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Ergodic Rate Analysis of
Multi-IRS Dual-Hop DF Relaying System

Qiang Sun, Panpan Qian, Wei Duan, Jiayi Zhang, Jue Wang, and Kai-Kit Wong

Abstract—Intelligent reflecting surface (IRS) has emerged as a
promising and low-cost technology for improving wireless com-
munications by collecting dispersed radio waves and redirecting
them to the intended receivers. In this letter, we characterize the
achievable rate when multiple IRSs are utilized in the manner
of decode-and-forward (DF) relaying. Our performance analysis
is based on the Nakagami-m fading model with perfect channel
state information (CSI). Tight upper bound expressions for the
ergodic rate are derived. Moreover, we compare the performance
of the multi-IRS DF relaying system with that of the one with
a single IRS and confirm the gain. We then optimize the IRS
configuration considering the numbers of IRSs and IRS reflecting
elements, which provides useful insights for practical design.

Index Terms—Decode-and-forward, Ergodic capacity, Intelli-
gent reflecting surface, Nakagami fading, Relaying.

I. INTRODUCTION

With the fifth-generation (5G) mobile communications be-
ing deployed around the world, efforts are beginning to emerge
to make another leap towards more capacity, reliability, energy
efficiency and lower latency [1]. One particular priority is to
focus on low-cost scalable solutions that are upgradable if
needed. For this reason, intelligent reflecting surface (IRS) has
appeared to fit well with the needs. IRS uses a large tunable
surface to collect dispersed radio waves and redirect them to
the intended receivers, and finds applications such as coverage
extension, capacity gain, secrecy improvement, and etc.

Considerable efforts have been made to study IRS-assisted
wireless communication systems. The design of the phase shift
matrix and transmit beamformer was analytically investigated
in [2], [3] to enhance the symbol error probability performance
and for physical-layer secrecy. Later, the authors of [4] studied
the robustness of an IRS taking into account the impact of
imperfect channel state information (CSI) of the eavesdropping
channels. The above results, however, mainly focused on the
single IRS scenario and if multiple IRSs are distributed over an
area, they are anticipated to provide more robust and flexible
links. This was considered in [5] where the outage probability
performance was analyzed. The results in [6] demonstrated
that the distributed IRS-aided communication system has bet-
ter outage and rate performance than the one with a single IRS.
Although the use of IRS seems promising, the associated pilot
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overheads for CSI acquisition could outweigh their benefits if
the numbers of IRSs and the reflecting elements are large.

While IRS and relaying may be perceived by some people
as similar technologies, it has been demonstrated that IRS pro-
vides higher rate and energy efficiency than relaying systems
[7]. Additionally, decode-and-forward (DF) relaying is known
to outperform amplify-and-forward (AF) relaying in terms
of rate performance [8]. In [9], communication with mixed
DF relaying and IRS was studied to improve the coverage
performance. The authors in [10] then discussed the feasibility
of the coexistence of DF relaying and IRS. The results in [9]
and [10] are encouraging and deserve attention. That said,
multi-IRS systems are much less understood. Also, the pilot
overhead for CSI acquisition is often overlooked in the design
and analysis for IRS-aided wireless communication systems,
which motivates the work of this letter.

In this letter, we first investigate a multi-IRS dual-hop DF
relaying system in Nakagami-m fading channels, which har-
nesses the benefits of both relaying and IRSs to compensate for
the “double fading” effect1 and improve the rate performance.
Closed-form expressions are derived for the upper bound
expressions of the ergodic rate. The analysis allows us to link
the pilot overhead to the achievable rate, which indicates that
the net ergodic rate can decrease if CSI acquisition takes up
too much overhead as the numbers of IRSs and the reflecting
elements continue to increase. This leads us to find the optimal
numbers of IRSs and the reflecting elements for maximizing
the net ergodic rate through our analytical results.

II. SYSTEM MODEL

Consider a communication system aided by a dual-hop DF
relay and L IRSs, as shown in Fig. 1, in which a BS aims
to transmit information to a user. In the first hop, the BS
transmits the information-bearing signal to the DF relay which
also picks up the signals reflecting off from the IRSs. The relay
decodes the received signal and then transmits it to the user
through the direct link and the reflection paths of the IRSs in
the second hop. In our model, we assume that each IRS has
N reflecting elements while all other terminals have a single
antenna each. In addition, it is assumed that the BS is too far
away from the user resulting in a broken direct link between
them. Reflection from the IRSs is considered only once and
higher-order reflections are ignored.

We denote the (scalar) channels from the BS to the relay,
and from the relay to the user, respectively, as hBR and hRU.

1The equivalent path loss of the base station (BS)-IRS-user link is the
product (instead of the summation) of the path losses of the BS-IRS link and
IRS-user link [10].
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Fig. 1: The multi-IRS dual-hop DF relaying system.

The vector channels between the BS and l-th IRS and between
the l-th IRS and relay are denoted by hBIl ∈ CN×1 and
hIlR ∈ CN×1, respectively. Similarly, hRIl ∈ CN×1 and
hIlU ∈ CN×1 are used to denote the channels from the relay
to l-th IRS, and that from the l-th IRS to user, respectively.

To account for the path loss and the small-scale fading
phenomenon, the channels are modelled in the form:{

hp = h̄pd
−α2
p , for p ∈ {BR,RU} ,

hq = h̄qd
−α2
q , for q ∈ {BIl, IlR,RIl, IlU} ,

(1)

where α denotes the path loss exponent, and dp (or dq) is the
respective distance between the terminals. Note that h̄p and h̄q
are the small-scale fading channels, which follow independent
and identically distributed Nakagami-m distribution, where m
denotes the shape parameter and can be chosen appropriately
to reflect specific types of fading environments.

In the first hop, the BS transmits the signal to the relay and
the L IRSs help reflect the incident signal towards the relay.2

The received signal at the relay can be written as

yR =
√
PB

(
hBR +

L∑
l=1

hTBIl
ΘlhIlR

)
x+ wR, (2)

where PB denotes the transmit power of the BS, x denotes
the normalized information signal with unit energy. Moreover,
Θl = diag(ηl1e

jθl1 , . . . , ηlne
jθln , . . . , ηlNe

jθlN ) ∈ CN×N is a
diagonal matrix, which captures the reflection coefficients and
phase-shifts of the N reflecting elements of the l-th IRS, where
ηln ∈ [0, 1], θln ∈ [0, 2π) denote the fixed reflection amplitude
coefficient and phase shift of the n-th element, respectively.
Also, wR is an additive white Gaussian noise (AWGN) at the
relay with zero mean and variance of σ2

R. The received signal-
to-noise ratio (SNR) at the relay can be obtained as

γR =

PB

∣∣∣∣hBR +
L∑
l=1

hTBIl
ΘlhIlR

∣∣∣∣2
σ2
R

. (3)

For the second hop, the relay transmits the decoded informa-
tion signal, x, to the user via the direct link and the reflection

2In our narrow-band fading scenario, we assume the maximum delay spread
between the direct and the reflected links is less than the symbol period [11].

paths from the L IRSs. Therefore, the received signal at the
user is given by

yU =
√
PR

(
hRU +

L∑
l=1

hTRIl
ΦlhIlU

)
x+ wU, (4)

with all the variables defined in a similar way as in the first
hop. Evidently, PR represents the transmit power of the relay
and Φl = diag(τl1e

jφl1 , . . . , τlne
jφln , . . . , τlNe

jφlN ) specifies
the reflection responses of the elements of the l-th IRS with τln
and φln as the magnitude response and phase-shift of the n-th
element of the l-th IRS. The AWGN at the user is assumed to
have power of σ2

U . Hence, the SNR at the user is given by

γU =

PR

∣∣∣∣hRU +
L∑
l=1

hTRIl
ΦlhIlU

∣∣∣∣2
σ2
U

. (5)

As a result, the end-to-end achievable rate is given by

R =
1

2
log2(1 + min {γR, γU}). (6)

III. ERGODIC RATE ANALYSIS

By substituting the magnitude and phase responses of the
reflecting elements into (3), we can write

γR =

PB

∣∣∣∣hBRe
jθBR +

L∑
l=1

N∑
n=1

ηln[hBIl ]n[hIlR]ne
j(θln+θBIl

+θIlR)

∣∣∣∣2
σ2
R

.

(7)
It is known that the optimal phase is given by

θln = arg max γR = θBR − (θBIl + θIlR), (8)

where 0 ≤ θln < 2π, and l ∈ {1, . . . , L}, n ∈ {1, . . . , N}.
Without loss of generality, we set ηln = η, ∀n, l. Hence, the
maximum SNR at the relay can be further simplified as

γR =

PB

∣∣∣∣hBR + η
L∑
l=1

N∑
n=1

[hBIl ]n[hIlR]n

∣∣∣∣2
σ2
R

. (9)

Accordingly, (5) can be rewritten as

γU =

PR

∣∣∣∣hRU + τ
L∑
l=1

N∑
n=1

[hRIl ]n[hIlU]n

∣∣∣∣2
σ2
U

, (10)

where φln = φRU − (φRIl + φIlU).

A. Tight Upper Bound

The ergodic rate of the proposed system can be found as

E[R] =
1

2
E[log2(1 + min {γR, γU})]. (11)

In the presence of the direct link, it is difficult to characterize
the exact achievable rate. As such, we resort to an upper bound
using the Jensen’s inequality, which gives

E[R] ≤ 1

2
log2(1 + min {E[γR],E[γU ]}). (12)
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The remaining task is therefore to obtain the expectation of
the SNRs at the relay and user. Now we define the channels
through the IRSs as YBIR = η

∑L
l=1

∑N
n=1 [hBIl ]n[hIlR]n and

YRIU = τ
∑L
l=1

∑N
n=1 [hRIl ]n[hIlU]n. Using (9) and applying

the binomial expansion theorem,3 we get

E[γR] =
PB

σ2
R

(E[h2
BR] + 2E[hBR]E[YBIR] + E[Y 2

BIR]). (13)

Based on the property of the Nakagami-m fading model, the
expectation of the direct link hBR is given by

E[hBR] = m
−1/2
BR

Γ
(
mBR+

1
2

)
Γ(mBR) d

−α/2
BR , (14)

where Γ(t) =
∫∞

0
xt−1e−xdx is the Gamma function. All∣∣[hBIl ]n[hIlR]n

∣∣, n ∈ {1, 2, . . . , N} are independent and iden-
tically distributed (i.i.d.), based on the central limit theorem
(CLT) when each IRS has a sufficiently large number of
elements. Following this way, we also have

E[YBIR] = η

L∑
l=1

N∑
n=1

E[YBIl ]E[YIlR] = ηN

L∑
l=1

√
ξBIR, (15)

where

ξBIR =
1

mBIlmIlR

[
Γ
(
mBIl + 1

2

)
Γ
(
mIlR + 1

2

)
Γ(mBIl)Γ(mIlR)

]2

. (16)

From the mean square value theorem of Dirichlet L-functions
[13], by substituting (14) and (15) into (13), the expected value
of the received SNR γR at the DF relay can be derived as
(17) (see top of next page). Similarly, we can also obtain the
expected value of the received SNR γU at the user as (18)
(see next page). As a result, the upper bound for the ergodic
rate is obtained as

Rup =
1

2
log2 (1 + min {E[γR],E[γU ]}) . (19)

B. Optimal IRS Configuration

A channel coherence block consists of T symbols covering
two phases: the channel training and data transmission phases.
Specifically, in the training phase, the user sends a sequence
of LN+1 pilot symbols to the relay, while each IRS properly
sets its reflection over time to facilitate the channel estimation,
and then the relay transmits LN + 1 pilot symbols to the BS.
In the data transmission phase, the BS transmits its data to the
user using the remaining T − 2LN − 2 symbols. Hence, the
net ergodic rate of the user can be expressed as

Ṙnet =
T − 2LN − 2

2T
E[log2(1 + min {γR, γU})]. (20)

Note that it is possible to find the optimal IRS configuration
that maximizes the ergodic rate. That is,

max
L,N

Ṙnet, s.t. N ≤ LN < T. (21)

3Other methods for analyzing the performance of IRS-aided communication
systems can be found in [7] and [12].

For simplicity, we assume that all the IRSs are in the same
circular plane centered at the relay. In what follows, (21) can
be rewritten as

max
L,N

S(L,N) ≡ T − 2LN − 2

2T
log2(1 + γ̄(aLN2 + bLN + c)),

s.t. N ≤ LN < T,
(22)

in which L and N are positive integers, γ̄ = PB

σ2
R

, a =

d−αBIl
d−αIlR

η2ξBIR, c = d−αBR, and

b =
2η
√

ξBIR

mBR

Γ(mBR+ 1
2 )

Γ(mBR)

d
α
2

BRd
α
2

BIl
d
α
2

IlR

+
η2(1− ξBIR)

dαBIl
dαIlR

. (23)

The optimization of (22) is unfortunately non-convex due
to the two variables L and N . Although it can be solved
by an exhaustive search algorithm, this suffers from huge
computational complexity. Thus, we resort to optimizing the
IRS configuration in a bi-convex way, i.e., with fixed L or
N . For a given number of reflecting elements for each IRS,
i.e., with a fixed N , we assume that each IRS activates all the
reflecting elements. We can then obtain the optimal number
of IRSs to maximize the net ergodic rate by

L∗ = arg max
1≤L< T

N

S(L). (24)

Since a, b, c > 0, it is worth noting that S(L) is strictly
concave with L. In the interval (0,∞), it will first increase,
reach a unique maximum, and then decrease. Therefore, the
numerical solution of the optimal solution can be obtained
by Newton’s method [14]. The closed-form solution can be
obtained at high SNRs using the following theorem.

Theorem 1: As γ̄ →∞, (24) has a unique optimal solution

L∗ =

〈
T
2 − 1

NW (e(T2 − 1)γ̄(aN + b))

〉
, (25)

where 〈·〉 denotes the rounding operation, and W (·) is the
Lambert’s W-function [15].

Proof: See Appendix A.
The number of reflecting elements can also be optimized in

a similar way with the fixed number of IRSs.4

IV. NUMERICAL RESULTS

In this section, the numerical results are presented to verify
the accuracy of the derived expressions, and show the supe-
riority of our proposed system. Under the three-dimensional
(3D) Cartesian coordinate system in meter (m), the locations
of the BS, relay, and user are set as (0, 0, 10), (40, 0, 10) and
(80, 0, 10), respectively5. L IRSs are assumed to be located
in a circular regime placing in the yz-plane, whose center is
10m away from the relay. In both the IRS-only and DF-only
systems, we assume that there is no direct link between the BS

4The idea that selecting optimal subsurfaces from a centralized IRS [16]
coincides with the one that finding the optimal number of IRSs from multiple
distributed IRSs.

5The impact of localization of each node will be investigated in our future
work.
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E[γR] = PB

σ2
R

[
d−αBR + d

−α/2
BR d

−α/2
BIl

d
−α/2
IlR

2ηN

L∑
l=1

√
ξBIR

mBR

Γ
(
mBR+

1
2

)
Γ(mBR) + d−αBIl

d−αIlR

L∑
l=1

η2N((N − 1)ξBIR + 1)

]
(17)

E[γU ] = PR

σ2
U

[
d−αRU + d

−α/2
RU d

−α/2
RIl

d
−α/2
IlU

2τN

L∑
l=1

√
ξRIU

mRU

Γ
(
mRU+

1
2

)
Γ(mRU) + d−αRIl

d−αIlU

L∑
l=1

τ2N((N − 1)ξRIU + 1)

]
(18)
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and the user, and we constrain the total transmission power at
the BS of the IRS-only system by P = PR + PB . The path
loss exponent α is 2.2, and the Nakagami-m fading parameters
are all set to 3. Unless stated otherwise, we set PB = PR,
SNR is defined as PB

σ2
R

and the variance of all the noise is 1.
For multiple IRSs, the reflection coefficients (η, τ, ζ) are all
equal to 0.8. Finally, we give a long channel coherence time
T = 1, 000 to find the optimal L for different values of N .

Results in Fig. 2 compare the ergodic rate of the proposed
multi-IRS DF relaying system with two benchmark systems:
(1) multi-IRS only without the DF relay and (2) DF relay
only without IRSs, all for different values of N and L = 2.
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Both the rate upper bound and the exact results from Monte-
Carlo simulations are plotted and compared. As we can see,
the upper bound is very tight and no noticeable difference is
observed. In addition, the ergodic rate monotonically increases
with the number of IRS reflecting elements N . The proposed
system also shows a significant gain compared to the bench-
marks under the same number of reflecting elements N .

TABLE I: Optimal L for different N
Number of reflecting elements N 30 40 50
Optimal L of the proposed system 5 3 3

Fig. 3 studies the impact of the locations of the IRSs relative
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to the relay when L = 2 and N = 60. It is noteworthy that
the distances between each IRS and the relay are fixed. It is
shown that the multi-IRS DF relaying system and the relay-
only system have the peak ergodic rates when the IRSs and
the relay are in the middle of the BS and the user. Evidently,
the performance of the multi-IRS-only system becomes much
better when the IRSs are either nearest to the user or the BS,
due to stronger line-of-sights from the BS or to the user.

In Fig. 4, we investigate the impact of the number of IRSs
L and the ratio of fixed T to different N on the ergodic rate
performance. It is noted that a higher number of N has a lower
optimal value of L. On the other hand, we can observe that
more IRSs can be employed to improve the rate performance
if the channel coherence time is longer.

Finally, the results in Fig. 5 are provided for the ergodic rate
for a wide range of L, given different values of N . We can
observe that the proposed system has the best rate performance
when L < 6. Nevertheless, the net ergodic rate gain ceases to
increase and will decease if L is too large if N remains fixed.
There is an optimal value of L for each N . The optimal values
of L for different values of N are given in TABLE I.

V. CONCLUSION

This letter investigated the achievable rate performance for
a DF relaying system with the aid of multiple IRSs. We
first derived a very tight upper bound in closed form for
the ergodic rate of the proposed system under Nakagami-m
fading. Utilizing the analytical results, we proposed to obtain
the optimal IRSs configuration that maximizes the net ergodic
rate. Results indicated that for a given channel coherence time,
fewer IRSs with a larger number of reflecting elements tend
to have better net rate performance.

APPENDIX A
PROOF OF THEOREM 1

Based on (22), the expression of L can be written as

S(L) =

(
1

2
− LN + 1

T

)
log2(1 + γ̄(aN2 + bN)L+ c)).

(A.1)
At high SNR, (A.1) can be rewritten as

S(L) =

(
1

2
− LN + 1

T

)
log2(γ̄(aN2 + bN)L)). (A.2)

Setting the first derivative of (A.2) to 0, we have

ln(γ̄(aN2 + bN)L) =
T
2 − LN − 1

LN
. (A.3)

Letting ln(γ̄(aN2 + bN)L) = z, L can be obtained by

L =
ez

γ̄(aN2 + bN)
. (A.4)

Thus, (A.3) can be finally obtained from

(1 + z)e(1+z) = e

(
T

2
− 1

)
γ̄(aN + b). (A.5)

Using the definition of the Lambert’s W-function in [15],
substituting it back into (A.3), and rounding the result to
its nearest integer, the optimal configuration of L in (25) is
obtained. Hence, the proof is completed.

REFERENCES

[1] J. Zhang, E. Bjornson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J.
Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE
J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637-1660, Aug. 2020.

[2] W. Zhao, G. Wang, S. Atapattu, T. A. Tsiftsis, and X. Ma, “Performance
analysis of large intelligent surface aided backscatter communication
systems,” IEEE Wireless Commun. Lett., vol. 9, no. 7, pp. 962-966, Jul.
2020.

[3] M. Cui, G. Zhang, and R. Zhang, “Secure wireless communication via
intelligent reflecting surface,” IEEE Wireless Commun. Lett., vol. 8, no.5,
pp. 1410-1414, Oct. 2019.

[4] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework
of robust transmission design for IRS-aided MISO communications with
imperfect cascaded channels,” IEEE Trans. Signal Process., vol. 68, pp.
5092-5106, Aug. 2020.

[5] X. Hu, C. Zhong, and Y. Zhang, “Location information aided multiple
intelligent reflecting surface systems,” IEEE Trans. Commun., vol. 68,
no. 12, pp. 7948-7962, Dec. 2020.

[6] D. L. Galappaththige, D. Kudathanthirige, and G. A. A. Baduge,
“Performance analysis of distributed intelligent reflective surface aided
communications,” in IEEE GLOBECOM., pp. 1-6, May. 2020.

[7] E. Bjornson, O. Ozdogan, and E. G. Larsson, “Intelligent reflecting
surface vs. decode-and-forward: How large surfaces are needed to beat
relaying?” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244-248,
Feb. 2020.

[8] Y. Xiao, L. Hao, Z. Ma, Z. Ding, Z. Zhang and P. Fan, “Forwarding
strategy selection in dual-hop NOMA relaying systems,” IEEE Commun.
Lett., vol. 22, no. 8, pp. 1644-1647, Aug. 2018.

[9] I. Yildirim, F. Kilinc, E. Basar and G. C. Alexandropoulos, “Hybrid RIS-
empowered reflection and decode-and-forward relaying for coverage
extension,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1692-1696, May
2021.

[10] M. Obeed and A. Chaaban, “Relay-reconfigurable intelligent surface
cooperation for energy-efficient multiuser systems,” arXiv: 2104.02849,
2021.

[11] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. S. Alouini and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access., vol. 7, pp. 116753-116773, 2019.

[12] K. O. Odeyemi, P. A. Owolawi, and O. O. Olakanmi, “On the perfor-
mance of reconfigurable intelligent surface aided power line communi-
cation system under different relay transmission protocols,” Progress In
Electromagnetics Research C., vol. 111, pp. 119-133, 2021.

[13] Q. Tao, J. Wang and C. Zhong, “Performance analysis of intelligent
reflecting surface aided communication systems,” IEEE Commun. Lett.,
vol. 24, no. 11, pp. 2464-2468, Nov. 2020.

[14] L. Fan, D. Qiao, S. Jin, C. Wen, and M. Matthaiou, “Optimal pilot
length for uplink massive MIMO systems with low-resolution ADC,”
Proc. IEEE SAM., pp. 1-5, Jul. 2016.

[15] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the Lambert W function,” Adv. in Comput. Math., vol. 5, no. 1, pp.
329-359, Dec. 1996.

[16] B. Zheng, C. You and R. Zhang, “Intelligent reflecting surface assisted
multi-user OFDMA: Channel estimation and training design,” IEEE
Trans. Wireless Commun., vol. 19, no. 12, pp. 8315-8329, Dec. 2020


	I Introduction
	II System Model
	III Ergodic Rate Analysis
	III-A Tight Upper Bound
	III-B Optimal IRS Configuration

	IV Numerical Results
	V Conclusion
	Appendix A: Proof of Theorem 1
	References

