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a b s t r a c t 

Background and objective: Processing of medical images such as MRI or CT presents different challenges 

compared to RGB images typically used in computer vision. These include a lack of labels for large 

datasets, high computational costs, and the need of metadata to describe the physical properties of vox- 

els. Data augmentation is used to artificially increase the size of the training datasets. Training with im- 

age subvolumes or patches decreases the need for computational power. Spatial metadata needs to be 

carefully taken into account in order to ensure a correct alignment and orientation of volumes. 

Methods: We present TorchIO, an open-source Python library to enable efficient loading, preprocessing, 

augmentation and patch-based sampling of medical images for deep learning. TorchIO follows the style 

of PyTorch and integrates standard medical image processing libraries to efficiently process images dur- 

ing training of neural networks. TorchIO transforms can be easily composed, reproduced, traced and ex- 

tended. Most transforms can be inverted, making the library suitable for test-time augmentation and 

estimation of aleatoric uncertainty in the context of segmentation. We provide multiple generic prepro- 

cessing and augmentation operations as well as simulation of MRI-specific artifacts. 

Results: Source code, comprehensive tutorials and extensive documentation for TorchIO can be found at 

http://torchio.rtfd.io/ . The package can be installed from the Python Package Index (PyPI) running pip 
install torchio . It includes a command-line interface which allows users to apply transforms to 

image files without using Python. Additionally, we provide a graphical user interface within a TorchIO 

extension in 3D Slicer to visualize the effects of transforms. 

Conclusion: TorchIO was developed to help researchers standardize medical image processing pipelines 

and allow them to focus on the deep learning experiments. It encourages good open-science practices, 

as it supports experiment reproducibility and is version-controlled so that the software can be cited pre- 

cisely. Due to its modularity, the library is compatible with other frameworks for deep learning with 

medical images. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Recently, deep learning has become a ubiquitous research ap- 

roach for solving image understanding and analysis problems. 

onvolutional neural networks (CNNs) have become the state of 

he art for many medical imaging tasks including segmentation [1] , 

lassification [2] , reconstruction [3] and registration [4] . Many of 
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he network architectures and techniques have been adopted from 

omputer vision. 

Compared to 2D red-green-blue (RGB) images typically used in 

omputer vision, processing of medical images such as MRI, ultra- 

ound (US) or CT presents different challenges. These include a lack 

f labels for large datasets, high computational costs (as the data 

s typically volumetric), and the use of metadata to describe the 

hysical size and position of voxels. 

Open-source frameworks for training CNNs with medical im- 

ges have been built on top of TensorFlow [5–7] . Recently, the pop- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2021.106236
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106236&domain=pdf
http://torchio.rtfd.io/
http://creativecommons.org/licenses/by/4.0/
mailto:fernando.perezgarcia.17@ucl.ac.uk
https://doi.org/10.1016/j.cmpb.2021.106236
http://creativecommons.org/licenses/by/4.0/


F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236 

u

i

f

c

p

o

p

i

l

m

(

p

d

a

i

i

l

1

t

S

n

S

l

1

v

m

b

m

t

r

g

t

M

a

p

o

c

e

r

i

m

o

e

e

p

e

d

a

r

r

b

o

g

t

t

v

C

i

r

a

N

c

s

l

s

t

t

r

c

f

t

t

p

c

r

n

D

a

t

i
f

n

i

t

c

a

d

m

s

A

i

p

c

b

m

o

m

i

t

2  

u

m

w

h

t

s  

v

g

d

o

c

t

c

s

e

larity of PyTorch [8] has increased among researchers due to its 

mproved usability compared to TensorFlow [9] , driving the need 

or open-source tools compatible with PyTorch. To reduce dupli- 

ation of effort among research groups, improve experimental re- 

roducibility and encourage open-science practices, we have devel- 

ped TorchIO: an open-source Python library for efficient loading, 

reprocessing, augmentation, and patch-based sampling of medical 

mages designed to be integrated into deep learning workflows. 

TorchIO is a compact and modular library that can be seam- 

essly used alongside higher-level deep learning frameworks for 

edical imaging, such as the Medical Open Network for AI 

MONAI). It removes the need for researchers to code their own 

reprocessing pipelines from scratch, which might be error-prone 

ue to the complexity of medical image representations. Instead, it 

llows researchers to focus on their experiments, supporting exper- 

ment reproducibility and traceability of their work, and standard- 

zation of the methods used to process medical images for deep 

earning. 

.1. Motivation 

The nature of medical images makes it difficult to rely on a 

ypical computer-vision pipeline for neural network training. In 

ection 1.1.1 , we describe challenges related to medical images that 

eed to be overcome when designing deep learning workflows. In 

ection 1.1.2 , we justify the choice of PyTorch as the main deep 

earning framework dependency of TorchIO. 

.1.1. Challenges in medical image processing for deep learning 

In practice, multiple challenges must be addressed when de- 

eloping deep learning algorithms for medical images: 1) handling 

etadata related to physical position and size, 2) lack of large la- 

eled datasets, 3) high computational costs due to data multidi- 

ensionality and 4) lack of consensus for best normalization prac- 

ices. These challenges are very common in medical imaging and 

equire certain features that may not be implemented in more 

eneral-purpose image processing frameworks such as Albumen- 

ations [10] or TorchVision [8] . 

etadata. In computer vision, picture elements, or pixels , which 

re assumed to be square, have a spatial relationship that com- 

rises proximity and depth according to both the arrangement of 

bjects in the scene and camera placement. In comparison, medi- 

al images are reconstructed such that the location of volume el- 

ments, or cuboid-shaped voxels , encodes a meaningful 3D spatial 

elationship. In simple terms, for 2D natural images, pixel vicin- 

ty does not necessarily indicate spatial correspondence, while for 

edical images spatial correspondence between nearby voxels can 

ften be assumed. 

Metadata, which encodes the physical size, spacing, and ori- 

ntation of voxels, determines spatial relationships between vox- 

ls [11] . This information can provide meaningful context when 

erforming medical image processing, and is often implicitly or 

xplicitly used in medical imaging software. Furthermore, meta- 

ata is often used to determine correspondence between images 

s well as voxels within an image. For example, registration algo- 

ithms for medical images typically work with physical coordinates 

ather than voxel indices. 

Fig. 1 shows the superposition of an MRI and a corresponding 

rain parcellation [12] with the same size ( 181 × 181 ) but different 

rigin, spacing and orientation. A native user would assume that, 

iven that the superimposition looks correct and both images have 

he same size, they are ready for training. However, the visualiza- 

ion is correct only because 3D Slicer [13] , the software used for 

isualization, is aware of the spatial metadata of the images. As 
2 
NNs generally do not take spatial metadata into account, train- 

ng using these images without preprocessing would lead to poor 

esults. 

Medical images are typically stored in specialized formats such 

s Data Imaging and Communications in Medicine (DICOM) or 

euroimaging Informatics Technology Initiative (NIfTI) [11] , and 

ommonly read and processed by medical imaging frameworks 

uch as SimpleITK [14] or NiBabel [15] . 

Limited training data. Deep learning methods typically require 

arge amounts of annotated data, which are often scarce in clinical 

cenarios due to concerns over patient privacy, the financial and 

ime burden associated with collecting data as part of a clinical 

rial, and the need for annotations from highly-trained and expe- 

ienced raters. Data augmentation techniques can be used to in- 

rease the size of the training dataset artificially by applying dif- 

erent transformations to each training instance while preserving 

he relationship to annotations. 

Data augmentation performed in computer vision typically aims 

o simulate variations in camera properties, field of view (FOV), or 

erspective. Traditional data augmentation operations applied in 

omputer vision include geometrical transforms such as random 

otation or zoom, color-space transforms such as random chan- 

el swapping or kernel filtering such as random Gaussian blurring. 

ata augmentation is usually performed on the fly, i.e., every time 

n image is loaded from disk during training. 

Several computer vision libraries supporting data augmenta- 

ion have appeared recently, such as Albumentations [10] , or 

mgaug [16] . PyTorch also includes some computer vision trans- 

orms, mostly implemented as Pillow wrappers [17] . However, 

one of these libraries support reading or transformations for 3D 

mages. Furthermore, medical images are almost always grayscale, 

herefore color-space transforms are not applicable. Additionally, 

ropping and scaling are more challenging to apply to medical im- 

ges without affecting the spatial relationships of the data. Meta- 

ata should usually be considered when applying these transfor- 

ations to medical images. 

In medical imaging, the purpose of data augmentation is de- 

igned to simulate anatomical variations and scanner artifacts. 

natomical variation and sample position can be simulated us- 

ng spatial transforms such as elastic deformation, lateral flip- 

ing, or affine transformations. Some artifacts are unique to spe- 

ific medical image modalities. For example, ghosting artifacts will 

e present in MRI if the patient moves during acquisition, and 

etallic implants often produce streak artifacts in CT. Simulation 

f these artifacts can be useful when performing augmentation on 

edical images. 

Computational costs. The number of pixels in 2D images used 

n deep learning is rarely larger than one million. For example, 

he input size of several popular image classification models is 

24 × 224 × 3 = 150 528 pixels (588 KiB if 32 bits per pixel are

sed). In contrast, 3D medical images often contain hundreds of 

illions of voxels, and downsampling might not be acceptable 

hen small details should be preserved. For example, the size of a 

igh-resolution lung CT-scan used for quantifying chronic obstruc- 

ive pulmonary disease (COPD) damage in a research setting, with 

pacing 0 . 66 × 0 . 66 × 0 . 30 mm, is 512 × 512 × 1069 = 280 231 936

oxels (1.04 GiB if 32 bits per voxel are used). 

In computer vision applications, images used for training are 

rouped in batches whose size is often in the order of hun- 

reds [18] or even thousands [19] of training instances, depending 

n the available graphics processing unit (GPU) memory. In medi- 

al image applications, batches rarely contain more than one [1] or 

wo [20] training instances due to their larger memory footprint 

ompared to natural images. This reduces the utility of techniques 

uch as batch normalization, which rely on batches being large 

nough to estimate dataset variance appropriately [21] . Moreover, 
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Fig. 1. Demonstration of the importance of spatial metadata in medical image processing. The size of both the MRI and the segmentation is 181 × 181 . When spatial metadata 

is taken into account (a), images are correctly superimposed (only the borders of each region are shown for clarity purposes). Images are incorrectly superimposed if (b) 

origin, (c) orientation or (d) spacing are ignored. 
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1 https://github.com/PhoenixDL/rising . 
arge image size and small batches result in longer training time, 

indering the experimental cycle that is necessary for hyperparam- 

ter optimization. In cases where GPU memory is limited and the 

etwork architecture is large, it is possible that not even the en- 

irety of a single volume can be processed during a training itera- 

ion. To overcome this challenge, it is common in medical imaging 

o train using subsets of the image, or image patches , randomly ex- 

racted from the volumes. 

Networks can be trained with 2D slices extracted from 3D 

olumes, aggregating the inference results to generate a 3D vol- 

me [22] . This can be seen as a specific case of patch-based train-

ng, where the size of the patches along a dimension is one. Other 

ethods extract volumetric patches for training, that are often 

ubes, if the voxel spacing is isotropic [23] , or cuboids adapted to 

he anisotropic spacing of the training images [24] . 

Transfer learning and normalization. One can pre-train a network 

n a large dataset of natural images such as ImageNet [25] , which 

ontains more than 14 million labeled images, and fine-tune on a 

ustom, much smaller target dataset. This is a typical use of trans- 

er learning in computer vision [26] . The literature has reported 

ixed results using transfer learning to apply models pretrained 

n natural images to medical images [27,28] . 

In computer vision, best practice is to normalize each training 

nstance before training, using statistics computed from the whole 

raining dataset [18] . Preprocessing of medical images is often per- 

ormed on a per-image basis, and best practice is to take into ac- 

ount the bimodal nature of medical images (i.e., that an image 

as a background and a foreground). 

Medical image voxel intensity values can be encoded with dif- 

erent data types and intensity ranges, and the meaning of a spe- 

ific value can vary between different modalities, sequence acqui- 

itions, or scanners. Therefore, intensity normalization methods for 

edical images often involve more complex parameterization of 

ntensities than those used for natural images [29] . 

.1.2. Deep learning frameworks. There are currently two major 

eneric deep learning frameworks: TensorFlow [5] and PyTorch [8] , 

rimarily maintained by Google and Facebook, respectively. Al- 

hough TensorFlow has traditionally been the primary choice for 

oth research and industry, PyTorch has recently seen a substan- 

ial increase in popularity, especially among the research commu- 

ity [9] . 

PyTorch is often preferred by the research community as it is 

ythonic , i.e., its design, usage, and application programming in- 

erfaceAPI follow the conventions of plain Python. Moreover, the 

PI for tensor operations follows a similar paradigm to the one 

or NumPy multidimensional arrays, which is the primary array 

rogramming library for the Python language [30] . In contrast, for 

ensorFlow, researchers need to become familiar with new design 
3 
lements such as sessions, placeholders, feed dictionaries, gradient 

apes and static graphs. In PyTorch, objects are standard Python 

lasses and variables, and a dynamic graph makes debugging in- 

uitive and familiar to anyone already using Python. These dif- 

erences have decreased with the recent release of TensorFlow 2, 

hose eager mode makes usage reminiscent of Python. 

TorchIO was designed to be in the style of PyTorch and uses 

everal of its tools to reduce the barrier to learning how to use 

orchIO for those researchers already familiar with PyTorch. 

.2. Related work 

NiftyNet [7] and the Deep Learning Toolkit (DLTK) [6] are deep 

earning frameworks designed explicitly for medical image pro- 

essing using the TensorFlow 1 platform. Both of them are no 

onger being actively maintained. They provide implementations of 

ome popular network architectures such as U-Net [1] , and can be 

sed to train 3D CNNs for different tasks. For example, NiftyNet 

as used to train a 3D residual network for brain parcellation [23] , 

nd DLTK was used to perform multi-organ segmentation on CT 

nd MRI [31] . 

The medicaltorch library [32] closely follows the PyTorch 

esign, and provides some functionalities for preprocessing, aug- 

entation and training of medical images. However, it does not 

everage the power of specialized medical image processing li- 

raries, such as SimpleITK [14] , to process volumetric images. 

Similar to DLTK, this library has not seen much activity since 

018. 

The batchgenerators library [33] , used within the popu- 

ar medical segmentation framework nn-UNet [34] , includes cus- 

om dataset and data loader classes for multithreaded loading of 

D medical images, implemented before data loaders were avail- 

ble in PyTorch. In the usage examples from GitHub, preprocess- 

ng is applied to the whole dataset before training. Then, spa- 

ial data augmentation is performed at the volume level, from 

hich one patch is extracted and intensity augmentation is per- 

ormed at the patch level. In this approach, only one patch is ex- 

racted per volume, diminishing the efficiency of training pipelines. 

ransforms in batchgenerators are mostly implemented using 

umPy [30] and SciPy [35] . 

More recently, a few PyTorch-based libraries for deep learning 

nd medical images have appeared. There are two other libraries, 

eveloped in parallel to TorchIO, focused on data preprocessing 

nd augmentation. Rising 1 is a library for data augmentation en- 

irely written in PyTorch, which allows for gradients to be prop- 

gated through the transformations and perform all computations 

n the GPU. However, this means specialized medical imaging li- 

raries such as SimpleITK cannot be used. pymia [36] provides 

https://github.com/PhoenixDL/rising
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Fig. 2. General diagram of TorchIO, its dependencies and its interfaces. Boxes with a red border ( ) represent elements implemented in TorchIO. Logos indicate lower-level 

Python libraries used by TorchIO. : NiBabel [15] ; : SimpleITK [14] ; : NumPy [30] ; : PyTorch [8] . 
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eatures for data handling (loading, preprocessing, sampling) and 

valuation. It is compatible with TorchIO transforms, which are 

ypically leveraged for data augmentation, as their data handling 

s more focused on preprocessing. pymia can be easily integrated 

nto either PyTorch or TensorFlow pipelines. It was recently used 

o assess the suitability of evaluation metrics for medical image 

egmentation [37] . 

MONAI [38] and Eisen [39] are PyTorch-based frameworks for 

eep learning workflows with medical images. Similar to NiftyNet 

nd DLTK, they include implementation of network architectures, 

ransforms, and higher-level features to perform training and in- 

erence. For example, MONAI was recently used for brain segmen- 

ation on fetal MRI [40] . As these packages are solving a large 

roblem, i.e., that of workflow in deep learning for medical im- 

ges, they do not contain all of the data augmentation transforms 

resent in TorchIO. However, it is important to note that an end 

ser does not need to select only one open-source package, as Tor- 

hIO transforms are compatible with both Eisen and MONAI. 

TorchIO is a library that specializes in preprocessing and aug- 

entation using PyTorch, focusing on ease of use for researchers. 

his is achieved by providing a PyTorch-like API, comprehensive 

ocumentation with many usage examples, and tutorials showcas- 

ng different features, and by actively addressing feature requests 

nd bug reports from the many users that have already adopted 

orchIO. This is in contrast with other modern libraries released af- 

er TorchIO such as MONAI, which aims to deliver a larger umbrella 

f functionalities including federated learning or active learning, 

ut may have slower development and deployment. 

. Methods 

We developed TorchIO, a Python library that focuses on data 

oading and augmentation of medical images in the context of 

eep learning. 

TorchIO is a unified library to load and augment data that 

akes explicit use of medical image properties, and is flexible 

nough to be used for different loading workflows. It can accel- 

rate research by avoiding the need to code a processing pipeline 

or medical images from scratch. 

In contrast with Eisen or MONAI, we do not implement network 

rchitectures, loss functions or training workflows. This is to limit 

he scope of the library and to enforce modularity between train- 

ng of neural networks and preprocessing and data augmentation. 

Following the PyTorch philosophy [8] , we designed TorchIO 

ith an emphasis on simplicity and usability while reusing Py- 

orch classes and infrastructure where possible. Note that, al- 

hough we designed TorchIO following PyTorch style, the library 
4 
ould also be used with other deep learning platforms such as Ten- 

orFlow or Keras [41] . 

TorchIO makes use of open-source medical imaging software 

latforms. Packages were selected to reduce the number of re- 

uired external dependencies and the need to re-implement basic 

edical imaging processing operations (image loading, resampling, 

tc.). 

TorchIO features are divided into two categories: data structures 

nd input/output ( torchio.data ), and transforms for prepro- 

essing and augmentation ( torchio.transforms ). Fig. 2 repre- 

ents a diagram of the codebase and the different interfaces to the 

ibrary. 

.1. Data 

.1.1. Input/Output 

TorchIO uses the medical imaging libraries NiBabel and Sim- 

leITK to read and write images. Dependency on both is necessary 

o ensure broad support of image formats. For instance, NiBabel 

oes not support reading Portable Network Graphics (PNG) files, 

hile SimpleITK does not support some neuroimaging-specific for- 

ats. 

TorchIO supports up to 4D images, i.e., 2D or 3D single-channel 

r multi-channel data such as X-rays, RGB histological slides, mi- 

roscopy stacks, multispectral images, CT-scans, functional MRI 

fMRI) and diffusion MRI (dMRI). 

.1.2. Data structures 

Image. The Image class, representing one medical image, stores 

 4D tensor, whose voxels encode, e.g., signal intensity or segmen- 

ation labels, and the corresponding affine transform, typically a 

igid (Euclidean) transform, to convert voxel indices to world coor- 

inates in millimeters. Arbitrary fields such as acquisition parame- 

ers may also be stored. 

Subclasses are used to indicate specific types of images, such as 

calarImage and LabelMap , which are used to store, e.g., CT 

cans and segmentations, respectively. 

An instance of Image can be created using a filepath, a PyTorch 

ensor, or a NumPy array. This class uses lazy loading, i.e., the data 

s not loaded from disk at instantiation time. Instead, the data is 

nly loaded when needed for an operation (e.g., if a transform is 

pplied to the image). 

Fig. 3 shows two instances of Image . The instance of 

calarImage contains a 4D tensor representing a dMRI, which 

ontains four 3D volumes (one per gradient direction), and the as- 

ociated affine matrix. Additionally, it stores the strength and di- 

ection for each of the four gradients. The instance of LabelMap 
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Fig. 3. Usage example of ScalarImage , LabelMap , Subject and SubjectsDataset . The images store a 4D dMRI and a brain parcellation, and other related metadata. 

c

a

a  

S
n

T

a

S
s

i

l

l

d

d

(

t
t

2

t

w

d

s

r

n

t

o

a

l

t

p

c

u

a

s

t

p

p

a

i

a

a

e

u

b

b

h

b

q

l

T

T

h

t

t

A

S
l

m

t

a

i

s

b

n

m

n

u

p

ontains a brain parcellation of the same subject, the associated 

ffine matrix, and the name and color of each brain structure. 

Subject. The Subject class stores instances of Image associ- 

ted to a subject, e.g., a human or a mouse. As in the Image class,

ubject can store arbitrary fields such as age, diagnosis or eth- 

icity. 

Subjects dataset . The SubjectsDataset inherits from the Py- 

orch Dataset . It contains the list of subjects and optionally 

 transform to be applied to each subject after loading. When 

ubjectsDataset is queried for a specific subject, the corre- 

ponding set of images are loaded, a transform is applied to the 

mages and the instance of Subject is returned. 

For parallel loading, a PyTorch DataLoader may be used. This 

oader spawns multiple processes, each of which contains a shal- 

ow copy of the SubjectsDataset . Each copy is queried for a 

ifferent subject, therefore loading and transforming is applied to 

ifferent subjects in parallel on the central processing unit (CPU) 

 Fig. 4 a). 

An example of subclassing SubjectsDataset is 

orchio.datasets.IXI , which may be used to download 

he Information eXtraction from Images (IXI) dataset. 2 

.1.3. Patch-based training 

Memory limitations often require training and inference steps 

o be performed using image subvolumes or patches instead of the 

hole volumes, as explained in Section 1.1.1.3 . In this section, we 

escribe how TorchIO implements patch-based training via image 

ampling and queueing. 

Samplers. A sampler takes as input an instance of Subject and 

eturns a version of it whose images have a reduced FOV, i.e., the 

ew images are subvolumes, also called windows or patches . For 

his, a PatchSampler may be used. 

Different criteria may be used to select the center voxel of each 

utput patch. A UniformSampler selects a voxel as the center 

t random with all voxels having an equal probability of being se- 

ected. A WeightedSampler selects the patch center according 

o a probability distribution image defined over all voxels, which is 

assed as input to the sampler. 

At testing time, images are sampled such that a dense inference 

an be performed on the input volume. A GridSampler can be 
2 https://brain-development.org/ixi-dataset/. 

5 
sed to sample patches such that the center voxel is selected using 

 set stride. In this way, sampling over the entire volume is en- 

ured. The potentially-overlapping inferred patches can be passed 

o a GridAggregator that builds the resulting volume patch by 

atch (or batch by batch). 

Queue. A training iteration (i.e., forward and backward pass) 

erformed on a GPU is usually faster than loading, preprocessing, 

ugmenting, and cropping a volume on a CPU. Most preprocess- 

ng operations could be performed using a GPU, but these devices 

re typically reserved for training the CNN so that the batch size 

nd input tensor can be as large as possible. Therefore, it is ben- 

ficial to prepare (i.e., load, preprocess and augment) the volumes 

sing multiprocessing CPU techniques in parallel with the forward- 

ackward passes of a training iteration. 

Once a volume is appropriately prepared, it is computationally 

eneficial to sample multiple patches from a volume rather than 

aving to prepare the same volume each time a patch needs to 

e extracted. The sampled patches are then stored in a buffer or 

ueue until the next training iteration, at which point they are 

oaded onto the GPU to perform an optimization iteration. For this, 

orchIO provides the Queue class, which inherits from the Py- 

orch Dataset ( Fig. 4 b). In this queueing system, samplers be- 

ave as generators that yield patches from volumes contained in 

he SubjectsDataset . 
The end of a training epoch is defined as the moment af- 

er which patches from all subjects have been used for training. 

t the beginning of each training epoch, the subjects list in the 

ubjectsDataset is shuffled, as is typically done in machine 

earning pipelines to increase variance of training instances during 

odel optimization. A PyTorch loader begins by shallow-copying 

he dataset to each subprocess. Each worker subprocess loads and 

pplies image transforms to the volumes in parallel. A patches list 

s filled with patches extracted by the sampler, and the queue is 

huffled once it has reached a specified maximum length so that 

atches are composed of patches from different subjects. The inter- 

al data loader continues querying the SubjectsDataset using 

ultiprocessing. The patches list, when emptied, is refilled with 

ew patches. A second data loader, external to the queue, may be 

sed to collate batches of patches stored in the queue, which are 

assed to the neural network. 



F. Pérez-García, R. Sparks and S. Ourselin Computer Methods and Programs in Biomedicine 208 (2021) 106236 

Fig. 4. Diagram of data pipelines for training with whole volumes (top) and patches (bottom). Boxes with a red border represent PyTorch classes ( ) or TorchIO classes 

that inherit from PyTorch classes ( ). 
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3 In this context, standardization refers to correcting voxel intensity values to 
.2. Transforms 

The transforms API was designed to be similar to the PyTorch 

torchvision.transforms module. TorchIO includes aug- 

entations such as random affine transformation ( Fig. 5 e) or ran- 

om blur ( Fig. 5 b), but they are implemented using medical imag- 

ng libraries [14,15] to take into account specific properties of med- 

cal images, namely their size, resolution, location, and orientation 

see Section 1.1.1.1 ). Table 1 shows transforms implemented in Tor- 

hIO v0.18.0 and their main corresponding library dependencies. 

Transforms are designed to be flexible regarding input and out- 

ut types. Following a duck typing approach, they can take as in- 

ut PyTorch tensors, SimpleITK images, NumPy arrays, Pillow im- 

ges, Python dictionaries, and instances of Subject and Image , 
nd will return an output of the same type. 

TorchIO transforms can be classified into either spatial and 

ntensity transforms, or preprocessing and augmentation trans- 

orms ( Table 1 ). All are subclasses of the Transform base class. 

patial transforms and intensity transforms are related to the 

patialTransform and IntensityTransform classes, re- 

pectively. Transforms whose parameters are randomly chosen are 

ubclasses of RandomTransform . 
Instances of SpatialTransform typically modify the image 

ounds or spacing, and often need to resample the image us- 

ng interpolation. They are applied to all image types. Instances 

f IntensityTransform do not modify the position of vox- 

ls, only their values, and they are only applied to instances 

f ScalarImage . For example, if a RandomNoise transform 

which is a subclass of IntensityTransform ) receives as input 

 Subject with a ScalarImage representing a CT scan and a 

abelMap representing a segmentation, it will add noise to only 

he CT scan. On the other hand, if a RandomAffine transform 

which is a subclass of SpatialTransform ) receives the same 

nput, the same affine transformation will be applied to both im- 
h

6 
ges, with nearest-neighbor interpolation always used to interpo- 

ate LabelMap objects. 

.2.1. Preprocessing 

Preprocessing transforms are necessary to ensure spatial and in- 

ensity uniformity of training instances. 

Spatial preprocessing is important as CNNs do not gener- 

lly take into account metadata related to medical images (see 

ection 1.1.1.1 ), therefore it is necessary to ensure that voxels across 

mages have similar spatial location and relationships before train- 

ng. Spatial preprocessing transforms typically used in medical 

maging include resampling (e.g., to make voxel spacing isotropic 

or all training samples) and reorientation (e.g., to orient all train- 

ng samples in the same way). For example, the Resample trans- 

orm can be used to fix the issue presented in Fig. 1 . 

Intensity normalization is generally beneficial for optimization 

f neural networks. TorchIO provides intensity normalization tech- 

iques including min-max scaling or standardization, 3 which are 

omputed using pure PyTorch. A binary image, such as a mask rep- 

esenting the foreground or structures of interest, can be used to 

efine the set of voxels to be taken into account when comput- 

ng statistics for intensity normalization. We also provide a method 

or MRI histogram standardization [48] , computed using NumPy, 

hich may be used to overcome the differences in intensity dis- 

ributions between images acquired using different scanners or se- 

uences. 

.2.2. Augmentation 

TorchIO includes spatial augmentation transforms such as ran- 

om flipping using PyTorch and random affine and elastic defor- 

ation transforms using SimpleITK. Intensity augmentation trans- 
ave zero mean and unit variance. 
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Fig. 5. A selection of data augmentation techniques available in TorchIO v0.18.0 . Each example is presented as a pair of images composed of the transformed image 

and a corresponding transformed label map. Note that all screenshots are from a 2D coronal slice of the transformed 3D images. The MRI corresponds to the Montreal 

Neurological Institute (MNI) Colin 27 average brain [49] , which can be downloaded using torchio.datasets.Colin27 . Label maps were generated using an automated 

brain parcellation algorithm [12] . 
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orms include random Gaussian blur using a SimpleITK filter 

 Fig. 5 b) and addition of random Gaussian noise using pure Py- 

orch ( Fig. 5 d). All augmentation transforms are subclasses of 

andomTransform . 
Although current domain-specific data augmentation trans- 

orms available in TorchIO are mostly related to MRI, we encourage 

sers to contribute physics-based data augmentation techniques 

or US or CT [50] . 
7 
We provide several MRI-specific augmentation transforms re- 

ated to k -space, which are described below. An MR image is usu- 

lly reconstructed as the magnitude of the inverse Fourier trans- 

orm of the k -space signal, which is populated with the signals 

enerated by the sample as a response to a radio-frequency elec- 

romagnetic pulse. These signals are modulated using coils that 

reate gradients of the magnetic field inside the scanner. Ar- 

ifacts are created by using k -space transforms to perturb the 
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Table 1 

Transforms included in TorchIO v0.18.0 . Logos indicate the main library used to process the images. : NiBabel 

[15] ; : SimpleITK [14] ; : NumPy [30] ; : PyTorch [8] . 
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ourier space and generate corresponding intensity artifacts in im- 

ge space. The forward and inverse Fourier transforms are com- 

uted using the Fast Fourier Transform (FFT) algorithm imple- 

ented in NumPy. 

Random k -space spike artifact. Gradients applied at a very high 

uty cycle may produce bad data points, or noise spikes, in k - 

pace [51] . These points in k -space generate a spike artifact, also 

nown as Herringbone, crisscross or corduroy artifact, which man- 

fests as uniformly-separated stripes in image space, as shown in 

ig. 5 i. This type of data augmentation has recently been used to 

stimate uncertainty through a heteroscedastic noise model [44] . 

Random k -space motion artifact . The k -space is often populated 

ine by line, and the sample in the scanner is assumed to remain 

tatic. If a patient moves during the MRI acquisition, motion ar- 

ifacts will appear in the reconstructed image. We implemented 

 method to simulate random motion artifacts ( Fig. 5 h) that has 

een used successfully for data augmentation to model uncertainty 

nd improve segmentation [42] . 

Random k -space ghosting artifact . Organs motion such as respira- 

ion or cardiac pulsation may generate ghosting artifacts along the 

hase-encoding direction [51] (see Fig. 5 j). We simulate this phe- 

omenon by removing every n th plane of the k -space along one 

irection to generate n ghosts along that dimension, while keeping 

he center of k -space intact. 

Random bias field artifact. Inhomogeneity of the static magnetic 

eld in the MRI scanner produces intensity artifacts of very low 

patial frequency along the entirety of the image. These artifacts 

an be simulated using polynomial basis functions [52] , as shown 

n Fig. 5 g. 

.2.3. Composability 

All transforms can be composed in a linear fashion, as in 

he PyTorch torchvision library, or building a directed acyclic 

raphDAG using the OneOf transform (as in [10] ). For example, a 

ser might want to apply a random spatial augmentation trans- 

orm to 50% of the samples using either an affine or an elas- 

ic transform, but they want the affine transform to be applied 
8 
o 80% of the augmented images, as the execution time is faster. 

hen, they might want to rescale the volume intensity for all im- 

ges to be between 0 and 1. Fig. 6 shows a graph representing the 

ransform composition. This transform composition can be imple- 

ented with just three statements: 

Compose and OneOf are implemented as TorchIO transforms. 

.2.4. Extensibility 

The Lambda transform can be passed an arbitrary callable ob- 

ect, which allows the user to augment the library with custom 

ransforms without having a deep understanding of the underlying 

ode. 

Additionally, more complex transforms can be developed. For 

xample, we implemented a TorchIO transform to simulate brain 

esection cavities from preoperative MR images within a self- 

upervised learning pipeline [53] . The RandomLabelsToImage 
ransform may be used to simulate an image from a tissue seg- 

entation. It can be composed with RandomAnisotropy to 

rain neural networks agnostic to image contrast and resolu- 

ion [46,47,54] . 
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Fig. 6. Graph representation of the composed transform described in Section 2.2.3 . 
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.2.5. Reproducibility and traceability 

To promote open science principles, we designed TorchIO to 

upport experiment reproducibility and traceability. 

All transforms support receiving Python primitives as argu- 

ents, which makes TorchIO suitable to be used with a configu- 

ation file associated to a specific experiment. 

A history of all applied transforms and their computed random 

arameters is saved in the transform output so that the path in 

he DAG and the parameters used can be traced and reproduced. 

urthermore, the Subject class includes a method to compose 

he transforms history into a single transform that may be used to 

eproduce the exact result ( Section 2.2.3 ). 

.2.6. Invertibility 

Inverting transforms is especially useful in scenarios where one 

eeds to apply some transformation, infer a segmentation on the 

ransformed data and then apply the inverse transformation to 

ring the inference into the original image space. The Subject 
lass includes a method to invert the transformations applied. It 

oes this by first inverting all transforms that are invertible, dis- 

arding the ones that are not. Then, it composes the invertible 

ransforms into a single transform. 

Transforms invertibility is most commonly applied to test-time 

ugmentation [55] or estimation of aleatoric uncertainty [56] in 

he context of image segmentation. 

. Results 

.1. Code availability 

All the code for TorchIO is available on GitHub 4 . We follow the 

emantic versioning system [57] to tag and release our library. Re- 

eases are published on the Zenodo data repository 5 to allow users 

o cite the specific version of the package they used in their ex- 

eriments. The version described in this paper is v0.18.0 [58] . 

etailed API documentation is hosted on Read the Docs and com- 

rehensive Jupyter notebook tutorials are hosted on Google Co- 

aboratory, where users can run examples online. The library can 

e installed with a single line of code on Windows, macOS or 

inux using the Pip Installs Packages (PIP) package manager: pip 
nstall torchio . 

TorchIO has a strong community of users, with more than 900 

tars on GitHub and more than 70 0 0 Python Package Index (PyPI) 

ownloads per month 

6 as of July 2021. 

.1.1. Additional interfaces 

The provided command-line interface (CLI) tool 

orchio-transform allows users to apply a transform to 

n image file without using Python. This tool can be used to 

isualize only the preprocessing and data augmentation pipelines 

nd aid in experimental design for a given application. It can also 
4 https://github.com/fepegar/torchio . 
5 https://zenodo.org/ . 
6 https://pypistats.org/packages/torchio . 

a

C

u

c

9 
e used in shell scripts to preprocess and augment datasets in 

ases where large storage is available and on-the-fly loading needs 

o be faster. 

Additionally, we provide a graphical user interface (GUI) imple- 

ented as a Python scripted module within the TorchIO extension 

vailable in 3D Slicer [13] . It can be used to visualize the effect of

he transforms parameters without any coding ( Fig. 7 ). As with the 

LI tool, users can experimentally assess preprocessing and data 

ugmentation before network training to ensure the preprocessing 

ipeline is suitable for a given application. 

.2. Usage examples 

In this section, we briefly describe the implementations of two 

edical image computing papers from the literature, pointing out 

he TorchIO features that could be used to replicate their experi- 

ents. 

.2.1. Super-resolution and synthesis of MRI 

In [54] , a method is proposed to simulate high-resolution T 1 - 

eighted MRIs from images of different modalities and resolutions. 

First, brain regions are segmented on publicly available datasets 

f brain MRI. During training, an MRI ( ScalarImage ) and 

he corresponding segmentation ( LabelMap ) corresponding to 

 specific subject ( Subject ) are sampled from the training 

ataset ( SubjectsDataset ). Next, the same spatial augmen- 

ation transform is applied to both images by composing an 

ffine transform ( RandomAffine ) and a nonlinear diffeomor- 

hic transform ( RandomElasticDeformation ). Then, a Gaus- 

ian mixture modelGMM conditioned on the labels is sampled 

t each voxel location to simulate an MRI of arbitrary contrast 

 RandomLabelsToImage ) [46] . Finally, multiple degrading phe- 

omena are simulated on the synthetic image: variability in the 

oordinate frames ( RandomAffine ), bias field inhomogeneities 

 RandomBiasField ), partial-volume effects due to a large 

lice thickness during acquisition [47] ( RandomAnisotropy ), 
egistration errors ( RandomAffine ), and resampling artifacts 

 Resample ). 

.2.2. Adaptive sampling for segmentation of CT scans 

In [59] , CT scans that are too large to fit on a GPU are seg-

ented using patch-based training with weighted sampling of 

atches. Discrepancies between labels and predictions are used 

o create error maps and patches are preferentially sampled from 

oxels with larger error. 

During training, a CT scan ( ScalarImage ) and its correspond- 

ng segmentation ( LabelMap ) from a subject ( Subject ) are 

oaded and the same augmentation is performed to both by apply- 

ng random rotations and scaling ( RandomAffine ). Then, voxel 

ntensities are clipped to [ −10 0 0 , 10 0 0] ( RescaleIntensity )
nd divided by a constant factor representing the standard devi- 

tion of the dataset (can be implemented with Lambda ). As the 

T scans are too large to fit in the GPU, patch-based training is 

sed ( Queue ). To obtain high-resolution predictions and a large re- 

eptive field simultaneously, two patches of similar size but differ- 

https://github.com/fepegar/torchio
https://zenodo.org/
https://pypistats.org/packages/torchio
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Fig. 7. GUI for TorchIO, implemented as a 3D Slicer extension. In this example, the applied transforms are RandomBiasField , RandomGhosting , RandomMotion , 
RandomAffine and RandomElasticDeformation . 
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nt FOV are generated from each sampled patch: a context patch 

enerated by downsampling the original patch ( Resample ) and a 

ull-resolution patch with a smaller FOV ( CropOrPad ). At the end 

f each epoch, error maps for each subject ( Subject ) are com- 

uted as the difference between the labels and predictions. The er- 

or maps are used in the following epoch to sample patches with 

arge errors more often ( WeightedSampler ). At inference time, 

 sliding window ( GridSampler ) is used to predict the segmen- 

ation patch by patch, and patches are aggregated to build the pre- 

iction for the whole input volume ( GridAggregator ). 

. Discussion 

We have presented TorchIO, a new library to efficiently load, 

reprocess, augment and sample medical imaging data during the 

raining of CNNs. It is designed in the style of the deep learn- 

ng framework PyTorch to provide medical imaging specific pre- 

rocessing and data augmentation algorithms. 

The main motivation for developing TorchIO as an open-source 

oolkit is to help researchers standardize medical image processing 

ipelines and allow them to focus on the deep learning experi- 

ents. It also encourages good open-science practices, as it sup- 

orts experiment reproducibility and is version-controlled so that 

he software can be cited precisely. 

The library is compatible with other higher-level deep learn- 

ng frameworks for medical imaging such as MONAI. For example, 

sers can benefit from TorchIO’s MRI transforms and patch-based 

ampling while using MONAI’s networks, losses, training pipelines 

nd evaluation metrics. 

The main limitation of TorchIO is that most transforms are not 

ifferentiable. The reason is that PyTorch tensors stored in Tor- 

hIO data structures must be converted to SimpleITK images or 

umPy arrays within most transforms, making them not compati- 

le with PyTorch’s automatic differentiation engine. However, com- 

atibility between PyTorch and ITK has recently been improved, 

artly thanks to the appearance of the MONAI project [60] . There- 

ore, TorchIO might provide differentiable transforms in the future, 

hich could be used to implement, e.g., spatial transformer net- 

orks for image registration [61] . Another limitation is that many 

ore transforms that are MRI-specific exist than for other imag- 
10 
ng modalities such as CT or US. This is in part due to more users

orking on MRI applications and requesting MRI-specific trans- 

orms. However, we welcome contributions for other modalities as 

ell. 

In the future, we will work on extending the preprocessing 

nd augmentation transforms to different medical imaging modal- 

ties such as CT or US, and improving compatibility with related 

orks. The source code, as well as examples and documentation, 

re made publicly available online, on GitHub. We welcome feed- 

ack, feature requests, and contributions to the library, either by 

reating issues on the GitHub repository or by emailing the au- 

hors. 
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