679866 .

39] F. Mancolo , Eisen: a python package for solid deep learning, arXiv:2004.02747

[cs, eess] (2020) . ArXiv: 2004.02747
40] M.B.M. Ranzini , L. Fidon , S. Ourselin , M. Modat , T. Vercauteren , MONAIfbs:

MONAI-based fetal brain MRI deep learning segmentation, arXiv:2103.13314
[cs, eess] (2021) . ArXiv: 2103.13314

https://doi.org/10.1038/s41598-018-22871-z
https://doi.org/10.1148/radiol.2018180445
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0006
https://doi.org/10.1016/j.cmpb.2018.01.025
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0008
http://bit.ly/3cjpliJ
https://doi.org/10.3390/info11020125
https://doi.org/10.1007/s10278-013-9657-9
https://doi.org/10.1109/TMI.2015.2418298
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.3389/fninf.2013.00045
https://zenodo.org/record/3628482.XlyGkJP7S8o
https://doi.org/10.5281/zenodo.3628482
https://github.com/aleju/imgaug
https://zenodo.org/record/44297.Xlx04pP7S8o
https://doi.org/10.5281/zenodo.44297
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0019
https://doi.org/10.1109/3DV.2016.79
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0021
https://doi.org/10.1016/j.artmed.2019.06.008
https://doi.org/10.1007/978-3-319-59050-9_28
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0024
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1016/j.cobme.2018.12.005
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0028
https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/WACV.2018.00066
https://zenodo.org/record/1495335.XlqwUZP7S8o
https://doi.org/10.5281/zenodo.1495335
https://zenodo.org/record/3632567.Xlqnb5P7S8o
https://doi.org/10.5281/zenodo.3632567
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.cmpb.2020.105796
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0037
https://zenodo.org/record/4679866.YImZHZNKgWo
https://doi.org/10.5281/zenodo.4679866
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0040

F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[41] F. Chollet , others , Keras, 2015 .
42] R. Shaw , C. Sudre , S. Ourselin , M.J. Cardoso , MRI k-space motion artefact

augmentation: model robustness and task-specific uncertainty, in: Interna-
tional Conference on Medical Imaging with Deep Learning, 2019, pp. 427–436.

http://proceedings.mlr.press/v102/shaw19a.html. .
43] C.H. Sudre, M.J. Cardoso, S. Ourselin, Longitudinal segmentation of age-related

white matter hyperintensities, Med. Image Anal. 38 (2017) 50–64, doi: 10.1016/
j.media.2017.02.007 .

44] R. Shaw , C.H. Sudre , S. Ourselin , M.J. Cardoso , A heteroscedastic un-

certainty model for decoupling sources of MRI image quality, in:
Medical Imaging with Deep Learning, PMLR, 2020, pp. 733–742.

http://proceedings.mlr.press/v121/shaw20a.html. . ISSN: 2640-3498
45] L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, D. Rueckert, Self-

supervised learning for medical image analysis using image context restora-
tion, Med. Image Anal. 58 (2019) 101539, doi: 10.1016/j.media.2019.101539 .

46] B. Billot , D.N. Greve , K.V. Leemput , B. Fischl , J.E. Iglesias , A. Dalca , A learn-

ing strategy for contrast-agnostic MRI segmentation, in: Medical Imaging with
Deep Learning, PMLR, 2020, pp. 75–93 . ISSN: 2640-3498

[47] B. Billot, E. Robinson, A.V. Dalca, J.E. Iglesias, Partial volume segmentation of
brain MRI scans of any resolution and contrast, in: A.L. Martel, P. Abolmae-

sumi, D. Stoyanov, D. Mateus, M.A. Zuluaga, S.K. Zhou, D. Racoceanu, L. Joskow-
icz (Eds.), Medical Image Computing and Computer Assisted Intervention MIC-

CAI 2020, Lecture Notes in Computer Science, Springer International Publish-

ing, Cham, 2020, pp. 177–187, doi: 10.1007/978- 3- 030- 59728- 3 _ 18 .
48] L.G. Nyl, J.K. Udupa, X. Zhang, New variants of a method of MRI scale stan-

dardization, IEEE Trans. Med. Imaging 19 (2) (20 0 0) 143–150, doi: 10.1109/42.
836373 .

49] C.J. Holmes, R. Hoge, L. Collins, R. Woods, A.W. Toga, A.C. Evans, Enhancement
of MR images using registration for signal averaging, J. Comput. Assist. Tomogr.

22 (2) (1998) 324–333, doi: 10.1097/0 0 0 04728-1998030 0 0-0 0 032 .

50] A.O. Omigbodun, F. Noo, M. McNitt-yy, W. Hsu, S.S. Hsieh, The effects of
physics-based data augmentation on the generalizability of deep neural net-

works: demonstration on nodule false-positive reduction, Med. Phys. 46 (10)
(2019) 4563–4574, doi: 10.1002/mp.13755 .

[51] J. Zhuo, R.P. Gullapalli, MR artifacts, safety, and quality control, RadioGraphics
26 (1) (2006) 275–297, doi: 10.1148/rg.261055134 .

52] K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens, Automated model-

based tissue classification of MR images of the brain, IEEE Trans. Med. Imaging
18 (10) (1999) 897–908, doi: 10.1109/42.811270 .
12
53] F. Pérez-García , R. Rodionov , A. Alim-Marvasti , R. Sparks , J.S. Duncan ,
S. Ourselin , Simulation of brain resection for cavity segmentation using self-

-supervised and semi-supervised learning, in: A.L. Martel, P. Abolmaesumi,
D. Stoyanov, D. Mateus, M.A. Zuluaga, S.K. Zhou, D. Racoceanu, L. Joskowicz

(Eds.), Medical Image Computing and Computer Assisted Intervention MICCAI
2020, Lecture Notes in Computer Science, Springer International Publishing,

Cham, 2020, pp. 115–125 .
54] J.E. Iglesias , B. Billot , Y. Balbastre , A. Tabari , J. Conklin , D. Alexander , P. Gol-

land , B. Edlow , B. Fischl , Joint super-resolution and synthesis of 1 mm isotropic

MP-RAGE volumes from clinical MRI exams with scans of different orientation,
resolution and contrast, arXiv preprint arXiv:2012.13340 (2020) .

55] N. Moshkov, B. Mathe, A. Kertesz-Farkas, R. Hollandi, P. Horvath, Test-time
augmentation for deep learning-based cell segmentation on microscopy im-

ages, Sci. Rep. 10 (1) (2020) 5068, doi: 10.1038/s41598- 020- 61808- 3 . Number:
1 Publisher: Nature Publishing Group

56] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, T. Vercauteren, Aleatoric un-

certainty estimation with test-time augmentation for medical image segmen-
tation with convolutional neural networks, Neurocomputing 338 (2019) 34–45,

doi: 10.1016/j.neucom.2019.01.103 .
57] T. Preston-Werner, Semantic Versioning 2.0.0, 2020, Library Catalog:

semver.org, https://semver.org/ .
58] F. Pérez-García, fepegar/torchio: TorchIO: a Python library for efficient loading,

preprocessing, augmentation and patch-based sampling of medical images in

deep learning (Nov. 2020). doi: 10.5281/zenodo.4296288
59] L. Berger, H. Eoin, M.J. Cardoso, S. Ourselin, An adaptive sampling scheme

to efficiently train fully convolutional networks for semantic segmentation,
in: M. Nixon, S. Mahmoodi, R. Zwiggelaar (Eds.), Medical Image Under-

standing and Analysis, Communications in Computer and Information Sci-
ence, Springer International Publishing, Cham, 2018, pp. 277–286, doi: 10.1007/

978- 3- 319- 95921- 4 _ 26 .

60] M. McCormick, D. Zuki ́c, S.A. on, ITK 5.2 Release Candidate 3 avail-
able for testing, 2021, https://blog.kitware.com/itk- 5- 2- release- candidate-

3- available- for- testing/ .
61] M.C.H. Lee, O. Oktay, A. Schuh, M. Schaap, B. Glocker, Image-and-spatial trans-

former networks for structure-guided image registration, in: D. Shen, T. Liu,
T.M. Peters, L.H. Staib, C. Essert, S. Zhou, P.-T. Yap, A. Khan (Eds.), Medical

Image Computing and Computer Assisted Intervention MICCAI 2019, Lecture

Notes in Computer Science, Springer International Publishing, Cham, 2019,
pp. 337–345, doi: 10.1007/978- 3- 030- 32245- 8 _ 38 .

http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0041
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0041
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0041
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0042
https://doi.org/10.1016/j.media.2017.02.007
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0044
https://doi.org/10.1016/j.media.2019.101539
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0046
https://doi.org/10.1007/978-3-030-59728-3_18
https://doi.org/10.1109/42.836373
https://doi.org/10.1097/00004728-199803000-00032
https://doi.org/10.1002/mp.13755
https://doi.org/10.1148/rg.261055134
https://doi.org/10.1109/42.811270
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0053
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
http://refhub.elsevier.com/S0169-2607(21)00310-2/sbref0054
https://doi.org/10.1038/s41598-020-61808-3
https://doi.org/10.1016/j.neucom.2019.01.103
https://semver.org/
https://doi.org/10.5281/zenodo.4296288
https://doi.org/10.1007/978-3-319-95921-4_26
https://blog.kitware.com/itk-5-2-release-candidate-3-available-for-testing/
https://doi.org/10.1007/978-3-030-32245-8_38

	TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
	1 Introduction
	1.1 Motivation
	1.1.1 Challenges in medical image processing for deep learning
	1.2 Related work

	2 Methods
	2.1 Data
	2.1.1 Input/Output
	2.1.2 Data structures
	2.1.3 Patch-based training

	2.2 Transforms
	2.2.1 Preprocessing
	2.2.2 Augmentation
	2.2.3 Composability
	2.2.4 Extensibility
	2.2.5 Reproducibility and traceability
	2.2.6 Invertibility

	3 Results
	3.1 Code availability
	3.1.1 Additional interfaces

	3.2 Usage examples
	3.2.1 Super-resolution and synthesis of MRI
	3.2.2 Adaptive sampling for segmentation of CT scans

	4 Discussion
	Declaration of Competing Interest
	Acknowledgments
	References

