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Epigenetic dysregulation is thought to contribute to the etiology of schizophrenia (SZ), but the cell type-specificity of DNA
methylation makes population-based epigenetic studies of SZ challenging. To train an SZ case–control classifier based on DNA
methylation in blood, therefore, we focused on human genomic regions of systemic interindividual epigenetic variation (CoRSIVs), a
subset of which are represented on the Illumina Human Methylation 450K (HM450) array. HM450 DNA methylation data on whole
blood of 414 SZ cases and 433 non-psychiatric controls were used as training data for a classification algorithm with built-in feature
selection, sparse partial least squares discriminate analysis (SPLS-DA); application of SPLS-DA to HM450 data has not been
previously reported. Using the first two SPLS-DA dimensions we calculated a “risk distance” to identify individuals with the highest
probability of SZ. The model was then evaluated on an independent HM450 data set on 353 SZ cases and 322 non-psychiatric
controls. Our CoRSIV-based model classified 303 individuals as cases with a positive predictive value (PPV) of 80%, far surpassing the
performance of a model based on polygenic risk score (PRS). Importantly, risk distance (based on CoRSIV methylation) was not
associated with medication use, arguing against reverse causality. Risk distance and PRS were positively correlated (Pearson r=
0.28, P= 1.28 × 10−12), and mediational analysis suggested that genetic effects on SZ are partially mediated by altered methylation
at CoRSIVs. Our results indicate two innate dimensions of SZ risk: one based on genetic, and the other on systemic epigenetic
variants.
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INTRODUCTION
Schizophrenia (SZ), a neurodevelopmental disorder affecting 1%
of the world’s population, is characterized by hallucinations,
delusion, and cognitive deficits [1]. Although twin and family
studies estimate a high heritability for SZ, around 80% [2], the
concordance rate of SZ in monozygotic twins is only 50% [3, 4],
and genetic variants identified in multiple large genome-wide
association studies (GWAS) [5, 6] explain only a small proportion of
SZ risk [7, 8]. Although additive effects of these variants enabled
the development of a polygenic risk score (PRS) to quantify
genetic predisposition for SZ [1, 7], a classifier for SZ case–control
status based on PRS performed poorly (area under the receiver
operating characteristic curve, AUROC= 0.58–0.70) [9]. Together,
these observations led to speculation that, in addition to genetic
and environmental factors, epigenetic mechanisms may play an
important role in the etiology of SZ [3]. Given the ability of
environmental stimuli to affect stochastic developmental epige-
netic processes [10–12], epigenetic mechanisms could both
explain monozygotic twin discordance and mediate a variety of
early environmental risk factors for SZ [13].
Epigenetic regulation involves concerted interactions among

various molecular alterations (histone modifications, autoregulatory
DNA-binding proteins, etc.). Epigenetic epidemiology, however,

focuses almost exclusively on the methylation of CpG dinucleotides
in DNA because of its long-term stability and simplicity as a “readout”
of chromatin state. Unlike genetic epidemiology, epigenetic epide-
miology is complicated by the cell type-specificity of DNAmethylation
and the potential for reverse causality [14, 15]. Epigenetic variation in
peripheral blood may not provide information about epigenetic
regulation in the brain [16–18]. Also, in epigenetic epidemiologic
studies of SZ, DNA methylation differences between patients and
healthy individuals may be a consequence of SZ (e.g., due to
medication, increased smoking, etc.) [19]. Genomic regions of
systemic interindividual epigenetic variation (SIV) are stable epigenetic
polymorphisms established during early development, providing
opportunities to overcome these obstacles [15]. By focusing on SIV
regions, investigators can use genomic DNA from easily obtainable
tissues like peripheral blood to draw inferences about epigenetic
regulation throughout the body, including the brain. We recently
reported the largest unbiased screen for correlated regions of
systemic interindividual epigenetic variation (CoRSIVs) in the human
genome [15, 20]. CoRSIVs were identified by analyzing deep whole-
genome bisulfite-sequencing (WGBS) data on tissues representing all
three germ layers (thyroid, heart, and brain) from each of ten donors
from the NIH Genotype-Tissue Expression (GTEx) project [21]. Each of
the 9926 CoRSIVs identified is statistically significant (P< 0.05),
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includes at least 5 CpGs, and exhibits an interindividual methylation
range of at least 20% [20]. About 50% of CoRSIV-associated genes are
implicated in nervous system diseases or mental disorders [20].
Regarding analytical approaches, epigenetic studies of DNA

methylation have mainly utilized t-tests or other univariate regression
methodologies, and focused on detecting associations rather than
making predictions [22, 23]. But univariate approaches ignore
interactions among features, potentially missing crucial synergistic
biological effects [24], motivating increased interest in using machine
learning to analyze DNA methylation [22, 25]. A recent machine
learning-based method [26] identified an epigenetic signature of SZ in
blood DNA using Illumina Human Methylation 450K (HM450)
case–control data sets [27]. That approach, however, trains indepen-
dent machine-learning models focusing on CpGs in biological
pathways implicated by gene ontology (GO) analysis, and thus is
constrained within existing ontologies. Also, the goal was the
identification of differentially methylated positions (DMPs) between
cases and controls, not an individualized assessment of SZ risk.
Another machine-learning study based on HM450 data on post-
mortem brain tissues used a simple decision tree-based algorithm, but
detected no significant signals distinguishing cases from controls [28].
Most recently, a poly-methylome score calculated using the DMPs
from Hannon et al. (whole-blood SZ case–control DMPs) [27], likewise
failed to substantially distinguish cases and controls [29].
Here, we applied two key innovations. First, we focused on the

subset of HM450 probes that overlap human CoRSIVs [15, 20].
Second, we used a supervised machine-learning algorithm called
sparse partial least squares discriminate analysis (SPLS-DA). Although
SPLS-DA has been applied to transcriptomic, metabolomic, and
microbiome data [30–32], we are not aware of previous reports
applying it to DNA methylation data. Exploiting the regularization
(i.e., variable selection) and dimension reduction capabilities of SPLS-
DA, in which SZ case–control data can be visualized in a reduced 2-
dimension space, we devised a “risk distance” enabling successful
identification of a subset of individuals with the greatest risk of SZ.
When tested on an independent HM450 case–control data set, our
algorithm classified ~85% of SZ cases with a positive predictive value
(PPV) of 80%, greatly outperforming a model similarly trained on PRS.

MATERIALS AND METHODS
Data
Publicly available Illumina HM450 data sets from five cohorts were used for
model training, testing, and validation. The numbers of subjects and
availability of additional clinical variables are summarized in Table 1, and

demographic characteristics are stated in Supplementary Methods. The
training data set (GSE84727, Aberdeen cohort) comprises 414 patients with
SZ and 433 non-psychiatric controls who have self-identified as born in
British Isles (95% in Scotland) [33]. The model was tested on an
independent SZ case–control data set (GSE80417, London cohort)
including 353 patients with SZ and 322 non-psychiatric controls born in
UK [34]. For additional validation and evaluation of reverse causality by
medication use and smoking, the following HM450 data sets were
downloaded from NCBI GEO: GSE74193 (prefrontal cortex (PFC) from 191
SZ cases and 335 controls) [35], GSE59685 (whole blood, prefrontal cortex
(PFC), entorhinal cortex (EC), superior temporal gyrus (STG), cerebellum
(CE) from 67 controls) [36], and GSE50660 (whole blood from 464 smoking
and non-smoking individuals) [37].

CoRSIV Probes
Previous studies [20, 38, 39] identified human genomic regions (CoRSIVs)
that show systemic DNA methylation across diverse tissues of the body. Of
the ~480,000 probes on the HM450 array, only 3590 overlap 1982 known
CoRSIVs [15]. Because CpG sites within each CoRSIV are correlated, in most
analyses we averaged multiple probes within each CoRSIV, yielding 1982
variables. Probes at which blood methylation is known to be correlated
with smoking [27] were excluded before training our models.

Training an SPLS-DA machine-learning model
We identified SPLS-DA as a potentially effective machine-learning method
due to its simultaneous variable selection and dimension reduction
capability [40, 41]. SPLS-DA operates under the assumption that a small
fraction of the original variables is driving the underlying process and uses
least absolute shrinkage and selection operator (LASSO) regularization [42]
for variable selection, shrinking coefficients of unrelated variables to zero.
We used the mixOmics R package [43] for implementation (Supplementary
Fig. S1).

Calculating risk distance for training and testing Data
Based on case–control separation in the 2-dimensional (2-D) representa-
tion of training samples, a vector can be identified as var dim1ð Þi þ
var dim2ð Þj (Supplementary Methods). Along this vector, Euclidian distance
from the origin (0,0) to all training data points can be calculated. Then, for
each sample in the independent testing set, 2-D coordinates can be
calculated using the same SPLS-DA model parameters identified in the
training data, and risk distance computed.

Model performance evaluation
Model performance is evaluated by setting cutoffs at various risk distance
standard deviation multiples (1, 1.5, 2, 2.5, and 3) above the control mean
risk distance in the training data, to classify individuals as SZ cases. Positive
predictive value (PPV) is the probability that subjects with a positive

Table 1. Overview of the data sets used in these analyses.

Cohort (GEO accession) Tissue Status (phenotype) Number of samples PRS available Antipsychotic use available

Training Data
(GSE84727) [33]

Whole Blood SZ case 414 Yes Yes

Controls 433

Testing Data
(GSE80417) [34]

Whole Blood SZ case 353 Yes Yes

Controls 322

Validation
(GSE74193) [35]

PFC (brain) SZ case 191 No

Controls 335

Validation
(GSE59685) [36]

Whole blood Controls 67

EC (brain)

PFC (brain)

STG (brain)

CER (brain)

Validation
(GSE50660) [37]

Whole blood Smoker 285

Non-smoker 179

For details about the data sets, see Supplementary Methods.
PFC prefrontal cortex, EC entorhinal cortex, STG superior temporal gyrus, CER cerebellum, PRS Polygenic Risk Score.
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screening test truly have the disease. To compare the accuracy of different
models, we calculated the number of individuals classified as cases at a
PPV of 80%, which is considered clinically actionable [44].

RESULTS
At CoRSIV probes, DNA methylation is generally positively
correlated between blood and brain
Our focus on CoRSIVs is based on the rationale that, at these regions,
methylation measurements in blood yield information about

epigenetic regulation in the brain. Using GSE59685 (blood and four
brain regions from each of 67 control individuals) [36], we evaluated
Pearson correlations between blood and brain. Only a small subset of
HM450 probes consistently showed a strong positive correlation
between blood and the four brain regions (Fig. 1A, left). Conversely, at
most of the 3590 HM450 probes within genomic regions previously
shown to exhibit systemic interindividual epigenetic variation (CoRSIV
probes) [20, 38, 39] (Supplementary Table S1) DNA methylation in the
blood is, as expected, positively correlated with that in each of the
four brain regions (Fig. 1A, right).
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Fig. 1 Classification of SZ cases and controls using CoRSIV methylation in blood DNA. A Only a small fraction of HM450 probes show a
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Applying SPLS-DA to classify SZ cases and controls
Using the case–control training data on CoRSIV methylation, we
initially attempted to use the tSNE unsupervised machine-learning
algorithm to distinguish SZ cases from controls, but there was no
separation (Supplementary Fig. S2). Applying SPLS-DA to these
same training data, however, partially separated cases and
controls into two overlapping clusters (Fig. 1B; the dotted line
shows the risk distance vector). SZ cases generally have positive
risk distances, and controls tend to have negative values
(Supplementary Methods). Importantly, the risk distance distribu-
tions of cases and controls show clear separation not only in the
training data (Fig. 1C, top) but also in the independent test set
(Fig. 1C, bottom). Discrimination of cases and controls improves
with increasing risk distance. For example, at the target PPV of
80%, our initial SPLS-DA model based on CoRSIVs classifies 161 of
the 353 individuals in the test set as cases (Fig. 1D and Table 2). An
SPLS-DA model trained with the same data but with case–control
status randomized did not classify a single individual in the test
set as a case with 80% PPV (Table 2).

Risk distance is not associated with medication use
A major caveat is the potential that our findings reflect reverse
causality, particularly through an effect of antipsychotic medica-
tion. Because antipsychotic drugs can affect the methylation
profile in blood by altering the proportion of different leukocyte
subtypes [45, 46], it is unlikely that they will induce the same
methylation changes in the brain. To test this, we first considered
SZ case–control DMPs identified by Hannon et al. [27] as
independent variables, and trained an SPLS-DA model using
blood DNA methylation data (GSE84727: whole blood from SZ
case–control) (Supplementary Fig. S3). Applying this model to
methylation data on PFC (GSE74193: whole blood from SZ
case–control) [35] yielded very high-risk distances that differed
only modestly between cases and controls (P= 0.046) (Fig. 2A,
left). Applying our CoRSIV-based model to the PFC data, however,
yielded risk distances that were close to zero and substantially
higher in cases than controls (P= 4 × 10−14) (Fig. 2A, right), in
agreement with our results in blood.
To directly evaluate the effect of medication use on risk

distance, we used clinical data from the OPCRIT database [47]. In
the training set, there was no association between risk distance
and chlorpromazine equivalent dose (R= 0.04, P= 0.45) (Fig. 2B),

and the average risk distance of cases with chlorpromazine
equivalent doses > 0 did not differ from that of those not currently
on antipsychotic drugs (P= 0.9) (Fig. 2C). In the testing set, the
proportion of cases correctly classified as such (based on risk
distance) was unaffected by the use of antipsychotic drugs (P=
0.77 and P= 0.49 for treatment with clozapine and treatment with
other drugs respectively, relative to no antipsychotic drugs) (Fig.
2D). Together, these data indicate that our classifier is not
detecting blood DNA methylation changes induced by the use of
psychiatric medications, providing strong evidence against reverse
causality.

Focusing on SIV is crucial to the success of a blood-based
classifier
To determine whether our ability to classify SZ cases is due to
SPLS-DA or the focus on CoRSIVs, we set out to develop a
comparable classification model using the top 2500 most
informative non-CoRSIV probes. We wished to select a set of
non-CoRSIV probes which, like CoRSIVs, exhibit high interindivi-
dual variation. Because of the non-normal distribution of
methylation at CoRSIVs, instead of variance, we assessed the
inter-percentile range from the 2nd to 98th percentiles (which we
term range2–98%) (Supplementary Methods, Supplementary Fig. S4
and Supplementary Table S2); 94.6% of the top range2–98% probes
detected in GSE84727 (whole-blood SZ case–control) are also
classified as such in GSE80417 (whole-blood SZ case–control)
(Supplementary Table S3). To illustrate the attributes of range2–98%
we evaluated several probes among the top 2500 by range2–98%
but not by variance (shaded region in Fig. 3A). In every instance,
we observed bimodal or trimodal distributions (Fig. 3B), with a
major mode separated from one or two minor modes. When we
evaluated these high-range2–98% probes in the brain vs. blood
data set [16] we found that, even after excluding those within
CoRSIVs, most showed a substantial positive correlation in
methylation between blood and four brain regions (Fig. 3C),
comparable to the results observed for CoRSIVs (Fig. 1A). This was
not the case for high-variance probes not classified as high
range2–98% (Supplementary Methods and Fig. S5). An SPLS-DA risk
classifier based on these high-variance probes alone had poor
predictive power (Supplementary Fig. S6 and Table 2), indicating
that the systemic nature of CoRSIVs is critical to the success of our
classifier.

Table 2. Comparison of model performance when using different HM450 probe sets.

HM450 probes in the model SD multiple cutoff for 80%
PPV in training set

Cases predicted by
algorithm in testing set

% cases predicted in testing
set (out of 353 cases)

CoRSIV probes 1.7 161 45%

CoRSIV probes, top range2–98% probes 1.5 278 78%

CoRSIV probes, top range2–98% probes, blood cell
composition estimates

1.5 270 76%

Re-trained model (excluded top 10 smoking CpGs
and smoking score)

1 253 72%

CoRSIV probes, top range2–98% probes, blood cell
composition estimate, smoking (final model)

1 303 85%

PRS 1.3 115 32%

Final model
(with PRS)

1 306 86%

Smoking score 1 85 24%

Top variance probes 2 78 22%

Hannon et al.—DMPs detected in blood SZ
case–control [27]

1 15 4%

Null model NA 0 0%

All models were trained on GSE84727 (SZ case–control whole blood) and predicted on test data (GSE80417 SZ case–control whole blood).
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Including additional covariates improves final model accuracy
In addition to CoRSIV and top range2–98% probes, we included in
the model variables assessing blood cell composition [27, 48],
smoking [27], and genetic variation [5, 37, 49] (Fig. 4A). Consistent
with the systemic nature of methylation at CoRSIVs, the SPLS-DA
variable importance ranking (Supplementary Table S3) did not
identify any leukocyte subtype as highly informative (i.e., within
the top 10) in the model (Table 3). Smoking score, however,
ranked as the most informative variable (Table 3 and Supplemen-
tary Table S3), consistent with the fact that individuals with SZ are
more likely to smoke and smoke more heavily than controls [27].
Interestingly, the two genes associated with the top two model
probes noted in Table 3 (MYO1G and GFI1) have previously been
associated with SZ, although not at the same CpG sites [27]. The
probes picked up by the final model showed a higher correlation
between DNA methylation levels between blood and four brain
regions (Supplementary Fig. S7), than probes previously identified

as associated with SZ [27]. This final model consisted of 123
variables; importance scores are shown in Supplementary Table
S3. The similarity between risk distance distributions in both the
training and test sets (Fig. 4B) indicates the model performs well
when classifying new data. We built separate SPLS-DA models
with and without PRS as a covariate. The classification model built
on PRS alone performed poorly, classifying only ~115 individuals
as cases at 80% PPV (Fig. 4C). Surprisingly, including PRS in the
methylation-based model did not substantially improve model
performance; with or without PRS, just over 300 individuals were
classified as cases, at 80% PPV (Fig. 4C, D and Table 2).

The SZ classifier is not driven by excessive smoking of SZ
cases
Smoking is both highly prevalent among SZ patients [50–52] and
can affect DNA methylation in blood, raising additional potential
for reverse causality. Previous EWAS studies [37, 49, 53] have
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identified 10 HM450 probes at which DNA methylation is strongly
associated with current smoking. Because detailed smoking
information was not available for each individual in the training
and testing cohorts, a proxy variable (smoking score) was
previously derived using DNA methylation values from these
probes [27]. As described above, these known smoking-associated
probes were excluded from our models at the outset. Nonetheless,
to determine if smoking might somehow be driving our classifier
we evaluated whether smoking score alone could predict SZ, but
it was able to predict only 85 cases with 80% PPV (Table 2). To
identify unknown smoking-associated CpGs that may be influen-
cing our SZ classification model, we used a publicly available
HM450 data set on whole blood of 464 individuals who were

current, former, or never smokers [37]. Using the same CpGs
identified by our SZ classification model, we built a binary
classification model to classify smokers vs. non-smokers in this
independent data set. This smoking classifier achieved an average
AUROC of 0.69 in 10-fold cross-validation (CI: 0.67–0.77, Supple-
mentary Fig. S8A), indicating our SZ classifier does include probes
that are sensitive to smoking status. We therefore excluded the 10
probes most important for the smoking classifier (Supplementary
Fig. S8B, C), as well as the smoking score, and re-trained the SZ
classification model. This had a minimal impact; the model still
classified 253 cases with 80% PPV (Table 2). Together, these
analyses strongly indicate that our SZ model is not detecting
differences in smoking between SZ cases and controls.
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Evaluating why inclusion of PRS did not improve the final
model
Although the Pearson correlation between risk distance and PRS is
only weakly positive (r= 0.28, P= 1.2 × 10−12), most individuals

above the median risk distance are also above the 50th percentile
for PRS (Fig. 5A). This correlation may explain why including PRS
does not improve the model. On the other hand, many individuals
with an intermediate PRS have elevated risk distance (Fig. 5A),
suggesting an epigenetic predisposition not detected by PRS. Since
genetic variants can influence methylation at CoRSIVs (methylation
quantitative trait loci, mQTL) [20], we used mediational regression
analysis to test whether the association between PRS and SZ
case–control status may be mediated by CoRSIV methylation.
Logistic regression showed a positive association between PRS and
case–control status (β= 0.39, P= 1 × 10−21) (Fig. 5B). Including risk
distance in the regression model (Fig. 5B) modestly reduced the
effect size (β= 0.35, P= 1 × 10−14), indicating that risk distance (i.e.,
CoRSIV methylation) mediates 27% (P < 1 × 10−16) of the associa-
tion between PRS and SZ case–control status. This partial mediation
might reflect GWAS SNPs proximal to CoRSIVs wielding cis mQTL
effects on CoRSIV methylation. Compared to other HM450 probes,
CoRSIV and top range2–98% probes are 1.83-fold and 1.79-fold
enriched for mQTL [54], respectively (see probe-level tabulation in
Supplementary Table S4). And, indeed, analysis using the GWAS
Catalog [55] showed robust enrichment for colocalization of model
CpG probes and GWAS SNPs associated with SZ (Fig. 5C and
Supplementary Methods).
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Table 3. Top 10 variables ranked by importance score in the final
SPLS-DA model.

Top 10 variables in
final model

Importance score HM450
annotated gene

SmokingScore 0.58 –

cg12803068 0.39 MYO1G

cg12876356 0.37 GFI1

cg03751055 0.36 MGMT

cg06126421 0.30 –

cg09935388 0.29 GFI1

cg15135166 0.28 PLEKHM2

cg10540573 0.26 –

cg06791546 0.25 –

cg03680873 0.24 –
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DISCUSSION
To date, most case–control studies of DNA methylation in complex
human diseases such as SZ have been conducted using Illumina
HM450/EPIC arrays applied to whole-blood DNA. In general,
however, the validity of extrapolating from whole blood to brain is
unclear. Also, these studies were generally limited to detecting
associations [26, 27, 56, 57], as opposed to empirically evaluating
models to classify individuals based on the risk of SZ. Hence, our
study represents both the first SZ case–control analysis of blood
DNA methylation focused on systemic epigenetic variants and the
first to apply the SPLS-DA machine-learning algorithm to DNA
methylation data. Coupling these two innovations enabled an
unprecedented ability to classify SZ cases and controls based on
DNA methylation in blood.
Our initial attempt to train a supervised classification model

(random forest, supplementary methods) using all CoRSIV regions
performed poorly (AUROC of 0.67 in the independent test set). Our
success, therefore, was in part due to the ability of SPLS-DA to
include in the model only a small number of most informative
variables (regularization). Also, the dimension reduction feature of
SPLS-DA transformed the data from high-dimensional to low-
dimensional space, facilitating 2-D projections that allowed us to
calculate risk distance. In machine learning, classification accuracy
can be improved by attempting to classify only those individuals
for whom the model can make a reasonably accurate prediction
[58]. So, to evaluate the performance of our model, we computed
risk distances of individuals in the test set and classified
individuals as cases, using various cutoffs.
Remarkably, our model based on blood methylation out-

performed the model based on PRS, consistent with previous
evidence [27, 59, 60] that interindividual epigenetic variation is an
important etiologic factor in SZ. Considerable epigenetic variation
is associated with genetics. Hence, it is not surprising to find a
weak but significant correlation between risk distance and PRS.
This suggests that genetic effects on SZ risk are, in part, mediated
by mQTL effects at CoRSIVs. This interpretation is supported by
our finding that GWAS SNPs associated with SZ are enriched in the
vicinity of CoRSIVs in our final model. Despite evidence of shared
GWAS loci between SZ and BP [61], we did not detect enrichments
for BP GWAS SNPs. Significant enrichments were found for ASD;
common genetic variants associated with both SZ and ASD have
been reported [62]. Of four non-psychiatric diseases/conditions

evaluated, only RA showed associations with GWAS variants,
consistent with established links between RA and SZ [63, 64].
Given our contemporaneous design, the biggest caveat is the

potential for reverse causality, which could occur, for example, if
the methylation differences we are detecting are a consequence
of antipsychotic medication or smoking. Unlike previous similar
studies [26, 56, 57], however, we used two complementary
approaches—applying our blood-based model to the brain, and
testing for associations between risk distance, antipsychotic drug
use, and smoking—to provide strong evidence against reverse
causality. The highly significant enrichment of SZ GWAS SNPs in
the vicinity of CpG probes identified by our model (Fig. 5C) and
the finding that leukocyte subtype is not an important variable in
our model (Table 3) are also inconsistent with simple confounding
by medication effects on the blood methylation profile. Together,
these findings suggest that the DNA methylation variants
detected by our classifier were established prior to disease onset,
and therefore may be used to assess the risk of SZ. A second
limitation is that, due to the reliance on the HM450 array, our
findings are based on only the 10% of known CoRSIVs that are
informative on that platform [15, 20].
Our results indicate that by broadly assessing all known human

CoRSIVs it may be possible to develop a highly accurate blood-
based test to prospectively identify individuals at high risk for SZ.
More generally, the approaches we describe serve as a proof of
concept for the utility of CoRSIVs in personalized medicine,
complementary to PRS. These innovations may ultimately enable
blood-based epigenetic prediction models not only for SZ, but for
a wide range of complex human diseases.

CODE AVAILABILITY
R source code developed for the analysis is available in Github and Zenodo [65].
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