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Abstract—Shared control, where a human user cooperates with
an algorithm to operate a device, has the potential to greatly
expand access to powered mobility, but also raises unique ethical
challenges. A shared-control wheelchair may perform actions that
do not reflect its user’s intent in order to protect their safety,
causing frustration or distrust in the process. Unlike physical
accidents there is currently no framework for investigating or
adjudicating these events, leading to a reduced capability to
improve the shared control algorithm’s user experience. In this
paper we suggest a system based on the idea of an ‘ethical black
box’ that records the sensor context of sub-critical disagreements
and collision risks in order to allow human investigators to
examine them in retrospect and assess whether the algorithm
has taken control from the user without justification.

Index Terms—Shared control, Powered wheelchair, Assistive
technology, Safety

I. INTRODUCTION

Powered wheelchairs are an invaluable tool for allowing the
physically disabled to navigate a world full of exclusionary
design choices, but currently they are of limited benefit to
those with cognitive or sensory impairments. Because of the
high level of mobility they provide, prescribing authorities
are reluctant to provide powered wheelchairs to patients
they believe cannot use them safely. Unfortunately, cognitive
and sensory impairments are often comorbid with the
type of physical impairments these devices were designed to
address, leaving a large population of potential users unserved.

Shared control is a paradigm that attempts to address
this problem by augmenting the wheelchair user’s control
capabilities through blending their commands with those of an
algorithmic controller. This differs from autonomous control
where the user indicates a destination and the wheelchair
navigates there itself. Instead, the user performs all those
control functions that they are able to, while the controller
handles the remainder. This keeps the user engaged with the
control of the wheelchair, combating the skill decay that can
occur when they remain a passive passenger for long periods.

From a medical and care perspective, the primary objective
of a shared control powered wheelchair is the safety of its
occupant and those around them. However, it is important
to balance this with the user’s psychological need for
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self-determination. Potential users have revealed significant
concern over loss of control to the wheelchair’s algorithm
[1], particularly when the reasons why are opaque to them.
Thus there are two primary failure modes for a shared
control powered wheelchair: the physical risk of entering
a hazardous situation (or failing to prevent the user from
doing so), and the ‘ethical risk’ of overriding the user’s valid
intention to perform a particular action. A high frequency of
the former will affect the wheelchair’s ability to be certified
as a medical device, while the latter will adversely affect
user experience, potentially reducing engagement. On a
deeper level, interfering too much with the user’s control cuts
against of the central purpose of an assistive device such
as a wheelchair: providing the means for the user to realise
their intent despite their impairment(s). At its worst, a highly
‘disagreeable’ shared controller could exacerbate rather than
relieve its user’s disability.

One suggested method of adjudicating the failures of
an autonomous system is through the use of an ‘ethical black
box’ [2] [3], an analogue of an aeroplane flight recorder
that logs sensor data and other information pertinent to a
robot’s decision-making processes for later examination. In
the original sense, a vehicle’s recorder is designed to record
continually on a buffer until a catastrophic event (usually a
crash), allowing the circumstances to be investigated after its
retrieval. However, for a shared control wheelchair a failure
state may not correspond to an unambiguous crash or disaster.
In disordered pedestrian environments hazards and points of
disagreement with the user are likely to be transient, and it
is desirable for the wheelchair not to ‘freeze’ as this could
put the user (and surrounding pedestrians) at further risk.
Therefore it is necessary to design a trigger for logging an
event to long-term storage that recognises these problematic
events without relying on the clear signal of mechanical
failure. Highlighting and recording times where the user and
algorithm disagreed or the wheelchair manoeuvred into a
high-risk situation would allow for post-hoc examination of
these events without combing through hours of irrelevant data
or requiring expensive storage.

For the purposes of this paper, we address “input-mixing”
shared control as defined in the review by Abbink et al.
[4]: control systems that receive data from both the driver’s
input device(s) and sensors mounted on the wheelchair and
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combine them algorithmically in order to create the final
motor command. This does not encompass autonomous
wheelchairs where the user indicates a target location and
the wheelchair performs 100% of the navigation, or “traded
control” where the human and the algorithm are each in full
control of the wheelchair at different points in time. Since
there are many disparate approaches to input-mixing shared
control in wheelchairs, some of which do not make their
internal logic available, we first summarise key state-of-the-art
methods in terms of their behavioural properties in section
II before defining applicable ‘failure events’ that can be
detected algorithmically in order to trigger memorisation in
section III. In section IV, we test our recording methodology
in a simulated crowd scenario, before discussing how the
autonomous recorder can be used in concert with a human
adjudicator to identify faults in the shared control algorithm
(section V) and outlining our conclusions in section VI.

II. MODERN APPROACHES TO WHEELCHAIR SHARED
CONTROL

Input mixing shared control algorithms differ in two
primary ways: how they generate their ‘optimal’ trajectory,
and how they combine this with the user’s input (the blending
method). The two most prominent blending methods are linear
blending, where the wheelchair follows a weighted mixture
between the user’s command and an ‘optimal trajectory’,
and Probabilistic Shared Control (PSC) which treats the
‘preferred’ trajectories of the user and the algorithm as
samples of a probability distribution, selecting the trajectory
with the highest probability of satisfying both parties [5].

One of the most commonly iterated-upon approaches is
the potential field method, which calculates the desired
motion of the wheelchair as if it is a passive object acted
upon by attractive and repulsive forces. In the most simple,
autonomous, form, detected obstacles in the environment
repel the wheelchair while the target destination acts as
a gravity well, drawing it in [6]. Shared control can be
implemented by treating the user’s input as another force, and
its priority can be changed by modulating its strength [7]. If
the user’s ‘force’ is arbitrarily strong the user will experience
full control, while if it is weak it will not overcome the
repulsive force of obstacles and the wheelchair will avoid
them even when instructed not to. Because the blending
method is a linear sum based on (abstracted) Newtonian
mechanics, force field algorithms can become ‘trapped’ in
local minima of the virtual force field [8]. For this reason,
modern implementations incorporate numerous performance-
improving modifications such as those of the Vector Field
Histogram (VFH) [9] which searches for minima in the
distribution of obstacles in a 1-dimensional polar histogram
centred on the wheelchair. This prevents many of the effects
associated with local minima in a 2-dimensional virtual force
field such as oscillations in confined areas and swerving
away from narrow entryways. The linear blending of user and
algorithmic commands can also be enhanced by contextually

altering their relative weighting, for example giving the user
more control when obstacles are scarce [10].

Methods based on the Dynamic Window Approach (DWA)
[11] use a different blending strategy, in that a set of
physically achievable candidate velocities are created by
the motion planner, with one being selected based on an
objective function. The goals of a DWA motion planner
often include maximising speed and clearance from obstacles
while minimising deviations from the desired heading, but
the fidelity to the user’s commands can be added as an
additional weighted parameter, implementing shared control
[12]. The key advantage of DWA is that each trajectory
is physically plausible, and is generated such that the
wheelchair is capable of stopping before impacting any
(detected) obstacle. Probabilistic DWA shared control is an
extension of this method that treats the DWA candidates as a
discretised probability distribution of trajectories, with their
likelihood determined by how well they fulfil the motion
planner’s objective function. The user’s input is similarly
treated as the centre of a distribution of possible commands,
acknowledging that some conditions can reduce the precision
of motor function and/or cognitive planning. The algorithm
then seeks to output the candidate that maximises the joint
probability of these two distributions. Probabilistic DWA
can be further extended by applying additional constraints
to the candidate velocities: in work by Zhang et al. [13] a
hierarchical controller based on DWA uses the Generalized
Velocity Obstacle (GVO) method [14] to filter out candidates
that are likely to result in a collision with a pedestrian(s).

A less conventional approach, Stochastic Dynamic
Programming (SDP) is a method for calculating the optimum
control policy under conditions of uncertainty [15]. This is
strongly relevant to the shared control case in that the user’s
intent can be characterised using a probability distribution
and incorporated into this calculation. SDP pre-computes an
optimal policy offline satisfying the joint goals of protecting
the user’s safety and respecting their desires. Due to the
‘curse of dimensionality’, computing the optimal solution
to more complex SDP problems is prohibitively expensive,
which has motivated the creation of simpler approximations
such as decoupling the forward and lateral motion of the
wheelchair [16].

III. A SHARED CONTROL ‘BLACK BOX’

The key shared characteristic of all these shared control
algorithms is that they perform a modification on the user’s
input, producing behaviours that the user may not recognise
as being in line with their intentions. If the user disagrees
strongly with the decisions the algorithm makes, they may
become justifiably frustrated and refuse to engage with the
wheelchair. At the same time users, particularly those with
cognitive or communication impairments, may find it difficult
to explain the context of the disagreement and thus struggle
to build an appropriate mental model.
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Many proposed forms of shared control attempt to explicitly
model the capabilities and intent of the user, assisting to
match their desires and in proportion to their need. However,
user skill development, adaptation to the wheelchair, and
condition progression can change user requirements over time.
While an automated system can track the changing profile
of user-wheelchair interaction, the subjective component
of disagreement means that a human is better equipped to
understand the user’s evolving needs and desires.

Because of the many forms shared control algorithms
can take, a broadly-applicable recording function cannot be
reliant on accessing specific elements of their internal logic.
In addition to the technical difficulties of doing so, developers
may be reluctant (or unable) to disclose sensitive details of
their algorithm and thus refuse to incorporate such a system
into their platform. To accommodate this, the recorder should
rely on the available output of the wheelchair’s sensors and
define its own metrics for safety and disagreement (this
also limits exposure to biases that could be present in the
shared-controller’s own performance estimates). For the
purposes of a ‘full’ retrospective safety assessment we will
assume that the wheelchair is equipped with odometry and
at least one form of rangefinding such as lidar or ultrasonic
range sensors, and a camera. The latter is assumed to capture
a sufficient field of view that the context of recorded events
can be examined by a human investigator, potentially with
the assistance of structured feedback from the user and/or
their carer.

The collection of video data is obviously sensitive, and
raises legal issues related to data protection. As per the
General Data Protection Regulation (GDPR) and UK-GDPR
[17], non-anonymised personal data must not be collected
without the explicit permission of the subject, which may
be impossible to obtain in a dynamic environment like
a crowd. Therefore, any sensor data that could allow the
identification of individuals must be anonymised (for example,
by automated face blurring [18]) before being transferred
from the temporary buffer to permanent storage (i.e. before it
is processed). Although this may destroy some information,
anonymised video is still of higher value for determining
the context of an event than other, lower-resolution sensor
systems such as ultrasonic rangefinders.

An existing set of metrics for observational shared-control
experiments was described by Zhang et al [13]. Of these,
the most important is ‘agreement/disagreement’ which is
defined by the magnitude of the difference between the user’s
command and the final movement of the wheelchair. Notably,
this does not require accessing the algorithm’s ‘preferred’
trajectory, only the final movement as recorded by the sensors.
The disagreement between user and controller is here defined
as

d = ‖u− v‖ (1)

where u is the instantaneous velocity command from the
user and v is the instantaneous velocity of the wheelchair (the
use of velocity here is motivated by the fact that most shared-
control wheelchairs are built on top of powered wheelchair
models that natively use velocity control). Because some input
devices may output at a lower frequency than the wheelchair
controller, the input and output velocities are held in a zero-
order-and-hold buffer and the disagreement is calculated from
the last recorded signals. This leads to natural variations in
the agreement that do not necessarily indicate an error in the
shared control. For example, a head array may output a highly
discretised, low frequency signal that will naturally differ
significantly from the continuous motion of the wheelchair
as it moves through a crowd. For this reason, a disagreement
threshold Td is defined as

Td = AD (2)

where D is the expectation of disagreement, defined as the
lowest agreement that would be expected under optimal con-
ditions, and A is a constant of sufficient size to exclude
deviations due to sensor error. The trigger to begin recording
is defined as

Td < d̃t =

∑τ
i=t−τ di

T/∆t
(3)

where d̃t is the average disagreement over the previous τ
seconds and ∆t is the inverse of the recorder’s sampling
frequency. Upon average disagreement exceeding Td, a
marker is created for n seconds before the event to indicate
the beginning of record, and a second marker is created n
seconds after the average disagreement has dropped below
Td. The sensor and input device output between these markers
is then consigned to long-term storage.

Because many instrumented wheelchairs do not have
true contact sensing, and because range sensors can become
unreliable at very close range, we identify scenarios with a
high risk of a collision by estimating whether the wheelchair
could decelerate to a stop in the time (th) before impacting
the nearest obstacle, defining a hazard Boolean value, h:

th = v/a (4)

h =

{
1, C < sth − 0.5at2h + b

0, C ≥ sth − 0.5at2h + b
(5)

where C is the distance to the obstacle in metres, s is
the instantaneous speed of the wheelchair, and a is the
wheelchair’s maximum acceleration opposite to the current
direction of travel. If the wheelchair is close enough to an
obstacle that it will reach it within the th seconds required
to halt itself a high risk of collision can be inferred even
without contact sensors. The constant b represents uncertainty
in the relative velocity between wheelchair and a potentially
moving obstacle, the detection of which can be unreliable
using low-frequency range sensors. A higher b results in a
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more ‘cautious’ algorithm, recording events with a lower
likelihood of collision. To reduce the influence of sensor
errors the instantaneous hazard value h is also averaged over
τs, with the hazard condition only triggering if at least 50%
of the last τ/∆t samples are equal to 1.

The two error scenarios (risk and disagreement) are
independent, so each recorded time step is further given a
Boolean tag for each to indicate why it has been committed
to memory. The events requiring examination can thus be
divided into: disagreement leading to hazard, disagreement
leading to no hazard, and agreement leading to hazard
(agreement leading to no hazard is the normal, desired
behaviour). While the first and last of these appear to be
clear failures of the algorithm, overriding the user to make
a risky manoeuvre and erroneously agreeing with the user’s
risky actions, respectively, all will ultimately require human
examination. In every case, there is the potential for contextual
information that could justify the driver’s ‘erroneous’ input,
and apparent hazards can be the result of sensor artifacts.

Thus all the above automated triggers are designed to
work in concert with a human investigator, who will examine
the recorded events and determine whether the shared control
algorithm made an error, and of what severity. Because a
trained human is much more likely than an automated system
to be able to adjudicate the difference between a situation that
required the algorithm to take control and one the user could
handle themselves, the recorder system should be designed to
err on the side of logging ambiguous situations.

IV. CASE STUDY IN A SIMULATED ENVIRONMENT

Fig. 1. Layout (a) of the simulated crowd scenario (truncated for display
purposes), a wheelchair-perspective view (b) of the corridor within Unity,
and the simulated wheelchair itself (c). The pedestrians and the wheelchair
travel in opposite directions through the corridor. The far end of the corridor
(dashed red in (a)) allows pedestrians through while blocking the wheelchair,
and marks the end of a run when reached by the wheelchair.

In order to assess the applicability of this system to classical
pedestrian scenarios, a crowd scene (Fig.1 (a)) was simulated
using Unity and designed with a high potential for collision
and disagreement events. A simulated wheelchair (Fig.1
(c)) was tasked with moving down a 15m by 6m corridor
(approximately 15x the simulated wheelchair’s length).

Modelled on our smart wheelchair [15], the simulated
wheelchair was equipped with equipped with 12 simulated
ultrasonic sensors situated in clusters of three on each corner
of the wheelchair, as well as a frontally-mounted LIDAR
sensor, with a tracking Unity camera acting as a camera
sensor. Each ultrasonic sensor had a maximum range of 1.5m
and field of view of 45◦, while the LIDAR had a maximum
range of 5.6m and a 180◦ field of view, collectively giving
the wheelchair 360◦ sensing. Randomly-placed ‘humans’
moved at pedestrian speed (1.1 m/s) down the corridor in the
opposite direction to the wheelchair, presenting a high chance
of a hazardous collision. The use of a simulation allowed this
scenario to be repeated multiple times with randomised initial
positions for the pedestrians, thus providing multiple points
at which the algorithm is expected to disagree with the driver
and multiple collision events at no risk to the tester.

The wheelchair was controlled in concert with one of
two shared control algorithms, with the user input provided
by two non-wheelchair users who were instructed to drive
the wheelchair from one end of the corridor to the other in
as close to a straight line as possible, ignoring pedestrians.
Both users had significant experience using the simulated
wheelchair in similar experiments. The first algorithm sought
to artificially introduce conflict with the user by linearly
mixing their input with a random command vector of up to
50% the wheelchair’s maximum velocity, changing every 5s.
This generates what Itoh et al. characterised as “intention
conflict” [19]: the driver intends to reach the end of the
corridor, while the algorithm intends to travel in a random,
changing direction.

The second algorithm was a PSC DWA-GVO controller
developed in earlier work by Zhang et al. [13] that selects
collision-free trajectories that present the highest chance
of fulfilling the user’s intentions while guaranteeing safety.
As the drivers were instructed to ignore pedestrians, this
was expected to lead to both intention conflict (because the
algorithm intends to avoid all collisions) and information
gathering conflict, as the driver has access to visual
information that the algorithm does not (Fig.1 (b)).

The recorder’s ability to capture hazards was assessed
by how many of its trigger events came within 1s of a
collision vs. how many triggered without a collision (true
positives vs. false positives) as well as how many collisions
occurred without being flagged, with collisions being defined
as intersections between the wheelchair model and either a
wall or a pedestrian. The disagreement detection was assessed
qualitatively by its ability to distinguish ‘justified’ causes of
disagreement (proximity to walls or pedestrians for the PSC
DWA-GVO algorithm and ‘swerve’ events for the random
algorithm) from the normal operation of the wheelchair
(transient differences between commanded and actual velocity
due to limited acceleration).
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The simulation was repeated 20 times each for the PSC
DWA-GVO controller and the random controller, with a
single run lasting from the point the wheelchair began
moving to when it either reached the far end of the corridor
or became immobile due to collision. The initial positions
of the 8 moving obstacle ‘pedestrians’ was drawn from
a pseudorandom tuple generated by C#’s random.range()
function.

During the simulation, the recorder’s time step ∆t was
set to 0.1s, the length of the averaging filter T was set to 0.3s,
the disagreement threshold was set at 0.5 (twice the expected
average disagreement), and the hazard uncertainty constant
b was set to 0.4. The simulated wheelchair’s maximum
forward linear acceleration was 0.26m/s2, its maximum
backwards linear acceleration was 1m/s2, its maximum
angular acceleration was 0.4rad/s2 and its maximum speed
was 1m/s2. The user command to the simulated wheelchair
was provided by a joystick with the vertical and lateral axes
mapped to linear and angular velocity, respectively.

A. Results

Over all 20 PSC DWA-GVO runs (Table I), 8 out of
17 collisions with pedestrians triggered recording due to
disagreement, and a further 8 were recorded within a
longer period of disagreement caused by passing through
a high density of pedestrians, leaving only 1 unrecorded.
Disagreement was highest when passing through dense
groups of pedestrians, as seen in Fig.2 (a), with 37 out
of 55 instances of disagreement preceded by the approach
of a pedestrian. Of the remainder, 5 were erroneous
recordings triggered by the wheelchair’s slow acceleration,
while the remainder had no explanation that could be
inferred from the recorded data. Only 9 instances of hazard
were recorded, none of which preceded a collision, but all of
which corresponded to coming to within 0.8m of a pedestrian.

During the 20 random controller runs 19 total collisions
were recorded (Table I), with 15 flagged as hazards, 6 flagged
as disagreements and 1 recorded during a long period of
disagreement (3 collisions were flagged as both disagreement
and hazard). Out of the 226 recorded disagreement events,
171 were short ‘steering events’ associated with correcting
the wheelchair’s heading (as seen in Fig. 2 (b)), while 55
were either associated with acceleration delays or had no
cause that could be inferred from the recorded data. 26 of
the remaining 28 false positive hazards were associated with
coming within 0.8m of a pedestrian.

V. DISCUSSION

The recorder system demonstrated a consistent ability
to record circumstances where the driver disagreed with
the movements of the wheelchair, although it showed
some difficulty in distinguishing between points where the
wheelchair’s motion differed due to intervention by the
algorithm, and where it was merely slow in responding to

Fig. 2. Disagreement over time (beginning from first movement) for a single
run of the simulation using (a) PSC-DWA-GVO and (b) the random controller.
While disagreement in (b) occurs in regular ‘spikes’, periods of disagreement
in (a) are associated with proximity to pedestrians (inset screenshots I-IV,
with wheelchair circled in green).

abrupt changes in input. This reflects that the implementation
was based on a ‘worst case scenario’ where only the minimum
viable data (the user command and sensor feedback) was
available. Despite this, the majority of pertinent hazards were
detected. The primary cause of false-positive disagreements
could be eliminated by basing the disagreement on the
final blended velocity command rather than the velocity
recorded by the sensors, which is affected by unpredictable
dynamics and flawed numerical differentiation. Future
studies should ideally test whether the sensor feedback
or the velocity command is a closer match to the user’s
subjective experience, as disagreement is ultimately supposed
to represent divergence from the user’s intentions.

Since the PSC DWA-GVO algorithm either swerved
around pedestrians or brought the wheelchair to a stop (which
would allow them to walk around in a real scenario), all
collisions occurred at very low velocities that would be
safe in practice. As such, all instances of the hazard trigger
for the PSC DWA-GVO were false positives caused by a
pedestrian passing close to the wheelchair without actually
impacting it. This was partially due to a mismatch between
how the simulated wheelchair’s sensors reported the distance
to the nearest obstacle and how the Unity engine registered
collisions, but implies that any future version of the recorder
should incorporate an estimate of oncoming obstacles’ shape
in order to avoid recording such ‘near misses’.

Tests using the random controller registered multiple
collisions, the majority of which were detected by the
recorder’s hazard condition, usually after the collision itself.
Thus in terms of the framework discussed in Section. III,
the recorder mostly flagged cases of “disagreement leading
to no collision” for the PSC DWA-GVO, and “agreement
leading to collision” for the random controller. In most cases
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TABLE I
SIMULATION RESULTS

Collisions Disagreements Hazards
Undetected Hazard Flag Disagreement Flag Recorded (No Flag) Justified Unjustified Collision No Collision

PSC-DWA-GVO 1 0 8 8 37 18 0 9
Random Controller 0 15 6 1 171 55 15 28

the PSC DWA-GWO algorithm was disagreeing in order to
prevent a potential collision, but given that slowing down in
a busy area is in and of itself a risk, this is exactly the type
of scenario that requires human examination in a real-world
scenario. Triggering too late was also the primary cause of
‘missed’ collisions. As these delays extended beyond the
length of the averaging filter, this was again most likely
caused by a mismatch between the point at which the Unity
engine detected a collision and the distance reported by the
wheelchair’s sensors.

The majority of ‘steering’ events where the user attempted
to counteract the random controller’s changes of direction
were flagged by the recorder, although there were also a
significant minority of disagreements that did not appear
to correlate with any features of the recorded sensor data.
This highlights a crucial consideration: the disagreement, as
indicated by the recorded data, can emerge significantly after
the event that ultimately caused it. The user may exhibit
a slow or highly variable response time, or they may only
begin disagreeing with the algorithm’s decision once the
longer-term consequences become apparent. Thus although
the disagreement is recorded, the point at which the algorithm
could have feasibly prevented it is not. Enlarging the recording
window around trigger events may ameliorate this problem,
but it is important that this is balanced against the ability of
human examiners to sift through greater amounts of data.

VI. CONCLUSION

Shared control presents challenges beyond simply preserv-
ing the safety of a user. Although an algorithm may be
excellent at preventing harm, over-intervention can leave a user
feeling disempowered, which is at odds with the aims of an
assistive device such as a powered wheelchair. Unfortunately,
many of the users of shared control wheelchairs suffer from
impairments that may make communicating the cause of their
frustration difficult. Thus it is important for any ‘ethical
black box’ that is applied to the shared control case to not
only record physical accidents, but also points at which the
user appears to be struggling against the assistive algorithm.
This gives investigators the best chance of understanding the
context of these disagreements, and can provide valuable data
for the improvement of the user experience.
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