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Abstract

We introduce a novel online multitask setting. In this setting each task is partitioned
into a sequence of segments that is unknown to the learner. Associated with each
segment is a hypothesis from some hypothesis class. We give algorithms that
are designed to exploit the scenario where there are many such segments but
significantly fewer associated hypotheses. We prove regret bounds that hold for
any segmentation of the tasks and any association of hypotheses to the segments.
In the single-task setting this is equivalent to switching with long-term memory

in the sense of [1]. We provide an algorithm that predicts on each trial in time
linear in the number of hypotheses when the hypothesis class is finite. We also
consider infinite hypothesis classes from reproducing kernel Hilbert spaces for
which we give an algorithm whose per trial time complexity is cubic in the number
of cumulative trials. In the single-task special case this is the first example of
an efficient regret-bounded switching algorithm with long-term memory for a
non-parametric hypothesis class.

1 Introduction

We consider a model of online prediction in a non-stationary environment with multiple interrelated
tasks. Associated with each task is an asynchronous data stream. As an example, consider a scenario
where a team of drones may need to decontaminate an area of toxic waste. In this example, the tasks
correspond to drones. Each drone is receiving a data stream from its sensors. The data streams are
non-stationary but interdependent as the drones are travelling within a common site. At any point
in time, a drone receives an instance x and is required to predict its label y. The aim is to minimize
mispredictions. As is standard in regret-bounded learning we have no statistical assumptions on
the data-generation process. Instead, we aim to predict well relative to some hypothesis class of
predictors. Unlike a standard regret model, where we aim to predict well in comparison to a single
hypothesis, we instead aim to predict well relative to a completely unknown sequence of hypotheses
in each task’s data stream, as illustrated by the “coloring” in Figure 1. Each mode (color) corresponds
to a distinct hypothesis from the hypothesis class. A switch is said to have occurred whenever we
move between modes temporally within the same task.

Thus in task 1, there are three modes and four switches. We are particularly motivated by the
case that a mode once present will possibly recur multiple times even within different tasks, i.e.,
“modes” ⌧ “switches.” We will give algorithms and regret bounds for finite hypothesis classes
(the “experts” model [2, 3, 4]) and for infinite non-parametric Reproducing Kernel Hilbert Space
(RKHS) [5] hypothesis classes.

The paper is organized as follows. In the next section, we introduce our formal model for online
switching multitask learning. In doing so we provide a brief review of some related online learning
results which enable us to provide a prospectus for attainable regret bounds. This is done by
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Figure 1: A Coloring of Data Streams (5 tasks, 6
modes, and 11 switches).

For ⌧ = 1 to T do
Receive task `

⌧
2 [s] .
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⌧ ; t �(⌧) .
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⌧
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i
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i
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⌧
⌘ y

i
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⌧
, ŷ
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Figure 2: The Switching Multitask Model

considering the bounds achievable by non-polynomial time algorithms. We then provide a brief
survey of related work as well as our notational conventions. In Sections 3 and 4 we provide
algorithms and bounds for finite hypothesis classes and RKHS hypothesis classes, respectively.
Finally, we provide a few concluding remarks in Section 5. The supplementary appendices contain
our proofs.

2 Online Learning with Switching, Memory, and Multiple Tasks

We review the models and regret bounds for online learning in the single-task, switching, and
switching with memory models as background for our multitask switching model with memory.

In the single-task online model a learner receives data sequentially so that on a trial t = 1, . . . , T :
1) the learner receives an instance xt 2 X from the environment, then 2) predicts a label ŷt 2 {�1, 1},
then 3) receives a label from the environment yt 2 {�1, 1} and then 4) incurs a zero-one loss
L01(yt, ŷt) := [yt 6= ŷt]. There are no probabilistic assumptions on how the environment generates
its instances or their labels; it is an arbitrary process which in fact may be adversarial. The only
restriction on the environment is that it does not “see” the learner’s ŷt until after it reveals yt. The
learner’s aim will be to compete with a hypothesis class of predictors H ✓ {�1, 1}X so as to
minimize its expected regret, RT (h) :=

PT
t=1 E[L01(yt, ŷt)]� L01(yt, h(xt)) for every hypothesis

h 2 H, where the expectation is with respect to the learner’s internal randomization.

In this paper we will consider two types of hypothesis classes: a finite set of hypotheses Hfin, and a
set HK induced by a kernel K. A “multiplicative weight” (MW) algorithm [6] that achieves a regret
bound1 of the form

RT (h) 2 O
⇣p

log(|Hfin|)T
⌘

(8h 2 Hfin) (1)

was given in [7] for finite hypothesis classes. This is a special case of the framework of “prediction
with expert advice” introduced in [2, 3]. Given a reproducing kernel K : X ⇥ X ! < we
denote the induced norm of the reproducing kernel Hilbert space (RKHS) HK as k·kK (for details
on RKHS see [5] also Appendix C.2). Given an instance sequence x := (x1, . . . , xT ), we let
H(x)

K := {h 2 HK : h(xt) 2 {�1, 1}, 8t 2 [T ]} denote the functions in HK that are binary-valued
on the sequence. An analysis of online gradient descent (OGDK ) with the hinge loss, kernel K and
randomized prediction [8, see e.g., Ch. 2 & 3] (proof included in Appendix C.3 for completeness)
gives an expected regret bound of

RT (h) 2 O
✓q

khk2K X
2
KT

◆
(8h 2 H(x)

K ) , (2)

where X
2
K � maxt2[T ] K(xt, xt).

In the switching single-task model the hypothesis becomes a sequence of hypotheses h =
(h1, h2, . . . , hT ) 2 HT and the regret is RT (h) :=

PT
t=1 E[L01(yt, ŷt)] � L01(yt, ht(xt)). Two

parameters of interest are the number of switches k :=
PT�1

t=1 [ht 6= ht+1] and the number of modes

m := | [T
t=1 {ht}|, i.e., the number of the distinct hypotheses in the sequence. In this work we are

1Technically, when we say that an algorithm achieves a bound, it may be that the algorithm depends on a
small set of parameters which we have then assumed are “tuned” optimally.
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interested in long-term memory, that is, algorithms and bounds that are designed to exploit the case
of m ⌧ k.

The methodology of [9] may be used to derive an expected regret bound for Hfin in the switching
single-task model of the form RT (h) 2 O(

p
(k log(|Hfin|) + k log(T/k))T ). Freund in [10]

posed an open problem to improve the results of [9] in the case of long-term memory (m ⌧ k).
Freund gave counting arguments that led to an exponential-time algorithm with a regret bound
of RT (h) 2 O(

p
(m log(|Hfin|) + k logm+ k log(T/k))T ). In [1] an efficient algorithm was

given with nearly this bound, except for a small additional additive “T log log T ” term under the
square root. For the hypothesis class H(x)

K we may give non-memory bounds of the form RT (h) 2
O(

q
kmaxt khtk2K X

2
KT ) by using a simple modification [11] of OGDK (see Appendix C.3). To

the best of our knowledge there are no previous long-term memory bounds for H(x)
K (however see

the discussion of [12] in Section 2.2); these will be a special case of our multitask model, to be
introduced next.

2.1 Switching Multitask Model

In Figure 2 we illustrate the protocol for our multitask model. The model is essentially the same as the
switching single-task model, except that we now have s tasks. On each (global) trial ⌧ the environment
reveals the active task `

⌧ 2 [s]. The ordering of tasks chosen by the environment is arbitrary, and
therefore the active task may change on every (global) trial ⌧ . We use the following notational
convention: (global time) ⌧ ⌘ i

t (local time) where i = `
⌧ , t = �(⌧) and �(⌧) :=

P⌧
j=1[`

j = `
⌧ ].

Thus x
⌧ ⌘ x

i
t, y⌧ ⌘ y

i
t, etc., where the mapping is determined implicitly by the task vector

` 2 [s]T . Each task i 2 [s] has its own data pair (instance, label) sequence (xi
1, y

i
1), . . . , (x

i
T i , y

i
T i)

where T = T
1 + . . .+ T

s. The multitask hypotheses multiset is denoted as h⇤ = (h1
, . . . , h

T ) ⌘
(h1

1, . . . , h
1
T 1 , . . . , h

s
1, . . . , h

s
T s) 2 HT . In the multitask model we denote the number of switches

as k(h⇤) :=
Ps

i=1

PT i
�1

t=1 [hi
t 6= h

i
t+1], the set of modes as m(h⇤) := [s

i=1 [T i

t=1 {hi
t} and the

multitask regret as RT (h⇤) :=
Ps

i=1

PT i

t=1 E[L01(yit, ŷ
i
t)]� L01(yit, h

i
t(x

i
t)). In the following, we

give motivating upper bounds based on exponential-time algorithms induced by “meta-experts.” We
provide a lower bound with respect to H(x)

K in Proposition 4.

The idea of “meta-experts” is to take the base class of hypotheses and to construct a class of
“meta-hypotheses” by combining the original hypotheses to form new ones, and then apply an MW
algorithm to the constructed class; in other words, we reduce the “meta-model” to the “base-model.”
In our setting, the base class is Hfin ✓ {�1, 1}X and our meta-hypothesis class will be some
H0 ✓ {�1, 1}X 0

where X 0 := {(x, t, i) : x 2 X , t 2 [T i], i 2 [s]}. To construct this set we define
H̄(k,m, s,Hfin, T

1
, . . . , T

s) := {(h1
1, . . . , h

s
T s) = h̄ 2 HT

fin : k = k(h̄),m = |m(h̄)|} and then
observe that for each h̄ 2 H̄ we may define an h

0 : X 0 ! {�1, 1} via h
0((x, t, i)) := h

i
t(x), where

h
i
t is an element of h̄. We thus construct H0 by converting each h̄ 2 H̄ to an h

0 2 H0. Hence we
have reduced the switching multitask model to the single-task model with respect to H0. We proceed
to obtain a bound by observing that the cardinality of H̄ is bounded above by

�T�s
k

��n
m

�
m

s(m� 1)k

where n = |Hfin|. If we then substitute into (1) and then further upper bound we have

RT (h
⇤) 2 O

⇣p
(m log(n/m) + s logm+ k logm+ k log((T � s)/k))T

⌘
, (3)

for any h
⇤ 2 HT

fin such that k = k(h⇤) and m = |m(h⇤)|. The drawback is that the algorithm
requires exponential time. In Section 3 we will give an algorithm whose time to predict per trial is
O(|Hfin|) and whose bound is equivalent up to constant factors.

We cannot directly adapt the above argument to obtain an algorithm and bound for H(x)
K since the

cardinality, in general, is infinite, and additionally we do not know x in advance. However, the
structure of the argument is the same. Instead of using hypotheses from H(x)

K as building blocks to
construct meta-hypotheses, we use multiple instantiations of an online algorithm for H(x)

K as our
building blocks. We let AK := {a[1], . . . , a[m]} denote our set of m instantiations that will act as
a surrogate for the hypothesis class H(x)

K . We then construct the set, ĀK(k,m, s, T
1
, . . . , T

s) :=
{ā 2 AT

K : k = k(ā),m = |m(ā)|}. Each ā 2 ĀK now defines a meta-algorithm for the multitask

3



setting. That is, given an online multitask data sequence (xi
1, y

i
1), . . . , (x

j
T j , y

j
T j ), each element of ā

will “color” the corresponding data pair with one of the m instantiations (we will use the function
↵ : {(t, i) : t 2 [T i], i 2 [s]} ! [m] to denote this mapping with respect to ā). Each instantiation
will receive as inputs only the online sequence of the data pairs corresponding to its “color”; likewise,
the prediction of meta-algorithm ā will be that of the instantiation active on that trial. We will use as
our base algorithm OGDK . Thus for the meta-algorithm ā we have from (2),

sX

i=1

T iX

t=1

E[L01(y
i
t, ŷ

i
t)] 

sX

i=1

T iX

t=1

L01(y
i
t, h[↵(

i
t)](x

i
t)) +

mX

j=1

O
✓q

kh[j]k2K X2T j

◆
(4)

for any received instance sequence x 2 X T and for any h[1], . . . , h[m] 2 H(x)
K . The MW algo-

rithm [3, 2, 4] does not work just for hypothesis classes; more generally, it works for collections
of algorithms. Hence we may run the MW as a meta-meta-algorithm to combine all of the meta-
algorithms ā 2 ĀK . Thus by substituting the loss for each meta-algorithm ā (the R.H.S. of (4))
into (1) and using the upper bound

�T�s
k

�
m

s(m� 1)k for the cardinality of ĀK , we obtain (using
upper bounds for binomial coefficients and the inequality

P
i
p
piqi 

p
(
P

i pi)(
P

i qi)) ,

RT (h⇤) 2 O
⇣q

(
P

h2m(h⇤) khk
2
K X

2
K + s logm+ k logm+ k log((T � s)/k))T

⌘
, (5)

for any received instance sequence x 2 X T and for any h
⇤ 2 H(x)

K

T
such that k = k(h⇤) and

m = |m(h⇤)|.

The terms m log(n/m) (assuming m ⌧ n) and
P

h2m(h⇤) khk
2
K X

2
K may be viewed as learner

complexities, i.e., the price we “pay” for identifying the hypotheses that fit the modes. A salient
feature of long-term memory bounds is that although the data pairs associated with each hypothesis
are intermixed in the multitask sequence, we pay the learner complexity only modestly in terms
of potentially leading multiplicative constants. A switching algorithm without long-term memory
“forgets” and pays the full price for a mode on every switch or new task. We gave exponential-time
algorithms for Hfin and H(x)

K with O(1) leading multiplicative constants in the discussion leading
to (3) and (5). We give efficient algorithms for finite hypothesis classes and RKHS hypothesis classes
in Sections 3 and 4, with time complexities of O(n) and O(T 3) per trial, and in terms of learner
complexities they gain only leading multiplicative constants of O(1) and O(log T ).

2.2 Related Work

In this section we briefly describe other related work in the online setting that considers either
switching or multitask models.

The first result for switching in the experts model was the WML algorithm [3] which was generalized
in [9]. There is an extensive literature building on those papers, with some prominent results
including [1, 13, 14, 15, 16, 17, 15, 18, 19, 20, 21, 22]. Relevant for our model are those papers [1, 14,
17, 15, 20, 21, 22] that address the problem of long-term memory (m ⌧ k), in particular [1, 14, 17].

Analogous to the problem of long-term memory in online learning is the problem of catastrophic
forgetting in artificial neural network research [23, 24]. That is the problem of how a system can
adapt to new information without forgetting the old. In online learning that is the problem of how
an algorithm can both quickly adapt its prediction hypothesis and recall a previously successful
prediction hypothesis when needed. In the experts model this problem was first addressed by [1],
which gave an algorithm that stores each of its past state vectors, and then at each update mixes
these vectors into the current state vector. In [14], an algorithm and bounds were given that extended
the base comparision class of experts to include Bernoulli models. An improved algorithm with a
Bayesian intepretation based on the idea of “circadian specialists” was given for this setting in [17].
Our construction of Algorithm 1 was based on this methodology.

The problem of linear regression with long term memory was posed as an open problem in [17,
Sec. 5]. Algorithm 2 gives an algorithm for linear interpolation in a RKHS with a regret bound
that reflects long-term memory. Switching linear prediction has been considered in [11, 25, 26, 12].
Only [12] addresses the issue of long-term memory. The methodology of [12] is a direct inspiration
for Algorithm 2. We significantly extend the result of [12, Eq. (1)]. Their result was i) restricted to a
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mistake as opposed to a regret bound, ii) restricted to finite positive definite matrices and iii) in their
mistake bound the term analogous to

P
h2m(h⇤) khk

2
K X

2
K was increased by a multiplicative factor

of Õ(|m(h⇤)|), a significantly weaker result.

Multitask learning has been considered extensively in the batch setting, with some prominent early
results including [27, 28, 29]. In the online multitask expert setting [30, 31, 32, 17] considered a
model which may be seen as a special case of ours where each task is associated only with a single
hypothesis, i.e., no internal switching within a task. Also in the expert setting [33, 34] considered
models where the prediction was made for all tasks simultaneously. In [34] the aim was to predict
well relative to a set of possible predefined task interrelationships and in [33] the interrelationships
were to be discovered algorithmically. The online multitask linear prediction setting was considered
in [35, 36, 37]. The models of [36, 37] are similar to ours, but like previous work in the expert setting,
these models are limited to one “hypothesis” per task. In the work of [35], the predictions were made
for all tasks simultaneously through a joint loss function.

2.3 Preliminaries

For any positive integer m, we define [m] := {1, 2, . . . ,m}. For any predicate [PRED] := 1 if PRED
is true and equals 0 otherwise, and for any x 2 <, [x]+ := x[x > 0]. We denote the inner product
of vectors as both x,w 2 <n as hx,wi = x · w =

Pn
i=1 xiwi, component-wise multiplication

x � w := (x1w1, . . . , xnwn) and the norm as kwk =
p

hw,wi. If f : < ! < and x 2 <n

then f(x) := (f(x1), . . . , f(xn)). The xth-coordinate vector is denoted e
x
X := ([x = z])z2X ; we

commonly abbreviate this to e
x. We denote the probability simplex as �H := {h 2 [0, 1]H} \ {h :P

h2H
= 1} and set �n := �[n]. We denote the binary entropy as H(p) := p log 1

p+(1�p) log 1
1�p .

If v 2 �H then h ⇠ v denotes that h is a random sample from the probability vector v over the set
H. For vectors p 2 <m and q 2 <n we define [p; q] 2 <m+n to be the concatenation of p and q,
which we regard as a column vector. Hence [p; q]>[p̄; q̄] = p

>
p̄+ q

>
q̄.

The notation M
+ and

p
M denotes the pseudo-inverse and the unique positive square root, re-

spectively, of a positive semi-definite matrix M . The trace of a square matrix is denoted by
tr(Y ) :=

Pn
i=1 Yii for Y 2 <n⇥n. The m ⇥ m identity matrix is denoted I

m. A function
K : X ⇥ X ! < is a strictly positive definite (SPD) kernel iff for every finite X ✓ X the matrix
K(x, x0)x,x02X is symmetric and strictly positive definite, for example, the Gaussian kernel. In
addition, we define Sm to be the set of m⇥m symmetric matrices and let Sm

+ and S
m
++ be the subset

of positive semidefinite and strictly positive definite matrices, respectively. We define the squared
radius of M 2 S

m
+ as RM := maxi2[m] M

+
ii . The (undirected) graph Laplacian matrix is defined by

L := D�A where D is the degree matrix and A is the adjacency matrix. The corresponding (strictly)
positive definite PDLaplacian of an m-vertex connected graph is L� := L+R�1

L

�
1
m

� �
1
m

�>.

3 Finite Hypothesis Classes

In this section we present the algorithm and the regret bound for finite hypothesis classes, with
proofs given in Appendix A. The design and analysis of the algorithm is inspired by [17], which
considers a Bayesian setting where, on each trial, each hypothesis h gives an estimated probability
P (y⌧ = ŷ|h) of the outcome y

⌧ . The idea is for the learner to predict a probability P̂ (y⌧ = ŷ) and
the loss incurred is the log loss, log(1/P̂ (y⌧ )). Our algorithm, on the other hand, is framed in the
well known “Allocation” setting [38] where the learner must play, on trial ⌧ , a vector v⌧ 2 �n and
incurs a loss of c⌧ · v⌧ where all components of c⌧ are in [0, 1].

To gain some intuition about the algorithm we observe the following. The algorithm maintains
and updates the following vectors: a “global” probability vector ⇡⌧ 2 �Hfin and the “local” task
weight vectors w1

t , . . . ,w
s
t 2 [0, 1]Hfin . Given an hypothesis h 2 Hfin, the scalar ⇡⌧

h represents our
“confidence”, on trial ⌧ , that hypothesis h is in m(h⇤). For a given task i, hypothesis h 2 Hfin, and
local time t, the scalar wi

t,h represents our confidence that h = h
i
t if we knew that h was in m(h⇤).

Putting together, ⇡⌧
hw

i
�(⌧),h represents our confidence, on trial ⌧ , that h = h

i
t. The weights ⇡⌧ and

w
i
t (for tasks i) are designed in such a way that, not only do they store all the information required

by the algorithm, but also on each trial ⌧ we need only update ⇡
⌧ and w

`⌧
t . Thus the algorithm
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Algorithm 1 Predicting Hfin in a switching multitask setting.
Parameters: Hfin ✓ {�1, 1}X ; s,m, k, T 2 N
Initialization: n := |Hfin|;⇡1

 
1
n ; µ := 1

m ; w1
1=· · ·=ws

1 µ1 ; ✓ := 1� k
T�s ; � := k

(m�1)(T�s) and

⌘ :=

r⇣
m log

�
n
m

�
+ smH

�
1
m

�
+ (T � s)H

⇣
k

T�s

⌘
+ (m� 1)(T � s)H

⇣
k

(m�1)(T�s)

⌘⌘
2
T

For ⌧ = 1, . . . , T

• Receive task `
⌧
2 [s] .

• Receive x
⌧
2 X .

• Set i `
⌧ ; t �(⌧) .

• Predict

v⌧
 

⇡⌧
�wi

t

⇡⌧ ·wi
t

, ĥ
⌧
⇠ v⌧

, ŷ
⌧
 ĥ

⌧ (x⌧ ) .

• Receive y
⌧
2 {�1, 1} .

• Update:

i) 8h 2 Hfin, c
⌧
h = L01(h(x

⌧ ), y⌧ ) ii) �  wi
t � exp(�⌘c⌧ )

iii) �  (⇡⌧
·wi

t)/(⇡
⌧
· �) iv) ✏ 1�wi

t + ��

v) ⇡⌧+1
 ⇡⌧

� ✏ vi) wi
t+1  (�(1�wi

t) + ✓��)� ✏�1

predicts in O(n) time per trial and requires O(sn) space. We bound the regret of the algorithm in the
following theorem.
Theorem 1. The expected regret of Algorithm 1 with parameters Hfin ✓ {�1, 1}X ; s,m, k, T 2 N
and

C := m log
⇣
n

m

⌘
+ smH

✓
1

m

◆
+ (T � s)H

✓
k

T � s

◆
+ (m� 1)(T � s)H

✓
k

(m� 1)(T � s)

◆

is bounded above by

sX

i=1

T iX

t=1

E[L01(y
i
t, ŷ

i
t)]� L01(y

i
t, h

i
t(x

i
t)) 

p
2CT

for any h
⇤ 2 HT

fin such that k = k(h⇤), m � |m(h⇤)|, m > 1. Furthermore,

C  m log
⇣
n

m

⌘
+ s(log(m) + 1) + k

✓
log(m� 1) + 2 log

✓
T � s

k

◆
+ 2

◆
.

In further comparison to [17] we observe that we can obtain bounds for the log loss with our algorithm
by defining P̂ (y⌧ = ŷ) :=

P
h v

⌧
hP (y⌧ = ŷ|h) and redefining c

⌧
h := � 1

⌘ log(P (y⌧ = ŷ|h)) in the
update. The resultant theorem then matches the bound of [17, Thm. 4] for single-task learning with
long-term memory (s = 1) and the bound of [17, Thm. 6] for multitask learning with no switching
(k = 0).

4 RKHS Hypothesis Classes

Our algorithm and its analysis builds on the algorithm for online inductive matrix completion with
side-information (IMCSI) from [39, Theorem 1, Algorithm 2 and Proposition 4]. IMCSI is an
example of a matrix multiplicative weight algorithm [40, 6]. We give notation and background
from [39] to provide insight.

The max-norm (or �2 norm [41]) of a matrix U 2 <m⇥n is defined by

kUkmax := min
PQ>=U

⇢
max

1im
kPik ⇥ max

1jn
kQjk

�
, (6)

where the minimum is over all matrices P 2 <m⇥d and Q 2 <n⇥d and every integer d. We denote
the class of m⇥ d row-normalized matrices as Nm,d := {P̂ ⇢ <m⇥d :

���P̂i

��� = 1, i 2 [m]}. The
quasi-dimension of a matrix is defined as follows.
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Definition 2 ([39, Equation (3)]). The quasi-dimension of a matrix U 2 <m⇥n
with respect to

M 2 S
m
++, N 2 S

n
++ at � as

D�
M ,N (U) := min

P̂ Q̂>=�U
tr
⇣
P̂

>
MP̂

⌘
RM + tr

⇣
Q̂

>
NQ̂

⌘
RN , (7)

where the infimum is over all row-normalized matrices P̂ 2 Nm,d
and Q̂ 2 Nn,d

and every integer d.

If the infimum does not exist then D�
M ,N (U) := +1 (The infimum exists iff kUkmax  1/�).

The algorithm IMCSI addresses the problem of the online prediction of a binary comparator matrix U

with side information. The side information is supplied as a pair of kernels over the row indices and the

column indices. In [39, Theorem 1] a regret bound Õ(
q
( bD/�2)T ) is given, where 1/�2 � kUk2max

and bD � D�
M ,N (U) are parameters of the algorithm that serve as upper estimates on kUk2max and

D�
M ,N (U). The first estimate 1/�2 is an upper bound on the squared max-norm (Eq. (6)) which like

the trace-norm may be seen as a proxy for the rank of the matrix [42]. The second estimate bD is an
upper bound of the quasi-dimension (Eq. (7)) which measures the quality of the side-information.
The quasi-dimension depends upon the “best” factorization (1/�)P̂ Q̂

> = U , which will be smaller
when the row P̂ (column Q̂) factors are in congruence with the row (column) kernel. We bound the
quasi-dimension in Theorem 47 in Appendix B as a key step to proving Theorem 3.

In the reduction of our problem to a matrix completion problem with side information, the row indices
correspond to the domain of the learner-supplied kernel K and the column indices correspond to the
temporal dimension. On each trial we receive an x

⌧ (a.k.a. xi
t). Thus the column of the comparator

matrix (now H) corresponding to time ⌧ will contain the entries H⌧ = (h⌧ (x�))�2[T ]. Although we
are predicting functions that are changing over time, the underlying assumption is that the change is
sporadic; otherwise it is infeasible to prove a non-vacuous bound. Thus we expect Hi

t ⇡ H
i
t+1 and

as such our column side-information kernel should reflect this expectation. Topologically we would
therefore expect a kernel to present as s separate time paths, where nearness in time is nearness on
the path. In the following we introduce the path-tree-kernel (the essence of the construction was
first introduced in [43]), which satisfies this expectation in the single-task case. We then adapt this
construction to the multitask setting.

A path-tree kernel P : [T ]⇥ [T ] ! <, is formed via the Laplacian of a fully complete binary tree

with N := 2dlog2 Te+1 � 1 vertices. The path corresponds to the first T leaves of the tree, numbered
sequentially from the leftmost to the rightmost leaf of the first T leaves. Denote this Laplacian as L
where the path is identified with [T ] and the remaining vertices are identified with [N ] \ [T ]. Then
using the definition L

� := L +
�

1
N

� �
1
N

�> R�1
L we define P (⌧, �) := (L�)+⌧� where ⌧, � 2 [T ].

We extend the path-tree kernel to a multitask-path-tree kernel by dividing the path into s contiguous
segments, where segment i is a path of length T

i, and the task vector ` 2 [s]T determines the
mapping from global trial ⌧ to task `

⌧ and local trial �(⌧). We define P̃
`,T 1,...,T s

: [T ]⇥ [T ] ! <
as P̃

`,T 1,...,T s

(⌧, �) := P

⇣P`⌧�1
i=1 T

i + �(⌧),
P`��1

i=1 T
i + �(�)

⌘
. Observe we do not need to

know the task vector ` in advance; we only require upper bounds on the lengths of the tasks to be
able to use this kernel. Finally, we note that it is perhaps surprising that we use a tree rather than a
path directly. We discuss this issue following Lemma 49 in Appendix B.

Algorithm 2 requires O(t3) time per trial t since we need to compute the eigendecomposition of
three O(t)⇥O(t) matrices as well as sum O(t)⇥O(t) matrices up to t times. We bound the regret
of the algorithm as follows.
Theorem 3. The expected regret of Algorithm 2 with upper estimates, k � k(h⇤), m � |m(h⇤)|,

Ĉ � C(h⇤) :=

0

@
X

h2m(h⇤)

khk2K X
2
K + 2(s+ k � 1)mdlog2 T e2 + 2m2

1

A ,

X̂
2
K � max⌧2[T ] K(x⌧

, x
⌧ ), and learning rate ⌘ =

q
Ĉ log(2T )

2Tm is bounded by

sX

i=1

T iX

t=1

E[L01(y
i
t, ŷ

i
t)]� L01(y

i
t, h

i
t(x

i
t))  4

q
2Ĉ T log(2T ) (8)

with received instance sequence x 2 X T
and for any h

⇤ 2 H(x)
K

T
.
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Algorithm 2 Predicting H(x)
K in a switching multitask setting.

Parameters: Tasks s 2 N, task lengths T 1
, . . . , T

s
2 N, T :=

Ps
i=1 T

i, learning rate: ⌘ > 0, complexity
estimate: Ĉ > 0, modes: m 2 [T ], SPD Kernel K : X ⇥X ! <, P̃ := P̃

`,T1,...,Ts
: [T ]⇥ [T ]! <, with

max⌧2[T ] K(x⌧
, x

⌧ )  X̂
2
K , and X̂

2
P := 2dlog2 T e.

Initialization: U ; ,X 1
 ; , T

1
 ; .

For ⌧ = 1, . . . , T

• Receive task `
⌧
2 [s] .

• Receive x
⌧
2 X .

• Set i `
⌧ ; t �(⌧);xi

t ⌘ x
⌧ .

• Define
K⌧ := (K(x, z))x,z2X⌧[{x⌧} ; P ⌧ := (P̃ (⌧, �))⌧,�2T ⌧[{⌧} ,

X̃⌧ (�) :=

2

4
p
K⌧ex�

q
2X̂2

K

;

p
P ⌧e�

q
2X̂2

P

3

5

2

4
p
K⌧ex�

q
2X̂2

K

;

p
P ⌧e�

q
2X̂2

P

3

5
>

,

W̃ ⌧
 exp

 
log

 
Ĉ

2Tm

!
I |X⌧ |+|T ⌧ |+2 +

X

�2U
⌘y�X̃

⌧ (�)

!
.

• Predict

Y
⌧
⇠ UNIFORM(��, �) ; ȳ

⌧
 tr

⇣
W̃ ⌧X̃⌧

⌘
� 1 ; ŷ

i
t := ŷ

⌧
 sign(ȳ⌧

� Y
⌧ ) .

• Receive label yi
t := y

⌧
2 {�1, 1} .

• If y⌧
ȳ
⌧


1p
m

then

U U [ {t} , X
⌧+1
 X

⌧
[ {x

⌧
}, and T

⌧+1
 T

⌧
[ {⌧} .

• Else X
⌧+1
 X

⌧ and T
⌧+1
 T

⌧ .

Comparing roughly to the bound of the exponential-time algorithm (see (5)), we see that the logm
term has been replaced by an m term and we have gained a multiplicative factor of log 2T . From
the perspective of long-term memory, we note that the potentially dominant learner complexity termP

h2m(h⇤) khk
2
K X

2
K has only increased by a slight log 2T term. To gain more insight into the

problem we also have the following simple lower bound.
Proposition 4. For any (randomized) algorithm and any s, k,m,� 2 N, with k + s � m > 1 and

� � m log2 m, there exists a kernel K and a T0 2 N such that for every T � T0:

TX

⌧=1

E[L01(y
⌧
, ŷ

⌧ )]� L01(y
⌧
, h

⌧ (x⌧ )) 2 ⌦
⇣p

(�+ s logm+ k logm)T
⌘
,

for some multitask sequence (x1
, y

1), . . . , (xT
, y

T ) 2 (X ⇥ {�1, 1})T and some h
⇤ 2 [H(x)

K ]T

such that m � |m(h⇤)|, k � k(h⇤),
P

h2m(h⇤) khk
2
K X

2
K � |m(h⇤)| log2 m, where X

2
K =

max⌧2[T ] K(x⌧
, x

⌧ ).

Comparing the above proposition to the bound of the exponential-time algorithm (see (5)), the most
striking difference is the absence of the log T terms. We conjecture that these terms are not necessary
for the 0-1 loss. A proof of Theorem 3 and a proof sketch of Proposition 4 are given in Appendix B.

5 Discussion

We have presented a novel multitask setting which generalizes single-task switching under the long-
term memory setting. We gave algorithms for finite hypothesis classes and for RKHS hypothesis
classes with per trial prediction times of O(n) and O(T 3). We proved upper bounds on the regret
for both cases as well as a lower bound in the RKHS case. An open problem is to resolve the gap in
the RKHS case. On the algorithmic side, both algorithms depend on a number of parameters. There
is extensive research in online learning methods to design parameter-free methods. Can some of
these methods be applied here (see e.g., [44])? For a non-parametric hypothesis class, intuitively it

8



seems we must expect some time complexity dependence on T . However can we perhaps utilize
decay methods such as [45, 46] or sketching methods [47] that have had success in simpler models to
improve running times? More broadly, for what other infinite hypothesis classes can we give efficient
regret-bounded algorithms in this switching multitask setting with long-term memory?
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