
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Towards artificially intelligent recycling: Improving 
image processing for waste classification 

 

 

 

 

Youpeng Yu  
Electronic and Electrical 

Engineering  
University College London  

London, England  
uceeyyy@ucl.ac.uk  

Ryan Grammenos  
Electronic and Electrical 

Engineering  
University College London  

London, England  
r.grammenos@ucl.ac.uk  

 

 
 
 
 

 

Abstract— The ever-increasing amount of global refuse is 
overwhelming the waste and recycling management industries. 
The need for smart systems for environmental monitoring and the 
enhancement of recycling processes is thus greater than ever. 
Amongst these efforts lies IBM's Wastenet project which aims to 
improve recycling by using artificial intelligence for waste 
classification. The work reported in this paper builds on this 
project through the use of transfer learning and data 
augmentation techniques to ameliorate classification accuracy. 
Starting with a convolutional neural network (CNN), a systematic 
approach is followed for selecting appropriate splitting ratios and 
for tuning multiple training parameters including learning rate 
schedulers, layers freezing, batch sizes and loss functions, in the 
context of the given scenario which requires classification of waste 
into different recycling types. Results are compared and 
contrasted using 10-fold cross validation and demonstrate that the 
model developed achieves a 91.21% test accuracy. Subsequently, 
a range of data augmentation techniques are then incorporated 
into this work including flipping, rotation, shearing, zooming, and 
brightness control. Results show that these augmentation 
techniques further improve the test accuracy of the final model to 
95.40%. Unlike other work reported in the field, this paper 
provides full details regarding the training of the model. 
Furthermore, the code for this work has been made open-source 
and we have demonstrated that the model can perform successful 
real-time classification of recycling waste items using a standard 
computer webcam. 

Keywords—transfer learning, data augmentation, waste image 
classification, model training, machine learning, recycling, AI. 

I. INTRODUCTION 

Waste management has become a global challenge due to the 
increasing amount of world waste generation. The world bank 
group estimated that the world waste generation would 
experience a 70 percent increase between 2016 and 2050, from 
2.01 billion to 3.40 billion tonnes [1]. To deal with this large 
amount of waste generation, image classification technologies 
can help improve the recycling process by introducing 
automated waste sorting processes. Such an example is the IBM 
Wastenet project [2] which looked at designing an Artificial 
Intelligence (AI) recycling bin, which helps people place 
rubbish into the correct bin. 

The United Kingdom (UK) Government defines waste as 
materials discarded by the producers or holders. More 
specifically, discarding includes activities such as throwing 

away and recycling [3]. In general, waste can be classified into 
five types amongst which “packaging waste and recyclables” is 
the focus of IBM Wastenet. The Wastenet project aims at 
improving the UK’s low households’ recycling rate (45.5% in 
2017) [2]. Recyclables can be defined as waste materials which 
are reprocessed into products through recycling and recovery 
operations, and common recyclables are paper, cardboard, 
plastic, metal, wood, and glass. Waste must be classified before 
sending it for recycling since the recycling process can vary 
depending on the recycling waste types [4].  

The authors in [5] categorize automated sorting techniques 
for recycling waste into direct sorting and indirect sorting 
methods. Direct sorting methods can recognize and separate 
different recycling waste types using material properties only. 
On the other hand, indirect sorting methods can only identify 
different recycling waste types but need the help of robotic arms 
to separate them. The IBM Wastenet project performs recycling 
waste sorting using indirect sorting method – “optic based 
sorting”. Optic based sorting method utilizes camera-based 
sensors to take waste images, and identify recycling waste types 
through visual cues, such as colour, shape, and texture. The 
development of machine learning enables image-based 
recycling waste classification at the edge with various 
advantages: better privacy and safety, lower costs, and faster 
predictions. 

The current approach to image-based waste classification is 
implementing transfer learning techniques on different well-
known Convolutional Neural Network (CNN) architectures. To 
be specific, these well-known CNN architectures obtained great 
classification results in ImageNet Challenges (ILSVRC), where 
ILSVRC is a large-scale object recognition competition. 
ILSVRC models are trained on the ImageNet dataset, which 
contains over 14 million images across 21 thousand classes [6]. 
CNN architectures such as GoogleNet, VGG, and AlexNet are 
excellent choices of pre-trained models since they have 
successfully captured general features of various objects. Next, 
these CNN architectures with pre-trained weights are retrained 
on the waste image datasets. The most commonly used waste 
image dataset is TrashNet, which was created in 2017 and 
consists of 2527 waste images across six classes [7]. 

Significant research has been carried out in waste 
classification by applying transfer learning techniques to CNN 
models, and these research projects have achieved great 
classification results with over 95% test accuracy. However, 



limited research has been done in developing a systematic waste 
classification model training approach. More specifically, some 
research papers do not provide full model training details, and 
most of these papers do not justify their model training decisions.  

The work reported in this paper builds on the IBM Wastenet 
project from the image processing aspect to improve the 
classification accuracy. The code developed during this work 
has been made open-source and available on the GitHub project 
repository [8]. A demonstration video of real-time classification 
has been recorded and available on YouTube [9]. The following 
contributions are presented within this paper: development of a 
systematic waste classification model training approach; 
provision of full model training details and justification for the 
design decisions made; selection of the most appropriate dataset 
splitting parameters through a comprehensive statistical analysis; 
selection of appropriate freezing layers and data augmentation 
techniques using 10-fold Cross Validation (CV). 

This paper is organized as follows: Section II reviews related 
work in the field; Section III introduces the system architecture 
with the methodology and results presented in Section IV and 
Section V, respectively; Section VI concludes this paper and 
makes recommendations for future work. 

II. RELATED WORK 

The use of machine learning algorithms extends to a myriad 
of real-world applications including gesture recognition [10] and 
increasingly in Internet of Things scenarios [11]. While a range 
of data analytics techniques have been considered to optimize 
waste management procedures [12], the work in this paper 
focuses specifically on the use of machine learning techniques 
to improve waste classification accuracy. 

In 2017, the authors in [13] collected the first public 
recycling waste image dataset, called TrashNet, which contains 
2527 images across six recycling types, including paper, plastic, 
glass, cardboard, metal, and general trash. An eleven-layer 
network that is similar to the AlexNet model with different 
numbers of layers and nodes was developed by the authors to 
perform waste image classification tasks, and achieved 22% 
classification accuracy. The authors later improved the model 
accuracy to around 75% by using the Kaiming initialization 
method. 

In 2018, the authors in [14] compared the classification 
performance of different machine learning algorithms on the 
TrashNet dataset. These algorithms include CNN, Support 
Vector Machines (SVM), Random Forest (RF), and K-Nearest 
Neighbour (KNN). Among these algorithms, the CNN trained 
model achieves the highest classification accuracy, 89.81%. In 
the same year, the authors in [15] implemented transfer learning 
techniques on different well-known CNN architectures, 
including ResNet50, MobileNet, InceptionResNetV2, 
DenseNet121, and Xception. The best-performed model, 
DenseNet121, is retrained using the TrashNet dataset with pre-
trained weights and achieved 95% test accuracy. Moreover, the 
authors in [16] used the GoogleNet model as the fine-tuned 
model and obtained the highest classification accuracy, 97.86%, 
on the TrashNet dataset by far. 

In the last two years, the authors in [17]–[19] did not achieve 
higher classification accuracy, but made their contributions on 

testing different CNN models, training parameters, and data 
augmentation techniques. Overall, recent waste classification 
projects have achieved classification results with over 95% 
accuracy, by applying transfer learning and data augmentation 
techniques. However, the authors have not provided details of 
the model training undertaken. This paper follows a systematic 
approach to split datasets, tune training parameters, and choose 
data augmentation techniques while providing details of the 
model’s training. 

III. SYSTEM ARCHITECTURE 

The best-performed model in [16] is reproduced to be the 
benchmark model for two reasons. Firstly, this model achieves 
the highest classification accuracy (97.86%). Secondly, data 
augmentation techniques are not applied to this model, which 
makes it a good choice to test various data augmentation 
techniques. However, this model’s paper does not provide 
model training details other than the pretrained model’s name 
(GoogleNet), final classifier used (Softmax and Support Vector 
Machine), and the dataset used (TrashNet), which makes it 
difficult to reproduce. To solve this problem, various data 
splitting methods and training parameters are tested, and the 
ones which give the highest classification accuracy are selected.  

Fig. 1. Flowchart of developing a benchmark model 

Figure 1 summarises the training procedure of developing 
the benchmark model for this work. Firstly, the TrashNet dataset 
is split into train, validation, and test sets using selected split 
ratios, cross validation techniques, and sampling strategies. Split 
ratios manage the number of waste images in each set, and 
sampling strategies decide the chance of each image being 
selected. Cross validation techniques control different partitions 
of a dataset, whereas a model’s performance can be reflected 
more accurately by averaging validation results over multiple 
partitions. 

Next, training parameters are tuned to achieve the highest 
classification accuracy, and to produce the best-performed 
benchmark model. Final classifiers and loss functions together 
calculate losses of a model’s prediction on training set images. 
Batch sizes enable a model to predict and evaluate losses for 
multiple images in one round. Optimisers, learning rates, and 
learning rates schedulers together reduce losses. Stopping 
criterions set an acceptable range of losses for stopping the 
training process. Additionally, freezing layers help retrain the 
pre-trained model to fit to the TrashNet dataset, both retaining 

 



basic image information (such as shapes, colours, and lines) and 
learning to recognize different recyclables. 

Lastly, various data augmentation techniques are tested on 
the reproduced benchmark model, and the set of techniques 
yielding the highest classification accuracy is applied to train the 
final model. 

IV. METHODOLOGY 

Reproducing the model of paper [16] as the benchmark 
model was a challenge given the lack of training details. The 
overall approach to this research problem is to summarise and 
test parameter values used in other recycling waste classification 
projects, selecting the ones that provide the highest classification 
accuracy. The desired outcome of this work is to achieve a 
classification accuracy of 95% or higher, similar to other work 
reported in the field.  

In comparison, using parameter values of other successful 
waste classification projects should give better prediction 
performance than randomly selected parameter values. However, 
some parameters are not discussed in these project papers, and 
most parameter values are selected without justification. To 
solve this problem, parameter values of multiple projects are 
summarised and tested to select appropriate parameter values. In 
this case, parameter values of seven projects [13]–[19], 
discussed in Section II, are summarised and tested. Next, 
specific approaches of splitting datasets, tuning training 
parameters, and applying data augmentation techniques are 
discussed. 

Starting with datasets splitting, the test set of the TrashNet 
dataset should be split first and kept aside for the final model 
performance evaluation. Therefore, it can only be split using the 
Hold-out CV for confidentiality consideration. Then, the split 
ratio and sampling strategy can be determined by testing values 
used in reviewed projects. These adjusted dataset split ratios for 
train, validation, and test sets are 80/10/10, 70/15/15, 60/20/20, 
and 50/25/25 in percentage, and sampling strategies are Simple 
Random Sampling and Stratified Random Sampling. Next, K-
fold CV is used to ensure a low model bias when splitting the 
remaining dataset into train and validation sets, and the K value 
also determines the split ratio of two sets. In this case, K=5 and 
K=10, two most used K values in reviewed projects are tested. 

Dataset splitting parameters including split ratios, sampling 
strategies, and CV techniques are selected based on the mean 
comparison test results. To elaborate on that, a dataset can have 
many different splitting patterns given the same split ratio, and 
different splitting patterns trained model will have different 
classification accuracy. The dataset split ratio decision can be 
biased if only run each split ratio experiment (split a dataset 
using the given split ratio and train a model using this split 
dataset) once and compare their classification accuracies. 
Instead, running each split ratio experiment multiple times and 
performing mean comparison tests on the experimental results 
can help reduce the effects of randomness. 

Furthermore, the number of experiment times for each split 
ratio is described as the sample size. Sample sizes are 
determined if the estimated standard error of the mean of four 
split ratios are reduced to the same level, where the standard 
error of the mean represents how far the sample mean deviates 

from the population mean and can be reduced by repeating 
experiments. After that, normality and homogeneity of variances 
tests are carried out to choose between parametric and non-
parametric sample mean comparison tests. Lastly, mean 
comparison test results are evaluated and the ones that give 
highest estimated population mean accuracy are selected. 

Subsequently, various training parameters are summarised 
from the reviewed projects and tested, and the ones that give 
higher average accuracy are selected. More specifically, 
learning rate schedulers options are constant learning rate, decay 
learning rate, and cyclic learning rate; optimizers are stochastic 
gradient descent (SGD), Adaptive moment estimation (Adam), 
and Adadelta; final classifiers are Softmax, Linear SVM, and 
Non-linear SVM; loss functions are cross entropy loss and hinge 
loss; batch sizes are 8, 16, and 32. Patience epochs and learning 
rates are identified using the highest accuracy epoch gap and 
learning rate finder, respectively. Additionally, freezing layers 
are determined by unfreezing the model from the top classifiers 
to the bottom input layers.  

Finally, various data augmentation techniques are 
summarised from reviewed projects and tested, and the set that 
gives the highest average validation accuracy is applied to train 
the final model. These data augmentation techniques are flipping 
(horizontal and vertical), rotation (15, 40, 90, and 180 degrees), 
shear (1, 10, 30, 60, and 89 degrees), zoom (25, 50, and 100 
percent), and brightness control (10, 25, and 50 percent). 
Confusion matrices are plotted to analyse the effects of different 
data augmentation techniques on different types of recyclables. 

V. RESULTS 

The research problem, which involves reproducing the 
model of paper [16] with data augmentation techniques applied, 
is solved by conducting experiments on dataset splitting, 
training parameters tuning, and data augmentation techniques 
choosing. In this section, these experiment results are presented, 
analysed, and discussed in subsections A (Dataset split), B 
(Training parameters), and C (Data augmentation). 

TABLE I.  THE FINAL MODEL SETTINGS 

Table I presents the dataset split options, training parameters, 
and data augmentation techniques that are used to train the final 
model of this work. To elaborate on the dataset split settings, 10% 

 

CV techniques split ratios sampling strategies
Training set 81%
Validation set 9%
Test set Hold-out CV 10%

Learning rate scheduler
Optimiser
Stopping criteria
(patience epochs)
Layers freezing
Loss function
Final classifier
Batch size
Learning rate

Flipping
Rotation
Shear
Zoom

Simple Random Sampling
10-fold CV

Training parameters
Constant learning rate

100%

Data augmentation techniques
Horizontal Flipping+Vertical Flipping

180 degrees
89 degrees

Freeze base convolutional layers
Cross Entropy loss
Softmax classifer

16
2.00E-05

Adam optimiser

100 epochs



of the entire dataset is separated into the test set using simple 
random sampling strategy. Then, 10-fold CV is applied and split 
the rest dataset (90% of the entire dataset) into training and 
validation sets. More specifically, nine folds are combined and 
used as the training set each time, and the remained fold is used 
as the validation set. Lastly, simple random sampling strategy is 
applied to both Hold-out CV and 10-fold CV. 

Next, all base convolutional layers of the GoogleNet model 
are frozen. Accordingly, a small learning and a small batch size 
are selected to protect the low-level features extracted from the 
pre-trained weights. Classic CNN training parameters, such as 
constant learning rate scheduler, Adam optimizer, Cross-
Entropy, and Softmax final classification layer, are used to train 
the final model. Lastly, four data augmentation techniques, 
except the brightness control, are applied to mitigate the effects 
of the overfitting problem, and to achieve higher classification 
accuracy. 

A. Dataset Split 

The TrashNet dataset is split into train, validation, and test 
set to train CNN model, and the methods of choosing splitting 
parameters for each set are similar. The selection of the test set 
split ratio is presented in this subsection for illustration, which 
involves identifying appropriate sample sizes, performing data 
distribution analysis and mean comparison tests. 

1) Sample size 

Standard errors of the sample mean of four test split ratios (10%, 
15%, 20%, and 25%) are recorded with respect of sample sizes, 
and four split ratio curves are plotted on the same graph to 
identify the appropriate sample size for each split ratio. 

Fig. 2. The estimated standard error of the mean against sample sizes 

From Figure 2, the estimated standard error of the mean of 
all four split ratios are reduced to the same level, slight above 
0.003. These low standard errors indicate that the sample mean 
of the current sample sizes has well approximated the population 
mean. In other words, the current sample sizes are selected large 
enough. In this case, appropriate sample size selections are 15 
for the 25% split and 30 for the other split ratios.  

 𝜎௫̅ ≈
௦

√
 

As can be seen from Equation 1, the estimated standard error 
of the mean is inversely proportional to the sample size, where 
𝜎௫̅ is the standard error of the mean, 𝑠 is the sample standard 

deviation, and 𝑛 is the sample size. The relationship identified 
in Equation 1 can be viewed in Figure 2, where the estimated 
standard errors of all four splits show decreasing trends with 
increasing sample sizes. 

 𝑠 = ට
∑(௫ି௫̅)

మ

ିଵ
 

In Equation 2, 𝑠 is the sample standard deviation, 𝑥 − �̅� is 
the difference between sample values and the population mean, 
and 𝑛  is sample size. From Figure 2, the estimated standard 
errors of the mean are not defined when sample size=1 because 
of Bessel’s correction [20]. More specifically, 𝑛 − 1  is used 
instead of 𝑛  to correct the bias of estimating the population 
standard deviation. Next, 20% and 25% split curves start 
(sample size=2) with low estimated standard errors, and increase 
rapidly to the maximum at the next point (sample size=3). From 
Equation 1, the estimated standard error should be large when 
the sample size is small since they are inversely proportional. 
The authors in [21] pointed out that the standard error from a 
small sample size is likely to underestimate the standard error of 
the mean. In other words, the first few randomly collected 
samples can be very close to the mean and therefore a small 
standard deviation value, but can be corrected as more samples 
are collected. 

Then, steep decreases can be observed in the next few 
increases of sample size in all splits. To be specific, 64.3% and 
50% standard error decreases can be observed in 20% split and 
25% split respectively when the sample size is increased from 3 
to 8. On the other hand, steep standard error decreases can only 
be observed before sample size of 5 in 10% split and sample size 
of 6 in 15% split. This suggests that large test set split ratio needs 
fewer sample sizes to have low estimated standard errors, and 
can be explained by the total number of samples. To be specific, 
the 25% split with sample size=15 can collect 9476 total sample 
images given the TrashNet has 2527 images, and the 15% split 
need to have sample size=25 to collect the same amount of total 
sample images. Therefore, a smaller sample size is selected for 
the 25% split compared with the other split ratios. 

After that, the estimated standard errors of all four splits 
decrease slowly and become stable. To be specific, the increase 
of the sample size cannot further reduce the estimated standard 
error significantly. In other words, the standard error gradually 
decreases as more samples are collected, and it converges to zero 
when the sample mean approximates to the population mean.  

The significance of Figure 2 is to identify the relationship 
between the standard error of the sample mean and sample size, 
and to help choose an appropriate sample size for each split ratio. 
More specifically, an appropriate sample size selection should 
not be too small that the standard error is large, also not too large 
that the reduction of standard error becomes too small. These 
experimental results suggest that the estimated standard error of 
the sample mean is a good indicator of selecting the sample size. 

2) Statistical analysis 

Next, statistical analysis is performed on the collected 
samples to compare the sample mean of four split ratios. analysis 
of variance (ANOVA), a parametric test, is often used to 
compare means between multiple groups. The Shapiro-Wilk test 
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and Levene’s test are used to testing ANOVA’s two 
assumptions, normal distribution and homogeneity of variances, 
respectively. One-tailed t-test, a pair-wise sample mean 
comparison test, is then performed to compare sample means of 
two split ratios. A commonly used confidence level, 0.95, is 
used throughout these tests. 

 The p-value of Shapiro-Wilk test (confidence level of 
0.95) is 0.53, 0.70, 0.44, and 0.99 in 10%, 15%, 20%, and 
25% split, respectively. 

 The p-value of Levene’s test (confidence level of 0.95) 
is 0.27. 

 The p-value of ANOVA test (confidence level of 0.95) is 
0.0036. 

 The p-value of pairwise one-tailed t-test (confidence 
level of 0.95) is 0.059 between 10% and 15%, 0.037 
between 10% and 20%, and <0.001 between 10% and 
25%. 

The Shapiro-Wilk tests’ results suggest that these four splits 
data are normally distributed since their p-values are much 
larger than 0.05. Next, the p-value of Levene’s test is larger than 
0.05, which proves that there is not a significant difference in 
variance between these four splits. With two assumption hold, 
the ANOVA test is valid. The ANOVA test’s result suggests that 
at least one group’s mean is different from others since the p-
value is smaller than 0.05. Additionally, one-tailed t-tests are 
performed pairwise between the highest sample mean group 10% 
and other split groups to identify mean differences. There is not 
a significant difference between 10% and 15% split since their 
t-test p-value is larger than 0.05. On the contrary, 10% split has 
larger mean compared with 20% split and 25% split since their 
p-values are smaller than 0.05. As a result, the difference 
between sample mean accuracy of 10% split and 15% split is not 
significant, and both split ratios are appropriate choices. 

Statistical analysis is useful to determine which dataset split 
ratio gives the highest classification mean accuracy. In 
comparison, the sample mean accuracy can be biased and 
misleading since the sample size is not large enough. The 
ANOVA test takes the sample size into account and compares 
the sample mean, which conduct a more accurate analysis. In 
this project, the split ratio of the test set is selected by comparing 
mean classification accuracy using statistical tests, which makes 
the experiment result has statistical significance. This approach 
of selecting the test set split ratio can also be applied to other 
recycling waste classification projects to split the dataset and 
improve classification accuracy. 

3) The other dataset splitting parameters 

The other dataset splitting parameters including the 
sampling strategy used in the test set and splitting parameters 
used in train and validation sets (the K-value of K-fold CV, the 
sampling strategy, and the split ratio) can also be determined 
using the approach discussed in subsection A1 and A2. Statistical 
analysis proof of the other dataset splitting decisions are not 
discussed here since they follow the same approach. To 
summarise, determine the sample size of all candidate parameter 
values using the estimated standard error of the sample mean, 

and perform statistical analysis to choose between dataset 
splitting parameters. 

B. Training parameters 

Various training parameters are tuned based on the 10-fold 
CV average accuracy. These training parameters are learning 
rate schedulers, optimisers, patience epochs, layers freezing, 
loss function, final classifiers, batch sizes, and learning rates. 

1) Effects of tuning different training parameters 

Various training parameters are tuned to help the final model 
achieve higher classification accuracy. The average validation 
accuracy is plotted as a curve to identify the effects of different 
training parameters. 

Fig. 3. The increase in validation accuracy for different training parameters 

From Figure 3, the highest increase of the average validation 
accuracy, 7.25% increase, is conducted by tuning layers freezing 
parameter. The second highest increase, 0.76% increase, is 
achieved by tuning the batch size. In comparison, there is a big 
gap between the improvements achieved by the first and second 
most effective training parameters. On the other hand, tuning of 
final classifiers, loss functions, and learning rates do not have 
any increase on the curve. 

The core functions of transfer learning, using pre-trained 
weights to apply knowledge of another task to the target task, 
can explain this significant increase conducted by tuning the 
layers freezing. In this case, most layers can be retrained to 
improve classification accuracy, which suggests a great 
similarity can be found between the source domain (ImageNet 
dataset) and the target domain (TrashNet dataset). On the other 
hand, If the difference between these two domains is too large, 
then unfreezing all layers can conduct a negative impact on the 
model performance since low-level features extracted are 
destroyed.  

Next, the benefits of tuning the final classifiers, loss function, 
and learning rates are not shown up on the curve. This is because 
the Softmax classifier and Cross-Entropy loss are used as the 
default selection, and the other classifiers or losses do not 
conduct better performance. On the other hand, learning rates 
are selected using the learning rate finder throughout 
experiments. As a result, no other learning rates can be 
compared with to show up the benefits of tuning learning rates. 
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The effects of layers freezing can also be witnessed in 
reviewed waste classification projects. Among seven reviewed 
waste classification projects, six of them apply transfer learning 
techniques. Moreover, four of them initialise the model using 
pre-trained weights, and their average classification accuracy is 
95.96%. However, these projects do not provide information 
about layers freezing, such as the number of frozen layers and 
position of frozen layers in the model. In this project, 
experiments of layers freezing are conducted, results are 
analysed and discussed, and the final decision on layers freezing 
is presented. 

2) Layers freezing 

The GoogleNet model, used in the model of paper [16], is 
kept as the source model of transfer learning. The only change 
made to the GoogleNet model structure is the final dense layer. 
To be specific, the number of nodes in the final dense layer is 
reduced from 1000 to 5 since this work aims to classify five 
types of recycling waste images. Next, the layers freezing 
experiment is carried out by freezing all layers of the transferred 
GoogleNet model at first. Layers are gradually unfrozen from 
the output dense layer to the input convolutional layer, and the 
one yielding higher classification accuracy are selected. 

Fig. 4. Validation accuracy of different layers freezing state 

From Figure 4, an increasing trend in average validation 
accuracy can be observed as the layers are gradually unfrozen. 
There are five steep increases, which happen at the unfreezing 
of Inception module (5b, 4b, 3a) and Auxiliary classifier 
(Softmax1, Softmax0). The weights of these layers are retrained 
from the ImageNet dataset trained weights to recognize different 
types of recyclables.  

Among these improvements, the unfreezing of Inception 
module 5b increases the accuracy the most, 2.61% in accuracy. 
The pre-trained weights of Inception module 5b store the high-
level feature knowledge, such as the general shape of a car, 
which are the most irrelevant knowledge of recognizing 
recyclables. Retraining Inception module 5b can help the model 
discard this unnecessary feature knowledge and learn useful 
feature knowledge, such as the general shape of glass bottle. 

The second most increase happens at the unfreezing of 
Auxiliary classifier softmax1, 1.82% in accuracy. Auxiliary 
classifiers are used in the GoogleNet model to combat the 
vanishing gradient problem by calculating the final classifier 
loss together with auxiliary classifier losses. Retraining the 

auxiliary classifier softmax1 can reduce the auxiliary classifier 
loss and the total loss. 

Although Inception module 3a is very close to the input 
convolutional layers, the validation accuracy still increases as 
the layer is unfrozen. A possible explanation is that the low-level 
features of the ImageNet dataset are very similar to the TrashNet 
dataset. On the other hand, the small accuracy reduction of base 
convolutional layers can be explained by the disruption of low-
level feature extraction algorithm.  

Overall, the layers freezing experiment helps protect the 
low-level feature extraction algorithm and tune the high-level 
feature extraction algorithm towards the recycling waste 
classification task. In comparison, the other waste image 
classification projects do not provide information about layers 
freezing or related experimental results. For future waste image 
classification projects, similar layers freezing experiments are 
necessary when applying transfer learning techniques. 

C. Data augmentation 

After developing the benchmark model, various data 
augmentation techniques can be tested and determine which set 
of techniques to use. These data augmentation techniques are 
flipping, rotation, shear, zoom, and brightness control. In this 
section, data augmentation techniques used in this project are 
selected based on validation accuracy, and confusion matrices 
of different data augmentation techniques are plotted and 
analysed. 

1) Validation accuracy of data augmentation techniques 

The benchmark model applied with different data 
augmentation techniques of different magnitude. Then, the best-
performed magnitude of each data augmentation technique is 
compared to decide the final model applied techniques. 

Fig. 5. Validation accuracy of different data augmentation techniques applied 
to the benchmark model 

From Figure 5, the average validation accuracy of different 
data augmentation techniques applied to the benchmark model 
are compared and plotted in a bar chart. Besides the brightness 
control and horizontal flipping model, accuracy increases can be 
witnessed in the other models compared with the benchmark 
model. Unexpectedly, applying the brightness control technique 
conducts a small percentage decrease in validation accuracy, and 
this may be explained by the brightness uniformity of the 
TrashNet dataset. Furthermore, the TrashNet dataset is already 
a horizontally flipped dataset, thus, zero increase in validation 
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accuracy in the horizontal flipping model is observed. Rotation 
of 180 degrees, shear of 89 degrees, and zoom of 100% have 
significant effects in helping the model mitigate the effects of 
the overfitting problem since these types of images are scarce in 
the TrashNet dataset. 

2) Confusion matrices of data augmentation techniques 

Confusion matrix of the benchmark model, final model, and 
the benchmark model with different data augmentation 
techniques applied (including flipping, zoom, rotation, and shear) 
are plotted. These matrices visually present the classification 
results of different classes, where correct predictions are plotted 
on the diagonal line, and wrong predictions are plotted on the 
remaining blocks of these matrices.  

Fig. 6. Confusion matrices of different data augmentation techniques applied 
to the benchmark model, (a):benchmark model, (b):final model, 
(c):flipping, (d):zooming, (e): rotation, (f): shear 

From Figure 6a, the benchmark model has the highest error 
rate, 21.57%, in plastic image predictions, and the second-
highest error rate, 8.93%, in paper image predictions. Plastic 
images are often recognized incorrectly as glass or metal, and 
this may because they are all reflective materials. Also, paper 
images are often recognized incorrectly as glass and plastic, and 
this may because glass and plastic bottles are often surrounded 
by printed labels that looks like paper. Next, cardboard images 
are often recognized incorrectly as paper, and this may because 
cardboard is a paper-based product but with brownish in colour. 

Figure 6b shows the final model’s performance, which is 
applying selected data augmentation techniques to the 
benchmark model. To be specific, the error rate of the plastic 
class is reduced from 21.57% to 7.84%, and the paper class’s 

error rate is reduced from 8.93% to 3.57%. Also, the 
classification accuracy of other classes remains the same. From 
the result, the weaknesses (recognizing paper and plastic) of this 
classification model are improved significantly by applying the 
selected set of data augmentation techniques. 

Among these data augmentation techniques applied to the 
benchmark model, the flipping technique (shown in Figure 6c) 
improved the plastic class error rate by the most, from 21.67% 
to 9.8%. Next, the rotation and zoom techniques improve the 
plastic error rate slight lower, from 21.67% to 11.76%. On the 
contrary, the shear technique only improves the plastic error rate 
from 21.67% to 19.6%. This may because the flipping, rotation, 
and zoom technique can provide the model with additional 
plastic image information, such as viewing this image from 
another angle or focusing on smaller pixels. In comparison, the 
shear technique concentrates this image information by 
stretching this image to a parallelogram from a rectangle. 

VI. CONCLUSIONS AND FUTURE WORK 

This work is aimed at improving the image processing aspect 
of the IBM Wastenet project. Furthermore, this work provides 
full details of the model’s training using a systematic approach, 
unlike other work in the field. These training procedures can be 
summarised as a framework for training recycling waste image 
classification models, including how to split the dataset, how to 
select training parameters, and how to choose data augmentation 
techniques. 

The dataset is split by choosing three parameters, including 
split ratios, sampling strategies, and CV techniques, which are 
determined through statistical tests of test set mean accuracy. In 
this work, 10% of the entire dataset is split using the Hold-out 
CV technique with simple random sampling strategy, and the 
remaining dataset is then split into training and validation sets 
using the 10-fold CV technique with simple random sampling 
strategy. 

Next, the training parameters are selected by comparing the 
average 10-fold validation accuracy, and these parameters are 
learning rate schedulers, patience epochs, layers freezing, loss 
function, final classifiers, batch sizes, and learning rates. In this 
work, the constant learning rate scheduler of 2e-5 learning rate 
is used together with Adam optimizer to optimise the Cross-
Entropy loss. Next, the node number in the final classification 
layer, Softmax, of the GoogleNet model is reduced from 1000 
to 5, and only base convolutional layers are frozen. Then, the 
pre-trained weights of the GoogleNet model are used to initialise 
the transferred GoogleNet model, and images are passed in a 
batch size of 16. Lastly, the training process is stopped if no 
higher validation accuracy is obtained in the next 100 epochs. 
The benchmark model is trained using the above-described 
training parameters and obtained 91.21% test set classification 
accuracy. 

A range of data augmentation techniques are tested using the 
average 10-fold validation accuracy, and these augmentation 
techniques include flipping, rotation, shear, zoom, and 
brightness control. In this work, all techniques except brightness 
control are applied to the benchmark model, and the test set 
classification accuracy is increased to 95.40%. Lastly, this 

 



model has been used to perform successful real-time 
classification on a computer using a standard webcam. 

Future work is looking at moving the developed machine 
learning models to the edge to overcome connectivity 
bottlenecks and bandwidth limitations associated with the 
Internet backbone. This will be achieved by performing real-
time inference of a CNN on a resource-constrained device, such 
as NVIDIA’s Jetson Nano module. Novel deep compression 
techniques and architectures, such as EfficientNets are also 
being considered to achieve accurate and fast real-time 
classification on such embedded devices. 
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