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Abstract 

Currently, the histological biopsy is the gold standard for classifying gliomas using 

the most recent histomolecular features. However, this process is both invasive 

and challenging, mainly when the lesion is in eloquent brain regions. Considering 

the complex interaction between the presence of the isocitrate dehydrogenase 

(IDH)-mutation, the upregulation of the hypoxia-induced factor (HIF), the neo-

angiogenesis and the increased cellularity, perfusion MRI may be used indirectly 

for gliomas staging and further to predict the presence of key mutations, such as 

IDH. Recently, several studies have reported the subsidiary role of perfusion MRI 

in the prediction of gliomas histomolecular class. The three most common 

perfusion MRI methods are dynamic susceptibility contrast (DSC), dynamic 

contrast enhancement (DCE) and arterial spin labelling (ASL). Both DSC and 

DCE use exogenous contrast agent (CA) while ASL uses magnetically labelled 

blood water as an inherently diffusible tracer. ASL has begun to feature more 

prominently in clinical settings, as this method eliminates the need for CA and 

facilitates quantification of absolute cerebral blood flow (CBF). As a non-invasive, 

CA-free test, it can also be performed repeatedly where necessary. This makes 

it ideal for vulnerable patients, e.g. post-treatment oncological patients, who have 

reduced tolerance for high rate contrast injections and those suffering from renal 

insufficiency. 

This thesis performed a systematic review and critical appraisal of the existing 

ASL techniques for brain perfusion estimation, followed by a further systematic 

review and meta-analysis of the published studies, which have quantitatively 

assessed the diagnostic performance of ASL for grading preoperative adult 

gliomas. The repeatability of absolute tumour blood flow (aTBF) and relative TBF 

(rTBF) ASL-derived measurements were estimated to investigate the reliability of 

these ASL biomarkers in the clinical routine. Finally, utilising the radiomics 

pipeline analysis, the added diagnostic performance of ASL compared with CA-

based MRI perfusion techniques, including DSC and DCE, and diffusion-

weighted imaging (DWI) was investigated for glioma class prediction according 

to the WHO-2016 classification.  
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Impact statemen 

Contrasting to histological biopsy, surrogate non-invasive gliomas classification 

and grading are in demand for the patient management. Studies have 

demonstrated the diagnostic and predictive value of the quantitative biomarkers 

from perfusion MRI for patients with gliomas. ASL, unlike contrast-enhanced 

perfusion MRI techniques, measures perfusion completely non-invasive, using 

magnetically labelled blood water as a diffusible tracer, which eliminates the need 

for CA and hence it can be performed repeatedly, without concern related to the 

CA retention. The supplementary role of ASL to conventional imaging has been 

reported for classifying and grading gliomas. Nevertheless, ASL has still not been 

fully adopted in routine glioma MRI scanning due to non-standardised acquisition 

techniques and the presumably high within-patient variability. Both of which could 

bias the quantitative measurements and impact the interpretation of the results 

compared with the established DSC perfusion technique. 

Nevertheless, with the continuous development, ASL has reached a stage that 

encourages its adoption to the routine clinical application, which does not 

contradict the persist in the development of the method. This PhD thesis explains 

the contrast-enhanced perfusion methods briefly and then emphasises on the 

ASL. It highlights the ASL methodological background, explaining the source and 

mitigation strategies of possible measurements bias. The thesis demonstrates 

the clinical effectiveness of the ASL for gliomas grading among the published 

studies by conducting a quantitative meta-analysis on the current evidence. 

Using this as a solid foundation, it investigates the sensitivity/specificity of the 

rTBF as a surrogate biomarker for the tumour pathophysiology and hence, 

gliomas grading. The key finding for this diagnostic task was the lowest within-

patient variability recorded for the rTBF from both PASL and PCASL, suggesting 

its suitability for the clinical practice. Employing the radiomics pipeline approach, 

this thesis provides evidence of the synergistic diagnostic value of the combined 

ASL and ADC, which represents gadolinium-free gliomas staging approach, to 

replace the DSC technique as working horse for the gliomas staging in the clinical 

routine. The comprehensive work on the available DCE perfusion datasets 

showed that more detailed physiological models for tumour perfusion imaging, 
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such as L&L, yielded better staging accuracy compared to simplified approaches, 

like the mTK. This calls the attention of the researcher and the scientists on the 

role of perfusion, traditionally defined in terms of blood flow, derived from ASL 

and assisted by radiomics analysis to achieve high diagnostic accuracy in 

gliomas staging. Given a robust and standardised ASL acquisition, with a 

reproducible radiomics processing and analysing pipeline, the evidence in the 

submitted thesis can be the steppingstone for future large-scale clinical studies. 
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This thesis evaluates the added value of ASL perfusion in gliomas staging as a 

standalone method and in combination with other perfusion techniques and DWI. 

The first chapter provides a brief introduction into the fundamentals of MRI and 

the principles of advanced MRI in neuro-oncology. The second chapter focuses 

primarily on the methodological background of ASL and secondarily of DSC and 

DCE. The third chapter aims to summarise quantitatively the previous studies 

that have explored the clinical application of the ASL in grading adult gliomas. 

The fourth chapter investigates the repeatability of ASL estimates (TBF and rTBF) 

for gliomas and the impact of the internal reference tissue size and type (white or 

grey brain matter) for the estimation of rTBF, which is a common metric for ASL-

based gliomas staging. The fifth chapter studies the diagnostic performance of 

the radiomics approach of different MRI perfusion methods (DSC, DCE and ASL), 

as well as the ubiquitously available diffusion weighted imaging (DWI) to classify 

untreated adult gliomas. In this chapter, the diagnostic performance of DCE is 

particularly investigated using both the modified Tofts-Kermode (mTK) and the St 

Lawrence and Lee (L&L) models. The final chapter concludes and summarises 

the findings and provides recommendations for future work. 

1 Introduction 

Magnetic resonance imaging (MRI) plays a fundamental role in the 

characterisation of gliomas as it allows the generation of various image contrast 

types, including conventional structural and advanced functional contrasts, which 

enable non-invasive assessment in details of the underlying lesion's morphology 

and physiology. This chapter thus provides a comprehensive review of glioma 

classification, in this manner, including an overview of the basic principles of MRI, 

and advanced MRI techniques and the relevant image analysis. 

1.1 Glioma classification 

Gliomas are the most common neuroepithelial neoplasms of primary brain 

tumours, which generally arise from progenitor glial cells, including astrocytes 

and oligodendrocytes. The World Health Organization's (WHO) classification of 

brain tumours is the most widely adopted classification system, and this is 

updated approximately every seven years. The WHO-20071 edition classified 
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gliomas according to histological criteria, grading the tumours according to their 

biological behaviour from grade I - IV. This grading system reflected the degree 

of tumour malignancy, with grades I and II indicating slow-growing lesions, 

grouped together as low-grade gliomas (LGGs), and grades III and IV 

representing highly malignant lesions, grouped together as high-grade gliomas 

(HGGs). HGGs represent the largest group of adult gliomas, tending to occur in 

older patients, while LGGs more frequently occur in younger patients. This 

histopathological grading is tightly linked to the prognosis and has hugely 

influenced the selection of treatment options. The median overall survival time for 

patients with LGGs exceeds in most of the entities the five years. In comparison, 

patients with HGGs reach median overall survival rates of 2 to 3 years for grade 

III gliomas and less than one year for grade IV. The updated WHO-2016 

classification2 represented a paradigm shift towards a more multi-layered 

approach, with genetic and molecular information (genotyping) incorporated into 

the histological grading (phenotyping) to form an integrated system. This 

approach resulted in tumour groups that are biologically homogenous; this, in 

turn, facilitated more precise categorisation than the previous classification 

system and hence, improved overall diagnostic accuracy, more optimised patient 

management, and accurate prognoses with reliable treatment response 

predictions.  

All adult diffuse gliomas are currently grouped together based on shared 

genotypes and phenotypes, resulting in the following categories: a) WHO grade 

II and III astrocytomas (IDH-mutant, ATRX-mutant, 1p/19q-intact), b) WHO grade 

II and III oligodendrogliomas (IDH-mutant, ATRX-wildtype, 1p/19q-codeleted), 

and c) WHO grade IV glioblastoma primary/secondary (IDH-wildtype/mutant, 

respectively). In rare situations, however, gliomas may be histologically 

inconsistent with the predefined observed molecular and genetic classification 

criteria, e.g. oligoastrocytomas, or may not be adequately described as distinct 

entities in the past and therefore are denoted as "not otherwise specified" (NOS). 

Thus, for the time being, the WHO-2016 2 classification is not solely based on the 

genotype.  
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A key mutation in the gliomas tumorigenesis with crucial importance for the 

integrated histomolecular classification is the isocitrate dehydrogenase (IDH) 

mutation. This mutation occurs early and can potentially initiate the glioma 

pathogenesis3. It occurs in 70-80% of grade II and III astrocytomas, 

oligodendrogliomas, and secondary glioblastomas4. In contrast, about 90% of all 

de novo/primary glioblastomas are IDH-wt2. IDH-mutation is considered to be a 

strong prognostic marker independent of other known prognostic factors such as 

age5,6. Importantly, the presence of IDH-mutation and 1p/19q co-deletion in 

oligodendrogliomas is reported to presage better responses to chemotherapy 

and longer overall survival times compared to IDH-mutation and 1p/19q retained 

gliomas 7–9.  

Mutant IDH proteins develop neo-morphic enzymatic activities that are involved 

in the cancer cell metabolism and along with tumour suppressor genes controls 

the progression of the tumour and its response to chemoradiation, which in turn 

impacts the prognosis10,11. Such changes to cellular metabolism lead to 

uncontrolled growth, which requires high energy levels, and this increased 

demand for energy results in elevated oxidative stress (high reactive oxygen 

species (ROS)). The mechanisms controlling the resultant oxidative stress are 

influenced by the IDH-mutation status, which in turn affect the hypoxia-induced 

factor (HIF), and regulation of the angiogenesis and cellularity (see Figure 1.1). 

As the metabolic alteration impacts the tumour microenvironment, it can result in 

sporadic hypoxia, acidity, and nutrition starvation. This elevates the ROS, where 

Nicotinamide adenine dinucleotide phosphate (NADPH) helps reduce it; NADPH 

is generated via the catalysis of isocitrate during conversion, using isocitrate 

dehydrogenase (IDH)-enzymes. This process produces α-Ketoglutarate (α-Kg) 

and NADPH. However, in the case of mutant IDH proteins, the α-Kg converts to 

2-hydroxyglutarate (2-Hg) on the consumption of NADPH, and thus any reduction 

of NADPH leads to an increase in ROS. 

Further, as 2-Hg is chemically similar to α-Kg, it can bind to α-Kg-dependent 

enzymes and disturb their functions. For example, 2-Hg binding to prolyl 

hydroxylases (PHD) inhibits the degradation of HIF and stabilises its formation, 

subsequently inducing vascular endothelial growth factor (VEGF) signalling and 
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angiogenesis. Also, 2-Hg can bind to histone demethylase, resulting in the 

promotion of methylation and consequently inactivating both oncogenesis and 

tumour suppressor genes. The presence of IDH-mutations thus promotes tumour 

progression only slowly, perhaps explaining the better survival rates, while high 

ROS levels may sensitise tumours to irradiation and chemotherapy12. However, 

IDH-mutation alone is not enough for tumourigenesis13; besides, the presence of 

IDH-mutation with other molecular markers can be used to differentiate 

astrocytoma from oligodendroglioma with prognostic and predictive outcomes. 

IDH-mutant astrocytoma involves more genetic alterations, including ATRX 

(alpha-thalassemia/mental retardation syndrome X-linked) that associated with 

tumour progression from diffuse to anaplastic14. Anaplastic astrocytoma with 

mutated IDH and ATRX loss has a favourable prognosis comparing to anaplastic 

astrocytoma that only has IDH mutation3. On the other hand, IDH-mutant 

oligodendroglioma coexists with 1p/19q codeletion, which is indicated as a 

hallmark feature, and present approximately in 60%-90% of the 

oligodendrogliomas patients14. The existence of 1p/19q codeletion is associated 

with longer survival time and enabled identifying patients who benefit from 

chemotherapy3.    
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1.2 Basic principles of magnetic resonance imaging (MRI) 

For brain tumour diagnosis, histopathologic assessment is the gold standard. 

However, it suffers from several limitations, including sampling errors and 

dependence on invasive biopsies or the surgical removal of a tumour15. Imaging 

tests have thus been proposed as an alternative non-invasive method to stage 

the brain tumours. The application of appropriate imaging modalities in a clinical 

setting can make a great contribution toward the detection, diagnosis, and 

monitoring of gliomas by allowing the correlation of molecular biomarkers to the 

imaging feature outputs.   

 

Figure 1.1 Explain how the IDH status involved in cancer cell metabolism; Presence of gene mutations results in 

cell metabolic changes, which is lead to high demand for energy and high oxidative stress (high reactive oxygen 

species (ROS)). Nicotinamide adenine dinucleotide phosphate (NADPH) helps to reduce ROS. NADPH generated 

via various reaction inside the cell, conversion of isocitrate is one of them. Catalysis of isocitrate, during conversion, 

uses isocitrate dehydrogenase (IDH) enzymes. (a.) in case of absence of IDH mutation (IDH-wild), the catalysis of 

isocitrate using isocitrate dehydrogenase (IDH) enzymes produce α-Kg (α-Ketoglutarate) and NADPH. 

(b.) In contrast, in the case of mutated IDH, α-Kg converts to 2-Hg (2-hydroxyglutarate) on the consumption of 

NADPH. Resulted in a reduction of NADPH and leads to an increase in ROS. As 2-Hg is chemically similar to α-

Kg, it can bind to α-Kg dependent enzymes and disturb their functions. For example, 2-Hg binding to prolyl 

hydroxylases (PHD) inhibits the degradation of hypoxia-inducible factor (HIF) and stabilises its formation, 

subsequently, the inducing of vascular endothelial growth factor (VEGF) signalling and angiogenesis. 2-Hg also 

binds to histone demethylase, resulting in the promotion of methylation and consequently inactivating oncogenesis 

and tumour suppressor genes. Thus, the presence of IDH-mutations promotes tumour progression process slowly, 

allowing better survival rates, while high ROS levels may sensitise tumours to irradiation and chemotherapy. 
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Due to its non-invasive nature and high sensitivity to soft tissue changes, MRI 

plays a leading role in all phases of tumour management, including diagnosis, 

therapy, and follow-up. Typical standard clinical MRI protocols for gliomas 

diagnosis consist of both conventional MRI and diffusion-weighted imaging 

(DWI)16. Also, advanced MRI methods such as perfusion MRI and/or MR-

spectroscopy (MRS) can be used where it is believed they may offer supportive 

diagnostic information16. 

1.2.1 Underlying principles of MRI 

Nuclear magnetic resonance imaging (NMR) study the resonance of the nuclei 

under magnetic field. Incorporation the spatial information of the resonance of 

these nuclei to produce an image is then called magnetic resonance imaging 

(MRI). Thus, MRI uses three main components to create images: a strong magnet 

to align the protons; radiofrequency (RF)-coils to excite the protons and detect 

their return signals; and gradient coils for spatial localisation of those signals, as 

shown in Figure 1.2. It is thus essential to understand the underlying basics of 

MRI to grasp its complexities, and this, in turn, starts with understanding of atomic 

structure. 

 Atom is the fundamental unit of matter. All tissues are made of molecules, with 

atoms organised in specific ways to form these molecules, such as the hydrogen 

and oxygen atoms in a water molecule (H2O). Atoms themselves consist of a 

central nucleus surrounded by orbital electrons. The nucleus of the atom is 

composed of protons and neutrons both represents the atomic mass. Both 

neutrons and protons have an opposite magnetic moment17. Thus, nuclei with 

even protons and neutrons have zero net spins while nuclei with odd protons or 

neutrons have a net spin (angular moment), making them MR active nuclei, which 

act like tiny magnets with north and south poles (dipoles)18. As MR active nuclei 

have an electrical charge and net spin, they automatically induce magnetic 

moment under an external magnetic field, according to electromagnetic induction 

laws.  
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Hydrogen atoms, often called protons in MRI terminology, are the most frequently 

used MR active nuclei due to their abundance in living tissue (~75% of fat and 

water). These also have odd mass numbers, as a hydrogen nucleus consists of 

a solitary proton with a positive charge, as seen in Figure 1.3.a. Other MR active 

nuclei that are less abundant than hydrogen is also used, such as Fluorine, 

Carbon, and Sodium. Hydrogen under an external strong static magnetic field 

(B0) experience a torque result in the precession of their magnetic moment about 

B0. This precession occurs at a specific angular frequency, also called 

precessional frequency, denoted by 0 or f0 (in cycle/sec or Hertz (Hz)) which is 

proportional to the strength of the applied magnetic field and the gyromagnetic 

ratio (γ) of the nuclei as stated in Larmor's equation: 

 

 w0 =  B0. γ Equation 1.1 

Where γ is a constant known as the gyro-magnetic ratio which represents the 

relationship between the angular moment and the induced magnetic moment for 

a specific MR active nucleus; hence each MR active nuclei has its γ, and nuclei 

of the same type (e.g. hydrogen) will nevertheless have changeable precessional 

frequencies as they experience different field strengths. 

The magnetic moment can be described as a vector, its arrow represents the 

alignment direction, and its length represents the size of the magnetic moment. 

The alignment direction of the magnetic moment of the protons can be either 

parallel (spin-up) or anti-parallel (spin-down) to B0. Nuclei with low energy lack 

the capacity to oppose the B0 and align parallel to it. In contrast, a few nuclei have 

Figure 1.2 Schematic demonstrating the main components of an MRI machine. 

Reprinted from Understanding MRI: Basic MR physics for physicians. Postgrad 

Med J. 2013;89(1050):209-223. doi:10.1136/postgradmedj-2012-131342. 
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higher energy levels and can thus align themselves anti-parallel to B0. The excess 

low energy nuclei that align with B0 form a net magnetisation vector (NMV), as 

shown in Figure 1.3.b and 1.4.a. Any increase in B0 field strength increases the 

number of low energy nuclei, subsequently increase the excess spin-up nuclei, 

improving MR signals accordingly. 

The NMV in space can be described using a rotating frame, which facilitates 

understanding of its complex motion. This frame views the magnetisation 

precession in slow motion observed from frame rotating at Larmor frequency. 

Thus, expressing the magnetisation as the component of a static vector on X', Y' 

and Z' axes. The magnetisation on Z-axis is the same direction as that in which 

the NMV aligned with B0, known as the longitudinal magnetisation (Mz). The X-Y 

axes magnetisation (transverse plane) is the flipped vector of the rotating 

magnetisation around the Z-direction at an angle under the influence of an 

external force, known as transverse magnetisation (Mxy).  

The longitudinal magnetisation (Mz) precess at Larmor frequency (f0) about the 

B0 is at an equilibrium state. In order to detect signal, the Mz need to be perturbed 

from its equilibrium by applying oscillating electromagnetic field (B1) generated 

using the transmitted RF-coil19. If the precessional frequency (f1) of the applied 

B1 field in X-Y plane matches that of the NMV (f0= f1), the resonance condition 

achieved; hence Mz flips toward the X-Y plane with a particular angle to the B0, 

known as the flip angle. The magnetisation precesses about B1 at f1, which 

forming the Mxy. The Mz nutates toward X-Y plane until B1 field removed. Thus, 

the magnitude of the flip angle is determined by the amplitude and duration of the 

applied RF-pulse. There are different types of RF-pulses, including excitation and 

inversion pulses. Excitation RF-pulses tip the NMV away from the B0 towards the 

transverse plane which generates a voltage in the receiver coil, while inversion 

RF-pulses flip the NMV from the B0 direction to the negative B0 direction, with no 

or only a negligible transverse component.  
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As the spinning protons flipped into the transverse plane after the B1 field 

removed, a current is induced in the receiver coil that constitutes the expected 

MR signals; the induced voltage decreases exponentially with time, this is called 

free induction decay (FID), as illustrated in Figure 1.3.c. All of the protons flipped 

to the transverse plane have the same position in the precessional path initially, 

which means that they are in the same phase (in-phase) and provide the highest 

possible signal, as illustrated in Figure 1.4.b. When the RF-pulse ceases, the 

protons give up the absorbed energy, and the spinning protons' position in the 

precessional path at a given time point depends on their precessional speed, 

causing them to adopt different phases (dephase) over time, and signal decay. 

As a vector quantity, once the RF-pulse is removed, the Mz magnetisation 

increases while the Mxy magnetisation decays in a process called relaxation, 

shown in Figures 1.4.c and 1.4.d. The protons loss the energy in two main 

mechanisms synchronic but independent; the first mechanism is losing energy to 

the surrounding molecules (spin-lattice relaxation) where the Mz magnetisation 

Figure 1.3 A) Water, composed of one oxygen atom (blue) and two hydrogen atoms (red). Hydrogen atom 

(+P, in red) is one of the active MRI nuclei, with net spin due to the solitary proton which acts as a tiny magnet. 

B) These protons usually spin randomly and cancel each other out; however, in the presence of a strong 

static magnetic field (B0) the low- and high-energy protons align with the B0 in either a parallel (red) or an 

anti-parallel (white) manner, respectively. The parallel and anti-parallel protons cancel each other out, but 

there remain excess parallel protons, which form a net magnetisation vector (NMV). C) The transmitted RF-

pulse delivers electromagnetic energy to those aligned protons with the same precessional frequency as the 

protons. The protons flip away from B0 as they absorb the energy, and as the spinning protons cut across the 

coil in the transverse plane, a current is induced, known as free induction decay (FID)48. Reprinted from 

https://kids.frontiersin.org/article/10.3389/frym.2019.00023 

https://kids.frontiersin.org/article/10.3389/frym.2019.00023
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exponentially increase and back to the original state after T1 constant time, and 

called T1 recovery; the second mechanism is losing energy to the neighbour 

nuclei (spin-spin relaxation) and hence become out of the phase where the Mxy 

magnetisation exponentially decrease after T2 constant time and called T2 

decay. T2 time constant is always shorter than the T1 time constant18. Different 

inherent tissue properties in a magnetic field result in various T1 and T2 rates 

and hence generate different amounts of signal intensity over time, creating 

contrast20.  
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The relaxation process is enhanced when the precessional frequencies of the 

protons and the surrounded moving molecules match. The molecular motion is 

impacted by both molecular size itself and the physical state of the material in 

terms of it being fluid or rigid. For example, smaller molecules such as water 

display faster movement than larger ones such as lipids. Molecules in fluid state 

in-phase 

de-phase 

Figure 1.4 demonstrates the relaxation process. A) The net magnetisation vector 

(NMV) aligns with B0, longitudinal magnetisation Mz. B) As the RF-pulse switches 

on, the transverse magnetisation (Mxy) propagates while the Mz is reduced. C) 

Immediately following the discontinuation of the RF-pulse, the protons precess in-

phase and provide the highest possible signal. C and D) The Mxy magnetisation 

decays over time (T2 decay) while the Mz regrows (T1 recovery). Reprinted from 

Understanding MRI: Basic MR physics for physicians. Postgrad Med J. 

2013;89(1050):209-223. doi:10.1136/postgradmedj-2012-131342. 
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materials tend to display faster molecular motion over a wide range than the those 

in rigid materials, which have both slower molecular motion and less range. Thus, 

rigid state materials offer a better frequency match with the protons and are thus 

able to absorb energy from them more readily, enhancing the relaxation and 

reducing the time taken. Although T2 values are generally much shorter than T1 

values, they are proportional to one another such that tissues that have longer 

T1 periods will generally have longer T2 times as well. Which means large 

molecules that are closely packed allow both T1-recovery and T2-decay to be 

relatively rapid, with short T1 and T2 times. In contrast, small molecules that are 

spaced further apart have slower T1-recovery and T2-decay and thus display 

longer T1 and T2 times. Tissues generally contain a combination of free water 

and combined water to a variety of small and large molecules which impact the 

relaxation process, and changes in the water composition of tissue, therefore, 

alter its relaxation process, which enables depicting the normal anatomy and 

detection of abnormalities by observing these changes. 

On an MR image, the signal intensity (brightness/darkness) is directly related to 

the magnitude of the MR signals received by the receiver coil after the RF-pulse. 

This magnitude depends on the size of the Mz magnetisation prior to the RF-pulse 

and the size of the Mxy magnetisation after the RF-pulse. The larger the 

longitudinal vector component at the time the RF-pulse is employed, the greater 

the transverse magnetisation. Large Mxy magnetisation induces a high signal 

intensity that appears as a bright white area on the MRI image; the lower the Mxy 

magnetisation, the lower the resulting signal intensity, so that very low levels 

appear as dark signals, shading to black. Areas with intermediate signal intensity 

are expressed in shades of grey proportional in brightness to the relevant 

intensity. Each voxel of tissue is a functional unit of protons that generates an MR 

signal of a particular strength that is displayed on the MR image matrix as a single 

shade of grey. The spatial location of the representative MR signal for each tissue 

voxel is then encoded using an MRI gradient, coil, which is an additional magnetic 

coil implemented inside the bore of the MR machine on the three orthogonal axes, 

X, Y and Z. This gradient coil interacts with the main magnetic field and alters its 

strength in a linear manner along each axis, which can be used for slice selection 
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as well as being applied in advanced MRI methods such as diffusion-weighted 

imaging (DWI)20, as will be seen later on.    

1.2.2 Image contrast 

A combination of RF-pulses, gradients, and predefined timing parameters outline 

the main components of a pulse sequence. The primary timing parameters in a 

pulse sequence are repetition time (TR) and echo time (TE), both measured in 

ms. TR measures the elapsed time between the excitation RF-pulses, which 

control the overall regrowth of the Mz magnetisation, and thus T1-recovery. At the 

same time, TE determines the time of reading of the received signal, is defined 

as the elapsed time duration from the RF-pulse to the time the signal is read. 

Thus, TE controls how much of the Mxy magnetisation is allowed to decay, which 

represents the T2-decay. 

Variation in the signals between areas of an MR image allows the observation of 

contrasts between normal anatomical features and enables abnormality 

detection. MRI procedures allow a wide range of contrasts production, such as 

T1 weighted (T1-W) and T2 weighted (T2-W) images, which depend on the 

selected timing parameters. Obtaining a given MR image contrast depends on 

predetermined extrinsic parameters set by the operator console that can control 

the relative contribution of each of the intrinsic properties of tissues, such as T1-

recovery and T2-decay, in a process referred to as image weight contrast. The 

process of image weighting requires setting the image contrast toward one 

property (e.g. T1) and away from the other (e.g. T2)21.  

A T1 weighted image (T1-W) is where the image contrast is predominantly 

determined by the T1 properties of the tissues being imaged. TR controls T1 

recovery as it determines how far the MZ magnetisation is permitted to recover 

prior to the next RF pulse occurring. In order to achieve T1-W, a short TR is 

required prior to full recovery of Mz magnetisation. Thus, the tissues that recover 

its Mz magnetisation faster develop larger Mz magnetisation before the next RF-

pulse, resulting in larger Mxy magnetisation. This creates image contrast based 

on the differences in T1 values of the imaged tissues. The Mz magnetisation of 

tissues with small T1 values displays faster T1-recovery as well as larger Mz 



 

 

35 

magnetisation before the next RF pulse, resulting in larger Mxy magnetisation 

levels that thus appear bright, such as white matter (WM), while the reverse is 

true for tissues with longer T1 values such as cerebrospinal fluid (CSF), which 

appear dark20, Figure 1.5. 

In contrast, a T2 weighted image (T2-W) takes its image contrast predominantly 

from the T2 properties of the tissues being imaged. TE controls T2 decay as it 

determines the time allotted for the Mxy magnetisation to dephase or decay after 

the RF pulse prior to reading the signals. Longer TE provides enough time for the 

Mxy magnetisation to dephase, leading to lower Mxy magnetisation. To achieve a 

T2-W contrast, a long TE is required to produce image contrast based on 

differences in the decay rates (T2 values) of the scanned tissues, although this 

must still be short enough to preserve the signals. On the contrary to the T1-W 

image, the Mxy magnetisation of the tissues with small T2 values have quicker 

T2-decay end up with small Mxy magnetisation and appear dark (e.g. WM); The 

reverse occurs for the tissues with longer T2 values, which is appear white (e.g. 

CSF)20, Figure 1.5. 

Proton density (PD) is another tissue property based on the number of protons 

per unit volume of tissue. Producing an image contrast based on differences in 

the PD between tissues is referred to as PD weighted imaging (PD-W). Achieve 

a PD-W contrast image require reducing the effect of both T1 and T2. According 

to the image weighting definition, fulfil a T1-W requires the use of a short TR to 

maximise T1 and a short TE to minimise T2, while a T2-W requires a long TE to 

maximise T2 and a long TR to minimise T1. Accordingly, a long TR reduces T1 

contrast and a short TE reduces T2 contrast, and PD contrast can thus be 

dominated image contrast. Tissues with higher proton densities produce higher 

levels of Mxy magnetisation and appear bright, while those with lower proton 

densities are dark on PD-W images20, Figure 1.5. 
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Proton dephasing of Mxy magnetisation is not only influenced by the T2 property 

of the tissues but also by inhomogeneities in the magnetic field. Inhomogeneities 

are those areas within the main magnetic field with slightly lower or higher 

magnetic strength than their general surroundings. Such inhomogeneities 

produce faster dephasing, designated as T2*, than that arising from the T2 

characteristic of the tissue (true relaxation) and may tend to mask it. This occurs 

because the precessional frequency of protons is proportional to the strength of 

the magnetic field they have experienced, and inhomogeneity of the magnetic 

field results in relatively larger acceleration and deceleration of the protons, 

leading to a rapid dephasing, which produces the FID. Loss of the signals in a 

short time produce a small signal; besides, most of the tissues do not have 

enough time to attain their T1 and T2 relaxation states. To maximise the signal 

and allow measurement of the relaxation times, it is thus necessary to reduce the 

effect of the T2* to allow enough time for the overall tissues to reach their T1 and 

T2 relaxation states. Reducing the T2* effect can be done by rephasing or 

refocusing the spins so that they gradually return to the initial phase after the 

excitation pulse. After the excitation RF pulse, protons start to dephase in a fan 

formation. The slowest dephased protons represent the trailing edge, while the 

fastest dephased protons are located at the leading edge. Refocusing the 

magnetisation reverses the location of these fan edges, causing the faster 

dephased protons to become the trailing edge and the slower dephased protons 

to become the leading edge. In this case, the faster dephased protons will 

gradually catch up with the slower dephased protons so that two edges become 

Figure 1.5 MRI images with different weighted contrast, T1-W, T2-W and PD. Reprinted 

from https://radiology.ucsf.edu/blog/neuroradiology/exploring-the-brain-how-are-brain-

images-made-with-mri 

https://radiology.ucsf.edu/blog/neuroradiology/exploring-the-brain-how-are-brain-images-made-with-mri
https://radiology.ucsf.edu/blog/neuroradiology/exploring-the-brain-how-are-brain-images-made-with-mri
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superimposed (in-phase) where the signal reaches its peak. This gradual growth 

of the Mz magnetisation mirrors the Mxy magnetisation gradual decay, generating 

the maximum possible signal. The refocusing of the magnetisation can be 

performed using either a refocusing RF-pulse in a spin-echo (SE) sequence or 

by using a refocusing gradient in the gradient-echo (GRE) sequence20.  

Several factors can result in magnetic field inhomogeneity and hence T2*. One is 

inherent inhomogeneity in the main magnetic field, while another is magnetic 

susceptibility in different tissue components such as ferritin and hemosiderin; or 

materials such as gadolinium (Gd) that are susceptible to magnetism and become 

magnetised in an applied magnetic field. Magnetic susceptibility is defined as the 

ability of the applied magnetic field to affect active nuclei and magnetise them. 

The magnetic moment of susceptible materials affects the external magnetic 

field, whether in a positive or negative way, resulting in local increases or 

decreases of the magnetic field, respectively. Tissue susceptibility to the 

magnetic field cannot be fully cancelled in the GRE sequence; unlike that seen in 

the SE sequence, the signal decay is dictated by both the T2 and T2* in GRE. 

Any T2-W image obtained by a GRE sequence is thus T2*-W rather than T2-W20. 

Heavy T1-W contrast image can be produced using an inversion recovery (IR) 

sequence, one of the SE sequences, which rephases the magnetisation using a 

refocusing RF-pulse. The IR sequence begins with a 180° inverting RF pulse, 

which flips the magnetisation to the negative B0, allowing the magnetisation 

vector to begin recovery from a full inversion and thus enabling greater T1 time 

differences between different type of tissues and maximising the signal producing 

the heavy T1-W contrast image. Several different image contrasts can be 

acquired using this sequence (e.g. T2-W and PD-W), although the TR is always 

long, the flip angle determines the degree of saturation and hence T1 recovery, 

while the TE, as always, controls the amount of T2 decay. Also, pathology 

weighted image can be generated using the IR sequence, by nulling signals from 

certain tissue so the adjacent pathology to that tissue or lesions within it can be 

easily recognised. Suppressing signals of specific tissue can be achieved by 

employing the excitation RF-pulse while that tissue has not recovered (no Mz 

magnetisation component), designated as the nulling point for that tissue or 
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inversion recovery time (TI). Fluid attenuation-IR (FLAIR) is the most commonly 

used sequence in brain imaging. It produces a T2-W image contrast while 

suppressing the CSF signal, which illuminates the pathology20, Figure 1.6. 

 

1.2.3 Contrast agents in MRI 

Although the intrinsic T1 and T2 relaxation processes in tissues cannot be 

changed, they can nevertheless be influenced. Introducing magnetically 

susceptible materials into tissue results in fluctuations of the local magnetic field 

that enhance the relaxation process of the magnetisation, which in turn reduces 

the relaxation times (T1 and T2) of nearby protons. This process enhances the 

contrast between tissues, and such materials are thus called contrast agents 

(CAs). CAs can be either a) formed endogenously, such as the de-oxygenated 

blood used in functional MRI (fMRI) and the magnetically labelled blood used in 

arterial spin labelling (ASL), or b) injected exogenously such as gadolinium (Gd). 

The accomplished contrast enhancement is depending on the susceptibility 

degree of the used CA and its concentration (in mmol/kg). The degree of the 

susceptibility of tissue (the magnetic behaviour of that tissue) is related to the 

movements of the electrons in its atoms, which induce magnetic moment and 

thus influence local magnetic fields. Inside the atom, in addition to the nucleus's 

spinning movement around its axis, electrons exhibit two types of movement: 

orbiting the nucleus and spinning about the axis. Electrons are organised in 

opposite polarities in the energy shells of an atom. In case of equal numbers of 

electrons, the opposing polarities cancel each other out to create a zero magnetic 

moment, known as a diamagnetic state. In contrast, atoms with partially filled 

Figure 1.6 a) T2-W and b) FLAIR MRI images 

a. b. 
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shells will have unpaired electrons that generate a net magnetic moment; this 

introduces positive susceptibility, whether paramagnetic, ferromagnetic, or 

superparamagnetic.  

Paramagnetic exogenous CAs, often gadolinium-based CAs, demonstrates low 

positive susceptibility, are the most used in neuroimaging. Gd does not provide 

signals directly; instead, its magnetic properties impact the relaxation times of the 

surrounding tissue molecules. The effect of the CA on tissue relaxation times per 

molar concentration is called the relaxivity, and this is specific for each agent. As 

the concentration of the CA in mmol/kg increases, the generated effect also 

increases. Such paramagnetic agents reduce the T1 of nearby tissue molecules, 

thus increasing the signals on T1-W imaging so that they appear brighter (positive 

effect). They also reduce T2 and T2*, and on T2-W and T2*-W images, such 

signal reductions appear dark (negative effect). Since the T2* and T2 time of the 

biological tissues are much shorter than their T1 values, the impacts of the same 

concentration of Gd produce a more significant reduction of T1 compared to T2* 

and T2. Accordingly, a higher concentration is needed to produce significant 

reductions of T2* and T220.   
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The tissue concentration of the injected CA changes with time22, as shown in 

Figure 1.7. The injected bolus requires ~20sec of transportation before the 

concentration in the blood circulation increases to form a peak (Fig. 1.7a). This 

peak represents the first pass of the bolus in the blood circulation with the highest 

CA concentration. Blood vessels in the central nervous system (CNS) have a 

blood-brain barrier (BBB) with selective permeability; thus, in normal 

circumstances, the CA cannot cross through the intact BBB. The next portion of 

the curve (Fig. 1.7b), therefore, is due to bolus recirculation in vasculatures as 

the BBB prohibits the contrast agent molecules from crossing into the brain tissue 

interstitium. In contrast, in brain tissue with dysfunctional BBB (e.g. gliomas), the 

curve has a completely different shape (Fig. 1.7c), due to bolus recirculation in 

the vasculature as well as bolus leakage and accumulation in brain tissue 

interstitium, which slowly appear in brain tissue and accumulates over minutes. 

Figure 1.7 Changes in tissue enhancement following injected contrast agent with time. a: 

due to the bolus arterial first pass, this curve would not be seen in-vivo, because the 

contrast agent is not eliminated immediately but recirculate in brain vasculatures with intact 

blood-brain barriers (BBB), which is demonstrated on b) the curve represents the total 

tracer concentration in the blood (first pass plus the recirculation in the vasculature) and it 

represents the typical arterial input function curve (AIF) in-vivo. c: Uptake curve in tissue 

with a breakdown of the BBB. Note that the second part of the curve decays much slower 

(solid line) because the contrast agent molecules leak and accumulate in the interstitium 

and do not decay until the bolus is eliminated from the interstitium. d: Tissue enhancement 

(solid line) due to the presence of contrast agent in the vasculature plus that in the 

interstitium. Reprinted from Perfusion and vascular permeability: Basic concepts and 

measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging. 2013;94(12):1187-1204. 

doi:10.1016/j.diii.2013.10.010. 
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About 90 minutes after CA injection, the concentration is steadily reduced by 

excretion through the kidneys. In general, the first pass of the CA can be 

measured using fast imaging, which enables the assessment of the vessels 

qualitatively, or quantitatively using MR-angiography (MRA) or MR-perfusion, 

respectively. The second part of the curve represents the contrast extravasation 

/ recirculation and can be assessed qualitatively or quantitively, using 

conventional T1-W image post-contrast or dynamic contrast-enhanced (DCE) 

methods, respectively. 

Most of the CA is excreted by the renal system and hence affects this system. 

Normal kidney function excretes Gd rapidly without affecting the patient, but the 

half-life of Gd in the body increases for patients with impaired kidney function. 

There is also an association between the usage of Gd CA in MRI procedures in 

patients with renal insufficiency and nephrogenic systemic fibrosis (NSF) 

complications23. Gd is, therefore, contraindicated for patients with renal 

insufficiency. The glomerular filtration rate (GFR) is used to estimate the 

effectiveness of the renal function, based on laboratory blood tests. The kidney 

function can be categorised using GFR as a) normal kidney function, GFR > 60 

ml/min/1.73m2; b) a moderate reduction in kidney function, GFR 30-59 

ml/min/1.73m2; or c) severe reduction in kidney function, GFR < 30 

ml/min/1.73m2. 

Gadolinium is a heavy metal ion with free electrons that tends to accumulate in 

tissues. Fortunately, there are substances able to bind to these toxic ions and 

reduce its toxicity, known as chelates. The binding of gadolinium ions to chelates 

forms low molecular weight water-soluble agents that can be safely excreted by 

the kidneys. Various chelate structures form different agents of varying safety. 

Carrier ligands (chelates) may be linear or macrocyclic molecules, and these can 

also be subdivided into ionic or non-ionic types, creating four groupings. Stability 

of the selected gadolinium chelate is a crucial safety consideration, as this affects 

the way in which the chelate enables excretion of the toxic gadolinium. Unstable 

molecules, where the gadolinium easily separates from the chelate (de-

chelation), can thus result in gadolinium deposition in the body. The European 

Medicines Agency (EMEA) has classified Gd CA according to the risk of de-
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chelation into high- medium- and low-risk groups. Linear non-ionic agents are the 

riskiest, as they are most likely to separate from the Gd3+ ions, while linear ionic 

agents offer a medium risk of releasing free Gd3+ into the body. Macrocyclic 

agents are the safest, that is, the least likely to de-chelate from Gd. The EMEA 

Committee recommends 

(https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-

containing-contrast-agents) that linear Gd-agents should be suspended except 

gadoxetic acid and gadobenic acid should only be used for liver scan in situations 

where they are necessarily required. The use of low-risk macrocyclic agents can 

be continuing to be used, with caution, considering the clinical risk to benefit 

ratios. 

1.3 Advanced MRI 

The MRI image contrasts discussed in the previous sections are conventional 

images that provide morphological information about tissues with excellent 

contrast and resolution. Advanced MRI permits more precise assessment and 

facilitates the understanding of normal physiological and pathophysiology 

processes. The most commonly used advanced MRI techniques for glioma 

diagnosis include diffusion-weighted imaging (DWI), MR spectroscopy (MRS), 

and MRI-perfusion, with dynamic susceptibility contrast (DSC), is the most 

frequently utilised format, along with dynamic contrast-enhanced (DCE) and 

arterial spin-labelling (ASL). 

1.3.1 Diffusion-weighted imaging (DWI) 

Diffusion-weighted imaging (DWI)24,25 produces image contrast based on the 

mobility of particles inside tissues. Diffusion is the random movement of the 

molecules within and between various tissues in the body; these moving particles 

thus change their locations over time. In addition, the molecular diffusion inside 

living tissues encounters different degrees of restriction depending on the various 

structures of those tissues or the presence of any pathology. MRI can be used to 

track the diffused protons in tissues by employing two gradients following the 

excitation RF pulse that have the same magnitude but in opposing directions, 

thus dephasing and rephasing the spinning protons. Unlike a typical gradient, 
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these are stronger in magnitude (G) and last for a longer duration (δ), being 

separated by a time interval (Δ). The strength and timing of the diffusion gradient 

is thus represented by a factor known as the b-value, measured in s/mm², which 

is given by 

 

 b =  γ² G² δ² (Δ − δ/3) Equation 1.2 

Stationary protons return to the same phase as they dephase and rephase, and 

thus produce a strong signal. Moving protons, however, end up out of phase at 

various degrees in a manner directly proportional to the molecule displacement 

across a given area of tissue per unit of time. This is because the moving protons 

do not experience the equivalent oppositional gradient (the second gradient) due 

to their displacement and hence produce lower or no signals. Any movement type 

may contribute to this diffusion of signals, including blood flow at the capillary 

level (perfusion). True diffusion, which reflects the slow motion of the protons in 

the intra- and intercellular tissue, is thus best detected by using high b-values, as 

the effect of blood perfusion becomes negligible at high b-values26. A form of 

diffusion imaging called intravoxel incoherent motion (IVIM)26,27 has also 

emerged that can provide information regarding perfusion and diffusion based on 

measuring the signals at multiple low and high b-values. 

Generally, the protons can move randomly in three dimensions (3D) X, Y and Z. 

Therefore, MRI needs to sensitise the diffusion gradients across the three 

cartesian planes and average the acquired signal over the voxel. On DWI the free 

diffusible protons show high signal loss and appear dark (e.g. CSF), while the 

restricted protons will show as bright or various shade of grey, depending on the 

amount of the local diffusion restriction. 

DWI has a long TE to accommodate the diffusion gradients, generating a T2 

predominant MR image. The long TR and a TE with a b-value=0 s/mm² provides 

a T2-W image while increasing the b-value changes the image contrast from T2 

to DWI. Subsequently, pathological tissues with long T2 decay, which are usually 

bright on T2-W images, remain bright on the DWI, causing artefacts that are 

referred to as T2 shine through24,25. Bright areas on the DWI are thus often 
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confusing, as it is difficult to determine whether they are areas of a restricted 

diffusion or just T2 shine through. An apparent diffusion coefficient (ADC) map 

facilitates differentiation of T2 shine through artefacts, and true diffusion 

restriction; as the ADC map estimates the moving protons' displacement across 

the tissue area per unit of time independently of the baseline T2 decay of the 

DWI, hence reflecting the effects of the diffusion itself. On the ADC map, the 

freely moving protons show as bright areas (e.g. CSF), while the restricted 

protons remain dark. Thus, if an area demonstrates bright signals on DWI but 

remains dark on the ADC map, this confirms it as a true diffusion restriction. 

However, if an area shows bright signals on both the DWI and ADC map or bright 

on DWI while no change on ADC, this suggests that it is simply a T2 shine through 

artefact, illustrated in Figure 1.8.  

 

1.3.2 Magnetic resonance spectroscopy (MRS) 

Magnetic resonance spectroscopy (MRS)28 is a technique that allows analysis of 

the chemical composition of tissues, in particular the presence and concentration 

of various metabolites. As previously mentioned, MRI signals can be acquired 

from the MR active nuclei, which have an angular moment. Each of these MR 

active nuclei has its gyromagnetic ratio, resulting in the production of different 

precessional frequencies under the application of the external magnetic field. 

This frequency variation enables the imaging of various MR active nuclei based 

on tuning the RF coil to transfer electromagnetic energy at the appropriate 

Figure 1.8 T2 shine-through effect. A) 

hyperintense lesion in the left hemisphere on 

T2-W image; B) also appears bright on the 

FLAIR image; C) appears bright on DWI while 

no changes appear on D) ADC map. reprinted 

from Diffusion-weighted imaging: Basic 

concepts and application in cerebral stroke and 

head trauma. Eur Radiol. 2003;13(10):2283-

2297. doi:10.1007/s00330-003-1843-6. 
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frequency. MR active nuclei such as hydrogen, which are found in molecules with 

different chemical environments, also express varying precessional frequencies 

due to the impacts of the electron shields of the neighbouring nuclei within a given 

molecule. This diversity in precessional frequencies among hydrogen atoms in 

different molecules is referred to as a chemical shift, and it is on the order of parts 

per million (ppm) equal to 10-6. The ppm scale is used instead of a Hertz scale, 

as it is not affected by the strength of the used magnetic field. The chemical shift 

effect forms the basis of MRS, with metabolite quantified in terms of its specific 

chemical shift ((𝛿(𝑝𝑝𝑚)):   

 

 𝛿(𝑝𝑝𝑚) =
𝑓𝑠𝑎𝑚𝑝−𝑓𝑟𝑒𝑓

𝑓𝑟𝑒𝑓
 Equation 1.3 

Where 𝑓𝑠𝑎𝑚𝑝 symbolise precessional frequency of the metabolite under 

investigation; 𝑓𝑟𝑒𝑓 symbolise the precessional frequency of the reference 

compound, which is tetramethylsilane (TMS). The reference point at zero ppm is 

represented by the resonance frequency of hydrogen atoms in TMS (Si(CH3)4) 

because the hydrogen atoms symmetrically distributed and experience the same 

environment. Using TMS as a reference point, thus, the resonance signal from 

the other metabolites hence shifted downfield to TMS. 

MRI measures the signals from the abundantly available hydrogen/proton atoms 

in a living body in different ways, reflecting the various magnetic properties of 

these tissues (T1, T2, diffusion). MRI signals acquired in 2D or 3D in the time 

domain are converted to the spatial domain using a fast Fourier transformation 

(FFT), due to the use of gradients that encode the position in different 

frequencies. MRS, however, provides quantitative biochemical information about 

the scanned tissue acquired in the time-domain, without spatial information, and 

transforms it into the frequency domain. This forms a spectrum in which the x-

axis represents the chemical shift of various metabolites in ppm, and the y-axis 

demonstrates signal intensity and the area under each peak is proportional to the 

concentration of that metabolite. MRS signals or spectra can be generated from 

hydrogen (1H-MRS) as well as from the other MR active nuclei. For example, 

phosphorus (³¹P) or carbon (¹³C), which are referred to as ³¹P-MRS and ¹³C-MRS, 
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respectively. 1H-MRS spectrum is the most widely used in clinical imaging in the 

brain, and it allows the quantification of protons in different chemical 

environments including N-acetyl aspartate (NAA), creatine (Cr), Myo Inositol (mI), 

and choline (Cho)28. These metabolites (see table 1.1) are involved in cellular 

metabolism, and thus MRS enables assessment of tissue metabolism, with 

changes in amplitude providing clinically useful information to aid diagnosis. The 

concentration of these molecules is generally low relative to the preponderance 

of water and fat molecules, however, making it important to eliminate fat and 

water signals to allow observation of the metabolites of interest. Fat can be 

avoided by putting the MRS voxels within the brain tissue at a point away from 

fat and bone marrow. At the same time, water suppression is achieved by either 

chemical shift selective (CHESS) or IR (Inversion Recovery) techniques28,29. The 

1D spectrum of the MRS is acquired using single-voxel spectroscopy (SVS) or 

multi-voxel chemical shift imaging (CSI), and table 1.2 summarises the main 

differences between them. As in MRI, TE impacts the observed molecular 

information in the MRS spectrum: MRS with a short TE observes metabolites with 

short and long T2s, while MRS with a long TE monitors only those metabolites 

with long T2s28,29.  

  

Table 1.1 Table.1.1 Summary of the detectable metabolites 

from 1H-MRS spectra. Reproduced from 

https://ispub.com/IJRA/17/1/17730 

  

https://ispub.com/IJRA/17/1/17730
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1.3.3 Perfusion MRI  

Perfusion MRI is a functional imaging method that produces advanced image 

contrast; the resulting images allow for quantitative measurements that reflect 

relevant functional characteristics such as cerebral blood flow (CBF) and cerebral 

blood volume (CBV). These measurements mirror the regional haemodynamics 

of the micro-vasculature, which in turn represent cerebral metabolic demand30 

and tumour pathophysiology31. MRI methods for perfusion imaging can be 

classified into non-diffusible and diffusible perfusion, which use exogenous (e.g. 

paramagnetic gadolinium (Gd)) and endogenous (e.g. blood water) tracers, 

respectively. Non-diffusible perfusion MRI methods include dynamic 

susceptibility contrast (DSC), which exploits the magnetic field susceptibility 

caused by the first-pass of a high concentration of an extrinsic CA using dynamic 

T2*-W; and dynamic contrast enhancement (DCE), which uses extrinsic CA 

followed by dynamic T1-W. In contrast, the main diffusible perfusion MRI method 

is arterial spin labelling (ASL), which uses magnetically labelled arterial blood 

water as an inherently diffusible tracer. ASL thus provides a non-invasive imaging 

method that generates absolute CBF quantification. Chapter 2 provides more 

details regarding these MRI perfusion methods, as they are the main techniques 

used in this thesis. 

Table 1.2 Single voxel and multi-voxel method comparison. Reproduced from http://mriquestions.com/single-v-

multi-voxel.html 

http://mriquestions.com/single-v-multi-voxel.html
http://mriquestions.com/single-v-multi-voxel.html
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1.4 MRI for glioma primary diagnosis 

The biological changes inside gliomas, due to the involved molecular profile, 

induce changes mirrored on images as radiological features. Link these features 

to the biological changes (e.g. cellularity, neoangiogenesis) and molecular profile 

(e.g. IDH-mutation, 1p/19q codeletion) provide important information that can be 

used to characterise gliomas as a surrogate non-invasive biomarker for the 

gliomas genotypes. Conventional MRI images help to determine tumour 

morphology and location in brain tissue based on the use of various imaging 

contrasts, such as T1- and T2-weighted images (T1-W and T2-W, respectively), 

while fluid-attenuated inversion recovery (FLAIR) is used to provide information 

regarding oedema. Post-contrast T1-W (T1-c) allows the clinician to identify any 

regions of disruption to the blood-brain barrier (BBB)3233. Moreover, the advanced 

MRI images give complementary information regarding the tumour 

pathophysiology leading to better gliomas characterisation. For example, tumour 

cellularity can be evaluated using DWI while tumour proliferation and 

angiogenesis can be evaluated using perfusion MRI and/or MRS. 

Gliomas grading is a cornerstone in treatment planning. Enhancement 

considered as HGGs predictor, nevertheless, enhanced T1-c can be 

misinforming as some LGGs exhibit contrast enhancement, while lack of 

enhancement can also be noticed in some HGGs34. Necrosis is a hallmark of 

glioblastoma, which is due to the increase of cell proliferation, mitotic activity with 

insufficient blood supply. The enhancement pattern in glioblastomas appears as 

irregular enhancing thick rind surround hypointense (non-enhanced) necrotic 

tissues. DWI allows determination of tumour grade based on cellular density, 

where HGGs have higher cell density than LGGs; accordingly, restricted diffusion 

with lower apparent diffusion coefficient (ADC)35. Angiogenesis development also 

reflects the tumour type36, making it a key element of tumour pathophysiology31. 

Tumour growth exceeding 1 to 2 cm in diameter depends on angiogenesis to 

supply blood and nutrition to the tumour tissue, and this plays a critical role in 

tumour survival, development, and malignant transformation37,38. Measurement 

of the cerebral perfusion at the capillary level yields more accurate diagnosis 39–

41. Relative normalised cerebral blood volume (rCBV) from dynamic susceptibility 
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contrast (DSC) MRI is the most validated perfusion MRI parameter, thus the most 

widely clinically utilised. HGGs generally display higher rCBVs than LGGs42. 

However, oligodendrogliomas produce a confounding effect in that, and even 

when they are low grade, they express perfusion values that exceed the assigned 

threshold (1.75 mL/100 g to characterise LGGs from HGGs)42,43.   Alternative 

MRI perfusion methods such as dynamic contrast enhancement (DCE) or arterial 

spin labelling (ASL) also appear beneficial44,45; unfortunately, these are not 

generally integrated into clinical practice due to more elaborate, non-

standardised post-processing and validation. Metabolites changes using MRS 

gives valuable insight into the tumour metabolism and aid the diagnosis process. 

The MRS principal benefit is in deciphering the metabolic profile of gliomas and 

hence helping in their staging and in differentiating them from non-neoplastic 

lesion46. The main altered metabolites in gliomas are N-acetyl aspartate (NAA), 

total choline compounds (Cho), and in less extent, the total creatine compounds 

(Cr). Increased Cho levels accompanying reduced NAA levels suggest tumour 

malignancy, as these are attributed to increased cellular membrane turnover and 

breakdown of neuronal integrity, respectively. Presence of lipid/lactate peak 

correlates with a necrotic portion of the tumour and may associate with grade 

IV47. Another potential advantage of metabolic imaging like MRS lies in the better 

characterisation of oligodendrogliomas grade II, which have been commonly 

misclassified as HGGs due to increased rCBV levels48; Oligodendroglioma WHO 

grad II were differentiated form anaplastic oligodendroglioma WHO grade III 

using Cho/Cr ratio with 100% sensitivity and 83.3% specificity with a cut-off value 

of 2.3349. 

In the current WHO classification (2016), IDH testing is the first step in molecular 

characterisation. IDH mutation occurs early in gliomas with high frequency in 

WHO grade II and III astrocytoma, oligodendroglioma and secondary 

glioblastoma. Gliomas that harbour IDH mutation reported with longer survival 

time than those without such a mutation3. Presence of IDH mutation results in 

changes in metabolism, cellularity and angiogenesis, which in turn demonstrated 

as imaging features. On conventional MRI, frontal location, well-defined margin, 

with less frequent enhancement reported as radiological differentiation feature for 
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IDH-mutant gliomas50–53. In contrast, dense enhancement pattern is predictor 

sign for the gliomas with IDH-wt52,54. This different enhancement patterns on T1-

c is due to the influence of the IDH-status on the VEGF expression. Enhanced 

brain lesion indicated dysfunction BBB which is impacted by the VEGF 

expression55. Higher VEGF level occurs in gliomas cells than that in normal brain 

cells, which promotes angiogenesis and is associated with higher WHO grade55. 

Besides, the lower expression of VEGF in gliomas is associated with mutated 

IDH56. High rCBV is also reported as a sign for IDH-wt gliomas52,57. High ADC 

has recently been highlighted as characteristic of IDH-mutated glioma52. Recent 

facilitation of detection of 2-hydroxyglutarate (2HG) by MRS has been reported 

with excellent diagnostic performance for the prediction of IDH mutant gliomas58. 

IDH mutation can be found in astrocytoma and oligodendroglioma, with 

concomitant codeletion of 1p/19q is a molecular signature of oligodendroglioma 

and can be used to differentiate astrocytomas from oligodendrogliomas. Gliomas' 

patients with 1p/19q codeleted have been reported with better response to 

chemotherapy which improves the clinical response and predicted long-term 

survival. Therefore, discriminate codeleted from intact 1p/19q has diagnostic, 

prognostic and predictive indispensable value. On conventional MRI, frontal 

location with an indistinct border is more likely to be IDH mutated with codeleted 

1p/19q54. In contrast, the presence of T2-FLAIR mismatch has been reported as 

a highly specific imaging marker for IDH-mutation and intact 1p/19q 59. T2-FLAIR 

mismatch sign is where the lesion appears hypointense on the FLAIR image 

except a hyperintense peripheral rim, as compared to the homogenous 

hyperintensity observed on T2-W images.  

1.5 Image analysis  

MRI images can be assessed qualitatively by visual inspection and/or in a semi- 

or absolute quantitatively way. Most clinical MRI acquisitions are assessed 

qualitatively, yet, as long as such assessment depends on human visual 

perception, there will be an inevitable degree of variability based on training, 

experience, and the individual judgement of radiologists. Quantitative MRI 

assessment has thus begun to be used more recently, based on the estimation 

of numerical maps of meaningful variables within a specific unit that can thus be 
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compared within and between patients. Quantitative MRI assessment uses the 

MRI scanner as a measuring device to measure various properties for each tissue 

voxel, making it important to ensure that the output of the quantitative MRI reflects 

the patient's biology rather than scanner fluctuations. This means that any 

quantitative measurements must be accurate (close to a true estimate), 

reproducible (repeatable measurements over a short period), and biologically 

relevant.  

Image analysis involves three stages: pre-processing, processing and post-

processing, all of which are prior to the diagnosis and clinical decision. The pre-

processing step begins with a quick visual quality assessment of the raw data to 

facilitate preparation for further analysis by reducing sources of variation, such 

as adding correction for patient motion, removing non-brain tissue images, and 

removing any images with artefacts, thus, achieving the best possible results. 

After that, image processing involves quantitative maps generation in a specific 

unit by fitting the corresponding mathematical model(s) to the data. Finally, the 

image post-processing phase enhances the generated maps by using techniques 

such as co-registration to overlay them with high-resolution anatomical images. 

Segmentation of the region of interest (ROI), the cluster of voxels defining the 

location and extent of the lesions on the image, is also performed to increase the 

sensitivity and specificity of the measurement to disease addressed. ROI 

segmentation may be performed manually or automatically, being implemented 

on one slice to create a 2D image or in the form of slice by slice delineation of the 

tumour volume to create a 3D volume which enables more accurate assessment 

of the extent of the lesion. Commonly, the images are saved as 16-bit integers 

(Int16) ranging from -32768 to +32767; thus, following application of the image 

scaling, i.e. the values in a specific unit, the pixel values may retain negative 

values which will affect the measurements. As the post-processed images based 

on physical models, the negative values are generally not physically relevant but 

represent artefacts. Therefore, applying the tumour mask to estimate quantitative 

measurements values less than or equal to zero are excluded. 
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1.5.1 Texture analysis and radiomics 

Maximum, minimum and averages over all voxels of the ROI are usually 

calculated and used for disease classification. The signal intensities are generally 

spatially variable across the ROI or VOI (volume of interest) creating the so-called 

image texture features.  A single value, such as a maximum or average, is not 

sensitive to represent the precise status of a heterogeneous environment seen in 

tumours, and thus MRI images using the spatial variation of texture intensities 

permits better tissue classification. The textures of MRI images are derived from 

the signal intensities of the pixels/voxels throughout the ROI/VOI. These 

pixels/voxels are placed together in many various ways, which could represent a 

specific pattern. Statistical approaches can thus be used for characterisation of 

image textures that quantitively describe the arrangements of these intensities. 

Statistical texture analysis methods involve three orders: first-order, second-

order, and higher-order statistics, all of which represent the statistical properties 

of the pixels; however, the second-order and higher-order methods, unlike the 

first-order method, take into account the spatial relationships between the pixels.  

The first-order statistical method, commonly called histogram analysis60, 

quantitatively measures the probability distribution of the signal intensities as a 

univariate variable in the ROI/VOI (Figure 1.9). The resulting histogram is a 

graphical representation of the frequency distribution of the signal intensities in 

the ROI/VOI, with its x-axis representing the signal intensities across a range of 

values (bin width), while the y-axis represents the pixel counts or percentages 

(bin length). The bin width of the histogram can be adjusted to accommodate 

different ranges of signal intensities, and the counts or percentages of pixels 

within a certain range can thus be estimated. The percentage (relative frequency) 

of pixels is calculated as the ratio of the pixel count within a range of signal 

intensities to the total pixel number in the ROI/VOI. A relative frequency histogram 

also sets the area under the histogram curve equal to one, thus removing any 

variation due to different tumour sizes61. 

Summary values from first-order statistics62 describe the data in many aspects. 

These include: a) the central tendency of the data distribution, using the mean 

and median; b) the variability of the data, using standard deviation (SD) and 
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variance (var); c) the ways in which the values of the data are spread out, using 

minimum, maximum, mode, percentile/centile, inter-quartile range (iqr); and d) 

the shape of the data distribution, using kurtosis and skewness. The mode 

represents the most frequently repeated value within the data set. In contrast, 

percentile/centile scoring of the values in the data set (e.g. 95th percentile (95-

tile)), identifies where specific values fall as compared to the other values within 

a data set. The inter-quartile range (iqr) measures the distance between the first 

quartile (Q1), or 25-percentile, and the third quartile (Q3), or 75-percentile, which 

represents the distribution of the middle portion of the data set. Kurtosis 

measures the probability of data points falling in the histogram tail, with 

platykurtosis indicating a short and broad tail with a flatter peak (kurtosis<0) and 

leptokurtosis indicating a long and narrow tail with a sharp peak (kurtosis >0). 

Skewness measures the histogram tails’ asymmetry, where a skewness>0 shows 

an elongated tail on the right-hand side, while skewness<0 demonstrates an 

elongated tail on the left-hand side.  

Any randomness in the data can also be investigated using histogram entropy, 

though care must be taken while calculating histogram entropy because it is 

affected by the histogram bin width size, which in turn determines the probability 

values inside that bin, as seen in equation 1.4. The z-score measures how far a 

specific value (e.g. median) deviates from the mean based on the standard 

deviation unit (equation 1.5). This standardises the distribution and enables the 

comparison of various ROIs with different kinds of variability. As a hallmark for 

heterogeneity inside the ROI, the slope of the cumulative distribution function 

(CDF) curve can be used as it accumulates all the probabilities less than or equal 

to a specific value, see equation 1.6. 

 Entropy = −sum(probabilities.∗ log2(probabilities)) Equation 1.4 

 

 

 Zscore = (value − mean)/SD Equation 1.5 
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 CDF slope = (95 − 10)/(tumour 95tile − tumour 10tile) Equation 1.6 

 

 

Combining the estimated values from the histogram analysis enables better 

characterisation of various image textures, just as identifying someone’s face by 

combining their facial features is easier than recognising just one feature. This is 

the core idea of radiomics60,63,64, which posits that combining radiological features 

can help to predict diseases. Similarly, just as different people have varying 

abilities to recognise facial features and match them to a person, different MRI 

methods offer different abilities to characterise diseases. A large number of 

a. b. 

Figure 1.9 show the histograms and cumulative distribution functions (CDF) curves of (a) 

perfusion and (b) diffusion MRI maps for whole tumour volume of glioblastoma. The black curve 

demonstrates the histogram’s probability density function (PDF). The red line on the CDF curve 

represent the slope between the 10th and 95 percentiles. The perfusion histogram (a) 

expresses a left skewed peak, while the diffusion histogram (b) shows a right skewed peak, 

both expressing the glioma’s malignant transformation. 
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quantitative data are extracted from histogram analysis, most of them are highly 

correlated (creating hence redundancy in the final diagnostic or prognostic 

model) and/or could not distinguish the data according to the predefined classes 

(irrelevant). Both contribute to the so-called model overfitting, which is the noise 

that negatively impacts the performance of the model and, hence reduces its 

accuracy. Feature reduction is thus a major step in radiomics in the search to 

enhance model accuracy and limit the complex elements involved in prediction 

or classification tasks.  

The final step in a radiomic pipeline is statistical analysis63,64. This step 

investigates the relationship between the final features set (input) and the 

predefined diagnostic class labels (outcome), such as the WHO grades of 

gliomas, using a regression model or machine learning (e.g. support vector 

machine). The performance of the regression model, which in turn reflects the 

radiomics performance, and can be reported using the so-called confusion 

matrix, (Figure 1.10). It is a table that sorts the predicted classes against their 

true classes. Each row expresses the instances in predicted classes while each 

column shows the instances in the true classes. This table, thus, depicts the true-

positive (TP), true-negative (TN), false-negative (FN) and false-positive (FP) 

results. These four outcomes of the confusion matrix allow calculation of the 

summary statistics (equations 1.7 to 1.12) that describe the histogram parameter 

performance in classification. The F1-score reflects the classification accuracy 

for imbalanced sample size in each group, and the weighted average F1-score 

represents the overall model accuracy taking into account the contribution of each 

group to the final prediction accuracy. The positive predictive value (PPV) 

estimates the probability that a patient with a positive test result truly has the 

disease, while the negative predictive value (NPV) estimates the probability that 

a patient with a negative test result truly does not have the disease; sensitivity 

thus measures the true positive rate, representing the percentage of patients who 

test positive and do have the disease, while specificity is the true negative rate, 

as it represents the percentage of patients who test negative and who do not 

have the disease. 
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 F1 =  2 x 
precision x recall (or sensitivity)

precision +  recall
   Equation 1.7 

 

weighted average F1

=  
sum (F1n x sample size)of the classes

total sample size
   

Equation 1.8 

 PPV or precision =  
TP

TP +  FP
   Equation 1.9 

 NPV =  
TN

TN +  FN
   Equation 1.10 

 sensitivity or recall =  
TP

TP +  FN
   Equation 1.11 

 specificity =  
TN

TN +  FP
   Equation 1.12 

Figure 1.10 Confusion matrix, and its four outcomes. 
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2 Methodology 

2.1 Tracer kinetics and tissue concentration-time curve basic concepts 

This chapter describes the main MRI methods for measuring perfusion, also called 

blood flow, or by definition the delivery of nutrients to the capillary bed. The central 

volume principle66,67 describes the direct relationship between the cerebral blood flow 

(CBF), cerebral blood volume (CBV) in a given volume of tissue and the average time 

for the tracer to pass through the capillary bed in it, known as mean transit time (MTT), 

is defined as such (Eq.2.1): 

 
𝑀𝑇𝑇 =

𝐶𝐵𝑉

𝐶𝐵𝐹
 Equation 2.1 

For a freely diffusible tracer, as its concentration slowly raises in the tissue, through 

arterial blood flow delivery, the tissue concentration (CT) raises first with a negligible 

outflow by the venous blood flow. With time, the tracer molecules wash out via the 

venous blood flow until both arterial blood concentration (CA) and venous blood 

concentration (Cv) of the tracer reach equilibrium: CA=Cv. The higher the inflow rate, 

defined by local cerebral blood flow (f), the quicker the arterial and venous 

concentration will reach the equilibrium. MTT can also be seen as the required time to 

reach that equilibrium value.  

The distribution of the tracer between tissue and blood after they reach equilibrium is 

described by the volume of distribution (λ). Therefore, for a freely diffusible tracer, 

which diffuses into all spaces of the tissue, λ=1. However, for an intravascular tracer, 

which will be distributed through a small fraction of the tissue space, λ < 1. Since the 

intravascular tracer is restricted inside the healthy brain to the intravascular 

compartment, assuming an intact blood-brain barrier (BBB), λ=CBV. Consequently, for 

the same blood flow, the MTT of an intravascular tracer is much shorter than the MTT 

of a free diffusible tracer. These physiological parameters (f and λ) can be estimated 

from a concentration-time curve that mirrors the kinetic of the chosen tracer.  

In tracer studies, the essential measurements are tissue concentration over time CT(t) 

and the tracer concentration in arterial blood CA(t). Importantly, the system is assumed 

to be in steady-state , defined by a constant blood flow and neuronal activity. Models 
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of the tracer kinetics are generally connecting the CA(t) as an input and CT(t) as output. 

Kinetic models include several physiological parameters. Measuring these parameters 

is the goal of the kinetic analysis. 

The ideal arterial concentration-time curve CA(t) is perfectly rectangular with a clear 

border between the bolus wash-in, plateau (equilibrium) and wash-out68. In other 

words, the CA increase immediately, stay constant for a while then drop to zero. Non 

or little of the delivered tracer to the tissue volume cleared from the capillary bed. 

Subsequently, the CT(t) curve will increase due to the delivered blood volume to the 

tissue volume that carries tracer (Eq.2.2): 

 ∆𝐶𝑇 = 𝑓𝐶𝐴∆𝑡 Equation 2.2 

The CT curve initial slope is in this case proportional to f and the arterial concentration. 

As time goes on, the portion of the early delivered agent start to wash out from the 

tissue through venous clearance. If the arterial input is long enough, the rate of tracer 

wash-in by arterial blood flow is matched with the rate of clearance by venous blood 

flow, which is the equilibrium value, and the CT curve reach the plateau. At equilibrium 

and since the intravascular tracer distribute through a part of the healthy brain tissue, 

CA=Cv=CT/λ. As the CA concentration fall to zero, the CT concentration will decrease 

with time. Assuming the tracer outflow rapidly from the tissue via the venous blood, the 

Cv concentration and CT concentration remain in equilibrium, while the total 

concentration decreasing, which means the Cv equal to CT/λ while CT decrease. This 

clearance result in exponential decay of the CT curve (Eq.2.3): 

 𝐶𝑇(𝑡) ~ 𝑒
−𝑓𝑡 𝜆⁄  Equation 2.3 

Thus, each part of the CT curve is sensitive to different physiological parameters; the 

initial slope sensitive to f, the plateau to λ and clearance to f/λ as a ratio. 

A complete measurement of the CT curve is rarely measured. Instead, various MRI 

perfusion methods focus on different aspects of the curve. In addition, the essential 

difference between the kinetic of diffusible and intravascular tracers impact the 

sensitivity of the curve to the physiological parameters. In a healthy brain with an 

impermeable capillary network, the diffusible tracer has a larger volume of distribution 

(λ) compared to the intravascular agents, thus, for the same blood flow, the MTT for 
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intravascular agents is shorter than that required for the diffusible tracer. Since pre- 

and pot-equilibrium of the CT curve are the sensitive time intervals to blood flow while 

the MTT is the required time to reach an equilibrium value, thus, these transition 

periods are shorter for the intravascular agent. Subsequently, measuring the flow using 

the intravascular tracer is a matter needing to be deal with and overcome (i.e. a very 

narrow and sharp bolus that is shorter than MTT is needed and a fast-dynamic MRI to 

track every detail of the bolus kinetics).  

In practice, the CA curve is not a rectangular function, and the regions between the 

washing, plateau and washout are less clearly marked, which makes it difficult to 

directly relate the parts of the CT curve to the physiological parameters. Thus, a more 

general mathematical model (Equation 2.4) has been developed to make it possible to 

draw a general conclusion about how blood flow, blood volume and MTT impact the 

CT curve from an arbitrary CA curve.  

Indeed, the tissue CT curve at a specific time point (t) can be defined as the result of 

the delivered agent up to that time via the local CBF (f) (see Equation 2.2), plus the 

remaining agent from the previous delivery (residue function, (R(t))). This represents 

the local impulse response function, which is the product of the local blood flow and 

the residue function [f.R(t)]. Thus, the tissue concentration at time t is the convolution 

of the input function with the impulse response function (Eq.2.4): 

 𝐶𝑇(𝑡) =  𝑓 𝐶𝐴(𝑡) ∗ 𝑅(𝑡) Equation 2.4 

Where ∗ represents convolution, CT the tissue concentration-time curve, CA arterial 

concentration or arterial input function (AIF), f the local CBF, R(t) is the residue 

function. 

The residue function is a time function, defined as the agent that is delivered at t=0 

and remains still there at time t. Assuming each molecule of agent has the same 

probability of entering to and washing out of the capillary bed, at the onset R(t=0) = 1, 

because there is no time for the delivered tracer molecules to leave; then, it decreases 

with time and become zero as the tracer completely washed out. Thus, R(t) represent 

the transit time distribution of the tracer molecules through a tissue, hence, its integral 

equal to MTT= λ/f. 
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The R(t) function hides the complexity of the transport and uptake of the agent. Thus, 

different agents have their own R(t) function with specified assumptions. For example, 

by assuming the tissue as a single well-mixed compartment, R(t) is described by an 

exponential decay (Eq.2.5): 

 𝑅(𝑡) ~ 𝑒−𝑓𝑡 𝜆⁄  Equation 2.5 

Understanding the R(t) function allows grasping two important characteristics of the 

local impulse response function: first, its initial amplitude is equal to f since R(t=0)=1. 

Second, the integral of the impulse response function is λ since the impulse response 

function is [f.R(t)] and the integral of R(t) is MTT= λ /f. 

2.2 MRI perfusion 

Measuring CBF can be achieved even using exogenous CA, such as paramagnetic 

Gd, or an endogenous agent (e.g. labelled blood water). 

2.2.1 Non-diffusible (exogenous) tracer 

In order to measure an accurate tissue CT curve that is sensitive to the haemodynamic 

parameters using the exogenous tracer, there is need for rapid imaging with high 

temporal resolution, a narrow bolus and a measurement of the local arterial CA curve, 

CA (referred to as arterial input function (AIF)). The measurement of the intravascular 

agent kinetics is easily able to provide CBV, unlike CBF measurements. 

Mathematically, the integral of the convolution of two functions is equal to the product 

of their separate integrals. Thus, from Eq.2.4 we have Eq.2.6 and 2.7; Consequently, 

the integral of CT curve over time is λ multiplied by the integral of the input function 

CA(t). This measurement is directly proportional to CBV, lacking for global scaling 

factor via AIF. 

 
∫𝐶𝑇(𝑡)𝑑𝑡 =  ∫𝑓. 𝑅(𝑡)𝑑𝑡  . ∫𝐶𝐴(𝑡)𝑑𝑡 Equation 2.6 

 

 
∫𝐶𝑇(𝑡)𝑑𝑡 =  ∫𝐶𝐴(𝑡)𝑑𝑡 Equation 2.7 

In contrast, the estimation of CBF is a matter needing to be deal with and overcome. 

As previously mentioned, MTT is very short in the instance of intravenous CA. Thus, a 
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very narrow and sharp bolus that is shorter than MTT is needed. This narrow bolus 

produces rapid changes in the arterial concentration preceding the action of tissue 

concentration equilibrium. Thereafter, the tissue CT curve becomes sensitive to the 

local CBF and reflects its speed. As a matter of fact, a fast-dynamic MRI is necessary 

to track every detail of the bolus kinetics, and hence reflect the local haemodynamics. 

MRI introduces the agent concentration changes over time as dynamic signal intensity 

(SI) variation. The measured SI can be evaluated even as it is (non-parametric/model-

free) or by parametric modelling. Assessment of the measurements from the SI time 

curve provide semi-quantitative indices that correlate with the haemodynamic changes 

arising from specific physiological conditions, but not reflecting them directly. In 

contrast, using the parametric modelling approach, where the SI is converted into a 

relaxivity-time curve, where the linear model is used to translate the relationship 

between the contrast concentration changes and the accompanying SI changes, 

hence producing a tissue CT curve which is as close as possible to reflect linearity 

between tissue signal and CA concentration. Fitting the kinetic model with specific 

underlying assumptions into that curve enables the kinetic parameters that directly 

relate to the physiological changes to be estimated. 

Arterial input function (AIF) 

The tissue CT curve is a result of both the AIF and the magnetic properties of the 

imaged tissue. To establish reliable tissue perfusion measurements (e.g. local CBF, 

CBV and mean transit time) the impulse response function needs to be estimated 

without the AIF. This is accomplished mathematically by deconvolution of the AIF from 

the tissue CT curve. Thus, the actual shape of the arterial CA curve needs to be 

estimated. Following CA injection in the antecubital vein, the bolus disperses as it is 

transported away from the injection site to the heart and toward the other organs, 

including the brain. This transport introduces a delay between the injection time and 

bolus entry into the scanned tissue. The bolus is delivered to the capillary bed as 

several instantaneous doses as if they are from multiple instantaneous injections. The 

measured AIF, therefore, represents an arbitrary shape that can be thought of as being 

the sum of these instantaneous injections, which helps to correct for the injection profile 

and the bolus delay and dispersion. 
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It is difficult, however, to estimate the actual AIF shape due to problems including: a) 

the signal changes with the bolus concentration non-linear inside large vessels that 

have a high CA concentration level, and b) the partial volume effect (PVE) when the 

AIF is calculated from small vessels near the tissue of interest to correct for bolus delay 

and dispersion.  

For the dynamic susceptibility contrast (DSC), the best estimates of AIF are from 

voxels near the tissue of interest and totally outside of the arteries69,70. This AIF 

estimate represents a compromise between the bolus delay and dispersion and the 

PVE, while approximates a linear relationship between the contrast concentration and 

the corresponding tissue relaxation. AIF measurements that have some degree of 

inaccuracy still provide a good approximation for its shape, which means that the 

perfusion maps (e.g. rCBF, rCBV) provided are relative. It is worth mentioning that 

brain tumours studies typically express perfusion values as the ratio between the 

obtained value from relative perfusion maps from the lesion to that obtained from the 

contralateral normal brain tissue; this is named as the normalised relative value 

(nrCBF, nrCBV).  

In contrast to DSC, DCE usually involves a compromise to generate dynamic data with 

adequate spatiotemporal resolution. Thus, besides the aforementioned factors that 

impact the accuracy of the AIF measurement, in DCE, the low temporal resolution 

results in additional bias in the AIF measurement. This is because slow data acquisition 

fails to capture the rapid changes in the arterial blood concentration and hence does 

not account for the mean transit time of the tracer to pass through the capillary bed. 

There are many approaches that have been used to assess AIF for DCE, and so far 

the best choice was found to be that determined for each patient individually based on 

reference from a venous structure 71, such as sagittal sinus, which is also reduces the 

PVE that noticed in small arteries. The underlying assumption behind this selection is 

that the area under the resulting curve from the venous selection is the same as the 

area under the AIF. 

The suitable voxels for AIF are characterised by fast bolus arrival, a steep slope (sharp 

uptake), a tight peak, and large maximum peak and area under the curve (long 

washout). These suitable voxels can be selected manually or identified automatically. 
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Manual selection needs to be done by an experienced user and is subjective, which 

may affect the reproducibility of the measurement. On the other hand, an automatic 

method thus may overcome the limitations of the manual method, as it uses a 

searching algorithm to identify all suitable voxels.  

The MRI perfusion methods based on bolus injection relate the changes in SI around 

the capillary network (due to the perturbations of the local magnetic field ) to the 

relaxation changes inside the vasculature due to the passage of the CA. The CAs are 

magnetically susceptible materials that reduce the relaxation times, including T2, T2* 

and T1. Consequently, result in a signal reduction on T2-W and T2*-W images and 

signal enhancement on T1-W image. The former method is known as dynamic 

susceptibility contrast-enhanced MRI (DSC), whereas the latter as dynamic contrast-

enhanced MRI (DCE). A detailed explanation of each method is presented in the 

following sections. 

a. Dynamic susceptibility contrast-enhanced MRI (DSC) 

DSC enables the capture of changes in the concentration of the injected CA over time. 

This manifests as a loss of signal due to the induced susceptibility effects, using 

dynamic T2*-W images. Thus, DSC-MRI does not measure the CA concentration 

directly, but indirectly via the induced changes in the T2* relaxation time due to the 

transition of the magnetically susceptible bolus. This provides the SI time curve, which 

follows the associated drop in signal over time with the increased CA concentration, 

and its passage through the capillaries of the target tissue. This curve used to be 

interpreted using summary parameters72 (model-free), including for example, bolus 

arrival time (BAT), time to peak (TTP), or maximum peak (MP). Even though these 

model-free DSC parameters are calculated directly from the SI time curve without 

extensive post-processing, they are semi-quantitative and are interpreted without a 

physiological basis. Moreover, these parameters are affected by the physiological 

variations (e.g. cardiac output, vascular status and route to the tissue), and the manner 

in which the study was carried out (e.g. the injection rate, CA injected volume and MRI 

acquisition parameters). 

In contrast, calculated model-based DSC parameters73 can be interpreted on a 

physiological basis. Quantification of these parameters requires measurement of the 
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AIF. The SI time curve is transformed into a relaxivity time curve using the linear 

relationship between T2* and the CA concentration, where a reduction in T2* from its 

original value (T20*) is attributed to an increase in CA concentration, see Eq.(2.11) 

below, that derived from Eqs. (2.8 to 2.10): 

 

 S(t) = S(0) 𝑒−
𝑇𝐸

𝑇2∗⁄  Equation 2.8 

 

 

 R2* = 
1

𝑇2∗
 Equation 2.9 

 

 R2* = R20*+r2*.C(t) Equation 2.10 

 

 R2* = - 
1

𝑇𝐸
 ln (

𝑆(𝑡)

𝑆(Spre−bolus)
) Equation 2.11 

Where S(t), is the SI at time t; Spre-bolus or S(0) is the SI prior to bolus arrival; R2* is the 

transverse relaxation with the CA; R20* is the transverse relaxation without the CA; r2 

is the relaxivity of the used contrast agent; C(t), is the intravascular concentration of 

the CA. 

The resulting area under the relaxivity time curve represents the CBV value. In order 

to fit the general kinetic model in Eq.(1), a suitable AIF needs to be defined. This 

provides calibrated measurements to the global perfusion and hence can determine 

the true tissue perfusion, based on the deconvolution analysis of the relaxivity time 

curve and the AIF curve. From this, the CBF and mean transit time (MTT) maps can 

be derived. MTT is defined as the value of the elapsed average time of the CA bolus 

within the volume (voxel) of the vasculature. Also, from the central volume 

principle66,67, it is defined as the ratio of CBV to CBF. 

Besides the general problems that accompany MRI perfusion methods that use 

intravascular agents (e.g. injection profile, dispersion and delay), which can be 

resolved using an AIF, DSC-MRI has its own sources of error. The DSC-MRI 

mathematical model assumptions involve a negligible T1 effect, and the BBB is intact. 

Thus, when the T1 effect ceases to be negligible (i.e. when it is expressed as an 
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increase instead of signal loss), the perfusion measurements’ accuracy is distorted. 

The T1 effect can be removed by using multi-echo sequences74,75. Still, most DSC-

MRI studies are performed using a single echo sequence, where the validity of the 

negligible T1 effect assumption depends on the sequence parameters,76 particularly 

TR, TE and flip angle (FA). TR is recommended to be 1.5 s or less to avoid 

compromising SNR and temporal resolution and keep the T1 effect negligible. TE 

should be 25-35 ms at 3T, as a trade-off between signal drop (perfusion signal) and 

SNR. FA should be between 60°-70° to balance the desirable SNR and reduced T1 

effect. An alternative approach to reduce the T1 effect is to inject a small pre-loading 

dose of CA (pre-load) 77, which is typically, one-quarter of the single dose, injected 5-

10 min before the DSC-MRI76. 

The T1 effect can become a major source of error in instances of severe BBB 

dysfunction77. The tissue CT curve of the DSC possesses an extra component, which 

is the recirculation part68. This appears as a small dip following the partial return of the 

curve to the baseline, reflecting the CA re-entering the target tissue. This recirculation 

introduces an overlap with the first passage of CA, but still the integral of this curve is 

proportional to the CBV, as the BBB is intact, and the CA is still circulating inside the 

vasculature. However, in case of a tumour, where the BBB disrupted, the CA leaks into 

the endothelium and remains there; this is referred to as the leakage effect. This results 

in erroneous measurements of CBV and an increase in the T1 effect. A useful 

approach to overcome this problem is to consider the early part of the tissue 

concentration-time curve (bolus first-pass) by using a gamma variation function78 

and/or preload76. 

Gradient echo (GRE) DSC-MRI is considered as a better choice for tumour imaging76. 

That is because the sequence is sensitive to a broad range of vessel sizes, including 

abnormal angiogenesis caused by tumours. However, this broad sensitivity could 

introduce macrovascular contamination and result in CBF overestimation. For this 

reason, Bayesian models79, which are used in physiological microvascular mode, have 

been used to overcome this source of error. 
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b. Dynamic contrast-enhanced MRI (DCE) 

Due to its higher spatial resolution and immunity to susceptibility artefact, DCE is 

sometimes favoured over DSC. In addition, DCE provides more interpretable 

physiological parameters that reflect the composition of tumour tissue, such as 

extravascular-extracellular space (EES) volume and microvascular permeability, by 

fitting the acquired dynamic data into a pharmacokinetic model (PK)80. Similarly, to 

DSC, DCE depicts the changes in the concentration of CA over time as a signal 

enhancement, due to CA-related shortening of the T1 of the tissue, using rapid 

repeated (dynamic) cine imaging. As the CA passes through the tissue of interest, it 

results in SI changes over time (S(t)), hence the relaxivity time curve can be 

determined. Quantifying perfusion metrics directly from the relaxivity time curve80 

based on a non-parametric model, such as the onset time (T0), time to peak (TTP) and 

maximum time (Tmax), is straightforward. Although these parameters can be derived 

simply, they do not directly reflect the underlying physiological process. 

On the contrary, parameters that reflect the functionality of the vascular tissue more 

accurately can be estimated using the parametric approaches. The first step to getting 

quantitative physiological parameters from the acquired-DCE raw data is to translate 

the SI changes (R1(t)) over time to tissue CT curve, Eqs. (2.12, 2.13). 

 

 R1(t) = R10+r1.C(t) Equation 2.12 

 

 R1 = 
1

𝑇1
 Equation 2.13 

Where R1, is the longitudinal relaxation with the CA; R10 is the longitudinal relaxation 

without the CA; r1 is the relaxivity of the used contrast agent; C(t), is the concentration 

of the CA in both intravascular and EES. 

Estimation of the tissue CT curve from the relaxivity time curve requires knowledge of 

the two variables in Eq.(2.8), R10 and R1. First, the original tissue T1 (T10) can be 

estimated from a separate pre-contrast sequence81 or by using an assumed baseline 

T10
82. Second, the signal enhancement (T1 reduction) is not as straightforward as that 

in DSC, because it depends on the sequence used; the most commonly used 
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sequence is the fast-low angle shot (FLASH) spoiled gradient echo Eq.(2.14). This 

sequence is able to provide high temporal resolution but compromises the SNR and 

the spatial resolution. The knowledge of these parameters besides the FA that is used 

in the acquisition provides a clear relationship between the signal enhancement and 

the CA concentration. 

 
S(t) = S0 

(1−𝑒−(
𝑇𝑅

𝑇1⁄ ))sin (𝜃)

1−𝑒−(
𝑇𝑅

𝑇1⁄ ) cos(𝜃)
 Equation 2.14 

This equation assumes TE<<T2
* (heavy T1-W) and hence neglects the T2

* effect, 

whereas S0 is the relaxed SI (TR>>T1, and FA=90°), θ is the implemented FA, and S(t) 

is the SI at time t. 

Once the tissue CT and the AIF curves are determined, fitting a PK model to the 

estimated CT curve is the second step towards determining accurate parameters that 

have physiological meaning. PK models describe the tissue CT as various rates and 

volumes related to the used model. There are several PK models, and the selection 

depends on the required indices for the specific clinical application. In addition, the 

estimation of certain microcirculatory indices depends on the acquisition conditions, in 

particular, the temporal resolution and the total acquisition time22. This is because 

depicting tissue perfusion requires rapid imaging, while assessment of extravasation 

(CA leakage) requires long scanning times. Thus, it is important to adapt the selected 

PK model to the scan timing used83 while designing the acquisition protocol according 

to the desired microvascular indices. 

Almost all studies investigating DCE parameters in gliomas use compartmental 

models, particularly the modified Tofts and Kermode (mTK) model84–86, due to their 

simplicity. The compartmental models describe the CA kinetics and exchange between 

the intravascular and EES spaces while assuming each of them as a compartment. 

These two compartments are well mixed; that is the arrival of the CA in each of them 

is instantaneous, hence at any given time, they have a uniform concentration of CA, 

and the outflow of CA for any of the compartments is directly proportional to its 

concentration. The mTK87 model accounts for the intravascular contribution to the 

tissue concentration to produce four maps: 1) fractional plasma volume (Vp, in %), 2) 

fractional volume of the EES (Ve, in %), 3) forward transfer constant from blood 



 

 

69 

plasma, or permeability constant (Ktrans, in min-1), 4) and reverse transfer constant to 

the blood plasma, or reflux constant (Kep, in min-1). This model cannot clearly separate 

the intravascular transport of the tracer molecules relative to their exchange process 

between intravascular and EES. Thus, the Ktrans from the mTK model incorporate 

both plasma flow (F) and vessels permeability surface (PS).  

Advanced models, such as the adiabatic approximated tissue homogeneity (AATH) 

model also known as St Lawrence and Lee model (L&L), allowed separate estimation 

of F and PS which respectively reflect the transport of the tracer molecules 

intravascularly and between the intravascular space and the EES; hence they reflect 

the underlying physiology more accurately and enable additional physiological 

parameters to be better estimated80. The L&L model describes the intravascular 

transport of the tracer molecules as a plug-flow, where the tracer travels through the 

capillary, defined as a tube, by flow and its concentration gradient specified along the 

z-direction, while the EES is treated as a well-mixed compartment. Besides, the tracer 

concentration in the EES compartment change in an adiabatic (slow) manner with 

respect to the intravascular change rate. This model produces eight maps: 1) The 

extraction fraction (E%), is the extracted fraction of the CA from the intravascular to 

the EES at the venous capillary level; 2) plasma flow (Fb); 3) mean capillary transit 

time (TC, min); 4) separate estimation of permeability (PS, min-1); 5) influx with a 

clearance of the CA to the EES from the venous capillary end (Ktrans, min-1); 6) Kep, 

7) Ve and 8) Vp. However, this model demand higher data quality88 (fast imaging and 

high SNR), which limits their use. 

2.2.2 Diffusible endogenous tracer 

a. ASL main principle 

The aim of ASL is to measure CBF of a brain tissue voxel in a target image slice. Figure 

2.1 illustrates the concept behind ASL. Fulfilling this, a 180 RF-pulse in implemented 

at the labelling plane; this is positioned prior to the target image slice and inverting the 

magnetic field of the blood water. The tagged bolus is moving into the tissue of the 

brain at a rate that is equivalent to the CBF. After sufficient time delay, which is also 

referred to as post labelling delay time (PLD) or inversion time (TI), this labelled 

magnetic blood water attains the slice of interest in a period indicated as transit time 

or the arterial arrival time (AAT). The slice of interest is that on the imaging plane, 
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which is acquired as a raw data. Afterwards, the perfusion measurements can be 

extracted by conducting the experiment again but without inverting the magnetisation 

of the blood water. Following the same PLD/TI, the control image is collected. Then, 

the ASL difference image can be calculated by removing the static tissue by subtracting 

the control- from the tagged- image. The variation between the signal values indicates 

the magnetically-labelled blood water following its transfer at TI. Hence this signals 

difference directly proportional to the local CBF89. 

 

 

In an ideal ASL experiment, the control image has fully relaxed blood water 

magnetisation (𝑀0𝑎). Once an inversion pulse is applied the blood water gains 

magnetisation (−𝑀0𝑎) that reaches the labelled image by the regional blood flow (𝑓) 

during TI. Thus, the delivered blood volume is 𝑓. 𝑇𝐼, and hence, the delivered tagged 

bolus into the labelled image is shown as: 

 

 −𝑀0𝑎 . 𝑓. 𝑇𝐼 Equation 2.15 

   

The difference in the signals between the longitudinal magnetisation of the control- and 

label- image (∆𝑀) is: 

TI 

Figure 2.1 The primary mechanism employed in ASL is illustrated here. The diffusible tracer utilised is 

the magnetically labelled blood water. (a) the labelling plane applied (proximal) against the imaging 

plane where the flowing protons labelled employing inversion (blue arrows); (b) the labelled water exits 

the labelling plane during TI and initiates its distribution into adjacent tissue at the image plane; (c) 

acquisition of the labelled image. The control image is obtained without the labelling pulse to facilitate 

the extraction of the labelled blood water from the static tissue (green arrows). The tagged protons are 

the output once the labelled image is subtracted from the control image where the outcome signal 

differences are in direct proportion to the local perfusion. 
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 ∆𝑀 = 2𝑀0𝑎 . 𝑓. 𝑇𝐼 Equation 2.16 

   

Considering 100ml of labelled blood delivered to the target tissue at the normal blood 

flow (60ml/min/100g of tissue) during time TI/PLD ~1 second, thus, the delivered 

magnetisation volume is 𝑓. 𝑇𝐼 = 1𝑚𝑙. Which mean the relative variation in the 

magnetisation would be ~1%. This example demonstrates one primary disadvantage 

of the ASL, which is the poor signal-to-noise ratio (SNR), an issue to be detailed and 

analysed later. As the variation in the signal is approximately 1%, it is vital that this is 

associated with the signals of the perfusion rather than parasitic signals. Thus, the 

same static tissue signals should be found for both the control- and labelled- image to 

ensure efficacious quantification. 

b. Arterial spin labelling approaches 

Rather than employing standard non-adiabatic RF-pulses, ASL employs adiabatic 

pulses. The former is implemented in an orthogonal manner to the primary magnetic 

field (static field (B0)), where the resultant flip angle proportional to the employed fixed 

B1 amplitude during a period of time. In contrast, the flip angle of the adiabatic pulse 

manipulated by a simultaneous change of the amplitude and frequency of the B1 field 

using properly modulation functions. The B1 field applied at a frequency (f1) that 

gradually change from a large positive value (above-resonance) decreases to zero (on-

resonance) and ends at a small negative value (below-resonance). Since the B1 field 

starts with above-resonance frequency, this means the applied frequency not equal to 

the Larmor frequency (f0) ,i.e. off-resonance, the B0 at the rotating reference frame (Bz) 

not completely disappeared (Bz=  (f0 − f1) / γ =  B0 − (f1/γ) since f0 = γ B0). This produces 

an effective field (Beff) that orient at an angle to B0 and B1, where the NMV precess 

around it. Thus, the simultaneous variation of the frequency and amplitude of the 

applied B1 change the orientation of the Beff from below-resonance to resonance and 

beyond-resonance and hence invert the NMV, which is known as adiabatic inversion. 

There are benefits to this form of pulse regarding the degree of tolerance to B0 

inhomogeneity, and it is also less sensitive to B1 miscalibration. Moreover, the 
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adiabatic inversion facilitates the formation of a sharp slice profile, hence enables a 

clear arterial bolus width90. 

As previously mentioned, both the control and labelled images must have the same 

static spins to ensure accurate extraction of the CBF. Nevertheless, the longitudinal 

magnetisation of the static tissue spins that in the labelling image are impacted by the 

magnetisation transfer effect (MT), as they experience off-resonance pulse. In such 

cases, the control image will have more static spins than the labelled image, as 

illustrated in Figure 2.2. As a result, the static tissue would generate biased images for 

the ASL difference images, and this leads to over-estimation of the CBF. To avoid this, 

the same MT-effect must be generated in the control images without tagging of the 

arterial blood water by applying the same inversion pulse but distal to the investigated 

slice. In such situations, the MT-effect that are produced through the labelling image, 

using the labelling pulse, cancelled out by that intentionally induced in control image91–

93. 

The strategies used for ASL labelling are then classified into continuous arterial spin 

labelling (CASL)89,94,95 and pulsed arterial spin labelling (PASL)96–99. The two strategies 

are different at the basic level regarding the extent location and the labelling plane’s 

lasting duration. 

 

i. Continuous arterial spin labelling (CASL) 

Using the CASL approach, the labelling plane is positioned at the level of the feeding 

artery (neck), where the flowing blood water that passes through this plane is 

constantly inverted. It has been called continuous inversion because of the RF-pulse 

Figure 2.2 Illustrates the influence of the MT-effect of the perfusion assessment. 

The static tissue in the labelling image is decreased as a result of this impact 

and causes overestimation of the perfusion measurement. The blue arrows 

indicate tagged blood water and the green arrows the static tissue. 
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lasting for a longer duration than that of a typical RF-pulse (approximately 1 to 3 

seconds)100. As noted earlier, ASL employs the adiabatic inversion method, CASL 

provides a continuous supply of the inverted arterial blood water by flow-induced- 

adiabatic inversion pulse, not the standard adiabatic pulse (explained above). The 

flow-induced- adiabatic inversion pulse, rather than using the frequency and amplitude 

modulation, it employs constant gradient through the flow direction accompanied by 

simultaneous constant RF pulse that applied over a small spatial location (tagging 

plane). Thus, the moving arterial blood water under a constant gradient induces 

changes in the local resonance frequency (above-resonance), as these blood water 

approach the tagging plane at Larmor frequency (on-resonance) they rotate to the 

transverse plane, as they move away from the tagging plane, they induce further 

changes in the local resonance frequency (below-resonance) resulting in blood water 

inversion94.  This leads to a constant stream of labelled blood water while the gradient 

and the RF are turned on. 

In early applications, a standard CASL control image was obtained through employing 

symmetrical labelling plane to that used in the labelled image but distal to the image 

plane (Figure 2.3) to compensate for the impact of MT92. However, this allowed 

management of the MT effect only for one image slice. To generate an equal MT effect 

per image a symmetrical positioning for the inversion plane around the imaging slice 

is required for the control- and label-image hence this method cannot be used for multi-

slices acquisition.  

 

For multi-slice acquisitions, two methodologies have been recommended to manage 

the MT effect. The initial one was proposed by Silva et al. and requires the use of two 

RF coils; one coil to generate a continuous adiabatic inversion (is formed of a small 

surface coil used for labelling and that is positioning at the level of the carotid artery) 

Figure 2.3 Illustration of early implementation of 

CASL, where the green arrows depict the static 

tissue and the blue arrows the labelled blood water. 
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while the other coil (head coil) is used a receiver coil for the image acquisitions101. 

Since the labelling coil and hence the transmitted RF labelling pulse physically away 

from the imaging slice, the MT effect can be avoided. Consequently, there is no need 

for the application of a distal labelling plane to the imaging plane for the control image. 

This method is also beneficial as it ensures that one artery alone can be labelled and 

so it is like territory mapping of perfusion102. Nevertheless, the specific absorption rate 

(SAR) generated by this strategy is high at the local level and would necessitate the 

use of extra hardware that is not normally accessible in setups for MRI scanners.  

Consequently, Alsop and Detre recommended a second methodology to compensate 

for the MT effect in multi-slices image acquisition103. Creation of double inversion 

planes by implementing an inversion plane upstream that consists of a sine-modulated 

RF pulse accompanied by constant gradient identical to that of the labelling image. 

This would then result in the inversion of the flowing spins that cross the initial inversion 

plane and then be un-inverted when moving through the second. Theoretically, this 

would not produce any tagging effect while generates the same MT effects by using 

the same general RF power like that for the labelled images. Nevertheless, in clinical 

practice, this method lowering of the labelling efficacy, because not all the inverted 

spins would be un-inverted, thereby leading to a loss of the real labelling signals during 

the subtraction103. 

ii. Pulsed arterial spin labelling (PASL) 

The PASL methodologies were developed to overcome the issues caused by CASL, 

including the raised SAR and the RF duty-cycle requirement because of the used of 

continuous RF pulses. Instead of using a continuous RF pulse to invert the flowing 

spins, PASL employs a slab-selective adiabatic inversion pulse, the standard one, that 

is positioned upstream relative to the imaging plane over a wide spatial band covering 

the feeding arteries. The labelled image can then be acquired following a determined 

delay time to enable the labelled flowing spins to perfuse into the imaging plane. To be 

able to generate a precise ASL difference image, the control image should be 

compensated for the MT effect without tagging of the flowing spins, and that to produce 

identical static spins to that in the labelling image. There are three primary PASL 

labelling approaches each employing a different labelling and MT effect compensation 

strategies.  
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The initial PASL technique was Echo-Planar Imaging and Signal-Targeting with 

Alternating Radiofrequency (EPISTAR)97; this is illustrated in Figure 2.4. For the 

labelling image, a spatial selective labelling pulse is used over a slab of 10cm, 

positioned 1cm upstream of the imaging slice. Owing to the tiny space employed 

between the imaging- and labelling plane, and because the slice profile of the inversion 

plane is not precisely rectangular, the imaging plane may be impacted by 

contamination generated from the tagging plane. Employing a saturation slab on the 

plane for imaging prior to the image acquisition helps to eliminate such contamination. 

There are some challenges with generating a control image. Like the CASL, for the 

control image, an inversion slab that is the same as that used in labelling can be 

implemented 1cm distal to the imaging plane to mitigate the induced MT effect in the 

labelling image. Owing to the closeness of the inversion slab to edge of the image 

plane, the labelled venous blood water is generated and perfused into the imaging 

plane from above it. Such labelled venous spins lead to the ASL difference image 

having focal dark spots. Despite this technique mirroring the CBF variation, the precise 

association between the variation in CBF and the change in the intensity of the signal 

is unclear. Also, the magnetisation of the tagged bolus reduced and the SNR 

accordingly, as it experiences T1a relaxation over the long travelling time to the 

imaging slice97. 
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To avoid the drawbacks of the EPISTAR labelling method, Kim devised an alternative 

PASL strategy in 199598. The strategy is referred to as flow-sensitive inversion pulse 

(FAIR), and it operates by subtracting a pair of inversion images. The first inversion 

image has a slice-selective inversion pulse (control image), while the second image 

does not (label image), as shown in Figure 2.5. The label image is acquired following 

a delay time (TI) with a non-slice selective inversion pulse. Resultantly, every spin 

inside and outside the image plane is inverted, and the size of the physical RF coil will 

determine the RF pulse’s spatial extent. A benefit of this tagging method is that blood 

flowing into the imaging slice from various directions can be tagged. Thus, the venous 

blood flow is also tagged and enter the tagged image and generate artefacts, which 

appear as bright spots in the difference image rather than the dark spots as in 

EPISTAR. Furthermore, given that no gap exists between the image slice and the label 

plane, it is not necessary to perform a saturation pulse prior to acquiring the image. 

The acquisition of the control image obtained using a similar inversion pulse as that 

used for the labelling image but on a selected slice. Therefore, similar to the entry slice 

T

Figure 2.4 Illustration of echo-planar imaging and signal-targeting with alternating 

radiofrequency (EPISTAR). The tagged image is procured by: (a)  employing a large labelling 

slab proximal to the imaging plane; (b) then application of a saturation slab to the imaging plane 

to eliminate the contamination from the labelling plane; (c) acquisition of the labelled image 

following delay time (TI) at which point the tagged blood water was travelled from the labelling 

plane, dispersed through the vascular system and perfused into the tissues of the image plane 

– this is the arterial arrival time (AAT). A control image obtained by: (a) employing a similar 

large labelling slab to that used for the labelling image but distal to the imaging plane; (b) then 

saturation slab to the imaging plane; (c) acquisition of the control image following the same TI 

where the venous spins that are labelled go into the control image. The ASL difference image 

(control - label) involves the labelled venous spins, which possess a negative sign from the 

subtraction and hence are appear as focal dark spots. The green arrows depict the static spins 

and the blue arrows the tagged blood water. 
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phenomena (define as a flow-related enhancement when unsaturated/fully relaxed 

blood water flow into the observed tissue volume that is partially saturated), the 

replacement of the inverted blood water with relaxed ones occurs as a result of blood 

flow, whereas the static spins stay inverted. Given that the same inversion pulse is 

employed in both the tag and control images, the MT effect typically cancels each 

other. The rectangular nature of the slice selective profile is not exact, and so it should 

be larger than the image slice. In this way, the image is acquired at the centre of the 

slice selective inversion, where clean uniform inversions exist across the whole image 

slice98,104.  

 

Proximal inversion with a control for off-resonance effect (PICORE) is another PASL 

technique that is derived from the EPISTAR method. PICORE method uses the same 

tagging method as that employed in EPISTAR99 (Figure 2.6). For the control image, 

however, a shifted RF pulse (off-resonance) is used without a gradient (non-selective 

slice pulse). This off-resonance RF pulse has the same offset as that employed for the 

labelled image; this means that the control image will generate the same MT effect 

TI 

Figure 2.5 Flow-sensitive inversion pulse (FAIR) mechanism. Acquisition of labelling 

image needs a large inversion slab, (a) during application of non-selective slice pulse; 

and (b) the tagged image is acquired following a delay time (TI), and contains tagged 

flowing spins from veins and arteries. The acquisition of a control image needs the similar 

inversion pulse among a selected slice, where (a) the chosen slice that larger than the 

image slice, and (b) the control image is acquired following similar TI. The tagged venous 

spins appear as bright spots on the ASL difference image (control – label). static tissue 

spins are illustrated with green arrows while the tagged blood water is shown in blue 

arrows.  
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without inversion. Furthermore, this off-resonance RF pulse does not result in spins 

tagging; consequently, none of the venous blood flow tagged as it happens among the 

EPISTAR- and the FAIR. This is an advantage for the PICORE- over both EPISTAR- 

and FAIR-labelling approaches.  

As discussed above, each of the techniques is not entirely immune to issues such as 

sensitivity to the inflow from the distal end of the image slice, control image acquisition, 

and tag profile. In this case, selecting one technique rather than another should be 

based on the geometry of blood supply. If the blood supply enters the slice of interest 

from a direction that is known, the PICORE technique is the most reasonable to use. 

This stems from the fact that it generates no venous tagging. By contrast, if the 

direction of blood supply is not known (e.g., in a watershed area, which is the region 

that receives dual blood supply from furthest distal arterioles of two large arteries), 

FAIR is likely to be the most conservative method. This is because it tagging the arterial 

blood entering the slice of interest from various direction.  

 

TI 

Figure 2.6 Mechanism for proximal inversion with a control for off-resonance effect (PICORE) mechanism. 

Acquisition of labelling image occurs with large inversion slab (a) during proximal tagging; (b) saturation 

slab is applied to imaging plane to eliminate tagging contamination; and (c) tagged image acquired 

following a delay time (TI), where the tagged blood water exists the labelled plane and begins diffusing 

from intravascular vessels into tissues at the image plane during arterial arrival time (AAT). Acquisition of 

control image occurs with (a) shifted RF pulse with zero gradient; (b) saturation slab; and (c) final 

acquisition of control image following TI. The ASL difference image (control – label), dissimilar to those 

associated with EPISTAR and FAIR, does not involve tagged venous spins. Static tissue spins are 

illustrated with green arrows. Tagged blood water is shown in blue arrows. 
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iii. Pseudo-continuous arterial spin labelling 

In recent years, pseudo-continuous arterial spin labelling (PCASL)95, which is a 

modified version of CASL that address its limitations, has been adopted. The PCASL 

labelling approach imitates the impact of the used continuous RF pulse in CASL by 

utilising long series of slice-selective RF pulses (~mean 1.5µT)100 accompanied by a 

train of gradient pulses that is unbalanced (i.e. the net gradient area among time TR 

not zero) with a small mean (~1mT/m)100. Similar to the CASL, PCASL uses flow-

induced adiabatic inversion, which needs to be successfully achieved for efficient 

labelling. This influenced by the flow velocity, the geometry of flow, and the 

inhomogeneity of the B1 and B0 field, where all of them impact the induced changes 

in the local resonance frequency of the flowing blood water. In PCASL phase error can 

be accumulated, due to the aforementioned factors, during the gaps between the RF 

pulses and result in degradation of the tagging efficiency. Thus, the spacing between 

the RF pulses should be as small as possible, recommended to be 1ms from the centre 

of one pulse to the centre of the next pulse. Also, in order to avoid aliased95 tagging 

plane due to the periodic RF pulses, the slice profile of the RF pulses should be narrow 

by increasing the selectivity of the RF pulse employing a strong gradient (~10mT/m). 

As indicated in Figure 2.7, the amplitude of the refocusing portion of the gradient pulses 

increase (unbalanced), which means that the flowing spins gain additional phase. To 

modify the phase of the RF pulse to become on-resonance with the accumulated phase 

of the flowing spin, the phase of the n RF pulse (Φn) must be Φn = γ n G T Z, where γ 

represents the gyromagnetic ratio, G represents the average gradient (approximately 

1 mT/m in the labelling plane), T represents the spacing of the RF pulses, and Z 

represents the distance from the gradient isocentre to the specific point where the 

application of the labelling plane’s gradient pulse takes place. For the control image, 

unlike the label image, the employed gradient pulses train are balanced, accompanied 

by alternating RF pulses (Figure 2.7). The balanced gradient generates a zero-average 

gradient between the pairs of RF pulses, while the alternating RF pulses result in a 

zero-average B1. Thus, these pulses produce the same level of RF power used for the 

labelling image but without labelling effect. As a result, the control image has the same 

MT effect as the labelling image95. Since the utilised gradient pulses for the labelling 
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and control images are different (unbalanced- vs balanced- gradients, respectively), 

this called unbalanced control in the literature. 

 

PCASL surpasses PASL since it generates a greater SNR. The elevation in the SNR 

is because both PCASL and CASL are associated with longer labelling times and 

smaller transition zone width compared to PASL. The smaller transition zone width for 

CASL/PCASL relates to the fact their labelling plane is situated at the distal end of the 

PASL labelling slab (Figure 2.8). Consequently, PASL inverts the entire slab at the 

same time, while CASL/PCASL tags the flowing blood as it crosses the tagging plane. 

In other words, the tagged blood from CASL/PCASL does not take as long to move 

from the tagging slab to the image of interest (i.e., transition zone width). As a result, 

CASL/PCASL provide a larger volume of the tagged blood that experience a lower-

level magnetisation loss from T1-relaxation compared to PASL, accordingly greater 

SNR100. 

PCASL is preferable to CASL due to three main reasons: a) PCASL lowers the specific 

absorption rate (SAR) as it uses a long series of slice selective RF pulses instead of 

long RF pulse for CASL; b) PCASL overcomes the MT effect because it is employing 

a strong selective gradient during the RF pulses; thus, they become off-resonance 

Figure 2.7 illustration of the labelling plane of pseudo-continuous arterial spin labelling (PCASL). The unbalanced 

gradient generates approximately 1 mT/m on average, while the RF pulses generate a B1 approximately 1.5µT 

on average. The blue arrows indicate the flowing blood water prior to and following inversion. Varying colour 

gradients and RF pulses reflect increases in amplitude and modified RF pulse phases, respectively. b) control 

pulse sequence of pseudo-continuous arterial spin labelling (PCASL). The balanced gradient generates zero on 

average, as well as the alternating RF pulses generate a B1 that is also zero-average. The green and blue RF 

pulses represent the alternating attitude of the RF pulses that lead to a zero-average B1. 

a.

c 

b.

c 
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relative to the imaging plane. c) RF pulses in PCASL can be generated using readily 

available RF amplifier systems100,105, unlike the requirements of the continuous RF 

pulse used in CASL. This pulse type, particularly short and highly powered, requires a 

modified RF amplifier that cannot be accessed in almost all contemporary clinical 

imaging systems. Therefore, PCASL is recommended100 by the International Society 

for Magnetic Resonance in Medicine (ISMRM) and the European ASL in Dementia 

Consortium. 

 

c. Technical considerations for CBF quantification  

A range of intrinsic parameters (physical and physiological) impact ASL image quality 

and can disrupt the link between the perfusion value and the obtained signal. 

Therefore, to select suitable extrinsic parameters and a labelling approach, it is 

necessary to consider and understand these intrinsic parameters. Such parameters 

include MT effect, transit delay (flow velocity-dependent), local T1 relaxation time, 

arterial bolus width and labelling efficiency. MT effects, as well as the strategies for 

minimising these effects in specific labelling approaches, have already been explored 

above. 

Arterial transit time (also referred to as the arrival time) denotes the period needed for 

the labelled blood water to enter the imaging plane. This parameter is influenced by 

factors such as the size, tortuosity, and length of the vessels (Figure 2.9). The intensity 

of ASL signals tends to change based on the arterial transit time, and this is the case 

even when the same blood perfusion is provided. To reduce the sensitivity of the CBF 

quantification to arterial transit time, post labelling decay (PLD) was introduced106, to 

give the necessary time for the tagged bolus to enter the imaging plane. During the 

Figure 2.8 Difference between tag planes of 

CASL/PCASL and PASL. 
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PLD period, some tagging is lost via T1-decay (Figure 2.9). Nevertheless, transit time 

and T1-decay are on the order of seconds, meaning that T1 and transit time are 

competing constant times that must be taken into consideration when determining the 

PLD. 

 

It is necessary to define the arterial bolus duration (bolus width) in order to add a delay 

to the pulse sequence and enable the tagged bolus to arrive. The bolus width duration 

is defined as the overall time taken for the tagged blood water to exit the tagging plane. 

In CASL/PCASL, the bolus width duration is considered equal to the RF pulse duration. 

In this context, the tagging band is a thin line with continuous labelling (long RF pulse), 

where the inversion of the flowing spins occurs when this line is crossed. Hence, after 

the RF pulse terminates, the tagged blood exits the labelling line. Resultantly, if the 

CBF increases, the amount of tagged blood water crossing the labelling plane 

increases. This is reflected in the ASL image as increased signal intensity. The 

converse is true for a decrease in the CBF. 

Contrastingly, in PASL, the bolus width duration is not well-defined. The tagging band, 

which operates over a specific volume with a short duration, generates a fixed volume 

of the tagging blood water, irrespective of the variation of the CBF. To differentiate 

between low and high CBF, it is possible to apply a saturation pulse over the labelling 

plane following blood water labelling, referred as the initial inversion time (TI1), thereby 

cutting off the tagging tail (Figure 2.10). This generates a defined tagged bolus not in 

space but in time. Followed by delay time (TI) for the tagged bolus to reach the imaging 

plane. Hence, if the CBF increases, an increase will be observed in the volume of 

labelled blood that left the labelling plane prior to the cut-off. This method is referred to 

as quantitative image of perfusion using a single subtraction (QUIPSS II)107. Yielding 

Figure 2.9 A drawing showing the impact of the vessel structure on the arterial arrival times, (a) during 

labelling, (b) during initial transit time after labelling, and (c) during second transit time after labelling. 

Lightening of shade indicates that the tagged bolus has lost tagging via T1-decay. 
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a quantitative flow image with this method relies on the satisfaction of the following 

conditions: firstly, the saturation pulse needs to be applied prior to the moment before 

all the tagged spins have exited the tagging band, so that TI1<tagged bolus; and 

secondly, the delay following the saturation pulse must be sufficiently long for every 

arterial tagged spin to arrive at the tissue voxel of the image plane so that TI-TI1>transit 

delay. A comparable technique employed to enhance the perfusion measurement’s 

accuracy is referred to as QUIPSS II with thin slice TI1 periodic saturation (Q2TIPS)108. 

The method substitutes the single saturation pulse with a thin slice period train of 

saturation pulses at the tagging slab’s distal end. 

 

Immediately following a perfect inversion pulse, the difference in arterial blood 

magnetisation is 2M0a. However, this is not the case in real-practice settings because 

different ASL tagging approaches contain a various degree of successfully achieved 

inversion (labelling), which in turn impact the labelling efficiency. Therefore, the 

labelling efficiency (α)109,110 is defined as the ratio between the ASL difference image 

that with imperfect inversion and the perfect 2M0a. Every labelling approach offers a 

contrasting ratio for labelling efficiency, and this can be taken into consideration when 

calculating the CBF, as shown in the forthcoming section. 

D. CBF quantification models 

The ASL images acquired as raw data (source images) need to be processed to 

quantify the CBF. Quantitative CBF map is estimated from the source images using a 

mathematical model. This model is taking into consideration both relaxation and 

kinetics of the labelled protons and provides a reliable quantitative perfusion 

measurement.  

TI

1 
TI 

Figure 2.10 Illustration of QUIPSS II technique and its conditions. This technique generates a defined 

tagged bolus for the PASL not in space but in time and hence provide a quantitative flow image. Here, 

both conditions of the QUIPSS II technique are satisfied, the first condition is (from a to b) TI1<tagged 

bolus, and the second condition is that TI-TI1 is greater than the transit delay. 
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i. T1 model 

Detre and Williams89 modified the Bloch equation for the longitudinal magnetisation by 

adding in the flow effect employing Fick’s principle, which stipulates that variation 

between the delivery of the substance present in blood and its clearance is proportional 

to the local flow: 

 

 
𝑑𝑀𝑡(𝑡)

𝑑𝑡
=  

𝑀𝑡0 −𝑀𝑡(𝑡)

𝑇𝑡1
+ 𝑓 𝑀a(t) − 𝑓 𝑀𝑣(𝑡) Equation 2.17 

Where 𝑀𝑡0  is the tissue’s longitudinal magnetisation at equilibrium, while the time-

dependent longitudinal magnetisations for the tissue, the venous- and arterial- blood, 

are  𝑀𝑡(𝑡), 𝑀𝑣(𝑡) and 𝑀a(t), respectively. The terms 𝑓 𝑀a(t) and 𝑓 𝑀𝑣(𝑡) represent 

the magnetisation bolus transition which enters and leaves the tissues capillary bed 

through the arteries and veins, respectively. This is referred to as the T1-quantification 

model89.  

This model involves a number of assumptions that the magnetisation bolus will not be 

affected by the longitudinal relaxation time of the blood as the water instantaneously 

exchange between the tissue and blood and hence the transit time is negligible 𝑀a(t), 

therefore, will be unchanged. Also, the brain tissue can be thought of as a well-mixed 

compartment and the labelled bolus completely extracted thus: 

 

 𝑀a(t) = 𝑀𝑣(𝑡) = 𝑀𝑡(𝑡)/λ Equation 2.18 

λ is the distribution volume between the blood and the tissue and illustrates the tracer 

distribution during equilibrium between the tissue and the blood. 

Moreover, the longitudinal magnetisation of the tagged blood flow experiences a 

reduction with apparent longitudinal relaxation time 𝑇1𝑎𝑝𝑝 depending on the blood flow 

and the T1 relaxation time of the tissue (Tt1); hence the 𝑇1𝑎𝑝𝑝 magnitude is 

determined by: 
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1

𝑇1𝑎𝑝𝑝
=  

1

𝑇𝑡1
+ 
𝑓

λ
 Equation 2.19 

As the labelling continuously performed the magnetisation evolves into a steady-state; 

thus, the perfusion can be expressed by: 

 

 𝑓 =  
λ

𝑇1𝑎𝑝𝑝
(
𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑀𝑙𝑎𝑏𝑒𝑙

2 𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) Equation 2.20 

   

ii. General kinetic model 

As previously mentioned, the difference ASL image express ~1% signal variation. It is 

vital that this signal variation reflects the quantitative perfusion rather than parasitic 

signals due to confounding factors. There are numbers of confounding factors that 

could be a primary source of systematic errors in the ASL experiment and hence need 

to be considered for quantitative reflection of perfusion. These confounding factors 

include the transit time, exchange the labelled water between capillaries and tissue, 

and its effect on the T1 relaxation time and the incomplete extraction of labelled water 

from the capillaries. The T1 quantification model is based on a restrictive assumption 

that the delivered labelled blood water immediately mixes and exchanges with the 

tissue’s water. This model is not considering the systematic errors that may occur in 

ASL measurements. On the other hand, the general kinetic model111 reproduces the 

T1 model while relaxes the assumption to account for the confounding factors into 

account. It describes the changes in the signal of ASL over time using three-time 

functions with assumptions, to allow quantification of the systematic error magnitude.  

The difference signal (∆𝑀(𝑡)) can be considered as the tracer concentration (labelled 

blood water or magnetisation) that is transported by arterial flow to the voxel at a time 

(t). The general kinetic model in eq.2.4 developed to represents the ASL agent 

concentration precisely. In ASL, the tissue concentration at a time point (t) is a result 

of the delivered magnetisation by the arterial flow and its removal by the venous blood 

flow and the longitudinal relaxation. Thus, in the general kinetic model, besides the 

typical time functions (CA(t) and R(t)), there is an additional time function called 
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magnetization relaxation function m(t), which demonstrates the carried fraction of the 

original longitudinal magnetisation by the labelled bolus that remains at the time (t). 

In case of an ideal ASL experiment, where the blood water is fully inverted in the 

labelled image and fully relaxed in the control image, the arterial input function (CA(t)) 

equals to one. Figure 2.11 illustrates the assumptions of the CA(t), it will be zero prior 

to the initial transit time (∆t) as there is no tagged blood , greater than zero following ∆t 

and as long as the continuous arrival for the bolus duration length (∆𝑡 + 𝝉), and return 

to zero as the bolus terminates. The delivered magnetisation CA(t) is reduced from one 

because its longitudinal magnetisation is partially relaxed (blood T1a rate) during the 

transit time . The following equation highlights the delivery function: 

 

𝐶(𝑡) =  𝑒−𝑡 𝑇1𝑏⁄      PASL  

𝐶(𝑡) =  𝑒−∆𝑡 𝑇1𝑏⁄   CASL  

Equation 2.21 

 

Assuming the labelled water clearance follows the rule of a “single well-mixed 

compartment”, the R(t) is described by an exponential decay. Single well-mixed 

compartment kinetics means that the exchange between the different sub-

compartments found in these tissues is fast with constant concentration through the 

tissue as function of time . Assuming a constant concentration ratio between the 

venous and the tissue zones, the residue function can be described as: 

 𝑅(𝑡) =  𝑒−
𝑓𝑡

𝜆 ⁄
 Equation 2.22 

Figure 2.11 An illustration of C(t), the delivery parameter which 

does not equal zero at  <t< . 
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Once the tagged bolus is extracted from the vascular space to the tissue space, the 

magnetisation is further reduced by the T1 relaxation time of the tissue (Tt1): 

 𝑚(𝑡) =  𝑒−𝑡 𝑇𝑡1⁄  Equation 2.23 

Consequently, the adapted general kinetic model for ASL according to the 

aforementioned assumptions (eq.2.21 to 2.23) is: 

 

𝐶(𝑡) =  

{
 
 

 
 
0                     

 
𝑒−𝑡 𝑇1𝑏⁄   PASL
𝑒−∆𝑡 𝑇1𝑏⁄  CASL
0                    

 

 

𝑅(𝑡) =  𝑒−
𝑓𝑡

𝜆 ⁄
 

𝑚(𝑡) =  𝑒−𝑡 𝑇1⁄  

0 < t < ∆𝑡 

∆𝑡 < t< ∆𝑡 + 𝝉 

∆𝑡 + 𝝉 < t 

Equation 2.24 

 

Here, ∆𝑡 is the initial time of arrival of the labelled blood, 𝝉 is the bolus width or the 

period of the arterial bolus, and ∆𝑡 + 𝝉 indicates the ongoing delivery of the tagged 

blood to the imaging slice with a length equal to the bolus width.  

According to the general kinetic model (eq.2.4) for any agent that is not metabolized, 

the tissue concentration curve 𝐶𝑡(𝑡) is represented by the convolution (*) of the arterial 

input function with the local impulse function. Since the ASL difference image (∆𝑀) 

represents the amount of the tracer concentration delivered by the arterial blood flow 

at a time (t) in an ideal ASL experiment, the arterial input function is 2𝑀0𝑎 . 𝑓. 𝑑𝑡.; hence 

the arterial input function is: 

 

 ∆𝑀 = 2M0a 𝑓 𝐶(𝑡)  Equation 2.25 

The impulse response function at a time (t) is defined as the delivered magnetisation  

by the local blood flow 𝑓 adding the fraction of the remaining magnetisation from the 

previous delivery, which is the product of the local blood flow, the residue function and 

the magnetisation function [𝑓.R(t).m(t)]. 
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Therefore, the general kinetic model for quantification of the cerebral perfusion based 

on the labelled magnetisation as freely diffusible is represented by: 

 

 ∆𝑀(𝑡) = 2𝑀0𝑎 𝑓 𝐶(𝑡) ∗ [𝑟(𝑡)𝑚(𝑡)] Equation 2.26 

Here the convolution is presented by * with the brackets referring to integral of the time 

dimension (the arterial bolus duration).  

Applying the assumptions from eq.2.24 to eq.2.26 gives the following solution for 

PASL: 

 

∆𝑀(𝑡) =  

{
  
 

  
 

0                                                               
                                                  

−2 𝑀0𝑎 . 𝛼 . 𝑓

𝛿𝑅
 𝑒−𝑅1𝑎 𝑡(1 − 𝑒−𝛿𝑅(𝑡−∆𝑡))

−2 𝑀0𝑎 . 𝛼 . 𝑓

𝛿𝑅
 𝑒−𝑅1𝑎.∆𝑡 (1 − 𝑒𝛿𝑅(𝑡−∆𝑡))

. 𝑒−𝑅1𝑎𝑝𝑝 (𝑡−(∆𝑡+𝝉))

 

0 < t < ∆𝑡 

∆𝑡 < t< ∆𝑡 + 𝝉 

∆𝑡 + 𝝉 < t 

Equation 2.27 

The inversion efficiency is represented by 𝛼 to account for the fact that the blood water 

may be not fully inverted in the labelled image or not fully relaxed in the control image. 

The inversion efficiency is defined as the ratio between the ASL difference image that 

with imperfect inversion and the perfect 2M0a; R1𝛼 is the rate of blood relaxation and 

𝑅1𝑎𝑝𝑝 is the apparent tissue relaxation rate, where 𝛿𝑅 = 𝑅1𝑎 − 𝑅1𝑎𝑝𝑝. Figure 2.13 

illustrates how each section of the general kinetic model’s solution occurs through a 

specific time period.  
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Various models can be used to obtain approximations of quantitative perfusion. For 

the sake of simplicity, the kinetic model presented earlier has been recommended in 

the white paper100 (it is a summary for the recommended ASL implementation with the 

consensus of the International Society for Magnetic Resonance in Medicine-(ISMRM) 

and the European ASL in Dementia consortium) with particular assumptions that 

measure the CBF from the obtained ASL at single delay time. First, as long as the post 

labelling delay time is longer than the arterial arrival time (AAT), the entire labelled 

bolus is delivered to the target tissue. Second, because the half-life of the 

magnetisation bolus is relatively short beside it diffuse into the tissue space that with a 

large water component, this bolus is kept within the tissue with no or negligible outflow. 

Third, the labelled magnetisation decay can be described by the T1a due to the small 

variation between the blood- and tissue- T1 relaxation, 1.6s and 1.3s at 3T112,113, 

respectively. Accordingly, the measurement of CBF per voxel can be done performed 

for PCASL as: 

 CBF =  
6000.λ.(SI 𝑐𝑜𝑛𝑡𝑟𝑜𝑙−SI 𝑙𝑎𝑏𝑒𝑙).e

PLD
T1a

2 .α .T1𝑎 .SI𝑃𝐷 .(1− e 
−𝛕
T1𝑎)

 [ml/100 g/min] Equation 2.28 

And for QUIPSS II PASL as: 

 CBF =  
6000.λ.(SI 𝑐𝑜𝑛𝑡𝑟𝑜𝑙−SI 𝑙𝑎𝑏𝑒𝑙).e

TI
T1a

2 .α .TI1 .SI𝑃𝐷 
 [ml/100 g/min] Equation 2.29 

Figure 2.12 This is an illustration of the general kinetic 

model curve which shows the variation between CASL and 

PASL regarding the delivery bolus C(t). Here CASL is 

represented by the higher curve and PASL by the lower. 

The various area of the general kinetic model, as time 

function, are also represented by the blue, red and light blue 

boxes. 
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This equation contains constants values, quantified values per subject and fixed time 

periods values for every acquisition. Constants values are the following: the factor of 

6000 used to transform CBF units from ml/g/s to ml/100g/min; λ the coefficient for water 

blood/water partition being defined as 0.9 ml/g; α the labelling efficiency that is reliant 

of the labelling strategy being for PASL α = 0.98 and for PCASL α = 0.8590; T1𝑎 the 

blood relaxation time, which is equal to 1650ms at 3 Tesla102,104. The measured values 

are the signal intensity of the label- and the control-image, SI 𝑙𝑎𝑏𝑒𝑙 and SI 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 

respectively; the obtained proton density image without labelling pulse to scale the ASL 

difference image and enable the measurement of absolute CBF SI𝑃𝐷 . Regarding the 

fixed duration values : 𝛕 is the duration of the tagging, for the PCASL recommended to 

be 1800ms, while for the PASL is recommended to be 800ms, which define using 

QUIPSS II or Q2TIPS as aforementioned;  Symbolise the delay time for PCASL as 

PLD and for the PASL as TI. 

d. Improving the SNR 

Although a proportional relationship exists between the SNR and image quality, a 

critical problem associated with ASL images is the inadequate SNR. It is typically the 

case in MRI that one of two approaches are used to increase the SNR either by 

strengthening the received signals, or by reducing the level of noise. These issues 

methodologies can be considered in ASL by opting for taken into account the SNR 

impact factors, which include the hardware employed, the acquisition parameters, and 

the use of special techniques. 

i. Hardware considerations  

Given the strong magnetic field used in MRI, signals increase in a quadratic way while 

noise increases in a linear way114. Therefore, the acquisition of ASL images using a 

strong magnetic field will elevate the SNR due to the high magnetisation and the 

prolongation of the T1 relaxation time of blood115. Nevertheless, a range of limitations 

arises due to the high magnetic field. The heterogeneity of the magnetic field increases 

in line with its strength and elevated field strength coexists with B1 increase and the 

consequent rise in RF power disposition. Although these limitations must be 

considered, the use of a strong magnetic field is valuable in addressing the 

weaknesses associated with low field strength116. Additionally, coil type influences the 
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strength and quality of the signals that are received. Multi-channel receiver coils are 

frequently recommended100 because they facilitate the reception of data from a range 

of channels, thereby increasing the SNR in ASL. Furthermore, they enable the 

acceleration of the image acquisition using parallel imaging. 

ii. Acquisition parameters and special techniques 

Increasing the voxel size leads to a higher SNR as larger voxels contain a greater 

number of protons . Nevertheless, large voxel size corresponds to lower spatial 

resolution, which can blur image details and lead to partial volume effects. In ASL 

images, these effects lead to perfusion cross-contamination, which may lead to 

underestimates or overestimates of the grey matter (GM) and white matter (WM) 

perfusion, respectively117. This is due to the fact that WM has lower perfusion (the 

literature indicates that WM-CBF is 10-33% of GM-CBF118) and longer transit time 

compared to GM. For that reason, WM generates lower perfusion signals when 

compared to GM. As a compromise the voxel size is advised to be 3-4mm in-plane and 

4-8mm through-plane100. 

Acquisition of repeated and subsequently averaged control and labelled images, 

thereby elevating the averaging number, can also strengthen ASL signals. However, 

this prolongs the scanning time and gives rise to motion artefacts. These artefacts can 

be reduced by lowering the scanning time by using parallel acceleration via under-

sampling the K-space. Still, this approach can lower the SNR, and so a moderate 

acceleration of 2-3 is suggested100. Furthermore, the induced motion artefacts can be 

mitigated by employing background suppression during image acquisition and by 

acquiring the repeated labelled and control images in an interleaved way. This pattern 

lowers the misregistration artefact associated with image subtraction. Motion artefact 

can be further reduced during pre-processing via co-registration. 

As noted above, it is possible to improve ASL signals by using low spatial resolution 

(large voxel) and increasing the averaging. Nevertheless, when these SNR 

optimisation techniques are applied, signal fluctuation is generated from physiological 

noise and motion artefacts. Static tissues dominate the source of the noise and 

artefact, meaning that the SNR can be increased by reducing the static tissue. 

Noteworthily, this can be achieved by employing inversion pulses following the 
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labelling pulse, and this process is known as background suppression (BS)119,120. It is 

critical to recognise that, following the labelling pulse, the inverted spins return to 

equilibrium as well as the difference value (control – label) decays towards zero . 

Therefore, the application of BS pulses occurs in a global way and does not influence 

the difference value. The BS  efficiency is typically 95%, the implication of which is that 

each inversion pulse will lead to the distortion of the ASL signals by around 5%120. 

Furthermore, the use of BS in multi-slice imaging that involves multi-excitation pulses 

per repetition time (TR), will have varying effectiveness across the slices. 

Contrastingly, the efficiency of the technique is highest in imaging methods that rely 

on a single excitation per repetition time (e.g. single-slice 2D, single-shot 3D, or 

segmented 3D). Regarding segmented-3D imaging modalities, these play a key role 

in improving the SNR while eliminating ghosting artefacts (i.e., motion-related artefacts 

that arise from inter-segment phase inconsistencies).  

The volume of labelled blood water that reaches the imaging plane is the variable that 

has the largest effect on ASL image quality. In the context of CASL/PCASL, the volume 

is calculated based on the labelling duration, which itself is limited by the T1 relaxation 

of blood (T1a). For much longer labelling duration than T1a, the benefit of generating 

newly labelled blood is counteracted by signal loss due to relaxation of the previously 

labelled spins. The corresponding loss of SNR and long TR necessitate the use of a 

greater number of image averages to achieve the same SNR; as a result, the 

experiment is not practical. To strike a compromise between maximising SNR, reduced 

power deposition, and preserving the SNR for long ATT, whilst balancing signal loss 

due to T1a decay, the recommendation is to use a labelling duration of 1,800ms at 

3T100.  

On the other hand, the tagged bolus volume of the PASL is based on the labelling slab 

size. Therefore, the slab width should be as large as possible; however, this is limited 

by several factors. First, an increase in slab thickness entails an increase in the width 

of the transition zone; hence during the long transitions, the tagged spins will 

experience signal loss. Second, the RF transmit coil’s size restrict the thickness of the 

labelling slab. Third, the B1 from the RF transmit coil falls off far from the iso-centre, 

meaning that the blood water at the coil edges will only undergo partial inversion (thus 

influencing the degree to which labelling is efficient). These partially inverted spins will 
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require a longer time to washout from the labelling slab. As a result of this extended 

washout, a long TR is needed prior to the next tagging pulse implementation, which 

lowers time efficiency. A reasonable compromise, as identified in the literature, is to 

use a slab thickness of 15-20cm100. 

e. Further parameters beyond the CBF 

Acquisition of ASL images at only one point in time offers absolute quantification but 

the approach is sensitive to transit time. As aforementioned, it is possible to use a post 

labelling delay in CASL/PCASL to lower this sensitivity, while in PASL, QUIPSS II or 

Q2TIPS can be employed. Other perfusion parameters can be extracted from the ASL 

images. By obtaining ASL at several post labelling delay time points, information 

related to flow and transit time can be collected and quantified beside the CBF, 

specifically by fitting the obtained images at several time points to the general kinetic 

model121–125. 

Utilisation of ASL model-free permits arterial blood volume (aBV) measurements126, 

namely by acquiring the ASL image at several time points in the presence and absence 

of a crusher gradient. With this approach, it is possible to estimate the local arterial 

input function (AIFs) by subtracting the obtained perfusion images in the presence and 

absence of the crusher gradient. Resultantly, deconvolution of the tissue perfusion 

signals curve with the AIFs curve can yield the residue function (i.e., the amplitude that 

reflects the CBF), and an estimate of aBV can be produced by integrating the AIFs.   
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3 The value of Arterial Spin Labelling in Adults Glioma Grading: 

Systematic Review and Meta-analysis 

Abstract 

This chapter sought to assess the diagnostic efficacy of ASL when employed in grading 

of gliomas in adults. Following a systematic review of two databases, MEDLINE and 

EMBASE, the articles extracted were assessed against the inclusion criteria resulting 

in 18 articles being selected. QUADAS-2 (Quality Assessment of Diagnostic Accuracy 

Studies-2) was implemented to examine each study’s quality. From these studies, the 

extracted qualitative values were used to conduct a meta-analysis employing a 

random-effect model together with forest plot modelling, and joint sensitivity and 

specificity. Curve analysis using the hierarchical summary receiver operating 

characteristic (HROC) was also performed. Differential grading of high-grade gliomas 

(HGGs) from low-grade gliomas (LGGs) is possible using the absolute tumour blood 

flow (TBF). Absolute TBF can also distinguish between grade II and IV tumours but not 

between grades II and III or between grades III and IV. Contrastingly, distinguishing 

HGGs from LGGs and between the various glioma grades is possible using relative 

TBF (rTBF). Optimum outcomes for glioma grading were achieved using maximum 

rTBF (rTBFmax). The analysis of specificity and sensitivity also mirrored these 

findings; with rTBFmax scoring most for the efficacy of differentiation between glioma 

grades. Differentiating between LGGs and HGGs (-1.46 (-2.00, -0.91), p-value<0.001) 

and between grade II and III tumours (-1.39 (-1.89, -0.89), p-value<0.001), yielded on 

average the same approximate rTBF effect size. Nevertheless, between grades III and 

IV tumours, the effect size was reduced (-1.05 (-1.82, -0.27)), p<0.05). These findings 

were in keeping with those of specificity and sensitivity analysis. Accordingly, the 

findings of this meta-analysis indicate ASL to be beneficial for differential grading of 

gliomas and in particular when employing rTBFmax. 
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3.1 Introduction 

Glioma grading as stipulated by the WHO impacts both patient prognosis and 

treatment choices. MRI has an important role to play in all tumour management stages 

including diagnosis, treatment and follow-up. T1-weighted postcontrast (T1-c) imaging 

enables highlighting areas of disruption in the blood-brain barrier (BBB)32,33, which are 

linked to higher-grade gliomas (HGGs) as specified by the WHO. Nevertheless, 

enhanced T1-c can be misinforming as some low-grade gliomas (LGGs) exhibit 

contrast enhancement, while lack of enhancement can also be noticed in some high-

grade gliomas (HGGs)34. ASL compared to the other contrast-enhanced perfusion MRI 

techniques uses tagged blood water as a diffusible tracer, hence allows the estimation 

of absolute cerebral blood flow (CBF). In addition, ASL removes the need to employ 

an exogenous contrast agent; consequently, it can be repeated (e.g. for therapy 

monitoring. Finally, ASL insensitivity to alterations in vessel permeability can indicate 

the vascular density of tumour via the estimated perfusion39.  

Absolute tumour blood flow (TBF) and normalised or relative TBF (rTBF) are the 

hallmark output values of quantitative ASL. Studies have demonstrated the benefits of 

these values in differentiating between LGGs and HGGs43,127,128 and in differential 

grading of gliomas129. Contrastingly, various studies have also indicated opposing 

findings84,130,131. The aim of this chapter is, therefore, to systematically review and 

perform a meta-analysis of all these inconsistencies through the reported findings and 

to present evidence in support of ASL’s diagnostic precision in preoperative differential 

grading of gliomas. 

3.2 Material and methods  

3.2.1 Literature search and selection 

PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 

guidelines132 for systematic reviews were applied in this chapter to answer the 

research question ‘What is the diagnostic value of arterial spin labelling (ASL) in the 

differentiation of glioma grades in adult patients?’. The PICO 

(Population/Intervention/Comparator/Outcomes) categories were used to establish the 

keywords employed in the search. These were linked using the Boolean operators 

‘AND’ between PICO fields and ‘OR’ within PICO fields. Each keyword was classed by 
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a corresponding concept: The first concept – P for Population: glioma OR neuroglia 

OR oma; the second concept – I for Intervention: arterial spin OR artery spin; the fourth 

concept O for Outcome: diagnosis OR grading OR differentiate. To make the search 

more comprehensive, the third concept (C for Comparator) was excluded, and this led 

to the joining of the first two steps and the last step as [(glioma OR neuroglia OR oma) 

AND (arterial spin OR artery spin) AND (diagnosis OR grading OR differentiate)]. The 

systematic review took place in June of 2018, and this involved mining the EMBASE 

database and the OVID MEDLINE ® database. A total of 111 articles from EMBASE 

and 48 from MEDLINE were found that agreed with the keywords used, equating to 

159 articles. Elimination of duplicates left 122 articles, from these only the reports that 

were using ASL grading of untreated gliomas in adults were included. PRISMA was 

employed for indicating appropriate articles, as illustrated in Figure 3.1. 104 articles 

that did not relate to the research question were excluded, leaving 18 articles deemed 

eligible and matched the determined inclusion criteria. Examples for the reports that 

did not adhere to the inclusion criteria included those using ASL in animal models133, 

employing ASL to examine treatment efficacy134,135 or implemented in a group of 

paediatric patients136.  

Out of the 18 studies, only seven reported the TBF values as mean and standard 

deviation as well the cut-off and its corresponding diagnostic specificity and sensitivity 

rates. Of the other articles, eight stated the mean and standard deviation and three 

reported other values (cut-off values, specificity and sensitivity rates). The articles 

reported TBF in various terms and  the findings of the studies were retitled and entered 

into the analysis in the following manner:  

Absolute or relative to normal-appearing white matter was indicated as 

TBFmean/rTBFmean when the region of interest (ROI) segmented was based on the 

conventional images, and the whole tumour volume was included. 

Maximum TBFmax/rTBFmax terms were used to indicate the estimated 

measurements of the highest signals from tumour ROI on the perfusion map. Certain 

studies detailed both the maximum and the mean TBF/rTBF values.  

The power of the evidence from this meta-analysis may be restricted by the extensive 

variability in the included articles, including the diversity in the studied samples, 
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employed labelling approach and the undertaken post-processing. Accordingly, two 

researchers acting autonomously employed the QUADAS-2 (Quality Assessment of 

Diagnostic Accuracy Studies-2) tool137 to examine the bias risk associated with the 

selected articles and the extent of their applicability. 
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Figure 3.1 Illustration PRISMA flow chart for the selection process among the identified research studies. 
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3.2.2 Statistical Methods 

The gliomas grades categories’ comparisons considered were LGGs against HGGs, 

grade II against grade III, grade III against grade IV, and grade II against grade IV. All 

extracted outcomes were on a continuous scale. From every study, the sample size, 

mean and standard deviation (SD) were obtained. Some articles only reported the data 

range; for this one-fourth of the full range was assumed to be the SD. From the 

included articles, those where no variability measure , such as the interquartile range, 

the range or SD were indicated followed exclusion from this analysis (e.g. article 14, 

although it supplied the ROC analysis). Some articles reported the same index from 

both the full sample and the sub-group (e.g. study 8, Table 2A in the supplementary 

data). In addition, other articles reported the finding from the whole sample employing 

either different ASL methods (e.g. article 16, Table 2A in the supplementary data) or 

different image analysis techniques (e.g. article 18, Table 1A in the supplementary 

data). In such instances, the different data sets from each article were assumed as 

individual study data to prevent the study weighting being doubled.  

To establish whether the obtained values among the studies varied significantly, the 

Chi-square test for heterogeneity was employed. Heterogeneity was also quantified 

using the I2 statistic value. The Chi-square test138 is calculated as a weighted sum of 

the squared difference between the effect of each individual study and the pooled effect 

among the studies. It assesses whether the observed variation in the meta-analysis is 

due to chance and determines if this is statistically significant. I2 138,139 describes the 

percentage of variability in the estimated effects of studies in the meta-analysis that 

are attributed to heterogeneity rather than chance. It has been developed to quantify 

the inconsistency between studies outcomes (heterogeneity). I2 calculated as: 

 
𝐼2 = 100% ⋅

𝑄 − 𝑑𝑓

𝑄
 Equation 3.1 

Where Q is the chi-squared statistic and df is its number of degrees of freedom. If the 

I2 value is above 50%, this is considered as evidence for substantial heterogeneity. 

The pooling of the findings from the various articles was then performed. The 

standardised mean difference (SMD) rather than the raw mean difference was 

calculated because the obtained values among studies were on different scales. All 
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meta-analyses were performed using a random-effects model which did not consider 

the heterogeneity between the various studies. Funnel plots  were used to assess bias 

in publication, and these assessed relationships between the SMD or the estimated 

effect size and its standard error (degree of uncertainty).  

The diagnostic performance of the obtained ASL’s values was assessed using receiver 

operating curve analysis methods (ROC), such as sensitivity and specificity in 

distinguishing between LGGs and HGGs . The analysis strategy employed was like 

that outlined by Li et al.140,141, which models both specificity and sensitivity jointly, due 

to the inverse association between these two outcomes. The approach taken here was 

to fit a two-level mixed logistic regression model, with independent binomial 

distributions for the true positives and true negatives conditional on the sensitivity and 

specificity in each study, and a bivariate normal model for the logit transforms of 

sensitivity and specificity between studies.  Such a strategy generates pooled 

approximations of specificity and sensitivity together with associated confidence 

intervals (CI) for each. Moreover, a hierarchical summary receiver operating 

characteristic (HROC) curve was produced. This analysis was conducted by employing 

the “metandi” command in STATA 15 (StataCorp LLC, College Station, TX, USA). 

3.3 Results 

3.3.1 Eligible ASL studies 

The implemented ASL acquisition method was used to group the various articles, 

including continuous -ASL (CASL), pseudo-continuous-ASL (PCASL) and pulsed-ASL 

(PASL).  These are detailed in Appendix A (Tables 1A-3A). Tables 1A-3A also illustrate 

the gliomas histological grades and types, the ASL parameters, the reported ASL 

estimates, and the corresponding p-value of the differential test between LGGs and 

HGGs. 

3.3.2 QUADAS-2 assessment 

After the QUADAS-2 investigation, five articles had been found to have a lower level 

of bias risk and concerns regarding applicability. The output from the QUADAS-2 

investigation is illustrated in Figure 3.2. The bias risk graph expresses four domains 

with minimal risks being associated with both the reference standard domain and the 

flow and timing domain. Bias could be introduced in most studies through the index 
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test domain as the reviewers of the study either were not blinded to the standard 

reference (high) or the authors did not mention this piece of information (unclear). The 

fourth domain was the patient selection domain, where about a quarter of the studies 

that were chosen for the meta-analysis did not employ either a random or consecutive 

means of sampling (high) and approximately a quarter did not detail their participant 

sampling method (unclear). On the other hand, the applicability graph has three 

domains. There was a low risk regarding the index test domain and the reference 

standards domain since all the examined articles employed ASL as the index test and 

histopathological assessments as a reference standard. Conversely, the patient 

selection domain had scored high by approximately 10% due to one article accounting 

for residual gliomas in the analytical procedure and another one including a wide age 

range from paediatric patients to adults.  

 

3.3.3 Differentiation between HGGs and LGGs 

The selected articles demonstrated high levels of heterogeneity except for TBFmean 

(Table 3.1). This was noted as they scored a high I2 value and the Chi-square test was 

statistically significant. The obtained ASL measurements were significantly lower for 

the LGGs compared to the HGGs, where the greatest effect size was noted for rTBF. 

Here the SMD between LGG and HGGs for rTBF was 1.5 SD. Moreover, the extensive 

heterogeneity in the study was confirmed by the findings of the rTBF funnel plots with 

values being outside the confidence limits at both extremes. Nevertheless, publication 

Figure 3.2 Findings of  the Quality Assessment of Diagnostic Accuracy Studies-2 

(QUADAS-2) among the investigated studies. 
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bias was not overt as the SMD standard error was not linked to the effect size (Egger 

test, P-value = 0.17, 0.72, 0.24 for rTBF, rTBFmean and rTBFmax, respectively). 

Rather, the TBF funnel plots indicated an absence of publication bias as most points 

fell within the limits of confidence (Egger test, P-value = 0.05, 0.43, 0.10 for TBF, 

TBFmean and TBFmax, respectively). The findings are shown in Appendix A (Figure 

1A-6A).  

3.3.4 Differentiation of grade II from grade III gliomas  

Table 3.1 illustrates a summary of the analysis results. The rTBF heterogeneity 

between the studies was low, and the rTBF values significantly lower for grade II 

compared to grade III gliomas. The mean rTBF value was 1.4 SDs lower in grade II 

than in grade III. Regarding absolute TBF, only two articles reported this and the 

heterogeneity level between them was high with I2 at 66%. The absolute TBF noted to 

have a trend of lower mean value in grade II gliomas by 0.9 SDs compared to grade 

III. As all points were within the limits of confidence in the funnel plot, asymmetry in the 

findings was absent indicating no publication bias (Egger test, P-value = 0.46 for rTBF). 

The graphical illustrations of these findings can be found in Appendix A (Figures 7A 

and 8A).  

3.3.5 Differentiation of grade II from grade IV gliomas 

Table 3.1 summarises the findings of the ASL-derived parameters for grade II vs. grade 

IV gliomas. These findings demonstrated extensive heterogeneity. The ASL 

biomarkers revealed significantly lower estimates in grade II tumours. The rTBF 

showed the highest effect size, which was 2 SDs lower in grade II than in grade IV. 

The TBF effect size was 1.4 SDs. The generated funnel plot for the rTBF was 

symmetrical, which suggests absence of publication bias (Egger test, P-value = 0.25 

for rTBF). The findings are graphically shown in Figures 9A and 10A (Appendix A). 

3.3.6 Differentiation of grade III from grade IV gliomas 

Table 3.1 illustrates the values of the obtained ASL biomarkers in grade III and IV 

tumours. A significantly high level of heterogeneity across the 6 studies, which 

provided rTBF, is indicated by I2 equal to 69%. The pooled result of the rTBF values 

was significantly lower in grade III compared to grade IV. The SMD between these two 

grades was 1SDs, this is slightly less than the mean difference between grade II and 
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grade III. The pooled results of TBF demonstrated little heterogeneity between the 

investigated studies and a trend of lower TBF for grade III gliomas (p=0.08). 

Additionally, the funnel plot for the TBF was asymmetrical with the articles with smaller 

sample sizes indicating greater SMD values due to the greater standard errors. The 

reverse was true with studies with large sample sizes having smaller effects as their 

SEs were low  (Egger test, P-value =0.04 for TBF). This, however, was not the case 

for the rTBF (Egger test, P-value =0.19 for rTBF). Some suggestion of publication bias 

was noted for the two ASL values as graphically shown in Appendix A (Figures 11A 

and 12A). 
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Table 3.1 Comparison of the differences in ASL-related biomarkers between HGGs and LGGs and between 
different glioma grades. 

biomarkers 
Number of 
studies 

Total sample 
size 

Heterogeneity Effect size 
Egger test to evaluate 
publication bias 

LGG HGG 
P-
value 

I2 
SMD (95% 
CI) (*) 

P-
value 

P-value 

rTBF 15 
237 323 

<0.001 86% 
-1.46 (-
2.00, -
0.91) 

<0.001 
0.17 

 

rTBF mean 9 
142 192 

<0.001 86% 
-1.53 (-
2.26, -
0.79) 

<0.001 
0.72 

 

rTBF max 6 
95 131 

<0.001 87% 
-1.36 (-
2.23, -
0.49) 

0.002 
0.24 

 

TBF 11 
155 219 

0.002 64% 
-0.82 (-
1.20, -
0.45) 

<0.001 
0.05 

 

TBF mean 4 
51 70 

0.50 0% 
-0.61 (-
0.99, -
0.23) 

0.002 
0.43 

 

TBF max 7 
104 149 

<0.001 76% 
-0.96 (-
1.53, -
0.39) 

0.001 
0.10 

 

  II III      

rTBF 4 62 48 0.26 25% -1.39 (-
1.89, -
0.89) 

<0.001 0.46 

 

TBF 2 43 21 0.09 66% -0.90 (-
1.85, 0.04) 

0.06 (-) 

  II IV      

rTBF 4 62 61 <0.001 87% -2.07 (-
3.38, -
0.76) 

  0.002 0.25 

 

TBF 2 43 32 0.01 84% -1.44 (-
2.76, -
0.12) 

0.03 (-) 

  III IV      

rTBF 6 54 69 0.006 69% 
-1.05 (-
1.82, -
0.27) 

0.008 
0.19 

 

TBF 4 27 40 0.64 0% 
-0.45 (-
0.95, 0.05) 

0.08 
0.04 

 

(*) SMD calculated as the difference between LGGs ASL-parameters and HGGs ASL parameters (usually higher 

than the LGG counterparts) 
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(-) No pooled results due to the low number of included studies 

 

3.3.7 HROC curve analysis of gliomas grading  

Table 3.2 illustrates the diagnostic performance of ASL in diagnosing the various 

grades of glioma. Sensitivity higher than 90% was noted in distinguishing between 

grade II from grade III gliomas. The sensitivity decreased for distinguishing between 

grades III and IV – though it was still indicated as high. These findings support the 

previous evidence that the effect size between grade III and IV gliomas was smaller 

than that between grade II and III gliomas. The specificity of ASL for each glioma 

grading task, however, was less than 70%. True specificity and sensitivity were 

indicated to be highly variable on analysis of the 95% confidence interval and prediction 

regions. Figure 3.3 below illustrates the HROC plots. The Appendix A (Table 4A) 

details the values for the sensitivity, specificity, positive and negative predictive values 

(PPV and NPV, respectively) for different cut-off employed for grading using the ASL 

parameters from the included studies. 
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Figure 3.3 The HROC plot expressing the sensitivity and specificity summary point (square) 

and its the 95% CI (green curve) for the rTBF from ASL to allow differential grading of 

gliomas: (a) grade II and grade III (94%, CI (75%, 99%)) and (61%, CI (48%, 73%)), 

respectively; (b) grade III and grade IV (86%, CI (75%, 93%)) and (69%, CI (57%, 79%)), 

respectively. 
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Table 3.2 Diagnostic performance of the ASL in discrimination between glioma grades. 

Glioma 

grading 

Number of studies 

included 

Total sample 

size 

Sensitivity (95% 

CI) 

Specificity (95% 

CI) 

AUC             (95% 

CI) 

II vs. III 4 52 64 94% (75%, 

99%) 

61% (48%, 

73%) 

0.76, (0.72, 

0.79) 

 

II vs. IV 3 (*) (*) (*) (*) (*) 

III vs IV 9 148 75 86% (75%, 

93%) 

69% (57%, 

79%) 

0.75, (0.71, 

0.79) 

(*) No pooled results due to the low number of included studies 

 

3.3.8 HROC curve analysis for  differentiation between HGGs and LGGs  

The overall findings indicated relatively high levels of specificity and sensitivity (~85%) 

by employing ASL biomarkers to differentiate between LGGs and HGGs. There was a 

similar degree of sensitivity for the ASL-derived measures being investigated. The 

specificity showed more variability, ranging from 79% for rTBFmean to 92% for 

rTBFmax. Wide variability was also indicated for the specificity and sensitivity values 

by the prediction region and the 95% confidence interval. Table 3.3 shows these 

findings and Figure 3.4 illustrates the HROC plots. Table 5A in Appendix A details the 

values for the sensitivity, specificity, PPV and NPV for different cut-off values employed 

in the differentiation of gliomas grades using the ASL biomarkers from the analysed 

studies. 
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Table 3.3 Diagnostic performance of the ASL imaging biomarkers in stratifying the tumours between HGGs and 

LGGs. 

Biomarker Number of 

studies 

Total sample 

size 

Sensitivity (95% 

CI) 

Specificity (95% 

CI) 

AUC             (95% 

CI) 

LGGs HGGs 

All 17 206 397 86% (78%, 91%) 84% (76%, 90%) 0.91, (0.89, 0.93) 

 

TBF 1 (*) (*) (*) (*) (*) 

rTBF 16 181 370 86% (77%, 91%) 84% (76%, 90%) 0.91, (0.89, 0.94) 

rTBF max 5 76 122 85% (69%, 94%) 92% (80%, 97%) 0.95, (0.93, 0.97) 

rTBF 

mean 

8 80 188 84% (71%, 92%) 79% (66%, 88%) 0.87, (0.84, 0.90) 

(*) No pooled results due to the low number of included studies 
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Figure 3.4 The HROC plot shows the sensitivity and specificity summary points (square) together with the 

95% CI (green curve): (a) Derived from all the ASL obtained measurements to discriminate HGGs from 

LGGs (86%, CI (78%, 91%)) and (84%, CI (76%, 90%)) respectively: (b) rTBF for differential between 

LGGs and HGGS (86%, CI (77%, 91%)) and (84%, CI (76%, 90%)) respectively; (c) rTBF mean for 

differential between LGGs and HGGS(84%, CI (71%, 92%)) and (79%, CI (66%, 88%) respectively; (d) rTBF 

max for differential between LGGs and HGGS (85%, CI (69%, 94%)) and (92%, CI (80%, 97%)), 

respectively. 
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3.4 Discussion 

The meta-analysis findings reported here demonstrate that absolute TBF can be 

employed for differentiation between LGGs and HGGs and between grade II and IV 

gliomas. Conversely, distinguishing between grade II and III, and between grade III 

and IV gliomas was not possible using absolute TBF. On the other hand, rTBF was 

found to be more efficient than absolute TBF in differentiation between LGGs and 

HGGs with an acceptable degree of diagnostic performance. Overall, for gliomas 

grading, the rTBFmax index expressed the best diagnostic performance. Likewise, the 

findings for the sensitivity and specificity analysis revealed the same results with the 

rTBFmax providing the highest sensitivity and specificity. The effectiveness of 

rTBFmax for gliomas grading was also reported by Fudaba et al., where rTBFmax 

provided higher sensitivity and specificity than rTBFmean142. The calculated rTBF 

effect size was relatively the same between LGGs and HGGs and between grades II 

and III gliomas (-1.46 (-2.00, -0.91), p-value<0.001; -1.39 (-1.89, -0.89), p-value<0.001, 

respectively). However, smaller effect size was noted for distinguishing between grade 

III and grade IV gliomas (-1.05 (-1.82, -0.27)), p<0.05) in keeping with the findings of 

the specificity and sensitivity analysis.   

A previous meta-analysis143, published in 2017, are in line with our own results. That 

meta-analysis assessed the ability of ASL perfusion values from nine studies to 

distinguish HGGs from LGGs. Unlike our meta-analysis, the authors included studies 

from wide age groups (adult and pediatric). They concluded that, although aTBF 

demonstrated a significant increase in HGGs than in LGGs, rTBF provided a larger 

effect size, and it can thus be considered as a better index to differentiate HGGs from 

LGGs. 

The variation across the included studies was clearly observed after the systematic 

review of the literature and by the heterogeneity analysis. This may be attributed to 

examining various histological types of glioma, variations in the ASL employed 

labelling approach and the implemented sequence parameters (e.g. post-labelling-

delays PLDs), as well as the used method in processing and analysing the images. 

Interestingly, all articles that indicated ASL as incapable of differentiating between 

LGGs and HGGS were articles that examined various types of gliomas84,130,131. This 

sounds rational as low-grade oligodendrogliomas are linked to higher than grade II 
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gliomas perfusion levels, which would result in diagnostic bias43,144. One study only 

examined oligodendrogliomas, noting that it was difficult to distinguish between the 

different WHO grades when using ASL145. Contrastingly, a handful of studies looking 

at astrocytomas demonstrated ASL’s ability to differentiate between LGGs and 

HGGs146–148 as well predict the astrocytoma grades with a high level of specificity and 

sensitivity129,142. Nevertheless, further studies indicated ASL’s ability to efficiently 

distinguish between LGGs and HGGs when examining a mixture of these glioma 

types43,128 being also able to grade them127. The recent WHO classification guidelines 

for gliomas categorise gliomas using the genetic/molecular grouping such as the 

isocitrate-dehydrogenase-(IDH) mutation status and the 1p/19q mutation co-deletion2. 

The investigated articles in this meta-analysis did not consider genetic or molecular 

information. This would contribute to the demonstrated variation in the findings as 

perfusion values for IDH-mutation gliomas are reported to be lower than that for IDH-

wild gliomas84,149. 

The varying acquisition sequence implementation and labelling strategies employed in 

the analysed studies introduced variation in the ASL measurements. Three ASL 

labelling techniques were regularly used in these studies; namely continuous-ASL 

(CASL), pseudo-continuous-ASL (PCASL) and pulsed-ASL (PASL). The latter is the 

most widespread method employed as it is easily accessible, has a low specific 

absorption rate (SAR) and powerful efficiency of labelling150 for a wide array of blood 

velocities.  However, the PASL technique has a lower signal-to-noise ratio (SNR) in 

comparison to other ASL labelling techniques. On the other hand, CASL has a lower 

labelling efficiency and a greater SAR compared to PASL. Finally, PCASL carries the 

benefits of both PASL (low SAR) and CASL (high SNR), although, its efficiency of 

labelling is less than PASL. The PCASL technique was reported to have the best 

reproducibility when investigated in healthy individuals151 as compared to the other 

ASL labelling methods.  

Among the included studies, all studies that utilised the PASL approach, except two 

studies with negative findings84,152, indicated it as capable of differentiating between 

LGGs and HGGs43,142,146–148,153,154 and between gliomas grades129. Studies that 

employed CASL were merely promising in distinguishing LGGs from HGGs144,145,152. 

The current literature presents conflicting findings regarding the efficacy of PCASL 
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acquisition; it has been reported as efficient in distinguishing between LGGs and 

HGGs128 and in grading127; however, some studies did not support these 

results84,130,131. Such discrepancy can be attributed to PCASL’s low efficiency of 

labelling, which can be different across patients and scanners. Another significant 

acquisition parameter that could contribute to the variation of the measurements is the 

post labelling delay (PLD), also called inversion time (TI), since most of the involved 

studies obtained ASL at a single PLD/TI. Acquisition of ASL at a single PLD/TI 

minimises the sensitivity to the blood transit time though it does not eliminate it. This is 

because PLD/TI time selection needs to be a compromise between the various AATs 

across brain regions and magnetisation loss due to T1-decay, which are both on the 

order of seconds. Thus, while the PLD/TI time is required to be sufficiently long to allow 

the labelled blood bolus enough time to move through from the labelling plane to the 

target tissue of the imaging plane, it must also be sufficiently short to preserve the 

magnetisation label from T1-decay. Due to neo-angiogenesis in tumours that impacts 

the AAT, choosing an appropriate PLD/TI when examining tumours is a challenging 

task. Furtner et al. noted that the most efficacious TI for establishing differences 

between low- and high-grade astrocytomas was at 370ms146. Similar or lower 

sensitivity and specificity were reported from other studies obtained ASL images at 

single delay time (range from 1200-1900ms)128,129,142,147,152,153. Unlike using a single 

PLD/TI time, obtaining the ASL measures at multiple PLD/TIs 106 reduces the 

sensitivity to the bolus arrival time, hence obtaining more reliable CBF estimates. 

Cebeci et al. used 8 TIs to discriminate HGGs from LGGs43 and Yang et al. in 

astrocytomas obtained 16 TIs, the latter not only differentiated HGGs from LGGs but 

also enabled glioma grading, as the precision of the estimated CBF is expected to 

increase with multiple PLD/TI points delay129.  

The quantified CBF estimates among the studies were heavily skewed due to the non-

standardised analysis and selection of ROI. Extensive use of normalised TBF values 

(rTBF) was noted as these reduce the degree of scattering within a group, which arises 

from haemodynamic and age-related differences148. Moreover, the elevation of 

intracranial pressure usually noted in gliomas patients tends to decrease the global 

CBF, and accordingly, the precision of the estimated local TBF. Several studies, 

however, argued that the noise from the used internal reference tissue for normalising 
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the TBF introduces variation across observers42,155. This could explain the wide range 

of the rTBF values in HGGs. Nevertheless, the rTBF was considered more reliable 

than the absolute TBF for differentiating between LGGs and HGGs43,148, and this has 

also been confirmed by this meta-analysis. 

Previous ASL studies in gliomas have used different brain tissues as an internal 

reference for normalisation, including the grey matter (GM)156, the white matter 

(WM)153, the mean of both154, or the contralateral normal tissue mirrored to tumour148. 

Interestingly, the mirror ROI was more efficacious than either WM or GM for 

normalisation157, which is perhaps due to the approximately similar distance from the 

labelling plane. Nevertheless, most studies employed the contralateral normal-

appearing white matter as an internal reference127,129,142,145,147,153,158. It is necessary to 

highlight that both the reliability and validity of the perfusion measurements may be 

impacted by the image used for tumour region-of-interest (ROI) delineation. Various 

studies select the tumour ROI following a visual examination of the maximal signal 

intensity on either the M0 image or the ASL-subtracted image, while others used the 

conventional MRI image. Regarding the generation of the tumour mask based on the 

contrast-enhanced T1 weighted images, it should be noted that the enhanced tissue 

represents the disruption of the blood-brain barrier (BBB) and does not necessarily 

reflect the increased perfusion159. 

In line with this meta-analysis results, TBFmax has been reported to be more precise 

than TBFmean for tumour characterisation160,161. This is attributed to the fact that 

HGGs are heterogeneous in nature; hence the TBFmax will be representative of the 

most anaplastic tumour part. Moreover, the TBFmax as a biomarker is better in 

comparison to TBFmean, which is influenced by partial volume averaging. Histograms 

analysis60,162 that explore the tumour heterogeneity are probably able to differentiate 

the gliomas grades with high diagnostic accuracy and reproducibility. 

Various studies have assessed the usability of ASL and its role in routine brain tumour 

diagnosis comparing it against well-established MRI methods such as MR 

spectroscopy (MRS)142,145,154 and MRI-diffusion techniques127,128,153 as well as against 

other MRI perfusion techniques, including dynamic susceptibility contrast-enhanced 

43,148,160 and dynamic contrast-enhanced (DCE)84,130. Currently, DSC is the most 
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frequently employed MRI perfusion technique in the clinical practice for brain tumours 

assessment. Nevertheless, for patients who could not tolerate high-rate contrast 

injection or have a contraindication to contrast agents, ASL might be beneficial. Not to 

mention, ASL is a true alternative perfusion technique to avoid permanent gadolinium 

depositions in case of multiple MRI studies, if the latter is of clinical concern 163. The 

studies that investigated both ASL and DSC in glioma grading focused on the use of 

ASL as an alternative or surrogate of DSC42,43,148, for example, by assessing the 

interchangeability or the agreement of the estimated perfusion metrics from each 

assessment, instead of suggesting which method is superior. Such studies, though, 

exhibited the non-inferiority of ASL. Warmuth et al. reported a strong positive 

correlation between the rTBF measurement from ASL and DSC148. Another study 

reported a high correlation between the estimated rTBFmean and rTBFmax from both 

DSC and ASL42. Cebeci et al. found a moderate but significant correlation between the 

rTBF values from PASL and DSC43. These studies provide preliminary evidence that 

ASL can be used as a non-invasive alternative to DSC addressing the shortcoming of 

non-diffusible tracer (gadolinium) in DSC that leaks out of disrupted BBB and may lead 

to wrong estimation of the rCBV measurements164. 

Two studies that were assessed in this meta-analysis investigated the association 

between DCE and ASL in gliomas84,130. These studies used PASL and PCASL and 

proposed that ASL was not efficacious in the grading of gliomas and indicated poor to 

moderate correlation between DCE and ASL. This may be due to differences in ROI 

selection method, the different pathophysiological basis and meaning of the derived 

DCE and ASL biomarkers, and HGGs sample size in each study.  

To be able to use ASL as an alternative to contrast MRI perfusion techniques (DCE 

and DSC), its inter-observer variability and the reproducibility in brain tumours must be 

examined. Numerous research studies have indicated good inter-observer variability 

employing PASL129,147, PCASL127,131 and QUASAR (quantitative STAR labelling of 

arterial regions) 161. Moreover,  Hirai et al. indicated excellent intra- and inter-rater 

reproducibility of ASL in gliomas using both maximum and mean TBF 161. 

With respect to the use of ASL for tumour imaging in the future, PCASL was employed 

by Yoo et al. in a recent publication to investigate any association between genetic 
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biomarkers and perfusion values in HGGs165. The findings indicated that 

overexpression of the epidermal growth factor receptor (EGFR) was significantly 

correlated with absolute TBF and rTBF. Moreover, another study by Yamashita et al. 

demonstrated that both rTBF and TBF were significantly higher in glioblastoma (GBM) 

patients with IDH-wildtype status compared to those with IDH-mutation149. Besides, 

Brendle et al. indicated that in contrast to DCE, ASL could be used to stratify 

astrocytomas based on the IDH-mutation status84.  

This meta-analysis does have its limitations. First, almost all the assessed perfusion 

indices were heterogeneous among the selected articles. This is expected as MRI 

acquisitions tend to show variability across centres or even different vendor platforms 

in a single centre. This degree of heterogeneity was accounted for in the analysis using 

a random effect model. The second limitation was the small sample size, with 18 

included studies. However, this reflects the strict methodological standards employed 

in line with our objectives.  

3.5 Conclusion   

This meta-analysis aimed to shed light into the diagnostic performance of ASL in 

glioma grading and demonstrated the suitability of ASL-derived perfusion metrics in 

glioma grading. rTBFmax showed the best diagnostic and staging performance. 

Hence, ASL metrics’ capacity as imaging biomarkers can be routinely used for the 

characterisation and staging of gliomas at baseline, with implications for treatment 

selection and possibly surveillance imaging. However, further research with larger 

numbers of patients and well-defined tumour subtypes groups, including their 

molecular information, is needed to refine TBF-related threshold values that allow 

higher diagnostic and prognostic accuracy and are essential for the wide dissemination 

of the technique.    
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4 Repeatability of Perfusion Measurements in Gliomas Using Pulsed 

and Pseudo-continuous Arterial Spin Labelling (ASL) MRI 

Abstract 

Investigate the repeatability of perfusion measures in gliomas using pulsed- and 

pseudo-continuous- arterial spin labelling (PASL, PCASL) techniques, and evaluate 

different regions-of-interest (ROIs) for relative tumour blood flow (rTBF) normalisation. 

Repeatability of cerebral blood flow (CBF) was measured in the Contralateral Normal 

Appearing Hemisphere (CNAH) and in the brain tumours (rTBF and absolute-TBF 

(aTBF)). rTBF was normalised using large/small ROIs from the CNAH. Repeatability 

were evaluated using intra-class-correlation-coefficient (ICC), Within-Coefficient-of-

Variation (WCoV) and Coefficient-of-Repeatability (CR). PASL and PCASL 

demonstrated high reliability (ICC > 0.9) for CNAH-CBF, aTBF and rTBF. PCASL 

demonstrated more stable signal-to-noise ratio (SNR) with a lower WCoV of the SNR 

than that in PASL. PASL and PCASL showed higher WCoV in the tumour (aTBF, rTBF) 

than in CNAH CBF, and higher WCoV for rTBF than for aTBF when normalised using 

a small ROI. The lowest CR was observed for rTBF normalised with a large ROI. PASL 

and PCASL showed similar repeatability for the assessment of perfusion parameters 

in patients with primary brain tumours as previous studies based on volunteers. Both 

methods displayed reasonable WCoV in the tumour area and CNAH. PCASL’s more 

stable SNR in small areas (caudate) is likely to be due to the longer post-labelling 

delays.  
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4.1 Introduction 

Cerebral blood flow (CBF) quantification using arterial spin labelling (ASL) has been 

suggested to provide an imaging biomarker that can be used in both glioma grading 

45,143 and for evaluation of tumour progressions following radiotherapy 166–168. However, 

fundamental differences between ASL implementations (e.g. different acquisition 

sequences and spin labelling approaches) are known to affect the sensitivity of CBF 

estimation due to variation in measurement precision. Other potential sources of errors 

can also include scanner instability and short-term physiological fluctuations in tumour 

perfusion. Repeatability and reproducibility analysis are useful tools to validate the 

precision of the quantitative measurements in clinical trials and enable exploitation of 

their benefits and integration into clinical practice 169. 

A previous study investigating the reproducibility of quantitative STAR labelling of 

arterial region (QUASAR) 170 reported within-subject standard deviations (WS-SD) due 

to scanner instability of 3.1 ml/100g/min, increasing to 4.3 ml/100g/min after 

repositioning, and to 5.3 ml/100g/min including long term physiological variations over 

separate measurements. The scanner instability was thus considered as the main 

cause of quantification error, since each further increase in WS-SD is smaller than the 

initial value. This result was confirmed by another study that compared the test-retest 

reproducibility of pulsed-ASL (PASL), continuous-ASL (CASL) and pseudo-

continuous-ASL (pCASL) approaches 151. However, one of the main issues which limits 

generalizability of these studies is that they have only reported ASL reproducibility in 

healthy volunteers 151,170. A recent study which evaluated the intra-session reliability of 

PCASL in 6 patients with glioblastoma (GBM), showed high reliability in both the 

normal-appearing grey matter (NAGM) (ICC>0.90, WCoV 3.40%-7.12%) and tumour 

(ICC 0.98; WCoV 4.91%) 171. 

ASL measurements in brain tumours studies are usually expressed as absolute tumour 

blood flow (aTBF) or relative (or normalised) tumour blood flow (rTBF). rTBF has been 

shown to be more reliable than aTBF when distinguishing between high- from low-

grade gliomas (HGGs and LGGs, respectively) 43,45,148. Using a large ROI as the 

reference region for normalization provides excellent reliability, but can introduce 

inaccuracies due to the variability of the bolus arrival time (BAT) throughout the ROI 

172. Thus, the choice of tissue type to act as an internal reference and the size of the 
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ROI used for this purpose is likely to add bias and affect the variability and repeatability 

of rTBF.   

The aim of this chapter is to assess the repeatability of both pulsed ASL (PASL) and 

pseudo-continuous ASL (PCASL) with 3D GRASE and to decide which internal 

reference, both in terms of the ROI size and region of placement, is better for 

normalising the rTBF. 

4.2 Methods 

4.2.1 Patients 

Forty adult glioma patients (WHO histological glioma grades II-IV; aged 43±14 years) 

were recruited in this study. All participants provided signed informed consent, and the 

study was approved by the local institutional research board and the ethics committee. 

Sixteen subjects were scanned using PASL (9 HGGs, 7 LGGs); this data was 

retrospectively re-analysed from a previous study comparing perfusion measurements 

derived from ASL, dynamic susceptibility contrast (DSC) and dynamic contrast-

enhanced (DCE) in clinical neuro-oncology 173. An additional 24 subjects were 

prospectively identified and scanned using PCASL (9 HGGs, 15 LGGs). Both groups 

of patients were scanned on clinical 3T MR scanners (Siemens Healthineers, 

Erlangen, Germany). 

4.2.2 ASL acquisitions 

PASL data were acquired with a flow-sensitive alternating inversion recovery (FAIR) 

ASL labelling approach using a segmented 3D GRAdient- and Spin-Echo (GRASE) 

readout (8 shots; for other sequence parameters, see Table 4.1). For the calculation 

of CBF maps in absolute biological units (ml/100 g/min), images were acquired using 

the same acquisition scheme without background suppression and with three 

saturation recovery times (1s, 2s, and 4s). M0 and T1 were estimated by fitting these 

saturation recovery images using NiftyFit, an open-source software developed by the 

Centre for Medical Image Computing at University College London 174. 

PCASL data was similarly acquired using a segmented GRASE readout, except with 

four shots (Table 4.1). For CBF quantification, a proton density (PD) image was 
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acquired as the first volume of the series, with the same imaging readout but without 

labelling or background suppression. 
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Table 4.1 Imaging parameters of the investigated 3D ASL protocols 

 PASL (Siemens product) PCASL (Siemens WIP) 

Scanner Siemens 3T Skyra Siemens 3T Prisma 

Number of segments 8 4 

TR/TE (ms) 3500/12 4600/13.28 

Bolus duration (ms) 1000 (estimated)* 1800 

Post-labelling delay time (PLD/TI) (ms) 1800 1800 

FOV (mm) 240 × 240 220 x 220 

Matrix size 64 × 52 64 x 60 

Voxel size (mm3) 3.75 × 4.63 × 5.25 3.44 x 3.67 x 4 

Slice thickness (mm) 5.25  4  

Slices per slab  20 28 

Acquisition Time 3min 52s 5min 15s 

Refocusing flip angle (°) 130 130 

Turbo / EPI factors 15/13 28/15 

Background suppression scheme (BS) 

2 Inversion pulses with timings 

calculated to null static tissue 

magnetization with T1=700ms and 

1400ms 100ms before acquisition  

same as for PASL 

Number of repeats/averages 4  8  

Echo spacing 0.54 ms 0.51 ms 

* Note that due to a technical issue, the bolus duration was estimated for the PASL datasets. 

4.2.3 CBF map calculation 

After applying motion correction to the raw data using MCFLIRT 175 (from FMRIB 

Software Library (FSL)), ASL difference images (control – label) (ΔASL) were 

calculated. This resulted in four ΔASL for PASL, and six ΔASL for PCASL, because 

the first two measurements were removed from all PCASL data sets due to the 

presence of CSF artefacts. CBF maps are typically calculated by averaging over 

several repeats to increase SNR. Here, rather than measuring the repeatability 

between the CBF maps calculated from each measurement (single ΔASL), CBF maps 

were generated by averaging different combinations of single ΔASL measurements 

(Figure 4.1), to establish a number of measurements for each patient (known as 
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moving block bootstrapping 176). Repeated measurements from the same subject 

present as a finite time series of correlated data. Typical bootstrapping resamples 

measurements assuming they are independent and random, however, this assumption 

is violated in our study. Instead, moving block bootstrapping 176 overcome this problem 

as it resamples the observations as blocks instead of individual observation. This 

creates replicated samples and increase the accuracy of sampling distribution estimate 

without altering the dataset.  

Consequentially, each combination (or block) involved half of the acquired ΔASL 

measurements. The 4 ΔASL PASL images thus produced six combinations and the 6 

ΔASL PCASL images produced 20 combinations. Each of these generated 

combinations was then averaged, and CBF maps were calculated using the simplified 

general kinetic model proposed in the ISMRM (International Society for Magnetic 

Resonance in Medicine) Perfusion Study Group consensus paper100 (eq.4.1 and 4.2): 

For FAIR-PASL: 

 
CBF =  

6000.λ.(ΔASL).e
TI
T1a

2 .α .TI1 .M0 
 [ml/100 g/min] Equation 4.1 

For PCASL: 

 
CBF =  

6000 .λ .(ΔASL).e
PLD
T1a

2 .α .T1𝑎 .𝑃𝐷 .(1− e 
−𝛕
T1𝑎)

  [ml/100 g/min] Equation 4.2 

Each equation contained assumed constant values, measured values for each subject, 

and fixed timing parameters for each acquisition. The constant values were a factor of 

6000, used to convert the CBF unit of ml/g/s to ml/100 g/min; λ, the water blood/brain 

partition coefficient, defined to be 0.9 ml/g; α, the labelling efficiency, dependent on the 

labelling approach used (in this case, for PCASL = 0.85 and for PASL = 0.98); and 

T1a, the blood relaxation time, which was approximately equal to 1650ms at 3T 100. 

Please note that in this study, the reduction in labelling efficiency due to the use of BS 

pulses was not considered, as it was kept constant for each method throughout the 

project and as such, would not affect any calculated coefficient of variation. The 

measured PD (PCASL) or fitted M0 (PASL) value was used as a scaling image for the 

ΔASL image, enabling the absolute quantification of CBF. The fixed duration values 
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were the labelling bolus duration (LD) (τ/TI1 for PCASL/PASL, respectively), and the 

post labelling delay (PLD)/inflow time (TI) for PCASL/PASL, respectively. 

The PD for PCASL was multiplied by an appropriate scaling factor, as recommended 

by Alsop et al. 100 (eq.4.3) since it was acquired with TR less than 5s. 

 
SI_𝑀0 = SI_𝑎𝑐𝑞 .

1

(1 − 𝑒
(

−𝑇𝑅
𝑇1,𝑡𝑖𝑠𝑠𝑢𝑒))

 Equation 4.3 

The TR was 4.6s and the T1 of the grey matter (~1.3s) 112, resulting in a multiplying 

factor of 1.03. 

 

Figure 4.1 The permutation matrices illustrate all the possible combinations 

without repetition of k-element subsets (half of the repeated measurements) 

from a set of an element (repeated measurements, single ΔASL). The PASL 

has 2-elements subsets of a 4-elements set while the PCASL have 3-elements 

subsets of a 6-elements set. Thus, PASL dataset produces 6 combinations and 

the PCASL one 20 combinations of CBF maps.    
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4.2.4 Image analysis 

All MR images were converted to NIfTI format using MRIconvert, (version 2.0.x, 

https://lcni.uoregon.edu/downloads/mriconvert/mriconvert-and-mcverter). 

Conventional MR images (T1-weighted (T1-W), post-contrast T1-weighted (T1-C), T2-

weighted (T2-W) and Fluid-attenuated inversion recovery (FLAIR)) were used as 

anatomical templates. ITK-SNAP177 (version 3.6.0; www.itksnap.org) was used to 

segment the whole tumour volume manually on the T2-weighted images for PASL and 

the FLAIR images for PCASL, according to availability. 3D high resolution anatomical 

T1-W MPRAGE images were used for automatic segmentation of the grey matter (GM) 

and white matter (WM) volumes in the contralateral normal-appearing hemisphere 

(CNAH) with the FAST tool from the FSL library 178. Subsequently, these CNAH GM 

and WM volumes were used as "large ROIs" for rTBF normalisation. The caudate 

nucleus (caud) in the CNAH was segmented automatically from the MPRAGE using 

the FIRST tool from the FSL library 178, and was utilised as an example of "small ROI" 

for rTBF normalisation. Care was taken to avoid the tumour if it crossed the midline to 

the contralateral hemisphere. In short, the overlapping area between the CNAH binary 

mask and the tumour binary mask was subtracted from the CNAH binary mask, to 

generate a tumour free binarized CNAH mask. Rigid followed by affine registration in 

NiftyReg 179 was used to resample all segmented ROIs to the M0/PD images for 

PASL/PCASL, respectively. This is because M0/PD images have the same resolution 

as the CBF maps and possess similar anatomical features to structural images, thus 

facilitating co-registration (see Figure 4.2).  

 

Figure 4.2 Automatically segmented ROIs in the contralateral healthy 

hemisphere in a patient with right frontal glioma, which was manually 

segmented. Green, caudate; red, GM; blue, WM; yellow, tumour. 

https://lcni.uoregon.edu/downloads/mriconvert/mriconvert-and-mcverter
http://www.itksnap.org/
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Values were extracted from the maps as follows: i) tumour: mean aTBF and 95th-

percentile (aTBF-95per); ii) CNAH: mean CBF in WM, GM, and caudate (CBF-WM, 

CBF-GM, and CBF-caud, respectively). The normalised tumour values relative to WM, 

GM, and caud (rTBF-WM, rTBF-GM and rTBF-caud, respectively) and their 95th-

percentiles (rTBF-WM-95-per, rTBF-GM-95-per and rTBF-caud-95-per, respectively) 

were calculated. Note that the 95 percentile value of perfusion within the tumour is an 

important biomarker that has been shown to be relevant for diagnosis purposes in 

primary gliomas 45. SNR was calculated for the ΔASL images and the calculated CBF 

maps in the CNAH ROIs according to the NEMA methodology 180 (eq.4.4): 

 

 
𝑆𝑁𝑅 = √2

mean (ROI from (image1))

𝑆𝐷 (ROI from (image1 − image2))
 Equation 4.4 

With image1 and image2 representing either two consecutive ΔASL images or 

calculated CBF maps, respectively. The SNR was only calculated in the CNAH ROIs 

in order to avoid any variation which might result from abnormal tumour angiogenesis. 

Thus, the SNR from the ΔASL in WM, GM and caud were CBF_WM_SNR, 

CBF_GM_SNR and CBF_caud_SNR while from CBF maps were ΔASL_WM_SNR  

ΔASL_GM_SNR, and ΔASL_caud_SNR, respectively. 

4.2.5 Statistical analysis 

As this study sought to determine the extent to which the PASL and PCASL can be 

considered repeatable in terms of measuring aTBF/rTBF in tumour and CBF in the 

CNAH, repeatability was assessed separately for each ASL method. Test-retest 

repeatability was assessed based on the repeatability indices according to QIBA 

(Quantitative Imaging Biomarkers Alliance1), namely the intra-class correlation 

coefficient (ICC), the within-coefficient-of-variation (WCoV in %) and the Coefficient of 

Repeatability (CR).  

The ICC (two-way mixed effect, absolute agreement) was calculated for each of the 

extracted values from the CBF maps, grouped within each patient. This ICC model 

 

1 http://qibawiki.rsna.org/images/8/8c/FMRITechnicalPerformanceIndices041613.pdf, accessed on June 2018. 

http://qibawiki.rsna.org/images/8/8c/FMRITechnicalPerformanceIndices041613.pdf
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was selected as repeated measurements cannot be assumed to be a random 

sample181, and repeated measurements are meaningless without the presence of 

agreement. The ICC helps to determine the ratio of the true variance to the observed 

variance. ICC values should be interpreted as follows: <0.5 shows "poor reliability, 0.5 

to 0.75 shows moderate reliability, 0.75 to 0.9 demonstrates good reliability, and >0.9 

offers excellent reliability. 

The within-subject coefficient of variation (WCoV in %) is another repeatability index 

that represents the within-patient variation and is given in (eq.4.5): 

 

%𝑊𝐶𝑂𝑉 = (
𝑆𝐷𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
) . 100 Equation 4.5 

WCoV reflects the variability within the data due to random error. Less variability 

implies higher reliability. The WCoV was calculated among the repeated 

measurements for each patient, as the within-subject variation is not expected to be 

uniform among tumour patients. Applying the root mean square approach 182, the 

WCoVs were squared for each patient to find the overall mean and 95% CI, after which 

the square roots of the mean and the 95% CI were calculated.  

A further repeatability index is the Coefficient of Repeatability (CR), also known as the 

smallest real difference (SRD) 183,184; it allows quantification of the variation (error) in 

the same unit as the measured value (ml/100 g/min in this case) with 95% probability. 

Lower CR corresponds to a more sensitive/responsive measurement. Changes less 

than the CR are not detectable and deemed to be due to measurement variation, 

meaning that the method is insensitive to changes smaller than the CR.  

To estimate the CR, first, the within-subject standard deviation (WS-SD) was 

calculated among the repeated measurements for each patient, as it is not expected 

to be uniform among tumour patients. The same procedure was used as for the WCoV 

and the CR was calculated according to (eq.4.6): 

 

 𝐶𝑅 = 1.96 √2(𝑊𝑆-𝑆𝐷)2 Equation 4.6 
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As different sets of patients underwent PASL and PCASL acquisitions, the WCoV was 

used for each extracted value from the calculated maps to compare the variations 

between PASL and PCASL (using Mann-Whitney U tests); the variations between 

HGGs and LGGs (using unpaired t-tests); the variations between aTBF and rTBF, 

between normal CBF and aTBF, and between normal CBF and rTBF, both using paired 

t-tests. The IBM SPSS version 24 (SPSS Inc, Chicago, IL) statistical package was 

used for the statistical analysis. 

4.3 Results 

4.3.1 Intraclass correlation coefficient (ICC) 

Generally, all perfusion metrics obtained from both PASL and PCASL demonstrated 

high reliability (ICC > 0.9) as illustrated in Table 4.2. Nevertheless, the between-patient 

SD of the extracted values was lower for PCASL than for PASL (Table 4.2). The tumour 

perfusion values using PASL demonstrated higher between-patients SD. 

4.3.2 Within-subject coefficient of variation (WoCV) and Coefficient of Repeatability (CR) 

There were no significant differences (p-value>0.05) between the HGGs and LGGs 

regarding the estimated WCoV of tumour perfusion values (aTBF and rTBF). WCoV of 

rTBF and rTBF_95per that normalised to a "small ROI" was significantly higher than 

WCoV of aTBF (Tables 4.2 and Figure 4.3, and Table 4.3) whereas no significant 

WCoV increase of aTBF compared to rTBF and rTBF_95per were observed when the 

latter was normalised to "large ROI".  Normalisation of the tumour perfusion metrics to 

the whole WM or GM of the CNAH showed its ability to filter out some of the signal 

variations, while using the "small ROI" raised the signal variation level. Moreover, the 

estimated WCoV  of the aTBF_95per, rTBF and rTBF-95per (normalised to caudate) 

were significantly higher than CBF WCoV in WM and GM. The estimated WCoV  of 

the aTBF, rTBF and rTBF-95per (normalised to WM or GM) were not significantly 

different from CBF WCoV in GM and WM, whereas WCoV of the aTBF and rTBF 

(normalised to WM or GM)  was significantly lower than the estimated WCoV of CBF 

in the caudate (Table 4.3). All estimated CR of the measured values are illustrated in 

Table 4.2 and Figure 4.4, where the lowest CR was for the rTBF normalised to the 

whole CNAH GM. In the PASL CBF maps, macrovascular artefacts were observed, 
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coming from accumulation of labelled spins in large vessels; Figure 4.5 shows 

examples of CBF maps for both PASL and PCASL.  

With the imaging parameters used within this study, the mean CBF and SNR values 

from PCASL were lower than those from PASL (Table 4.2, Figure 4.6). Furthermore, 

as expected, the SNR showed significant negative correlation with the WCoV (WM, r= 

-0.632 p-value < 0.001; GM, r= -0.602 p-value < 0.001; caud, r= -0.463 p-value=0.003). 

The WCoV of the perfusion metrics was significantly higher (p < 0.05) for PCASL than 

PASL (Table 4.4). In contrast, the WCoV of the SNR was significantly lower for PCASL 

than PASL in the caudate, and showed the same trend, though non-significant in the 

WM and the GM.  
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a.

 

b. 

Figure 4.3 %WCoV from 

PASL and PCASL of (a) the 

absolute perfusion 

measurements, (b) the 

relative perfusion 

measurements and (c) the 

SNR from the CNAH.  

c. 
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a.

b.

 

Figure 4.4 Quantified CR 

from PASL and PCASL of (a) 

the absolute perfusion 

measurements in 

[ml/100g/min], (b) the 

relative perfusion 

measurements and (c) the 

SNR from the CNAH. 

c.
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Figure 4.5 An example illustrating the relationship between the WCoV and the ASL-SNR specifically in the CNAH 

(indicated by arrows). (a.) PCASL CBF-map from for 56-year-old glioma patient, the tumour is located in the left 

hemisphere while the right hemisphere is the CNAH (arrow). The WCoV values were WM= 7.2%; GM= 5.1%; 

caud= 16.9%; the high WCoV values from the CNAH presented with low perfusion SNR. (b.) PCASL CBF-map 

from a 33-year-old glioma patient, the tumour was located at the right hemisphere whereas the left hemisphere is 

the CNAH (arrow). The WCoV values are WM= 3%; GM= 1.3%; caud= 9.2%; the low WCoV from the CNAH 

correlated with high perfusion SNR. (c.) PASL CBF-map in a 55-year-old glioma patient, the tumour was located 

in the left hemisphere while the right hemisphere is the CNAH (arrow). The WCoV values are WM= 3.9%; GM= 

4.9%; caud= 10.12%; even though the CNAH showed small WCoV that is due to the high SNR, this is an artificial 

increase in SNR mostly due to accumulated labelled spins inside the macrovasculature. Note that the images are 

shown in grayscale to enable visual differentiation between true perfusion (as in a. and b.) and macro-vascular 

artefact (as in c.). 
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a.

b.

Figure 4.6 Mean values 

from the PASL and 

PCASL of (a) the absolute 

perfusion measurements 

in [ml/100g/min], (b) the 

relative perfusion 

measurements and (c) 

the SNR from the CNAH.  

c.
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Table 4.2 between patients mean, SD and 95%CI; within patients ICC, WCoV and CR estimates in the extracted measurements from the CBF maps 

 PASL PCASL 

  
Mean ± SD (95%CI) 

ICC (95%CI) WCoV% (95%CI) CR (95%CI)  
Mean±SD (95%CI)  ICC 

(95%CI) 

WCoV% 

(95%CI) 
CR (95%CI)  

aTBF 

24.04 ± 9.98 (18.7, 

29.4) [ml/100g/min] 

0.998 (0.995, 

0.999) 4.7 (2.2, 6.3) 
3.3 (1.92, 5.017) 

[ml/100g/min] 

19.9 ± 6.56 (16.9, 

22.8) [ml/100g/min] 

0.996 

(0.994, 

0.998) 

7.9 (6.2 to 

9.4) 

5.1 (3.2, 6.5) 

[ml/100g/min] 

aTBF_95per 
59.8 ± 26.97 (45.4, 

74.1) [ml/100g/min] 

0.999 (0.997, 

0.999) 4.3 (2.6, 5.5) 
6.9 (3.166, 9.16) 

[ml/100g/min] 

37.4 ± 10.49 (32.9, 

41.8) [ml/100g/min] 

0.996 

(0.994, 

0.998) 

6.8 (4.7 to 

8.4) 

7.8 (3.9, 10.3) 

[ml/100g/min] 

CBF_wm 
26.7 ± 5.62 (23.7, 

29.7) [ml/100g/min] 

0.998 (0.995, 

0.999) 2.5 (2, 2.9) 
1.8 (1.303, 2.24) 

[ml/100g/min] 

21.3 ± 3.34 (19.9, 

22.8) [ml/100g/min] 

0.992 

(0.987, 

0.996) 

5.8 (4.6 to 

6.9) 

3.7 (2.4, 4.6) 

[ml/100g/min] 

CBF_gm 
37.4 ± 7.89 (33.2, 

41.6) [ml/100g/min] 

0.997 (0.995, 

0.999) 2.7 (1.7, 3.5) 
2.7 (1.64, 3.472) 

[ml/100g/min] 

27.8 ± 4.49 (25.9, 

29.7) [ml/100g/min] 

0.997 

(0.996, 

0.999) 

3.8 (3.2 to 

4.3) 

2.8 (2.4, 3.2) 

[ml/100g/min] 

CBF_caud 
22.1 ± 9.92 (16.8, 

27.4) [ml/100g/min] 

0.996 (0.992, 

0.998) 8.4 (4.1, 11.2) 
4.2 (2.057, 5.605) 

[ml/100g/min] 

22.8 ± 4.43 (20.9, 

24.7) [ml/100g/min] 

0.980 

(0.966, 

0.990) 

11.3 (8.8 to 

13.4) 

7.8 (5.2, 9.8) 

[ml/100g/min] 

rTBF_wm 
0.89 ± 0.29 (0.73, 

1.04) 

0.998 (0.996, 

0.999) 3.86 (1.9, 5.1) 
0.092 (0.040, 

0.124) 

0.92 ± 0.26 (0.81, 

1.03) 

0.996 

(0.993, 

0.998) 

7.5 (6.3 to 

8.7) 

0.205 (0.144, 

0.252) 

rTBF_gm 
0.63 ± 0.18 (0.53, 

0.72) 

0.997 (0.993, 

0.999) 3.98 (1.7, 5.3) 
0.07 (0.023, 

0.096) 

0.71 ± 0.22 (0.62, 

0.81) 

0.997 

(0.995, 

0.998) 

7.1 (5.7 to 

8.3) 

0.156 (0.1025, 

0.195) 
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rTBF_caud 
1.19 ± 0.47 (0.94, 

1.4) 

0.993 (0.986, 

0.997) 8.1 (4, 10.7) 
0.27 (0.128, 

0.366) 

0.87 ± 0.23 (0.77, 

0.97) 

0.990 

(0.983, 

0.995) 

10.9 (9.2 to 

12.3) 

0.281 (0.218, 

0.333) 

rTBF_wm_95per 2.24 ± 0.94 (1.7, 2.7) 

0.998 (0.997, 

0.999) 3.4 (2.3, 4.3) 0.24 (0.055, 0.36) 
1.74 ± 0.32 (1.61, 

1.88) 

0.992 

(0.986, 

0.996) 

7.06 (5.58 

to 8.3) 

0.361 (0.248, 

0.445) 

rTBF_gm_95per 1.59 ± 0.60 (1.3, 1.9) 

0.998 (0.997, 

0.999) 3.3 (2.17, 4.15) 
0.17 (0.0175, 

0.24) 

1.35 ± 0.29 (1.22, 

1.47) 

0.995 

(0.992, 

0.998) 

6.19 (4.47 

to 7.5) 

0.249 (0.142, 

0.322) 

rTBF_caud_95per 3.08 ± 1.67 (2.2, 3.9) 

0.995 (0.991, 

0.998) 8.7 (3.9, 11.7) 
0.77 (0.347, 

1.045) 

1.65 ± 0.29 (1.52, 

1.77) 

0.979 

(0.964, 

0.989) 

10.5 (8.7 to 

11.9) 

0.51 (0.38, 

0.611) 

CBF_wm_SNR 8.9 ± 3.94 (6.8, 10.9) 

0.968 (0.936, 

0.987) 14.8 (11.7, 17.4) 4.4 (1.69, 5.97) 
4.36 ± 1.36 (3.79, 

4.9) 

0.985 

(0.975, 

0.993) 

14.9 (12.2 

to 17.2) 
1.65 (1.43, 1.84) 

CBF_gm_SNR 9.4 ± 4.98 (6.7, 12) 

0.978 (0.965, 

0.991) 17.1 (11.8, 21.01) 4.7 (3.036, 5.91) 
5.32 ± 1.70 (4.6, 

6.04) 

0.989 

(0.982, 

0.995) 

13.41 

(11.29 to 

15.24) 

1.84 (1.63, 

2.028) 

CBF_caud_SNR 
10.6 ± 8.08 (6.2, 

14.9) 

0.955 (0.909, 

0.982) 33. 3 (25.4, 39.6) 
11.1 (6.481, 

14.28) 

5.2 ± 2.47 (4.15, 

6.24) 

0.954 

(0.923, 

0.977) 

24.7 

(19.291 to 

29.15) 

3.3 (2.33, 4.097) 

ΔASL_wm _SNR 
10.6 ± 4.09 (8.4, 

12.7) 

0.969 (0.938, 

0.988) 14.8 (10.9, 17.8) 4.6 (2.619, 6.031) 4.4 ± 1,44 (3.8, 4.99) 

0.983 

(0.972, 

0.992) 

15.7 (12.27 

to 18.54) 
1.8 (1.43, 2.055) 

ΔASL_gm_SNR 
13.4 ± 5.22 (10.6, 

16.2) 

0.971 (0.941, 

0.988) 16. 1 (11.5, 19.5) 5.6 (4.2, 6.69) 5.3 ± 1.59 (4.6, 5.98) 

0.986 

(0.976, 

0.993) 

13.6 (11.6 

to 15.4) 
1.9 (1.67, 2.183) 
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ΔASL_caud_SNR 9.9 ± 7.61 (5.9, 14) 

0.956 (0.910, 

0.982) 34.1 (22.7, 42.5) 10.5 (5.6, 13.74) 
4.9 ± 2.47 (3.88, 

5.96) 

0.957 

(0.928, 

0.978) 

24.6 (18.8 

to 29.2) 

3.2 (2.187, 

4.025) 
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Table 4.3 Paired t-test results comparing the WCoV% between aTBF and rTBF, between CBF and aTBF, and 

between CBF and rTBF 

 PASL PCASL 

 t p-value t p-value 

aTBF and rTBF-WM 1.3 > 0.05 0.28 > 0.05 

aTBF and rTBF-GM 1.2 > 0.05 1.9 > 0.05 

aTBF and rTBF-caud -2.7 0.016 -3.8 0.001 

aTBF and rTBF-WM-95per 1.1  > 0.05 1.2 > 0.05 

aTBF and rTBF-GM-95per 1.5 > 0.05 3.6 0.002 

aTBF and rTBF-caud-95per -2.8 0.015 -2.8 0.010 

aTBF-95per and rTBF-WM 0.98 > 0.05 -1.9 > 0.05 

aTBF-95per and rTBF-GM 0.72 > 0.05 -1.1 > 0.05 

aTBF-95per and rTBF-caud -2.5 0.023 -4.7 <0.001 

aTBF-95per and rTBF-WM-95per 1.3 > 0.05 -1 > 0.05 

aTBF-95per and rTBF-GM-95per 1.5 > 0.05 1.5 > 0.05 

aTBF-95per and rTBF-caud-95per -2.6 0.019 -3.9 0.001 

CBF-WM and aTBF -1.9 > 0.05 -2.5 0.019 

CBF-WM and aTBF-95per -2.3 0.035 -0.95 > 0.05 

CBF-WM and rTBF-WM -1.7 > 0.05 -2.8 0.010 

CBF-WM and rTBF-WM-95per -1.9 > 0.05 -2.3 0.029 

CBF-WM and rTBF-GM -1.6 > 0.05 -1.7 > 0.05 

CBF-WM and rTBF-GM-95per -1.6 > 0.05 -0.18 > 0.05 

CBF-WM and rTBF-caud -3.4 0.004 -10.6 <0.001 

CBF-WM and rTBF-caud-95per -3.5 0.003 -9.5 <0.001 

CBF-GM and aTBF -2.3 0.037 -5 <0.001 

CBF-GM and aTBF-95per -2.8 0.013 -3.7 <0.001 

CBF-GM and rTBF-WM -1.8 > 0.05 -5.5 <0.001 

CBF-GM and rTBF-WM-95per -1.9 > 0.05 -5.1 <0.001 

CBF-GM and rTBF-GM -1.5 > 0.05 -4.8 <0.001 

CBF-GM and rTBF-GM-95per -1.4 > 0.05 -3.3 0.003 
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CBF-GM and rTBF-caud -3.3 0.005 -10.6 <0.001 

CBF-GM and rTBF-caud-95per -3.4 0.004 -9.5 <0.001 

CBF-caud and aTBF 2.9 0.010 3.7 0.001 

CBF-caud and aTBF-95per 2.8 0.014 5.5 <0.001 

CBF-caud and rTBF-WM 3 0.008 3.7 0.001 

CBF-caud and rTBF-WM-95per 2.9 0.012 4.9 <0.001 

CBF-caud and rTBF-GM 3.4 0.004 4.2 <0.001 

CBF-caud and rTBF-GM-95per 3.3 0.005 5.6 <0.001 

CBF-caud and rTBF-caud 0.75 > 0.05 0.024 > 0.05 

CBF-caud and rTBF-caud-95per -0.13 > 0.05 0.6 > 0.05 
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Table 4.4 Mann-Whitney U Test and ranks comparing the WCoV of the extracted measurements between PASL 

and PCASL  

 ASL_method N 
Mean 

Rank 

Mann-Whitney 

U 
Z 

Exact Sig. (2-

tailed) 

wcov_TBF PASL 16 13.94 87 -2.899 0.003 

 PCASL 24 24.88    

 Total 40     

wcov_TBF_95per PASL 16 14.56 97 -2.623 0.008 

 PCASL 24 24.46    

 Total 40     

wcov_CBF_WM PASL 16 10.38 30 -4.472 <0.001 

 PCASL 24 27.25    

 Total 40     

wcov_CBF_GM PASL 16 14.88 102 -2.485 0.012 

 PCASL 24 24.25    

 Total 40     

wcov_CBF_caud PASL 16 15.13 106 -2.374 0.017 

 PCASL 24 24.08    

 Total 40     

wcov_rTBF_WM PASL 16 11.63 50 -3.920 <0.001 

 PCASL 24 26.42    

 Total 40     

wcov_rTBF_GM PASL 16 11.38 46 -4.031 <0.001 

 PCASL 24 26.58    

 Total 40     

wcov_rTBF_caud PASL 16 12.25 60 -3.644 <0.001 

 PCASL 24 26.00    

 Total 40     

wcov_rTBF_WM_95per PASL 16 13.44 79 -3.119 0.001 

 PCASL 24 25.21    

 Total 40     
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wcov_rTBF_GM_95per PASL 16 13.81 85 -2.954 0.003 

 PCASL 24 24.96    

 Total 40     

wcov_rTBF_caud_95per PASL 16 14.25 92 -2.761 0.005 

 PCASL 24 24.67    

 Total 40     

wcov_WM_SNR PASL 16 20.56 191 -0.028 0.989 

 PCASL 24 20.46    

 Total 40     

wcov_GM_SNR PASL 16 22.63 158 -0.939 0.359 

 PCASL 24 19.08    

 Total 40     

wcov_caud_SNR PASL 16 25.50 112 -2.209 0.027 

 PCASL 24 17.17    

 Total 40     

wcov_raw_wm_SNR PASL 16 19.44 175 -0.469 0.652 

 PCASL 24 21.21    

 Total 40     

wcov_raw_gm_SNR PASL 16 21.63 174 -0.497 0.633 

 PCASL 24 19.75    

 Total 40     

wcov_raw_caud_SNR PASL 16 25.13 118 -2.043 0.041 

 PCASL 24 17.42    

 Total 40     
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4.4 Discussion 

In this study, PASL and PCASL repeatability in gliomas was evaluated using 

three indices, namely ICC, WCoV and CR. As both patient groups were not the 

same across the ASL labelling approaches, the evaluation was undertaken 

separately. Our findings demonstrated here that aTBF WCoV was not different 

than rTBF WCoV when a large ROI was used as an internal reference. This 

suggest that when normalizing TBF values, a large ROI is better than a small one 

to avoid artefactual increased in noise. In addition, the CR (or SRD) was lowest 

for the rTBF when normalised to the large ROIs, where a small CR indicates high 

sensitivity to changes 184. In a recent study by Zhou et al. the measured WCoV 

was lower for large ROIs than for small ROIs, for example WCoV from temporal 

lobe was 4.95% while from the putamen was 7.12%. This is supported by the 

inverse relationship between the within-subject variation and the ROI size seen 

in ASL and reported in several studies 185,186. Our result from chapter 3 and 

previous studies reported the high diagnostic accuracy for glioma grading using 

rTBF, and also the role of the rTBF in the improvement of the detection of small 

differences of perfusion in the case of moderate SNR 45,187. The lack of difference 

in WCoV in this study between both indices might be due to the relatively artificial 

way of estimating repeatability indices, based on split measurements. Generally, 

however, in clinical studies where an internal reference is chosen, it is important 

to select it carefully, preferably a large ROI based on GM within the CNAH. 

The reliability for both PASL and PCASL was excellent (ICC>0.9) in concordance 

with  previous studies, where it ranged from good to excellent 151,171,188. We 

believe that the high-reliability in our measurements was due to the short period 

between the repeated measurements, as previous ASL reliability studies showed 

the adverse effect of long time interval among the scan sessions 151,188. The slight 

superiority of PASL over PCASL in reliability in this study is primarily due to the 

difference in acquisition parameters. In particular, the voxel size between both 

methods was ~1.7 times larger for our PASL implementation than for the PCASL 

one. In addition, presence within the PASL data of a slightly higher between 

patient SD might also contribute to the ICC increases, as is generally the case 

when between patient SD is greater than the within patient SD 189. 
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The WCoV of CBF in CNAH was found to be comparable with previous studies 

151,170,185. Higher WCoV in the perfusion metrics (both for normal CBF and 

tumour) was observed in PCASL compared to PASL. Probable reasons are the 

same as before, including intrinsic differences in the two patient groups, the 

acquisition parameters, and in particular the voxel size. Besides, the difference 

in labelling efficiency between both sequences, with PASL having a generally 

slightly higher efficiency than PCASL, might have also possibly contributed 190. 

The higher WCoV of PCASL-based estimation of CBF does not necessarily mean 

the superiority of PASL over PCASL, as both labelling methods employed were 

applied to different patient groups. The quantified means from the CNAH (CBF-

WM, CBF-GM and CBF-caud) were higher in PASL than in PCASL. In addition, 

PCASL has been reported to display higher SNR and reproducibility than PASL 

when applied to the same patient group 151. Furthermore, in our study, the WCoV 

of the SNR was lower for PCASL for small regions and showed a trend towards 

reduced WCoV in the rest of the brain, which indicates a potential higher stability 

in comparison to PASL. 

It is worth noting that there is an inverse relationship between the amplitude of 

the ASL signal and its variation (WCoV) across time 151. As a matter of fact, even 

an artefactual increase in the SNR from the accumulated labelling spins in the 

macro-vessels will reduce the WCoV, if it can be measured reproducibly. 

Therefore, the decrease in the WCoV of the PASL perfusion metrics might be a 

consequence of the higher ASL signal due to labelled spins that have not yet 

reached the microcirculation. This phenomenon is also known as a macro-

vascular artefact or Arterial Transit Artefact (ATA) (see Figure 4.5) and is mainly 

due to the delayed arrival of the labelled blood to the tissue.  

This underscores the significant role of the PLD selection and its impact on the 

robustness of the CBF quantification. This is most critical in tumours with 

abnormal transit times due to the newly formed tortuous vessels. A recent ASL 

study suggested using phase-contrast MRI to determine the blood velocity profile 

and inform the selection of the PLD 191; this might help to ensure complete 

delivery of the labelled bolus into the tissue of interest, however at the cost of 

scan time, and thus might not be practically implementable in the clinics.  
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The main limitation of our study is its small sample size of the repeated 

measurements, which has been addressed using moving block bootstrapping 176. 

In this study, we focused on comparing the short-term repeatability of the different 

ASL acquisition techniques and did not address within-subject variation due to 

patient repositioning and physiological tissue perfusion perturbations and 

changes, which is of particular importance for longitudinal tumour studies. 

However, based on the findings of the large QUASAR study 170, an estimate of 

these additional effects could be established as a guiding rule regarding sample 

size calculation for future clinical trials. Most importantly, however, was the 

recognition that repeatability was not lower in primary brain tumour patients than 

in healthy volunteers, as assessed in previous studies. This is particularly 

remarkable due to the use of split acquisition in blocks, resulting in a generally 

lower average scan time than used clinically. 

4.5 Conclusion 

 This repeatability study highlights the excellent reliability of both PASL and 

PCASL for neuro-oncological studies, in line with previous volunteer studies. 

However, aTBF/rTBF estimates tend to maintain high within-subject variability 

that may obscure the detection of between-subject variation with small changes 

in tumour perfusion. When estimating rTBF, large ROIs need to be used to filter 

out systemic misleading within-subject variation and thus provide more robust 

perfusion measurements. Finally, in this study, no large difference between 

repeatabilities were observed between PASL and PCASL, which might have 

been attributed primarily to the difference in acquisition parameters, and both 

methods can therefore be recommended to assess brain perfusion, with the 

caveat that PCASL allows for longer PLD than PASL, which therefore minimises 

the macro-vascular artefacts, and provide better estimates of patient perfusion. 
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5 The Diagnostic Performance of Different Advanced-MRI Based 

on Radiomics for Non-invasive Histomolecular Staging of 

Untreated Adult Gliomas  

Abstract 

Radiomics has emerged as a promising non-invasive method for glioma 

classification. This paper aims to explore the diagnostic performance of advanced 

MRI methods to classify primary gliomas. Prospective data from 32 adults with 

untreated gliomas, who underwent pseudo-continuous arterial spin labelling 

(PCASL), dynamic susceptibility contrast-enhanced (DSC), dynamic contrast-

enhanced (DCE) and diffusion-weighted imaging (DWI) were post-processed. 

The tumours were staged according to the WHO 2016 histomolecular 

classification scheme. The DCE datasets were post-processed using the 

modified Tofts-Kermode (mTK) and the Lawrence and Lee (L&L) models. Whole 

tumour histogram features from the perfusion- and diffusion-weighted maps were 

extracted. The features have been combined using Kruskal-Wallis test, backward 

elimination and cross-correlation methods. Multinomial logistic regression 

analysis with leave-one-out cross validation (LOOCV) was undertaken on these 

features separately and combined in sets. The validation model with the highest 

Kappa represents the best-performed model and hence the optimal features' 

subsets. The model performance was reported using several indexes including 

sensitivity, specificity, F1 score, accuracy (ACC) and Cohen's Kappa (K). The 

diagnostic performances of the ASL, DSC and DCE for the attained features 

separately were comparable to combining optimal features' subsets, where the 

latter made it feasible to predict more classes. The optimal features' subsets from 

DSC showed superior diagnostic performance, with ACC for grading 84%, sub-

grading 72%, IDH-status 86%, grouping 66% and sub-grouping 56%. Followed 

by ADC for grading (ACC=70%) and sub-grading (ACC=61%), DCE-L&L for 

grouping (ACC=60%). Both DCE-L&L and ASL showed the second-best 

diagnostic performance for IDH-status (ACC=81%). DCE-mTK surpass DCE-L&L 

for grading (ACC: 56% vs 72%). MRI radiomics hold promise for accurate glioma 

classification. ASL and ADC represent a gadolinium-free approach poses a 

potential alternative to DSC. Complex pharmacokinetic models yield better 

diagnostic performance than simplified compartmental solutions in DCE-MRI.  
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5.1 Introduction 

The WHO 2016 classification2 of brain gliomas mandates tumour subtyping 

according to molecular/genetic features including stratification by isocitrate 

dehydrogenase gene mutation (IDH-mut) and 1p/19q co-deletion, which are 

favourable for longer overall survival time7–9. Currently, histological biopsy 

remains the reference standard for identifying glioma grade and their 

molecular/genetic features. However, due to the method invasiveness and 

possible sampling errors, surrogate non-invasive imaging biomarkers are of great 

interest. Advanced MRI may qualify as a valid alternative to invasive biopsy for 

gliomas staging. Recently, several studies reported the subsidiary role of 

perfusion and diffusion-weighted (DWI) MRI84,192–194 in staging gliomas according 

to the WHO 2016. Rarely, the results have so far captured the heterogeneity of 

the lesions. Instead, the results are based on univariate analyses of maximum 

and mean values from the hot-spot regions of interest (ROI) or the entire tumour 

volume. However, useful information, imperceptible by the human eye, known as 

the texture, can be extracted from the radiological images using histogram texture 

analysis60,63,64. The latter explores the distribution of the voxels' values, and hence 

tumour heterogeneity. The high dimensional data, collectively known as 

radiomics, generated from such analysis can subsequently be reduced, e.g. 

preserving its significant aspects, to ensure accuracy and limit complex elements 

for the prediction or classification task.   

MRI radiomics has been reported as a promising non-invasive method for glioma 

classification195–200. Tian et al. 195 reported the effectiveness of radiomics for 

glioma grading using different MRI modalities including structural MRI, DWI and 

arterial spin labelling (ASL); notably, the combined multiparametric MRI 

radiomics demonstrated the highest grading accuracy.  Other studies reported 

radiomics from conventional MRI as a potentially useful approach for predicting 

the IDH-mutation among low-grade197–199 and high-grade gliomas200 (LGGs, 

HGGs, respectively). An interesting remark is that all studies investigating 

dynamic contrast-enhanced (DCE) perfusion MRI in gliomas have utilised 

simplified compartmental models, particularly the modified Tofts-Kermode (mTK) 

model84–86. This model cannot clearly separate the intravascular transport of the 
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tracer molecules relative to their exchange process between intravascular and 

EES. Thus, the Ktrans from the mTK model incorporate both plasma flow (F) and 

vessels permeability surface (PS). In contrast, advanced models, such as the 

adiabatic approximated tissue homogeneity (AATH) model also known as St 

Lawrence and Lee model (L&L)201 allowed separate estimation of F and PS which 

are respectively reflect the transport of the tracer molecules intravascular and 

between the intravascular space and the EES; hence they reflect the underlying 

physiology more accurately and enable additional physiological parameters to be 

better estimated80,88, but demanding higher data quality. 

Our study aims to expand the work of the previous radiomics studies in gliomas 

by investigating the diagnostic performance of multiple advanced MRI methods 

including the three dominant perfusion techniques. Namely, pseudo-continuous-

ASL (PCASL) dynamic contrast-enhanced (DCE) using both the modified Tofts-

Kermode (mTK) and the St Lawrence and Lee (L&L) models,  and the dynamic 

susceptibility contrast-enhanced (DSC) along with DWI in order to classify 

gliomas using a tiered approach that considers conventional grading (LGGs 

(grade-II) and HGGs (grade III-IV)) and WHO 2016 histomolecular staging 

including glioblastoma IDH-wild type (GBM-wt), grade II IDH-mutant astrocytoma 

(astro-mut-LG), grade III IDH-mutant astrocytoma (astro-mut-HG), grade II IDH-

mutant oligodendroglioma (oligo-mut-LG), and grade III IDH-mutant 

oligodendroglioma (oligo-mut-HG).  

5.2 Material and Methods 

5.2.1 Study design 

The used data is from a prospective, non-blinded imaging trial approved by the 

National Research Ethics Service and the local Joint Research Office with written 

consent obtained from all recruited patients. 

5.2.2 Patients 

Screening and selection of the study participants were conducted in the period 

from January 2018 to June 2019 through the neuro-oncology multidisciplinary 

tumour board in our hospital. The study participants were prospectively identified 

as adult patients with primary non-treated gliomas and able to undergo 
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multiparametric MRI scans. At the same time, patients with the following 

conditions: brain tumours other than gliomas, contraindication to MRI and 

gadolinium, and previously treated brain tumours were excluded from the study.  

5.2.3 Hand-crafted radiomics 

This study used the conventional hand-crafted radiomic pipeline (see Figure 5.1), 

that consists of the following tasks: 1) image acquisition and processing including 

map generation and ROI segmentation; 2) feature extraction; 3) feature reduction 

and 4) statistical analyses and model validation using LOOCV. 
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Figure 5.1 Summary of the image analysis workflow: 1) volumes of interest (VOIs) after tumour segmentation in the T2-weighted FLAIR, grey matter 

(GM) segmentation from the contra-lateral normal-appearing hemisphere on 3D-T1-weighted images, T2-weighted and post-contrast T1-weighted 

images were available as reference. The segmented VOIs were then resampled and overlaid onto the generated maps; 2) Histogram features extraction; 

3) Feature reduction and determination of the optimal features’ subsets; 4) Statistical analyses and model validation using leave-one-out-cross-validation 

(LOOCV) to enable the assessment of the diagnostic performance of the final features’ subsets. 
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5.2.4 Image acquisition and processing  

3D high-resolution T1-, post-contrast T1-, T2- and T2/FLAIR-weighted structural 

imaging, DWI-MRI and multimodal MR-perfusion (PCASL, DCE and DSC) were 

acquired on a clinical 3T MR scanner (Prisma, Siemens Healthineers, Erlangen, 

Germany) using a 64-channel head coil. DWI was acquired with diffusion 

weightings in 3 orthogonal directions at two b values (0 and 2500 s/mm2), the 

choice of the b-values was justified by the increased differentiation capability for 

glioma grade at higher b-values202. Table 5.1 shows the technical details of the 

sequence protocol. PCASL was chosen to obtain ASL data and was guided by 

phase-contrast scout images to position the labelling plane where carotid and 

vertebral arteries run along the z-direction (see Table 5.1). A proton density (PD) 

image, for scaling purposes, was acquired as the first volume of the series, with 

the same imaging readout but without labelling or background suppression. 

Following DWI and ASL, both contrast-based perfusion imaging modalities were 

obtained using body-weight adapted contrast agent (Prohance, Bracco, Milan, 

Italy) administered in two separated boluses using a power injector at a rate of 

4ml/sec and flushed each time with 20ml of normal saline at the same injection 

rate. The first bolus intended for the DCE-MRI (~5 minutes acquisition time) acted 

at the same time as preload for the DSC-MRI76. Table 5.1 illustrates the sequence 

acquisition parameters for DCE- and DSC-MRI including the acquisition details 

for the multiple flip angle-based T10 (3, 7, 10, 13, 15 degrees) brain mapping prior 

to gadolinium injection.  

Commercially available software (Olea Sphere 2.3, Olea Medical, La Ciotat, 

France) was used to process the DCE- and DSC-MRI data. DCE-MRI datasets 

were fitted to the modified Tofts-Kermode compartmental-model (mTK)87, as well 

as to the St Lawrence and Lee (L&L)201 distribution-model. This occurred after 

motion correction was performed on the dynamic data and automatic selection of 

the arterial input function (AIF) was performed for every patient based on a cluster 

analysis algorithm203, an example of the AIF and the tumour uptake curve are 

illustrated in Figures 5.2 and 5.3. The mTK model produced four maps: fractional 

plasma volume (vp, in %), fractional volume of the extracellular extravascular 

space (EES) (ve, in %), transfer constant from blood plasma or permeability 
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constant (Ktrans, in min-1) and reverse transfer constant to the blood plasma or 

reflux constant (kep, in min-1). On the other hand, the L&L model output has eight 

maps including extraction fraction (E, in %, denoting the extracted fraction of the 

gadolinium from the intravascular to the EES); plasma flow (Fb, in ml/min-1); 

mean capillary transit time (Tc, in a sec); permeability surface product (PS, 

ml/min-1); influx to the EES (Ktrans, in min-1); Kep, ve and vp. The DSC datasets 

underwent also motion correction, spatial smoothing and automatic AIF selection 

for every patient based on a cluster analysis algorithm203, an example of the AIF 

and the tumour uptake curve are illustrated in Figures 5.2 and 5.3. The macro-

vascular contamination was accounted for by using a Bayesian model 

approach79. Leakage-corrected relative cerebral blood volume (rCBV) and 

relative cerebral blood flow (rCBF) maps were generated. In this study, rCBV and 

rCBF refer to the normalised to the rCBV values in the healthy brain (see below).  

The acquired ASL raw data were pre-processed using MCFLIRT toolbox for 

motion correction175, the ASL mean difference images between control and label 

conditions (ΔASL) were calculated204, and the ASL-derived CBF-maps were 

generated using the simplified general kinetic model100. The MR scanner 

automatically generated ADC maps using the vendor's software. 
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Figure 5.2 Examples of the arterial input function (AIF) a)from Dynamic susceptibility contrast (DSC), 

bb)from Dynamic contrast-enhanced (DCE),  

a. b. 
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Figure 5.3 Example of the glioma uptake curve from ROI6 versus normal appeared white matter from ROI 

7, a) from Dynamic susceptibility contrast (DSC), b) from Dynamic contrast-enhanced (DCE). 

a. 

vp map on T1-c 

b. 

rCBV map on 

T1-c 
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Table 5.1 Imaging parameters for DCE, DSC, DWI and ASL 

 DCE DSC DWI PCASL  

sequence 
Fast low angle 
shot (FLASH)-3D 

Echo-planar 
imaging (EPI)-2D 

Echo-planar 
imaging (EPI)-
2D 

3D GRASE 

b-value (s/mm^2) - - 0, 2500  - 

slices 20 20 54 28 

Gap between slices (mm) - 5.2 2.5 - 

Dynamic measurements 70 58 - - 

TR/TE (ms) 3.16/1.24 1370/30 3600/79 4600/13.28 

FOV (mm) 224 x 168 220 x 220 220 x 220 220 x 220 

Matrix size 224 x 168 128 x 128 88 x 88  64 x 60 

Voxel size (mm3) 1 x 1 x 4 1.7 x 1.7 x 4 2.5 x 2.5 x 2.5 3.44 x 3.67 x 4 

Slice thickness (mm) 4  4 2.5 4 

Averages (NSA) 1 1 1 1 

flip angle (°) 8 60 90 130 

echo train length (ETL) or 
Turbo factor 

1 63 38 
Turbo / EPI 
factors: 28/15 

CA  
ProHance 
(Gadoteridol)  

ProHance 
(Gadoteridol)  

- 
- 

CA dose 2ml/10kg 2ml/10kg - - 

CA injection rate 4ml/sec 4ml/sec - - 

Delay before imaging 20 sec 20 sec - - 

Scanning time 4min 57s 1min 26s  4min 35s ~1min 

Number of 
repeats/averages 

- - - 2 

Echo spacing ms - - - 0.51 

Labelling plane thickness 
(mm) 

- - - 10 

Gap between labelling 
and imaging plane (mm) 

- - - 45 

Bolus duration (ms) - - - 1800 

Post-labelling delay time 
(PLD/TI) (ms) 

- - - 1800 
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5.2.5 Image analysis and feature extraction 

Figure 5.1 outlines the workflow of the image analysis. All MR images were 

converted to the Neuroimaging Informatics Technology Initiative (NIfTI) format. 

Conventional MR images (T1-weighted T1-W; T1 weighted with contrast T1-c, 

T2-weighted T2-W, and T2-FLAIR) were used as anatomical references. ITK-

SNAP177 (version 3.6.0; www.itksnap.org) was used to manually segment the 

entire tumour volume (VOI) on the FLAIR images avoiding the cystic, necrotic 

and haemorrhagic regions. The high resolution anatomical T1-W scan was used 

for automatic segmentation of the grey matter (GM) of the contralateral normal-

appearing hemisphere (CNAH)178. In cases where the tumour crossed over to the 

contralateral hemisphere, tumour voxels were excluded from the segmented 

ROIs in the CNAH. NiftyReg, an open-source software179, was used to resample 

all segmented ROIs to the generated multiparametric maps employing rigid 

registration followed by affine registration. Histogram features were extracted 

from the ASL, ADC, DSC and DCE maps using in-house MATLAB-based scripts 

(MATLAB 2017b, MathWorks Natick, MA, USA). For the perfusion modalities, the 

values over the 95-percentile and the values lower than 5-percentile were 

excluded, to avoid macrovascular and noise artefacts, respectively. All the values 

of the tumour pixels in ADC were entered into the analysis. The extracted 

histogram features were the mean; standard deviation (SD); 95th-percentile 

(95tile); kurtosis (kur); skewness (skew); median; interquartile range (iqr); mode; 

minimum (min); maximum (max); and variance (var). Also, histogram entropy 

(randomness) calculated based on probabilities of the histogram with 0.01 bin 

width; median z-score (z-score); and slope of the line between the 10% and the 

95% percentiles based on the cumulative distribution function (CDF) curve were 

calculated, which accumulates the probabilities of the intensity of the observed 

pixels and reflects tumour heterogeneity. Additionally, additional percentiles from 

the ADC map, including 10tile to 90tile with an increment of 10 and 95tile were 

entered into the analysis. 

 

http://www.itksnap.org/
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5.2.6 Feature reduction and statistical analysis 

The tumours were classified using both WHO 2007 and WHO 2016 classification 

schemes. Specifically, the tumours were grouped according to grade (HGGs vs 

LGGs) and sub-grades (grade-II-IV) following the 2007-WHO classification 

(Figure 5.2). According to the 2016-WHO classification, the tumours were broadly 

separated according to the IDH-status (IDH-mut vs IDH-wt); grouped based on 

the molecular type (GBM-wt, astro-mut, oligo-mut); and finally sub-grouped 

according to molecular type and histological grade (GBM-wt, astro-mut-LG, astro-

mut-HG, oligo-mut-LG, oligo-mut-HG) (Figure 5.2). The extracted imaging 

features were tested for normality. Where the conditions of normality and 

variance homogeneity were not satisfied, the Kruskal-Wallis test was used to 

identify the features that demonstrated statistically significant differences 

(P<0.05) between the investigated gliomas classes. Since each of the 

comparisons was independent (i.e. there were no sub-group comparisons), 

besides the Kruskal-Wallis test was used for purpose of feature reduction, we felt 

that there was no need for Bonferroni correction. 

The diagnostic performance was evaluated for these significant features for each 

of them separately as well as by grouping them in subsets. The features have 

been combined using backward elimination (BE) and pairwise-correlation (PC) 

methods. The diagnostic performance assessment was conducted for each MRI 

modality standalone. For the diagnostic performance evaluation, multinomial 

logistic regression analysis was undertaken to evaluate the model performance. 

Since the sample size is small, the leave-one-out-cross-validation (LOOCV) was 

used as a cross-validation method205. Cross-validation is a resampling procedure 

to evaluate the model against overfitting, which is the noise that negatively 

impacts the performance of the model and hence reduces its accuracy, for a 

limited sample size. This because the training data could fit the statistical model 

exactly (overfitting) and hence would not perform accurately against unseen data. 

LOOCV method uses all the samples, except one, to train the model. This 

process iterates many times equal to the sample size, to test one data point at 

each iteration. Thus, the output accuracy is the average of the resulted accuracy 

from the prediction models of each of the test points. The best-performed model 

and the optimal features' subsets were determined based on the results from the 



 157 

LOOCV validation.  LOOCV validation method overcomes the limitation of the 

small sample size that can lead to model overfitting and generate biased 

estimates for model performance. The model performance was reported using 

several indexes including sensitivity, specificity, F1 score, which is an accuracy 

index accounting for the sample size imbalance. In addition, accuracy (ACC) and 

Cohen's Kappa (K) were used as evaluation metrics for overall model 

performance. Accuracy is a ratio of the total right predicted class to the total 

prediction. Cohen’s Kappa206 measures how much better the model to predict 

classes compared to a model that simply predicts classes by chance (random 

guess). Thus, the validation model with the highest Kappa represents the best-

performed model and hence the optimal features' subsets since high Kappa 

means the high agreement level between the tested models. Cohen’s Kappa is 

always in the range of -1:+1, values less than or equal to zero indicates the model 

performance is useless, 0.01-0.20 as non to slight, 0.21-0.40 as fair, 0.41-0.60 

as moderate, 0.61-0.80 as substantial and 0.81-1 as perfect.  For the statistical 

analyses, IBM SPSS version 24 (SPSS Inc, Chicago, IL) and R version 1.4.1717 

(R Project for Statistical Computing; http://www.r-project.org) were used.  

 

Figure 5.4 Histomolecular classification in the study population. Data from 32 adults with untreated gliomas 

were Prospectively recruited and underwent multimodal-MRI (PCASL, DSC, DCE and DWI). And classified 

according to 1) grading, 2) sub-grading, 3) IDH-status, 4) grouping and 5) sub-grouping. 

http://www.r-project.org/
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5.3 Results 

Fifty-eight adult patients with primary gliomas underwent multiparametric MRI, 26 

of them were excluded from this study due to histopathological results showing 

gliosis (4 subjects), lack of histopathological sampling (11 patients), and 

incomplete MRI examination (11 patients). The histopathological results in the 

remaining 32 patients (average age of 43±13 (SD) years; M/F ratio 11/21) are 

shown in Figure 5.2. 

5.3.1 Histogram features  

The majority of the extracted histogram features across all advanced MRI 

modalities (ASL, DSC, DCE-mTK, DCE-L&L and DWI/ADC) revealed statistically 

significant differences among the defined classes of the gliomas. The numbers 

of the features (histogram-derived parameters) that showed statistically 

significant differences, based on the Kruskal-Wallis test, between grade, sub-

grade, IDH-status, groups and sub-groups, respectively were: ASL features 10, 

4, 8, 8, and 7; DSC features 10, 10, 14, 24, and 22; DCE-mTK features 3, 2, 1, 

5, and 5 features;  DCE-L&L features 6, 11, 15, and 12; and ADC features 12, 

12, 26, 31, and 25, Illustrated in Figure 5.3 and Table 1-B in the Appendix B. 

5.3.2 Diagnostic performance 

ii. The significant features separately 

Each of the significant features demonstrated various level of diagnostic 

accuracy. Table 5.2 and Figures 5.6 and 5.7 summarise the diagnostic 

performance of different MRI methods based on the best-performing models. 

Tables 2-B to 6-B in Appendix B show the diagnostic performance for each of the 

significant features. Figures 5.8 to 5.10 demonstrate two cases; one astrocytoma 

with mutant IDH status and ATRX loss  in the right temporal lobe, and a wild type 

IDH glioblastoma  localised in the left insula. 

For gliomas grading (HGGs vs. LGGs) using the significant features separately, 

the diagnostic performance accuracy in order from the best to the least 

performing based on the LOOCV was DSC (rCBV-entropy, ACC=84%, K=67%), 

ASL (rTBF-max, ACC=75%, K=47%), ADC (rADC-80tile, ACC=73%, K=41%), 
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then both DCE-mTK (ve-mode, ACC=72%, K=40%) and DCE-L&L (rvp-mean, 

ACC=68%, K=29%). 

For gliomas sub-grading (II-IV) using the significant features separately, the 

accuracy of the diagnostic performance was reduced and inadequate in 

predicting all the histological grades, see Table 5.2. DSC (rCBV-entropy, 

ACC=71%, K=42%) provided the highest accuracy, followed by the ADC (ADC-

min, ACC=70%, K=38%), ASL (rTBF-mean, ACC=65%, K=25%),  DCE-L&L (rvp-

max, ACC=66%, K=25%) and  DCE-mTK (ve-mode, ACC=56%, K=3%). 

The result from the significant features standalone for the IDH-status prediction 

showed that both ASL (rTBF-mean) and DSC(rCBV-entropy) demonstrated 

similar performance (for both ACC=78% and K=24%), followed by the ADC 

(rADC-SD, ACC=80%, K=14%), DCE-L&L(rTC-min, ACC=78%, K=18%) and 

DCE-mTK (rk-mean, ACC=72%, K=0%). 

For gliomas grouping, similar to gliomas sub-grading the diagnostic accuracy of 

the significant features separately was decreased and insufficient for prediction 

of every group. All of the used MRI methods expressed approximately similar 

performance, DCE-L&L (rFb-mean, ACC=61%, K=37%), DSC (rCBV-entropy, 

ACC=60%, K=37%), ADC (ADC-zscore, ACC=59%, K=37%), ASL (rTBF-skew, 

ACC=59%, K=34%) and DCE-mTK (rvp-median, ACC=56%, K=28%). 

Using the significant features standalone for sub-grouping, there was a further 

reduction in the models' accuracy to predict the gliomas sub-groups, as well as 

they were not able to predict all the included sub-groups. DSC exhibited the best 

performance (rCBV-entropy, ACC=56%, K=40%), followed by ASL (rTBF-

median, ACC=50%, K=30%). All of ADC (ADC-SD), DCE-L&L (rFb-median) and 

DCE-mTK (rvp-median) achieved performance of, respectively, ACC: 49%, 48%, 

47% and K: 28%, 28%, 26%. 
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Figure 5.5 Hierarchy tree for the significant histogram features derived from Kruskal-Wallis test (P<0.05). Abbreviations: standard deviation (SD); 95th-percentile (95tile); 

kurtosis (kur); skewness (skew); inter-quartile range (iqr); minimum (min); maximum (max); variance (var); median z-score (zscore). 
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Figure 5.6 Bar charts of a) DSC, b) ADC and c) ASL, showing the diagnostic 

accuracy for different classification tasks using the significant histogram features 

from both the training models and the validation models using leave-one-out-cross-

validation (LOOCV). The models based on the significant features separately and 

combined (backward elimination (BE) and pair-wise correlation (PC) combination 

methods). 

a.

c 

b.

c 

c. 
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Figure 5.7 Bar charts of a) DCE_mTK and b) DCE_L&L, showing the diagnostic accuracy for different classification tasks using the significant histogram features 

from both the training models and the validation models using leave-one-out-cross-validation (LOOCV). The models based on the significant features separately 

and combined (backward elimination (BE) and pair-wise correlation (PC) combination methods). 

 

a.

c 

b.

c 
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iii. The optimal features' subsets for different MRI methods 

The cross validation using LOOCV protects the model performance against the 

overfitting, consequently, we determined the optimal features sets as the ones 

that can diagnose the assigned gliomas' classes with high accuracy and generate 

similar accuracy among the resampled models from the LOOCV (high Kappa). 

Thus, the combined significant features in a validation model with the highest 

Kappa was determined the optimal features' subsets.  Table 5.2 and Figures 5.6 

and 5.7 shows the diagnostic performance of the optimal features' subsets from 

different modalities (the diagnostic performance of all the combined significant 

features are illustrated in Tables 7-B to 11-B in Appendix B). In contrast to using 

the significant features individually (univariate analysis), optimal features' 

subsets, for different MRI modalities, made it feasible to predict more classes. 

For example, as Table 5.2 illustrates for the sub-grading tasks from DSC, the 

individual significant feature was able to predict the grades-II, -III and -IV with 

sensitivity and specificity of 96% and 59%, 0% and 97%, 62% and 87%, 

respectively. In contrast, using the optimal features' subset achieved sensitivity 

and specificity of 88% and 69%, 28% and 91%, 67% and 89%, respectively. 

Generally, the optimal features' subsets form the validated models demonstrated 

lower diagnostic performance compared to the training models. optimal features' 

subsets from the DSC demonstrated the best diagnostic performance among all 

of the involved tasks, followed by optimal features' subsets  from ADC for grading, 

sub-grading. For grouping, the optimal features' subsets from DCE-L&L was the 

second superior while for IDH-status, whereas those from DCE-L&L and ASL 

showed the second-best diagnostic performance. For grading, the optimal 

features' subsets from DCE-mTK and ASL demonstrated the third-best 

diagnostic performance. From all of the MRI modalities, the models' overall 

diagnostic accuracy reduced as the involved classes increase particularly in sub-

grouping (ACC <56%), where it involved 5 classes. The results from each of the 

MRI modalities are below. 

The validated models of the optimal features' subsets from the DSC, using the 

PC and BE methods, showed moderate to substantial performance. Both PC and 

BE combination methods achieved similar diagnostic accuracy. The ACC from 
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PC and BE, respectively, for grading (81%, 84%), sub-grading (71%, 72%), IDH-

status (86%, 78%), grouping (66%, 65%) and sub-grouping (54%, 56%). 

The optimal features' subsets for ADC that derived from the validated models 

based on the PC and BE combination methods generated similar diagnostic 

accuracy and showed fair to moderate performance but with a bit lower diagnostic 

accuracy comparing to DSC. The ACC of the models using the optimal features 

from PC and BE, respectively, for grading (70%, 69%), sub-grading (60%, 61%), 

IDH-status (78%, 65%), grouping (57%, 59%) and sub-grouping (36%, 42%), 

respectively.  

Similar to ADC, the validated models with optimal features from ASL showed fair 

to moderate performance. The ACC of the validation model from PC and BE 

respectively: for grading (73%, 68%), sub-grading (55%, 59%), IDH-status (81%, 

74%), grouping (52%, 51%) and sub-grouping (48%, 41%). 

In DCE-mTK, the validated models based on the optimal features' subsets using 

BE and PC methods provided approximately similar diagnostic accuracy to the 

individual features, still they facilitated the prediction of more classes (see table 

5.2) as mentioned above. Similar to the individual features, the validated models 

based on the combined features were poorly performed for sub-grade and IDH-

status form both PC (K: 6%, 19%) and BE (K: 2%, 2%), and fairly performed for 

grading, PC(K=29%) and BE(K=40%). The models diagnostic accuracy reduced 

for sub-grading and sub-grouping (ACC<55%). 

In contrast to DCE-mTK, the optimal features' subsets from the DCE-L&L based 

on BE and PC combination methods, respectively, demonstrated fair (K=20%, 

ACC=76%) and moderate (K=45%, ACC=81%)  diagnostic performance for IDH-

status. Furthermore, for sub-grading the optimal features' subsets from the DCE-

L&L based on PC combination method demonstrated fair performance with 

K=21% and ACC=60%. For grouping using the combined features from BE 

method the validation model showed fair performance with K=38% and 

ACC=60%. Similar to the DCE-mTK, the diagnostic accuracy for the validation 

models from DCE-L&L decreased for sub-grouping (ACC<50%). Also, the 

validation model from DCE-L&L poorly performed for grading.  
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Figure 5.8 (a-b). Illustrative example of tumour segmentation and contralateral GM segmentation 

anatomical masks, rCBV maps and the corresponding normalised histogram from the whole tumour volume. 

a) 22-year-old male patient with low-grade astrocytoma with IDH mutation and ATRX loss in the right 

temporal lobe; and b) 30-year-old male patient with IDH-wt glioblastoma in the left insula. Compared to the 

astrocytoma, the glioblastoma demonstrated higher maximum rCBV value (as appears on the x-axis) with 

a wider range. 

a. 

b. 
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Figure 5.9 (a-b). ASL-CBF and ADC maps with corresponding normalised histograms from the whole 

tumour volume from the patients in figure 5. The ASL histogram in the low-grade astrocytoma (a)  shows 

right-sided skewness  whereas the ADC histogram demonstrates left-skewed peak, compared to the 

glioblastoma (b), where pattern is typically seen in gliomas transforming from lower to a higher grade. 

a. 

b. 
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Figure 5.10 (a-b). DCE vp maps generated by the modified Tofts and Kermode (mTK) model and the 

Lawrence and Lee (L&L) model with the corresponding normalised histograms from the whole tumour 

volume in the patients described in Figure 5. Compared to the low-grade astrocytoma (a) the intravascular 

volume values distribution from the glioblastoma (b) shows a broader and flatter peak. The skewness 

patterns seem to be similar across the two models in the LGG case while different in the HGG case, which 

is could be due to the hypervascularity of the HGG. This reflect the efficacy of the L&L model, unlike the 

simple mTK model, that account for the contrast agent gradient as a function of time and space hence 

reflect the underlying physiology more accurately in our case the hypervascularity in tumours, being a 

hallmark of diagnostic efficacy and grading in gliomas. 

a. 

b. 
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5.4 Discussion  

This pilot study assessed the diagnostic role of advanced perfusion- and 

diffusion-MRI modalities (ASL, DSC, DCE, and DWI) in classifying gliomas by 

histological grade and molecular profile using radiomics extracted from the entire 

tumour volume. Also, it investigated the DCE-MRI diagnostic performance based 

on two different pharmacokinetic models (PKM), the mTK and the L&L models. 

We found that combining optimal features' subsets from standalone advanced 

MRI techniques enabled the model to predict more classes compared with using 

of single features (see Table 5.2). For the sub-grouping tasks, which included five 

classes with too small sample size in each, the evaluated models from all of the 

assessed MRI modalities displayed the lowest diagnostic accuracy. Notably 

among all the classification tasks the diagnostic performance of the models from 

DSC outweighed the rest of MRI modalities performance, followed by ADC 

except for IDH-status and grouping tasks. DCE-L&L was the second superior for 

grouping tasks while both ASL and DCE-L&L were the second superior for the 

IDH-status tasks. In addition, ASL and DCE-mTK were the third superiors for 

grading tasks. 

Our work adds to the existing literature, which recently, and in the context of 

glioma staging, has been using different radiomics approaches195,198–200,207. 

Firstly, existing studies have reported the predictive accuracy of hand-crafted 

radiomics in a fragmented manner, either from standalone conventional MRI197–

199 or conventional MRI with DWI and ASL195,207. For example, Tian et al. reported 

better performance of GLCM than histogram features from multiparametric MRI 

(conventional, DWI and ASL) for glioma grading. They found that the diagnostic 

performance from the combined features proved more effective than each of the 

MRI methods alone (accuracy, sensitivity, specificity, area under the curve 

(AUC), 96.8%, 96.4%, 97.3%, 0.987, respectively)195; Su et al. 207 findings were 

in accordance with this, demonstrating that the use of multi-contrast MRI 

improved the AUC (0.911), sensitivity (85.2%) and specificity (85%) in 

comparison to using the CBF-ASL map alone or the contrast-enhanced T1-

weighted images (AUC:0.750, 0.846, sensitivity: 71.4%, 75.9%, specificity: 

63.9%, 77.9%, respectively). Lu et al. used multimodal conventional MRI to 

stratify gliomas according to the IDH status and 1p/19q status and reported the 



 169 

model ability to the classification with estimated accuracy from the training 

dataset between 87.7% and 96.1% and comparable estimated accuracy from the 

validation dataset208. Although of promising results that have been reported there 

is no consensus on the throughput mining of quantitative image features (e.g., 

histogram-based textures, grey level co-occurrence matrices (GLCM) features, 

Gray-Level Run-Length Matrix (GLRLM) features), the mathematical formulas 

nor feature reduction and modelling, complicating the performance comparison 

prospectively. Secondly, the recently highlighted deep-learning (DL) 

approaches63, can be utilised in a completely automated way to detect the lesion 

and extract high-level features which improve the prediction accuracy and even 

could be trained as an end-to-end process to the outcome prediction and decision 

making209–211. Two studies fulfilled using the same cohort to predict the IDH status 

in LGGs using T2 FLAIR199,209, the first one carried out the classification based 

on machine learning and hand-crafted radiomics199 while the other one based on 

DL trained as an end-to-end process209; The DL-radiomics model outperformed 

the machine learning-based radiomics (AUC: 92% vs 86%). However, DL based 

methods require large dataset and can incur high computational cost.  

Our study adds to the existing literature by providing more comprehensive 

functional radiomics for gliomas classification. Radiomics was captured in the 

entire tumour for all currently available perfusion MR modalities standalone 

where ASL and ADC could be an alternative gadolinium-free approach, to gain a 

comprehensive overview of their performance. Pragmatically, the scanning time 

in clinical routine is limited, and it is imperative to design time- and diagnosis-

efficient protocols with careful selection of the best performing sequences. Based 

on our results, DSC might be replaced by ASL if the latter is used beside ADC 

based on high b-values (>1000 s/mm2). ASL has still not been fully adopted in 

routine MRI scanning bearing uncertainties for the optimal labelling technique 

and duration, acquisition method, post-processing, and results interpretation 

compared with the established DSC. However, the excellent diagnostic accuracy 

of ASL and ADC can be used in cases of gadolinium intolerance and 

contraindications, as well as in paediatric populations or for repeated scanning in 

the follow-up phase. This gadolinium-free approach poses a potential alternative 

to DSC diagnostic performance in the era of increasing concerns regarding 
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gadolinium deposition163, with the caveats of longer scanning time required for 

ASL and limited dissemination of PCASL. Nonetheless, in this study, the short 

PCASL scanning time, similar to the DSC acquisition time (1min 26s), is an 

interesting approach that warrants more investigation and testing in future 

studies. 

DCE has been widely explored in many clinical studies of pre-treatment 

characterisation of gliomas, being partially favoured over DSC due to its higher 

spatial resolution and its substantial immunity to susceptibility artefacts212. Also, 

it provides interpretable physiological parameters that reflect tumour tissue 

composition, such as EES volume and microvascular permeability, via fitting the 

acquired dynamic data into the PKM 80 by adapting the selected PKM to the 

temporal resolution used22,83. In our study, the DCE-MRI temporal resolution is 

indeed suboptimal for accurate AIF estimation, was acquired in ~ 5min with 4.2s 

temporal resolution, and we fitted the acquired data to the mTK87 and the L&L201 

models. Usually, DCE data with low temporal resolution lead to biases in the 

parameters being fitted and would be the reason behind the low diagnostic 

performance (low kappa from the LOOCV), especially for DCE-mTK for sub-

grading and IDH-status tasks and for DCE-L&L for grading tasks in our result. 

Temporal resolution is one of the important factors to maintain the accuracy and 

precession of the estimated parameters from the DCE model because depicting 

tissue perfusion requires rapid imaging213. The mTK model assumes negligible 

mean transit time (Tc) while L&L model implies its effect80. Thus, the former 

model could be analysed with a low temporal resolution whereas the latter 

requires the acquisition of the DCE data with a higher temporal resolution to 

capture the rapid changes in the arterial concentration and hence able to estimate 

Tc. The permeability from the mTK model was found to be not very sensitive to a 

reduction of the sampling frequency214. Accurate measurement of the AIF 

requires high temporal resolution to be able to describe the tracer kinetics during 

the vascular phase. A simulation study by Henderson et al.215 showed that AIF 

sampling every second and tissue concentration sampled every 16s or less 

resulted in <10% error for parameters estimation except for vp, which has been 

reported as the most affected parameter by the insufficient temporal sampling of 

both AIF and tissue perfusion. For vp with an error of less than 10%, as reported 
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by Henderson et al., requires AIF sampling every second accompanied by a 

sampling of the tissue concentration at least every 4s. However, this sampling 

rate for the AIF is difficult to be achieved in real practice because it compromises 

the spatial resolution. Besides the influence of the low sampling rate of the AIF 

on the vp, from mTK model, vp estimation suffers from underestimation88,216, 

which is mainly due to the assumption of negligible Tc216. So, it seems that the 

estimate of the vp, especially from the mTK model, will be severely biased. Also, 

in our study due to the low temporal resolution, the Tc from the L&L model would 

not be accurately measured, subsequently, the vp will not be accurate. Even 

though in our study, the vp estimates from both models were able to differentiate 

the gliomas grads, the vp-mean estimates from the L&L model demonstrated 

better diagnostic performance (ACC=68%, k=29%) than that from the mTK model 

(ACC=58%, k=9%), see Table 2-B in Appendix B. Also, a study by Kershaw and 

Cheng found that at similar temporal resolution (1.5s), apparently high, the 

adiabatic approximated tissue homogeneity (AATH) or L&L model (as we called 

in our study) was able to estimate the mTK parameters more accurate than mTK 

model itself 88. In addition, their result showed that complex models with a large 

set of estimated parameters such as L&L require faster temporal resolution 1.5s 

to estimates the parameters with minimal error and can be relaxed to 6s if the 

accurate estimate of Tc is not needed (bias becomes >10%)88 as it is the case in 

clinical tumour imaging. Thus, relaxing the temporal resolution increase the error 

and introduce further bias into the estimated parameters, and impact their 

diagnostic performance. In contrast, high temporal resolution is desirable for 

accurate parameters estimation, however, it is inevitability resulting in low spatial 

resolution and SNR which in turn lead to noisy and imprecise estimates of the 

parameters217. Another reason for the low diagnostic performance of the 

estimated parameters from DCE is the poor-quality AIF (Figure 5.2) which has a 

negative impact on their accuracy. Unfortunately, the automatic technique that 

has been used in our study generated a poor-quality AIF curve. An example of 

the typical AIF curve is shown in Figure 2 of the conducted study218 by Rata et al. 

and among the literature77,219. The result of this study showed that the DCE-L&L 

optimal features' subsets performed better than those from DCE-mTK for sub-

gradin, IDH-status and grouping tasks. Thus, using DCE-L&L is worth trialling if 

we consider its advantages for perfusion quantification, comprehensive capturing 



 172 

of several pharmacokinetic parameters and no sensitivity to tumour or anatomy 

related susceptibility artifacts with the caveat of the time penalty. 

In the clinical setup and in most of the previous studies, the discrimination ability 

of the measured values is gauged by the receiver operating curve (ROC) analysis 

of the tumour 'hot-spot' perfusion values. In light of the glioma heterogeneity, 

considering the distribution of the signal intensities in the entire tumour volume 

enables theoretically more accurate and effective diagnosis60. This is because 

segmentation of the entire tumour volume is objective and can be robustly 

performed even by less-experienced users220. ROC analysis, on the other hand, 

works as a binary classifier based on cut-off values. This makes it impractical, 

especially for MRI, due to its diversity in terms of imaging protocols, processing, 

and analyses, leading to threshold overlaps and inconsistencies across different 

reports in literature42. Instead of using one single cut-off value, joined multiple 

significant histogram features from the whole tumour (radiomics) may allow 

improved prediction rates, as confirmed by the current results. Similarly, previous 

studies showed that a combination of the most significant variables193,194 or the 

determined optimal features' subsets195,207 depending on the radiomics approach 

enhanced the diagnostic capacity.  

A critical step in radiomics for diagnostic purposes is the concept of feature 

reduction63. The reduction was performed here using PC and BE63,221. Both 

resulted in enhancement of the model ability to predict more classes. BE method 

considers all the significant class-related features and ignores the feature-feature 

mutual information. In other words, the class prediction outcomes based on BE 

tend to be in favour of features with information that are related to specified 

classes (e.g. IDH-mut), having those classes gaining more information than other 

classes. In contrast, PC considers the relationship between both feature-class 

and feature-feature, therefore. Most of the recent studies195,207 have used PC 

method (aka correlation redundancy) to reduce the attained features and avoid 

overfitting of the prediction model. It is worth mentioning that both PC and BE are 

supervised techniques, which are principally prone to overfitting. 

Standardisation and validation are a big demand for the radiomics approaches to 

enable exploitation of their benefits and integration into clinical practice 
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(generalizability)222,223. This involves assessment of the Radiomics precision 

(repeatable and reproducible), which provide comparable data in any 

geographical location. In addition, model evaluation via internal and external 

validation using independent datasets with uniform quality and representative for 

the patient population. Model validation help reduces the danger of model 

overfitting that leading to overoptimistic model performance. Standardisation of 

the image acquisition, analysis and computational statistics of radiomics driven 

from quantitative images, like in our study, is a necessary step preceding 

validation224.  Moreover, bias in the radiomics studies limits their 

generalizability224, such as unbalanced training data, the manual volume of 

interest segmentation and locally developed method for feature extraction and 

reduction. Divorce and balanced sample would counteract falsely 

negative/positive outcomes. Automatic or semiautomatic segmentation that 

either conventional or deep learning (DL) based, would reduce the uncertainty of 

tumour delineation and hence the inter-observer variability225–227.  

Several limitations exist, the main limitation in the current study is the small and 

unbalanced sample size. This due to the Patient data is acquired prospectively 

besides the comprehensive study design limit the recruitment rate of this 

vulnerable patient category. However, our study wants to mine information in a 

rich but limited dataset in order to extract useful conclusions that will signpost a 

couple of meaningful combinations of advanced MRI modalities that can be 

validated in future larger studies with less time-consuming exam protocols. In 

addition, the images were acquired in a single centre using the same scanner, 

thereby limiting wider generalisation of the results. As such, our findings need to 

be validated and confirmed in multicentre large-scale MRI studies that apply post-

processing techniques akin to these in this work.  In addition, MR acquisitions 

with similar parameters or appropriate phantoms to enable harmonisation of 

quantitative MRI across sites and times would be a requisite to confirm the 

findings of our work and will allow broader dissemination and validation in the 

clinical routine environment 228. We did our best to minimise bias related to post-

processing and statistics, whereas the study included patients in a consecutive 

way to avoid selection bias. 
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5.5 Conclusion 

Our results suggest that advanced MRI methods can provide higher diagnostic 

value by using the radiomics approach and combining multiple features than by 

relying on a single diagnostic feature. ASL and ADC represent a gadolinium-free 

approach poses a potential alternative to DSC. The radiomics from DCE-L&L 

yielded better diagnostic performance than those from DCE-mTK for the majority 

of the classification tasks, prompting for the use of more detailed physiological 

models for tumour perfusion imaging.  
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Table 5.2 Diagnostic performance summary of the significant tumour histogram features (from DSC, DCE, ADC and ASL) among different histomolecular groups 

MRI method 

 

Prediction 

performance 

Grading Sub-grading IDH_status Grouping Sub-grouping 

 LGGs HGGs II III IV wt mut 
GBM-

wt 

Astro-

mut 

Oligo-

mut 

GBM-

wt 

Astro-

mut-

LG 

Astro-

mut-

HG 

Oligo-

mut-

LG 

Oligo-

mut-

HG 

ASL 

 

sensitivity 84% 62% 95%  0% 57% 43% 88% 43% 83% 69% 71% 90%  0% 56%  0% 

S
e
p
a
ra

te
ly

 

specificity 62% 84% 46%  100% 88% 88% 43% 96% 80% 74% 84% 77%  100% 83%  100% 

F 80% 67% 81%  0% 57% 46% 86% 55% 77% 67% 63% 75%  0% 56%  0% 

Accuracy 75% 69% 78% 69% 59% 

Kappa 47% 36% 33% 50% 44% 

In
te

rn
a
l 
v
a
lid

a
ti
o
n

 

L
O

O
C

V
 

sensitivity 84% 62% 93% 0% 43% 29% 92% 10% 83% 64% 38% 90% 0% 48% 0% 

specificity 62% 84% 33% 100% 89% 92% 29% 95% 78% 61% 87% 74% 100% 70% 100% 

F 80% 67% 78% 0% 47% 36% 87% 15% 76% 58% 41% 73% 0% 43% 0% 

Accuracy 75% 65% 78% 59% 50% 

Kappa 47% 25% 24% 34% 30% 

B
a
c
k
w

a
rd

s
-

e
lim

in
a
ti
o
n

  

sensitivity 89% 62% 84% 67% 71% 71% 100% 71% 92% 77% 71% 90% 50% 56% 50% 

specificity 62% 89% 69% 96% 92% 100% 71% 96% 90% 84% 92% 82% 100% 87% 96% 

F 83% 70% 82% 73% 72% 83% 96% 77% 88% 77% 71% 78% 67% 59% 57% 

Accuracy 78% 78% 94% 81% 69% 
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sensitivity 74% 59% 84% 11% 33% 48% 81% 48% 75% 31% 38% 83% 0% 22% 0% 

specificity 59% 74% 36% 95% 87% 81% 48% 79% 78% 68% 73% 80% 96% 80% 93% 

F 73% 60% 74% 17% 37% 44% 83% 43% 71% 35% 33% 74% 0% 26% 0% 

Accuracy 68% 59% 74% 51% 41% 

Kappa 33% 18% 28% 26% 20% 
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sensitivity 89% 69% 89% 50% 57% 71% 92% 57% 92% 77% 43% 90% 0% 67% 50% 

specificity 69% 89% 62% 96% 92% 92% 71% 96% 90% 79% 92% 81% 100% 83% 93% 

F 85% 75% 83% 60% 62% 71% 92% 67% 88% 74% 50% 78% 0% 63% 50% 

Accuracy 81% 75% 88% 78% 63% 

Kappa 60% 53% 63% 66% 49% 
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sensitivity 84% 56% 72% 22% 38% 48% 91% 0% 89% 46% 29% 90% 0% 48% 0% 

specificity 56% 84% 41% 92% 81% 91% 48% 87% 80% 58% 85% 74% 98% 75% 96% 

F 79% 63% 68% 29% 37% 53% 88% 0% 80% 44% 32% 73% 0% 46% 0% 

Accuracy 73% 55% 81% 52% 48% 

Kappa 42% 16% 41% 24% 28% 

DSC 

 

sensitivity 89% 77% 100% 0% 86% 43% 92% 57% 75% 69% 86% 70%  0% 78%  0% 
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specificity 77% 89% 69% 100% 88% 92% 43% 92% 90% 68% 80% 91%  100% 78%  100% 
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F 87% 80% 90% 0% 75% 50% 88% 62% 78% 64% 67% 74%  0% 67%  0% 

Accuracy 84% 78% 81% 69% 63% 

Kappa 67% 57% 39% 51% 49% 
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sensitivity 89% 77% 96% 0% 62% 29% 92% 29% 75% 64% 81% 63%  0% 67%  0% 

specificity 77% 89% 59% 97% 87% 92% 29% 93% 85% 58% 79% 86%  100% 75%  100% 

F 87% 80% 86% 0% 59% 36% 87% 38% 75% 57% 63% 66%  0% 58%  0% 

Accuracy 84% 71% 78% 60% 56% 

Kappa 67% 42% 24% 37% 40% 
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sensitivity 95%% 92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

specificity 92%% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

F 95% 92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Accuracy 94% 100% 100% 100% 100% 

Kappa 87% 100% 100% 100% 100% 
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sensitivity 84% 85% 88% 28% 67% 62% 83% 81% 69% 51% 71% 63% 0% 63% 25% 

specificity 85% 84% 69% 91% 89% 83% 62% 92% 78% 74% 92% 89% 93% 73% 95% 

F 86% 81% 84% 33% 65% 55% 86% 77% 68% 54% 71% 68% 0% 54% 32% 

Accuracy 84% 72% 78% 65% 56% 

Kappa 68% 48% 41% 46% 42% 
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sensitivity 89% 85% 95% 67% 86% 86% 96% 86% 83% 85% 100% 80% 50% 89% 75% 

specificity 85% 89% 85% 92% 100% 96% 86% 96% 95% 84% 100% 95% 97% 87% 100% 

F 89% 85% 92% 67% 92% 86% 96% 86% 87% 81% 100% 84% 50% 80% 86% 

Accuracy 88% 88% 94% 84% 84% 

Kappa 74% 77% 82% 76% 79% 
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sensitivity 86% 74% 93% 22% 52% 67% 92% 57% 81% 56% 62% 73% 0% 56% 17% 

specificity 74% 86% 54% 95% 92% 92% 67% 92% 78% 75% 89% 88% 56% 78% 89% 

F 84% 76% 83% 31% 58% 68% 91% 62% 74% 59% 62% 73% 0% 53% 17% 

Accuracy 81% 71% 86% 66% 54% 

Kappa 61% 42% 60% 47% 39% 

DCE_mTK 

 

sensitivity 84% 62% 95% 0% 14% 14% 100%  0% 83% 69%  0% 90%  0% 67% 50% 
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specificity 62% 84% 38% 100% 80% 100% 14%  100% 65% 68%  100% 68%  100% 70% 96% 

F 80% 67% 80% 0% 15% 25% 89%  0% 69% 64%  0% 69%  0% 55% 57% 

Accuracy 75% 59% 81% 59% 53% 

Kappa 47% 15% 21% 33% 35% 
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sensitivity 84% 54% 95% 0% 0% 0% 92% 0% 83% 62%  0% 90%  0% 52% 33% 

specificity 54% 84% 21% 96% 89% 92% 0% 100% 60% 68%  100% 62%  100% 67% 96% 

F 78% 61% 76% 0% 0% 0% 84% 0% 67% 59%  0% 66%  0% 44% 42% 
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Accuracy 72% 56% 72% 56% 47% 

Kappa 40% 3% 0% 28% 26% 
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sensitivity 84% 62% 95% 33% 14% 43% 92% 43% 92% 77% 57% 80%  0% 89% 75% 

specificity 62% 84% 38% 96% 92% 92% 43% 96% 80% 84% 88% 82%  100% 91% 100% 

F 80% 67% 80% 44% 20% 50% 88% 55% 81% 77% 57% 73%  0% 84% 86% 

Accuracy 75% 66% 81% 75% 72% 

Kappa 47% 28% 39% 60% 62% 
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sensitivity 84% 44% 91% 17% 0% 10% 92% 0% 83% 51% 10% 77% 0% 19% 42% 

specificity 44% 84% 18% 91% 97% 92% 10% 92% 63% 68% 84% 70% 100% 71% 89% 

F 76% 52% 74% 21% 0% 14% 85% 0% 68% 52% 11% 63% 0% 19% 38% 

Accuracy 68% 57% 74% 52% 36% 

Kappa 29% 6% 2% 23% 14% 
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sensitivity 89% 62% 89% 33% 57% 43% 92% 43% 83% 62% 29% 90%  0% 68% 75% 

specificity 62% 89% 54% 100% 88% 92% 43% 88% 75% 84% 92% 77%  100% 78% 100% 

F 83% 70% 81% 50% 57% 50% 88% 46% 74% 67% 36% 75%  0% 60% 86% 

Accuracy 78% 72% 81% 66% 63% 

Kappa 53% 24% 39% 47% 48% 
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 sensitivity 84% 54% 91% 17% 19% 10% 92% 19% 64% 46% 10% 83% 0% 48% 17% 
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specificity 54% 84% 33% 96% 89% 92% 10% 89% 63% 63% 88% 73% 100% 65% 96% 

F 78% 61% 77% 25% 24% 14% 85% 24% 57% 46% 13% 68% 0% 41% 24% 

Accuracy 72% 61% 74% 47% 44% 

Kappa 40% 19% 2% 16% 22% 

DCE_L&L 

 

sensitivity 89% 46% 95% 67%  0% 29% 92%  0% 92% 77%  0% 80%  0% 56% 75% 
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specificity 46% 89% 31% 96%  100% 92% 29%  100% 60% 84%  100% 59%  100% 74% 96% 

F 79% 57% 78% 73%  0% 36% 87%  0% 71% 77%  0% 59%  0% 50% 75% 

Accuracy 72% 67% 78% 66% 50% 

Kappa 38% 33% 24% 44% 31% 
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sensitivity 86% 41% 95% 50% 0% 19% 95% 0% 81% 78%  0% 80%  0% 56% 58% 

specificity 41% 86% 23% 96% 100% 95% 19% 100% 60% 77%  100% 59%  100% 71% 96% 

F 76% 51% 77% 60% 0% 28% 87% 0% 65% 73%  0% 59%  0% 48% 64% 

Accuracy 68% 66% 78% 61% 48% 

Kappa 29% 25% 18% 37% 28% 
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sensitivity 79% 62% 84% 67% 57% 71% 96% 100% 100% 100% 86% 100% 100% 89% 100% 

specificity 62% 79% 62% 96% 92% 96% 71% 100% 100% 100% 100% 91% 100% 100% 100% 

F 77% 64% 80% 72% 62% 77% 94% 100% 100% 100% 92% 91% 100% 94% 100% 

Accuracy 72%% 75% 91% 100% 94% 
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Kappa 41% 54% 71% 100% 92% 
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sensitivity 46% 10% 72% 39% 10% 29% 89% 33% 64% 72% 19% 53% 0% 41% 58% 

specificity 10% 46% 33% 91% 83% 89% 29% 87% 77% 75% 75% 74% 100% 72% 96% 

F 44 11% 66% 44% 11% 34% 85% 37% 63% 69% 18% 51% 0% 39% 64% 

Accuracy 31% 52% 76% 60% 40% 

Kappa 45% 9% 20% 38% 18% 
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sensitivity 79% 38% 95% 67% 57% 57% 100% 57% 75% 69% 86% 70% 100% 89% 100% 

specificity 38% 79% 77% 96% 92% 100% 57% 92% 70% 89% 96% 91% 97% 96% 100% 

F 71% 45% 90% 72% 62% 73% 94% 62% 67% 75% 86% 74% 80% 89% 100% 

Accuracy 63% 81% 91% 69% 84% 

Kappa 18% 65% 68% 51% 80% 
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sensitivity 70% 36% 88% 28% 14% 57% 88% 33% 53% 64% 48% 43% 0% 52% 50% 

specificity 36% 70% 41% 94% 87% 88% 57% 83% 67% 79% 93% 65% 91% 75% 100% 

F 66% 40% 77% 36% 18% 57% 88% 34% 51% 66% 56% 39% 0% 48% 67% 

Accuracy 56% 60% 81% 53% 45% 

Kappa 6% 21% 45% 27% 26% 

ADC 

 

sensitivity 84% 77% 100% 67%  0% 29% 100% 0% 83% 69% 71% 80%  0% 67%  0% 
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specificity 77% 84% 46% 92%  100% 100% 29% 96% 80% 58% 88% 73%  100% 83%  100% 
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F 84% 77% 84% 67%  0% 44% 91% 0% 77% 60% 67% 67%  0% 63%  0% 

Accuracy 81% 72% 84% 59% 59% 

Kappa 61% 42% 38% 34% 44% 
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sensitivity 88% 51% 96% 67% 0% 10% 100% 0% 83% 69% 29% 83%  0% 59%  0% 

specificity 51% 88% 44% 91% 100% 100% 10% 96% 80% 58% 89% 68%  100% 71%  100% 

F 79% 61% 82% 65% 0% 17% 89% 0% 77% 60% 34% 66%  0% 51%  0% 

Accuracy 73% 70% 80% 59% 49% 

Kappa 41% 38% 14% 34% 28% 
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sensitivity 89% 77% 100% 50% 86% 100% 100% 86% 92% 85% 86% 100% 50% 89% 75% 

specificity 77% 89% 85% 96% 96% 100% 100% 96% 95% 89% 96% 95% 100% 96% 96% 

F 87% 80% 95% 60% 86% 100% 100% 86% 92% 85% 86% 95% 67% 89% 75% 

Accuracy 84% 88% 100% 88% 88% 

Kappa 67% 77% 100% 81% 83% 
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sensitivity 77% 56% 82% 39% 19% 48% 83% 38% 78% 54% 29% 73% 0% 44% 0% 

specificity 56% 77% 54% 88% 85% 83% 48% 87% 80% 70% 84% 77% 96% 80% 87% 

F 75% 59% 77% 41% 22% 45% 84% 41% 74% 55% 31% 66% 0% 45% 0% 

Accuracy 69% 61% 75% 59% 42% 

Kappa 34% 26% 29% 37% 23% 
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sensitivity 89% 77% 89% 67% 71% 57% 96% 57% 92% 77% 71% 70% 100% 56% 75% 

specificity 77% 89% 69% 96% 96% 96% 57% 96% 90% 79% 92% 91% 100% 78% 96% 

F 87% 80% 85% 72% 77% 67% 92% 67% 88% 74% 71% 74% 100% 53% 75% 

Accuracy 84% 81% 88% 78% 69% 

Kappa 67% 65% 59% 66% 59% 
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sensitivity 79% 56% 81% 33% 29% 29% 92% 24% 69% 64% 26% 57% 0% 33% 25 

specificity 56% 79% 51% 88% 87% 92% 29% 88% 83% 61% 80% 76% 96% 77% 88% 

F 76% 60% 75% 36% 32% 36% 87% 29% 70% 58% 29% 54% 0% 35% 24% 

Accuracy 70% 60% 78% 57% 36% 

Kappa 46% 26% 24% 32% 15% 
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6 Conclusion and further work 

6.1 Summary 

This thesis aims to assess the diagnostic value of the arterial spin labelling (ASL)-

based perfusion estimates in untreated adult gliomas. The first chapter provided 

an introduction into the magnetic resonance imaging (MRI) basic principles as 

well as the advanced MRI for primary gliomas diagnosis. The second chapter 

provided an overview of the methodological background of the three most 

common MRI perfusion methods (DSC, DCE and ASL), and the shortcomings 

that could bias the measurements. In addition, it focused on the ASL technique 

and explored the available suggestions to mitigate these harmful effects. 

The third chapter provided high-level evidence through systematic review and 

meta-analysis for the diagnostic value of the relative tumour blood flow (rTBF) 

from ASL. Especially the maximum-rTBF helps in both differentiation between 

the HGGs and the LGGs as well as in gliomas sub-grading.  The estimated effect 

size for the rTBF was approximately similar between HGGs and LGGs and grade 

II and grade III gliomas, (-1.46 (-2.00, -0.91), p-value<0.001), (-1.39 (-1.89, -0.89), 

p-value<0.001), respectively. The effect size between grade III and grade IV 

tumours was smaller (-1.05 (-1.82, -0.27)), p<0.05). 

The fourth chapter elucidated the role of the normalised perfusion estimates 

(rTBF), compared to the absolute TBF (aTBF). The rTBF expressed lower -WCoV 

and CR, which quantified the variation (error) in the same unit as the measured 

value (ml/100 g/min in this case). This result supports the better performing 

diagnostic role of rTBF compared to aTBF. Specifically, the rTBF that was 

normalised to the segmented whole GM from the CNAH (CR with 95% CI was: 

0.07 (0.023, 0.096), 0.156 (0.1025, 0.195) for the PASL and PCASL, 

respectively). This means that if the effect size is lower than the CR, it is deemed 

to be due to physiological, scanner-related variation. However, when estimating 

rTBF, large ROIs need to be used to filter out systemic misleading within-subject 

variation and thus provide more robust perfusion measurements. Finally, no large 

difference between repeatabilities were observed between PASL and PCASL, 

which might have been attributed primarily to the difference in acquisition 

parameters, and both methods can therefore be recommended to assess brain 
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perfusion, with the caveat that PCASL allows for longer PLD than PASL, which 

therefore minimises the macro-vascular artefacts, and provide better estimates 

of patient perfusion. 

The fifth chapter demonstrated the remarkable diagnostic performance of the 

radiomics approach in comparison to the simple univariate summary results. This 

was based on different advanced MRI methods, including DSC, DCE, ASL, and 

diffusion-weighted imaging (DWI) to classify primary gliomas. Even though, the 

diagnostic performances of the ASL, DSC and DCE for the attained features 

separately were comparable to combining optimal features' subsets, where the 

latter made it feasible to predict more classes. The optimal features' subsets from 

DSC showed superior diagnostic performance, with ACC for grading 84%, sub-

grading 72%, IDH-status 86%, grouping 66% and sub-grouping 56%. Followed 

by ADC for grading (ACC=70%) and sub-grading (ACC=61%), DCE-L&L for 

grouping (ACC=60%). Both DCE-L&L and ASL showed the second-best 

diagnostic performance for IDH-status (ACC=81%). DCE-mTK surpass DCE-L&L 

for grading (ACC: 56% vs 72%). ASL and ADC represent a gadolinium-free 

approach poses a potential alternative to DSC. in selected cases and in the era 

of increasing awareness for gadolinium deposition163. The practicality of the 

gadolinium-free approach is obvious in cases of gadolinium intolerance and 

contraindication as well as in the pediatric population or repeated scanning. The 

radiomics from the DCE  based on the St Lawrence and Lee model revealed 

better diagnostic performance than those based on the modified Tofts-Kermode  

model, which highlights the importance of exploring more advanced 

pharmacokinetic models for DCE, which likely more accurately reflects the 

underlying physiology of glioma . 

6.2 Recommendation for further work 

The subsidiary role of the ASL in adult gliomas classification is highlighted in this 

thesis. Nevertheless, the practical and technical challenges delay its adoption 

into daily clinical practice. Besides that, these challenges have an impact on the 

estimations of numerically meaningful data in radiomics That is worth considering 

in future studies. 
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6.2.1 Image acquisition and processing 

Variations in image acquisition and processing introduce undesirable changes 

that obscure the actual biological changes. This is most significant in cases where 

the assessment is quantitative . The stability of these quantitative estimations is 

generally evaluated using either test-retest (repeatability and reproducibility) and 

inter-observer reliability measurements, both of which can determine the source 

of the variance in the measurements and visualise it in error bars besides the 

reported number. In this aspect, the professional societies (e.g. QIBA) are making 

efforts to improve the effectiveness of quantitative imaging, by providing 

consensus on the measurement accuracy and technical guidelines100,229. 

Delineation of tumour volume is a step in the image analysis that could introduce 

variation and should be taken care of it. The precision of tumour segmentation is 

crucial for the reproducibility of the computed quantitative values and radiomics 

features. It has been shown that semiautomatic segmentation reduces the 

uncertainty of tumour delineation and hence the inter-observer variability225,226. 

Even if the impact of the manual segmentation method on the radiomics 

quantification is deemed to be small, (semi)automatic segmentation would be a 

useful step towards process robustness.  

6.2.2 Further quantitative estimates from ASL 

Arterial arrival time (AAT) and arterial blood volume (aBV) can be estimated from 

ASL if using multiple delay times (TIs) and the QUASAR (quantitative STAR 

labelling of arterial regions) sequence, respectively. Westen et al. compared the 

ASL-aBV  to the DSC-CBV in 10 patients with brain tumours160 and found that 

CBV and aBV increased from low grade to higher-grade tumours, which suggests 

that aBV could be a promising tool for tumour grading. A study in paediatric brain 

tumours estimated the AAT with and without a crusher gradient and argued that 

these estimates provided capillary and pre-capillary arrival times, respectively. 

This is because the usage of crusher gradients in ASL removes the signal of the 

large vessels. Also, blood arrival time from the large vessels to the capillary level 

could be estimated and utilised as an indirect index for the permeability. It can be 

postulated that the delay at the arrival time between the proximal location to the 

tumour’s large vessels, and the capillary level is related to the dispersion of the 
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magnetically labelled blood due to the increased permeability in tumours with 

neo-angiogenesis. This non-invasive, Gd-free biomarker of prolonged arrival time 

might be relevant to characterising the grade of glioma and may correlate with 

permeability estimates derived from DCE-MRI. Thus, the suggestion is to obtain 

ASL images in tumours over a range of delay times without using crusher 

gradients. The acquired image signal will reflect the perfusion from the large and 

small vessels as well as the arrival time of the labelled blood mainly at the large 

vessels. Subsequently, another identical set of ASL images  using crusher 

gradients, as earlier published in the QUASAR study126,170, is expected that will 

show perfusion and ATT only at the capillary level. The difference between the 

arrival time at the levels of large vessels and capillaries (without and with crusher 

gradient, respectively) will reflect the degree of the blood dispersion due to the 

increased vessel permeability; hence, the coined biomarker name blood arrival 

time might be indirectly related to the tumour permeability. If the proposed 

estimate of blood arrival time is highly correlated to the established permeability 

index derived from the DCE-MRI or alternatively from other existing ASL-related 

permeability indices to water230, this would offer a new surrogate biomarker for 

staging and monitoring gliomas that utilises the comparative advantages of ASL 

over the Gd-based perfusion MRI. 

Unlike ASL image acquisitions at multiple delay times, ASL acquisition at single 

TI does not provide enough information regarding the AAT. Nevertheless, other 

methods might be useful to overcome this limitation; in example, Mutsaerts et al.  

calculated the spatial COV as the standard deviation (SD) between voxel signals 

inside the ROI divided by their mean, and interpreted it as a predictor for the ATT  

at single PLD231. It would be interesting to explore this parameter in various brain 

diseases, particularly, gliomas, which are the focus of this thesis. 

ASL estimates are attractive biomarkers due to their Gd-free acquisition nature. 

Besides its capability to quantify absolute CBF may provide a more accurate 

estimation of the tumour microvascular bed. Each ASL-derived parameter might 

highlight different tumour pathophysiology and using them all together could 

enhance the diagnostic accuracy. For instance, using the rTBF and bolus arrival 

time (BAT) raised the diagnostic accuracy to 72% 129. Moreover, the combination 
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of mTIs-ASL (nCBF & nBAT) and conventional MRI provided better diagnostic 

accuracy than using the conventional MRI alone, 81% and 56%, respectively129.  

6.2.3 Sample size and validation 

A common problem among the most neuroimaging studies is that the sample 

sizes are usually limited and from a single or a few centres. The small sample 

size leads to noisy measurements; hence the results reported by the various 

studies differ widely and lack consensus. Even though quantitative imaging 

biomarkers are constantly validated against the clinical outcome (i.e., disease 

course or molecular/genetic biomarkers), they are rarely validated across 

different platforms/institutions. Multicentre validation is important, as it provides 

evidence of reproducibility of the results  across different centres and their 

generalisability.  

6.3 Role of ASL in other brain tumours and surveillance 

6.3.1 ASL in other brain tumours 

Perfusion estimates from ASL besides their benefits in gliomas diagnosis have 

also been used in brain tumour differentiation, treatment surveillance and 

prognosis. Weber et al. discriminated between GBM, metastasis and primary 

CNS-lymphoma (PCNSL) using ASL with better discrimination ability and 

predictive value than MRS154. The rTBF  in the tumour hot spot was higher for the 

GBM than that for the PCNSL and higher in the peritumoral region for the GBM 

than for the metastases154.  This result is plausible since the peritumoral regions 

in metastases are consisted of vasogenic oedema, in contrast to gliomas, which 

infiltrate the peritumoral areas232,233. 

Yamashita et al. assessed the role of ASL in differentiating hemangioblastoma 

from metastatic brain tumours using both rTBF and aTBF234. Both estimated 

metrics expressed higher values in hemangioblastomas than in metastases as 

hemangioblastomas arise from blood vessels and are highly vascularised235. 

However, the metastatic  renal cell carcinoma (RCC) expressed high perfusion 

values, which appeared to mimic the hemangioblastomas234.   This phenomenon 

may be explained by the fact that in metastatic brain tumours perfusion values 

depend on the primary tumour’s vascularisation. Primary RCC are known for their 
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increased vascularity236. Weber et al. also reported metastases from RCCs 

displaying high perfusion values166. A recent study that investigated the ability of 

ASL to differentiate between the hemangioblastomas and metastases that only 

were in the posterior fossa237concluded that if both ASL and T1W-contrasted 

showed increased values, the size ratio (defined as ROI of the tumour on ASL in 

comparison to that on the enhanced-T1W) larger than 0.98 is more likely to be 

hemangioblastoma. Yoo et al. used crushed PCASL not only to discriminate 

HGGs from PCNSL but also to investigate the connection between HGGs’ 

perfusion values and genetic biomarkers165. This study found both aTBF and 

rTBF to be significantly higher in HGGs than PCNSL, which agrees with previous 

studies154,238. Among the six investigated genetic biomarkers , only the epidermal 

growth factor receptor (EGFR) expressed significant positive correlation with 

rTBF and aTBF. EGFR was also positively correlated with poor prognosis in 

anaplastic oligodendroglioma239.   

6.3.2 ASL in brain tumours surveillance 

ASL for brain tumour follow-up is still under evaluation. Some studies have been 

investigating radiation impact on normal brain tissue240,241 while other works have 

evaluated the treatment response 166,167.  Weber et al. evaluated the perfusion of 

the contralateral normal brain tissue  in 62 metastatic brain tumour patients prior 

to single dose of stereotactic radiosurgery (median of 18 Gy, 12 to 20 Gy) and up 

to 5 follow-up sessions after treatment. Perfusion values obtained from PASL and 

DSC  remain unchanged on surveillance 241, which may be due to the  low 

administered dose less than 0.5 Gy. A recent study evaluated perfusion in healthy 

brain tissue  using PCASL in 24 GBM patients after radio-chemotherapy (RCT). 

This study was searching for any relationship between the received dose and 

tissue perfusion alteration242.  It reported a significant reduction in rCBF between 

the pre-treatment session and the first follow-up . This reduction was more 

pronounced in the regions that received doses > 50 Gy than in regions receiving 

doses <10Gy. 

Weber et al. investigated the value of PASL in the prediction of treatment 

outcomes by estimating rTBF in 25 metastatic brain tumour patients before 

stereotactic radiosurgery and during early follow-up166. The reduction of rTBF in 
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the enhancing tumour tissue between baseline and six weeks after treatment 

showed higher predictive value than tumour volume changes . In addition, the 

rCBF in the contralateral normal brain tissue, which received less than 0.5 Gy, 

was unchanged, a finding consistent with the previous studies241,243. A recent 

study explored the usefulness of PCASL in terms of the evaluation of 

bevacizumab anti-angiogenic effect in nude rats with GBM167, and this found a 

significant reduction in rTBF after the treatment. These findings suggest that ASL 

is a suitable method for evaluation of brain tumour treatment.  

Other recent studies have also assessed ASL prognostic value. Rau et al. used 

crushed PASL as compared to DSC in 69 patients with high-grade treatment-

naïve gliomas . Cases with rTBF from the ASL and rCBF and rCBV from DSC 

below the ROC curve analysis-derived cut-off thresholds demonstrated  longer 

progression-free-survival . However, this result reached statistical significance 

only for the rCBV244. Another study included 24 pre-treated astrocytoma with 

different WHO grades and similarly investigated the prognostic value of the 

crushed PASL 245. Regardless of tumour grade, the authors subdivided the 

lesions in high and low perfusion tumours using aTBF. An optimal cut-off value 

of 182 ml/100 g/ min was set and patients with high perfusion values had shorter 

periods of event-free survival  than patients with lower a TBF values . However, 

further studies in larger populations are needed to establish the prognostic role 

of ASL. 

6.4 ASL in pediatric brain tumours 

Although several studies have examined tumour perfusion in adults using ASL, 

scarce data exists for children. It may not be straightforward to apply adult 

estimated perfusion parameters to the paediatric population because CBF 

accuracy is subject to scaling imaging parameters, which include subject-specific 

parameters246. For example, T1 relaxation time is longer in children than in 

adults246. Particularly in terms of tumour evaluation, paediatric tumours have 

several unique features, such as their predominance in the posterior fossa and 

diverse histological presentations. The use of ASL in children has the advantage 

of reduced distortion artefacts in the frontal and inferior brain regions due to the 
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immature skull, no use of gadolinium, and increased repeat rate in case of 

unsuccessful sedation or motion artefacts.  

Yeom et al. evaluated the role of ASL in paediatric brain tumours  in a similar 

manner to the results reported in adults; the rTBFmax found to be significantly 

higher in HGGs than in LGGs247. Among the posterior fossa tumours, rTBF was 

significantly higher in the medulloblastoma than in the pilocytic astrocytoma. A 

study demonstrated that ASL could discriminate pilomyxoid astrocytoma  from 

pilocytic counterparts 156. The role of ASL in paediatric brain tumours was also 

demonstrated in a case study that emphasised its value in distinguishing 

hemangioblastoma from other medullary low-grade tumours that displayed 

similar conventional MRI findings248. Finally, a recent meta-analysis synthesised 

the evidence for the high diagnostic accuracy of ASL perfusion estimates  in the 

differentiation of the HGGs from LGGs in the paediatric population249. 

In conclusion, when considered against other available MRI perfusion methods, 

the ASL main strengths consist of its capability to estimate absolute CBF, and its 

minimally invasive nature with no need for exogenous contrast medium. Although 

these advantages are quite remarkable, the modality has yet to be validated 

before being incorporated into routine clinical practice. Owing to the continuous 

development over the last decade, ASL has reached a stage that encourages its 

trialling and adoption in clinical institutions. With these issues in mind, ASL 

appears a useful modality for glioma patients, especially the vulnerable and 

paediatric subjects, and post-treatment tumour patients with a low tolerance for 

high-rate contrast injections and complex venous access.   
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Appendix A: Figures 

 

 

 

 

 

 

 

 

 

Figure 1A: rTBF for LGG 

patients’ relative to the value 

for HGG patients’. In the 

forest plot, the dotted 

vertical line represents the 

pooled effect size point 

where the effect size in 

individual studies have very 

different distribution 

(heterogeneity) around this 

line. The pooled effect and 

their 95% CI (the diamond at 

the bottom) express that the 

LGG have significantly 

lower rTBF than the HGG (-

1.46, (-2.00, -0.91)). The 

funnel plot is symmetric and 

does not show publication 

bias. 
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Figure 2A: rTBF-mean for 

LGG patients relative to the 

value for HGG patients. In the 

forest plot, the dotted vertical 

line represents the pooled 

effect size point where the 

effect size in individual studies 

have very different distribution 

(heterogeneity) around this 

line. The pooled effect and 

their 95% CI (the diamond at 

the bottom) express that the 

LGG have significantly lower 

rTBFmean than the HGG (-

1.53, (-2.26, -0.79)). The 

funnel plot is symmetric and 

does not show publication bias. 
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Figure 3A: rTBF-max for LGG 

patients’ relative to the value 

for HGG patients’. In the forest 

plot, the dotted vertical line 

represents the pooled effect 

size point where the effect size 

in individual studies have very 

different distribution 

(heterogeneity) around this 

line. The pooled effect and 

their 95% CI (the diamond at 

the bottom) express that the 

LGG have significantly lower 

rTBFmax than the HGG (-

1.36, (-2.23, -0.49)). The 

funnel plot is symmetric and 

does not show publication bias. 
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Figure 4A: TBF for LGG 

patients’ relative to the value 

for HGG patients’. In the forest 

plot, the dotted vertical line 

represents the pooled effect 

size point where the effect size 

in individual studies have very 

different distribution 

(heterogeneity) around this 

line. The pooled effect and 

their 95% CI (the diamond at 

the bottom) express that the 

LGG have significantly lower 

TBF than the HGG (-0.82, (-

1.20, -0.45)). The funnel plot is 

symmetric and does not show 

publication bias. 
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Figure 5A: TBFmean for LGG 

patients’ relative to the value 

for HGG patients’. In the forest 

plot, the dotted vertical line 

represents the pooled effect 

size point where the effect size 

in individual studies have small 

distribution around this line 

with small degree of 

heterogeneity. The pooled 

effect and their 95% CI (the 

diamond at the bottom) express 

that the LGG have significantly 

lower TBFmean than the HGG 

(-0.61, (-0.99, -0.23)). The 

funnel plot is symmetric and 

does not show publication bias. 
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Figure 6A: TBFmax for LGG 

patients’ relative to the value 

for HGG patients’. In the forest 

plot, the dotted vertical line 

represents the pooled effect 

size point where the effect size 

in individual studies have very 

different distribution 

(heterogeneity) around this 

line. The pooled effect and 

their 95% CI (the diamond at 

the bottom) express that the 

LGG have significantly lower 

TBFmax than the HGG (-0.96, 

(-1.53, -0.39)). The funnel plot 

is symmetric and does not 

show publication bias. 

 

Figure 7A: rTBF for grade-II 

patients’ relative to the value for 

grade-III patients’. In the forest plot, 

the dotted vertical line represents the 

pooled effect size point where the 

effect size in individual studies have 

low distribution (small 

heterogeneity degree) around this 

line. The pooled effect and their 95% 

CI (the diamond at the bottom) 

express that the grade-II rTBF value 

about significantly lower than the 

that of the grade-III (-1.39, (-1.89, -

0.89)). The funnel plot is symmetric 

and does not show publication bias. 
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Figure 8A: TBF for grade-II patients’ 

relative to the value for grade-III 

patients’. In the forest plot, the dotted 

vertical line represents the pooled effect 

size point where the effect size in 

individual studies have moderate 

distribution (moderate heterogeneity 

degree) around this line. The pooled 

effect and their 95% CI (the diamond at 

the bottom) express that the grade-II has 

approximately significant lower TBF 

value than the grade-III (-0.90, (-1.85, 

0.04)). The funnel plot cannot be 

produced due to the small study number. 
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Figure 9A: rTBF for grade-II 

patients’ relative to the value for 

grade-IV patients’. In the forest plot, 

the dotted vertical line represents 

the pooled effect size point where 

the effect size in individual studies 

have very large distribution 

(heterogeneity) around this line. The 

pooled effect and their 95% CI (the 

diamond at the bottom) express that 

the grade-II rTBF value was 

significantly lower than the that of 

the grade-IV (-2.07, (-3.38, -0.76)). 

The funnel plot is symmetric and 

does not show publication bias. 
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Figure 10A: TBF for grade-II 

patients’ relative to the value for 

grade-IV patients’. In the forest plot, 

the dotted vertical line represents 

the pooled effect size point where 

the effect size in individual studies 

represent very large distribution 

(heterogeneity) around this line. The 

pooled effect and their 95% CI (the 

diamond at the bottom) express that 

the grade-II significantly lower TBF 

value than the grade-IV (-1.44, (-

2.76, -0.12)). The funnel plot cannot 

be produced due to the small study 

number. 
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Figure 11A: rTBF for grade-III 

patients’ relative to the value for 

grade-IV patients’. In the forest plot, 

the dotted vertical line represents 

the pooled effect size point where 

the effect size in individual studies 

have large distribution 

(heterogeneity) around this line. The 

pooled effect and their 95% CI (the 

diamond at the bottom) express that 

the grade-III significantly has lower 

rTBF value than the grade-IV (-

1.05, (-1.82, -0.27)). The funnel plot 

is symmetric and does not show 

publication bias. 
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Figure 12A: TBF for grade-III 

patients’ relative to the value for 

grade-IV patients’. In the forest plot, 

the dotted vertical line represents 

the pooled effect size point where 

the effect size in individual studies 

have low distribution (small 

heterogeneity degree) around this 

line. The pooled effect and their 

95% CI (the diamond at the bottom) 

express a trend of lower rTBF value 

in grade-III than in grade-IV (-0.45, 

(-0.95, 0.05)). The funnel plot is 

asymmetric and does show 

publication bias. 
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Tables  

Table 1A Studies performed using PCASL  

Stud

y no. 

Author

s 

Publicati

on year 

Countr

y of 

origin 

Gliomas type 

Oligodendrogliomas/astrocytomas/

mixed 

LGGs HGGs 
Histolog

ic 

analysis 

obtaine

d with 

Study 

design 

MRI 

field 

strengt

h 

2D/3

D 

Bolus 

width 

(ms) 

TI/PL

D 

(ms) 

Examine

d 

perfusion 

metrics 

Significanc

e for 

differentiati

on between 

HGGs and 

LGGs 

Grad

e I 
Grade II Grade III 

Grad

e IV 

2130 

Roy, 

B. et 

al. 

2013 

India 

indistinct 3 23 9 astrocytoma 
29 

GBM 
NA 

prospecti

ve 
3T 3D 1450 1525 

TBFmax P = 0.78 

rTBFmax P = 0.12 

4131 
Bai, Y. 

et al. 
2015 

USA 

mixed NA 

18(13 

astrocytoma, 2 

oligodendroglio

ma) 

10(5 anaplastic 

astrocytoma, 2 

anaplastic 

oligodendroglio

ma, 3 anaplastic 

oligo-

astrocytoma) 

16 

GBM 

Surgical 

resectio

n 

prospecti

ve 
3T 3D 2025 1525 

TBFmea

n 

Grade-II / 

III, p = 

0.874 

Grade-II / 

IV, p = 

0.023 

Grade-III/ 

IV, p = 

0.213 

9127 

Shen, 

N. et 

al. 

2016 

China 

mixed 
25 (19 astrocytoma, 6 

oligodendroglioma) 

27 (10 anaplastic 

astrocytoma, 1 anaplastic 

oligodendroglioma, 16 

GBM) 

NA 
prospecti

ve 
3T 3D 1500 1525 

TBFmax 

P < 0.001, 

including 

sub-grading 

(P < 0.001) 

rTBFmax 

P < 0.001, 

including 

sub-grading 

(P < 0.001) 

10128 
Lin, Y. 

et al. 
2015 

China 

mixed 

11 (7 diffuse astrocytoma, 

3 oligodendroglioma, 1 

capillary astrocytoma) 

8 anaplastic 

astrocytoma 

5 

GBM 
 

prospecti

ve 
3T 3D 

Not 

mentione

d 

1500 

TBFmea

n 
P = 0.011 

TBFmax P = 0.002 
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(*)181

58 

Gao, 

F. et 

al. 

2015 

China 

indistinct 28 21 NA 
prospecti

ve 
3T 2D 

Not 

mentione

d 

1400 

rTBFme

an (WM) 
P < 0.001 

rTBFme

an (GM) 
P < 0.001 

rTBFme

an 

(mirror) 

P < 0.001 

(*) study 18 did not mentioned the used ASL labelling method 

Not available (NA); 
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Table 2A Studies performed using CASL  

Stud

y no. 
Author 

Publicati

on year 

Count

ry of 

origin 
Gliomas type 

Oligodendrogliomas/astrocytomas

/mixed 

LGGs HGGs 

Histolog

ic 

analysis 

obtaine

d with 

Study 

design 

MRI 

field 

strengt

h 

2D/3

D 

Bolus 

width 

(ms) 

TI/PL

D 

(ms) 

Examine

d 

perfusio

n 

metrics 

Significanc

e for 

differentiati

on 

between 

HGGs and 

LGGs 

Grade I Grade II Grade III 
Grad

e IV 

3144 

Wolf, 

R. et 

al. 

2005 

USA 

mixed 

2 

(gangliom

a) 

5 (1 

oligodendroglio

ma, 1 

astrocytoma, 3 

oligoastrocytom

a) 

8 (1 anaplastic 

oligodendroglio

ma, 4 

anaplastic 

astrocytoma, 3 

anaplastic 

oligoastrocytom

a) 

11 

GBM 
NA NA 3T 2D 2000 1200 

TBFmea

n 
P = 0.39 

TBFmax P = 0.04 

rTBFme

an 
P = 0.06 

rTBFma

x 
P = 0.01 

8145 

 

Chawl

a, S. 

et al. 

2007 

USA 

mixed 

1 

gabgliom

a 

12 (1 

astrocytoma, 11 

oligodendroglio

ma) 

9 (4 

astrocytoma, 5 

oligodendroglio

ma) 

13 

GBM 
NA 

retrospecti

ve 

3T 3D 2000 1200 

TBFmax P < 0.05 

TBFmea

n 
P > 0.05 

rTBFme

an 
P > 0.05 

rTBFma

x 
P > 0.05 

Oligodendrogliomas     
rTBFma

x 
P > 0.05 

16152 

Canal

e, S. 

et al. 

2011 

Franc

e indistinct NA 

5 

oligodendroglio

ma 

11 (9 

oligodendroglio

ma, 2 TGNM) 

5 

GBM 
NA 

retrospecti

ve 
1.5T 3D 

Not 

mention

ed 

1200 
rTBFme

an 
yes 

Not available (NA) 
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Table 3A Studies performed using PASL  

Stu

dy 

no. 

Author 

Publica

tion 

year 

Count

ry of 

origin Gliomas type 

Oligodendrogliomas/astrocyt

omas/mixed 

LGGs HGGs 
Histolo

gic 

analysi

s 

obtaine

d with 

Study 

design 

PASL 

approa

ch 

MRI 

field 

stren

gth 

2D/

3D 

Bolus 

width 

(ms) 

TI/PLD 

(ms) 

Examin

ed 

perfusi

on 

metrics 

Significa

nce for 

differenti

ation 

between 

HGGs 

and 

LGGs 

Grade I Grade II Grade III Grade IV 

184 
Brendl

e et al. 
2017 

Germ

any 

mixed NA 

20(7 

oligodendro

glioma II, 14 

astrocytoma 

II) 

11(2 

oligodendrog

lioma III, 9 

astrocytoma 

III) 

5 GBM NA 
retrospe

ctive 

PICOR

E 
3T 2D 700 1800 

TBFme

an 

P = 

0.1030 

5153 

Kim, 

H.S. et 

al. 

2007 

Korea 

indistinct NA 11 7 15 

Surgery 

or 

stereot

actic 

biopsy  

prospect

ive 
FAIR 1.5T 2D 

indistin

ct 
1200 

ROC-

analysi

s 

indistinct 

6154 

Weber

, M. et 

al. 

2006 

Germ

any indistinct NA 9 
11 anaplastic 

gliomas 
35 GBM 

stereot

actic 

biopsy 

prospect

ive 

Not 

mentio

ned 

1.5 2D 1000 1200 

ROC-

analysi

s 

indistinct 

7142 

Fudab

a, H. 

et al. 

2014 

Japan 

Both Mix and astrocytomas NA 

9 (3 diffuse 

astrocytoma, 

3 

oligodendro

glioma and 3 

oligoastrocyt

oma) 

8 (3 

anaplastic 

astrocytoma, 

4 anaplastic 

oligodendrog

lioma, 1 

oligoastrocyt

oma) 

15 (14 GBM, 

1 GBM with 

oligodendro

glioma 

component) 

Surgery 

or 

stereot

actic 

biopsy 

retrospe

ctive 

Not 

mentio

ned 

3T 2D 

Not 

mentio

ned 

1800 

ROC-

analysi

s 

indistinct 

1112

9 

Yang, 

X. et 

al. 

2016 

China 

astrocytomas NA 
15 diffuse 

astrocytoma 

15 anaplastic 

astrocytoma 
13 GBM NA 

prospect

ive 
FAIR 3T 3D 700 1920 

rTBFm

ean 

(sTI) 

HGG vs 

LGG, P = 

0.003 

II vs III, P 

= 0.098 

II vs IV, 

P = 0. 

006 
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III vs IV, 

P = 

0.0905 

rTBFm

ean 

(mTIs) 

HGG vs 

LGG, P < 

0.001 

II vs III, P 

= 0.021 

II vs IV, 

P < 

0.001 

III vs IV, 

P = 

0.023 

1214

6 

Furtne

r, J. et 

al. 

2014 

Austri

a 

astrocytomas NA 

7 (diffuse 

astrocytoma

) 

7 (anaplastic 

astrocytoma) 
19 GBM 

Surgery 

or 

stereot

actic 

biopsy 

prospect

ive 

PICOR

E 
3T 2D 

Not 

mentio

ned 

370 
rTBFm

ean 

P = 

0.003 

1343 

Cebec

i, H. et 

al. 

2014 

Turke

y 

mixed 

13 (11 oligodendroglioma, 1 

disembryoblastic 

neuroepithelial tumour 

(DNET), 1 pilocytic 

astrocytoma) 

20 (18 GBM, 1 astrocytoma, 1 

gliosarcoma) 
NA 

retrospe

ctive 

EPIST

AR 
3T 2D 

Not 

mentio

ned 

Not 

mentio

ned 

TBFma

x 

P < 

0.001 

rTBFm

ax 

P < 

0.001 

1414

7 

Kim, 

M J. et 

al. 

2008 

Korea 

astrocytomas NA 26 
12 anaplastic 

astrocytomas 
23 GBM 

Surgery 

or 

stereot

actic 

biopsy 

prospect

ive 
FAIR 1.5T 2D 

Not 

mentio

ned 

1200 
rTBFm

ax 
P < 0.05 

1516

0 

Van, 

W. et 

al. 

2011 

Swed

en 

indistinct NA NA 3 4 
Biopsy 

proven 
NA 

QUAS

AR 
3T 2D 

Not 

mentio

ned 

Not 

mentio

ned 

TBFma

x Just 

mentione

d the 

trend of 

increasin

g the 

TBF from 

grade-III 

TBFme

an 

rTBFm

ax 
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rTBFm

ean 

towards 

grade-IV 

1615

2 

Canal

e, S. 

et al. 

2016 

Franc

e 

indistinct NA 

3 

oligodendro

glioma 

12 (9 

oligodendrog

lioma III, 3 

TGNM) 

4 GBM NA 
retrospe

ctive 

Not 

mentio

ned 

1.5T 2D 

Not 

mentio

ned 

1200 
rTBFm

ean 

Using 

PASL, P 

> 0.05 

Using 

CASL, P 

< 0.05 

1714

8 

Warm

uth, C. 

et al. 

2003 

Germ

any 

mixed 

3 (2 

ganglioma, 1 

pleomorphic 

xanthoastroc

ytoma) 

6 (5 

astrocytoma, 

1 optic 

astrocytoma

) 

3 (1 

anaplastic 

oligodendrog

lioma, 1 

anaplastic 

astrocytoma, 

1 

astrocytoma) 

7 GBM NA 
prospect

ive 
FAIR 1.5T 2D 1200 1300 

TBFma

x 

P < 

0.001 

rTBFm

ax 

P < 

0.001 

Not available (NA); Proximal Inversion with Control of Off-Resonance Effects (PICORE); flow alternating inversion recovery (FAIR); quantitative STAR labeling of arterial regions (QUASAR) 
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Table 4A Sensitivity, specificity, negative predictive values (NPV) and positive predictive values (PPV) of published ASL-derived biomarkers cut-

off values for glioma grading. 

II vs III gliomas 

Author/year Study No. 
 ASL 

parameters 
Cut-off Sensitivity Specificity Prevalence of grade III PPV NPV 

Weber, M 

A. et al.; 

2006 

6 rTBFmean 1 0.92 0.33 0.55 62.66 77.14 

Shen, N. et 

al.; 2016 
9 TBFmax 43.62 1 0.69 0.31 59.12 100 

Yang, X. et 

al.; 2016 

  

11, (multiple 

TIs), 

(astrocytoma) 

rTBFmean 2.43 1 0.51 0.5 67.11 100 

11, (single 

TI), 

(astrocytoma) 

rTBFmean 1.88 0.78 0.73 0.5 74.29 76.84 

II vs IV gliomas 

Author/year Study No. 
 ASL 

parameters 
Cut-off Sensitivity Specificity Prevalence of grade-IV PPV NPV 

Weber, M 

A. et al.; 

2006 

6 rTBFmean 1.6 0.94 0.78 0.80 94.32 76.97 

Yang, X. et 

al.; 2016 

  

11, (multiple 

TIs), 

(astrocytoma) 

rTBFmean 4 1 0.87 0.46 86.96 100 

11, (single 

TI), 

(astrocytoma) 

rTBFmean 3.01 0.67 0.87 0.46 81.71 75.26 

III vs IV gliomas 

Author/year Study No. 
 ASL 

parameters 
Cut-off Sensitivity Specificity Prevalence of grade-IV PPV NPV 

Weber, M 

A. et al.; 

2006 

6 rTBFmean 1.4 0.97 0.5 0.76 86.06 83.97 

Fudaba, H. 

et al.; 2014 

  

7 rTBFmean 2.562 0.87 0.77 0.65 87.37 75.42 

 rTBFmax 2.845 0.87 0.82 0.65 90.23 76.77 

 rTBFmin 2.017 0.87 0.59 0.652173913 79.78038157 70.21943574 

7, 

(astrocytoma) 
rTBFmean 1.857 0.93 0.83 0.82 96.29 71.54 

7, 

(astrocytoma) 
rTBFmax 2.258 0.93 0.83 0.82 96.29 71.54 

7, 

(astrocytoma) 
rTBFmin 2.164 0.79 0.83 0.824 95.645 45.478 

Yang, X. et 

al.; 2016 

  

11, (multiple 

TIs), 

(astrocytoma) 

rTBFmean 8.55 0.77 0.73 0.464 71.19 78.55 

11, (single 

TI), 

(astrocytoma) 

rTBFmean 6.64 0.46 0.73 0.464 59.62 60.93 
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Table 5A Sensitivity, specificity, negative predictive values (NPV) and positive predictive values (PPV) of published ASL-derived biomarkers cut-

off values between HGGs and LGGs. 

HGG vs LGG 

Author/ year Study No. 
 ASL 

parameter 
Cut-off Sensitivity Specificity prevalence PPV NPV 

Kim, H.S. et 

al.; 2007 
5 rTBFmean 1.24 0.955 0.818 0.667 91.30 90.088 

Fudaba, H. et 

al.; 2014 

  

7 rTBFmean 2.562 0.652 0.778 0.719 88.243 46.661 

7 rTBFmax 2.845 0.609 0.778 0.719 87.516 43.776 

7 rTBFmin 2.017 0.739 0.667 0.719 85.0105 50 

7, (astrocytoma) rTBFmean 1.8 0.824 0.667 0.85 93.343 40.076 

7, (astrocytoma) rTBFmax 2.258 0.765 0.667 0.85 92.866 33.372 

7, (astrocytoma) rTBFmin 1.254 0.882 0.667 0.85 93.753 49.937 

Shen, N. et 

al.; 2016 

  

9 TBFmax 52.21 0.889 0.826 0.5192 84.664 87.317 

 9 rTBFmax 1.32 0.926 0.957 0.519 95.831 92.279 

Yang, X. et 

al.; 2016 

  

11, (multiple TIs), 

(astrocytoma) 
rTBFmean 2.43 1 0.54 0.6511 80.229 100 

11, (single TI), (astrocytoma) rTBFmean 3.01 0.6 0.88 0.651 90.323 54.098 

11, (bolus arrival time (BAT)), 

(astrocytoma) 
  0.97 0.71 0.88 0.651 91.697 61.914 

Furtner, J. et 

al.; 2014 
12  1.48 0.85 1 0.788 100 64.220 

Cebeci, H. et 

al.; 2014 

  

13 rTBFmax 2.1 1 0.92 0.606 95.057 100 

 13 rSImax 2.19 1 0.92 0.606 95.057 100 

Kim, M J. et 

al.; 2008 
14, (astrocytoma) rTBFmax 1.28 0.829 0.962 0.5738 96.707 80.691 

Canale, S. et 

al.; 2011 
16, (oligodendroglioma) rTBFmean 1.8 0.88 0.6 0.762 87.562 60.976 
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Appendix B 

Table 1-B. Statistically significant histogram parameters from ASL, DSC, ADC and DCE MRI in glioma patients based on Kruskal-Wallis test 

Modality Grading (19LGGs, 12 HGGs) Sub-grading (19-II, 6-III, 6-IV) IDH-status (7-wt, 25-mut) Groping (7-wt, 12-astro, 13-oligo) Sub-groping (7-wt-GBM, 10-astro-LG, 2-astro-HG, 

9-oligo-LG, 4-oligo-HG) 

 parameter Rank p-

value 

parameter Rank p-

value 

parameter Rank p-

value 

parameter Rank p-

value 

parameter Rank p-value 

A
S

L
 

rTBF-mean 13 vs 

21.6 

0.011 rTBF-mean 13, 18.7, 

24 

0.022 aTBF & rTBF-

skew 

9.9 vs 

18.9 

0.028 aTBF & rTBF-

skew 

9.9, 23.3, 

13.9 

0.005 aTBF & rTBF-

skew 

9.9, 22.6, 26.5, 

11.6, 19 

0.012 

rTBF-SD 13.6 vs 

20.6 

0.040 rTBF-95tile 12.8, 20, 

23.3 

0.024 aTBF & rTBF-

zscore 

9.14 vs 

19 

0.015 aTBF & rTBF-

zscore 

9, 24.2, 

13.4 

0.001 aTBF & rTBF-

zscore 

9, 23.9, 25.5, 11.4, 

17.8 

0.005 

rTBF-95tile 12.8 vs 

21.9 

0.008 rTBF-

median 

13.3, 18, 

23.9 

0.036 rTBF-mean 26.7 vs 

14.4 

0.003 rTBF-mean 25.7, 9.5, 

18 

0.001 rTBF-mean 25.7, 8.30, 15.5, 

17, 19.8 

0.005 

rTBF-

median 

13.3 vs 

21 

0.020 rTBF-max 12.9, 20.5, 

22.7 

0.032 rTBF-95tile 24.6 vs 

14.96 

0.020 rTBF-95tile 23.9, 

10.9, 17.7 

0.012 rTBF-95tile 23.9, 9.5, 18, 16, 

21.3 

0.027 

rTBF-iqr 13.7 vs 

20.6 

0.040    rTBF-median 26.9 vs 

14.4 

0.002 rTBF-median 25.9, 9.2, 

18 

0.001 rTBF-median 25.9, 8, 13.5, 17.7, 

19.5 

0.004 

rTBF-mode 13.7 vs 

20.5 

0.044    rTBF-mode 24.9 vs 

14.9 

0.015 rTBF-mode 23.9, 

10.8, 17.8 

0.012 rTBF-mode 23.7, 9, 18, 17, 

18.8 

0.034 

rTBF-slope 19.3 vs 

12.5 

0.044    rTBF-min 23.4 vs 

15.3 

0.048 rTBF-min 22.4, 

11.8, 17.7 

0.048 rTBF-min 22, 9.6, 22.5, 19.6, 

13.5 

0.034 

rTBF-

entropy 

13.7 vs 

20.6 

0.040    rTBF-max 23.4 vs 

15.3 

0.048 rTBF-max 22.7, 11, 

17.9 

0.030    

rTBF-max 12.95 vs 

21.96 

0.010             

rTBF-var 13.7 vs 

20.6 

0.040             

D
S

C
 

rCBV-mean 12.3 vs 

22.6 

0.002 rCBV-mean 12.3, 19.5, 

25.3 

0.005 rCBF-mean 24.9 vs 

14.9 

0.015 rCBF-mean 23.9, 8.7, 

19.8 

0.001 rCBF-mean 23.9, 8, 11, 21, 

16.5 

0.004 

rCBV-SD 12.3 vs 

22.6 

0.002 rCBV-SD 12.3, 20, 

24.9 

0.006 rCBF-skew 9.4 vs 19 0.020 rCBF-SD 14.6, 

10.7, 22.9 

0.004 rCBF-SD 14.6, 9.5, 16.5, 24, 

20.5 

0.015 
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rCBV-95tile 12.2 vs 

22.8 

0.002 rCBV-95tile 12, 20, 25 0.005 rCBF-median 24.4 vs 

15 

0.022 rCBF-95tile 22, 9, 

20.5 

0.002 rCBF-95tile 22,7.8, 15, 22.9, 

15 

0.004 

rCBV-

median 

13.3 vs 

21.1 

0.020 rCBV-

median 

13.3, 17.3, 

24.4 

0.027 rCBV-mean 26.9 vs 

14.4 

0.002 rCBF-kur 19.9, 

20.8, 10.7 

0.015 rCBF-kur 19.9, 22, 14.5, 12, 

7 

0.034 

rCBV-iqr 12.5 vs 

22.3 

0.004 rCBV-iqr 12.5, 20.5, 

23.9 

0.012 rCBV-SD 25 vs 

14.9 

0.014 rCBF-skew 9.4, 23.5, 

13.9 

0.003 rCBF-skew 9, 23.8, 22, 13, 15 0.019 

rCBV-

slope 

20.7 vs 

10.4 

0.002 rCBV-slope 20.7, 12.7, 

8.4 

0.007 rCBV-95tile 26 vs 

14.5 

0.005 rCBF-median 23.4, 8.8, 

19.9 

0.001 rCBF-median 23, 8, 11, 20.9, 

17.5 

0.007 

rCBV-

entropy 

11.6 vs 

23.6 

<0.001 rCBV-

entropy 

11.6, 21.5, 

25.4 

0.001 rCBV-median 25.6 vs 

14.7 

0.008 rCBF-iqr 14.9, 10, 

23 

0.002 rCBF-iqr 14.9, 8.7, 17.5, 23, 

23.3 

0.008 

rCBV-min 20 vs 

11.4 

0.011 rCBV-min 20, 13.3, 

9.7 

0.030 rCBV-iqr 23.7 vs 

15.2 

0.038 rCBF-mode 22.3, 10, 

19.4 

0.08 rCBF-mode 22.3, 10.7, 6.5, 21, 

14.8 

0.022 

rCBV-max 12 vs 23 0.001 rCBV-max 12, 19.8, 

25.9 

0.002 rCBV-mode 24 vs 15 0.028 rCBF-slope 20.9, 

20.3, 10.7 

0.015 rCBF-max 21, 8, 16.5, 23, 

13.8 

0.007 

rCBV-var 12.3 vs 

22.6 

0.002 rCBV-var 12.3, 20, 

24.9 

0.006 rCBV-slope 9 vs 19.2 0.014 rCBF-max 21.4, 9.7, 

20 

0.006 rCBF-zscore 10.7, 24.6, 20.5, 

12, 14 

0.013 

      rCBV-entropy 27.4 vs 

14.2 

0.001 rCBF-zscore 10.7, 

23.9, 12.8 

0.002 rCBF-var 14.6, 9.5, 16.5, 24, 

20.5 

0.015 

      rCBV-min 7.3 vs 

19.6 

0.003 rCBF-var 14.6, 

10.7, 22.9 

0.004 rCBV-mean 25.9, 7, 12.5, 17.9, 

22.8 

0.001 

      rCBV-max 26.7 vs 

14.4 

0.003 rCBV-mean 25.9, 7.9, 

19.4 

<0.001 rCBV-SD 24.7, 9, 16, 15.9, 

22 

0.012 

      rCBV-var 25 vs 

14.9 

0.014 rCBV-SD 24.7, 10, 

17.7 

0.005 rCBV-95tile 25.3, 8, 14.5, 16.7, 

22.8 

0.003 

         rCBV-95tile 25.3, 9.2, 

18.5 

0.001 rCBV-median 24.6, 8, 9, 18.8, 

21.3 

0.004 

         rCBV-skew 14.9, 

22.7, 11.7 

0.012 rCBV-iqr 23.7, 8.5, 14.5, 17, 

23.5 

0.008 

         rCBV-median 24.6, 8.5, 

19.5 

<0.001 rCBV-mode 23, 9, 7, 18, 24.3 0.006 

         rCBV-iqr 23.7, 9.5, 

19 

0.003 rCBV-slope 8, 24, 17.5, 17, 

10.3 

0.009 
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         rCBV-mode 23, 8.9, 

19.9 

0.001 rCBV-entropy 26, 7, 15.5, 16, 24 <0.001 

         rCBV-slope 8.4, 22.9, 

14.9 

0.004 rCBV-min 7.3, 21.8, 16.5, 19, 

13 

0.023 

         rCBV-entropy 26.4, 8.5, 

18.5 

<0.001 rCBV-max 25.9, 8, 15.5, 16, 

22 

0.003 

         rCBV-min 7.3, 20.9, 

17.4 

0.009 rCBV-var 24.7, 9, 16, 15.9, 

22 

0.012 

         rCBV-max 25.9, 9, 

18 

0.001    

         rCBV-var 24.7, 10, 

17.8 

0.005    

A
D

C
 

ADC-min 19.89 vs 

11.5 

0.013 ADC-

median 

19, 17.3, 

8.9 

0.047 ADC-mean 6.3 vs 

19.9 

0.001 ADC-mode 12.5, 

22.3, 13 

0.029 ADC-mean 6.3, 22.6, 25.5, 

16.6, 14.5 

0.006 

ADC-60tile 19.2 vs 

12.5 

0.048 ADC-min 19.9, 9.3, 

13.4 

0.034 ADC-SD 10 vs 

18.9 

0.035 ADC-mean 6.3, 23, 

15.9 

<0.001 ADC-SD 10, 23.9, 20.5, 13, 

15 

0.024 

rADC-mean 20.11 vs 

11.2 

0.009 ADC-60tile 19.2, 16.7, 

9 

0.048 ADC-median 6 vs 19.9 0.001 ADC-SD 10, 23, 

13.7 

0.004 ADC-median 6, 22.7, 26, 16.7, 

14 

0.004 

rADC-

median 

20.2 vs 

11 

0.007 ADC-80tile 19.11, 

17.5, 8.6 

0.038 ADC-20tile 8.6 vs 

19.3 

0.009 ADC-median 6, 23, 

15.9 

0.001 ADC-30tile 7.9, 20.7, 25, 17.6, 

14.3 

0.043 

rADC-min 20.3 vs 

10.9 

0.005 rADC-

mean 

20.1, 14.2, 

8.7 

0.018 ADC-30tile 7.9 vs 

19.4 

0.005 ADC-20tile 8.6, 20.8, 

16.9 

0.024 ADC-40tile 7.3, 21.6, 26, 17, 

13.9 

0.017 

rADC-

30tile 

19.6 vs 

11.9 

0.022 rADC-

median 

20.2, 14.2, 

8.4 

0.014 ADC-40tile 7.3 vs 

19.6 

0.003 ADC-30tile 7.9, 21.4, 

16.6 

0.010 ADC-60tile 6.3, 23, 25.3, 16, 

13.9 

0.003 

rADC-

40tile 

20 vs 

11.4 

0.011 rADC-min 20.3, 9.3, 

12.3 

0.018 ADC-60tile 6.3 vs 

19.9 

0.001 ADC-40tile 7.3, 22, 

16 

0.003 ADC-70tile 6.6, 23, 26, 15.8, 

13.6 

0.004 

rADC-60tile 20.26 vs 

11 

0.006 rADC-

30tile 

19.6, 15, 

9.3 

0.041 ADC-70tile 6.6 vs 

19.8 

0.001 ADC-60tile 6.3, 23.6, 

15 

<0.001 ADC-80tile 6, 23.5, 24.5, 15.8, 

15 

0.003 

rADC-70tile 20.21 vs 

11 

0.007 rADC-

40tile 

20, 14.5, 

8.7 

0.021 ADC-80tile 6 vs 

19.96 

0.001 ADC-70tile 6.6, 23.8, 

15 

<0.001 ADC-90tile 6.4, 23.6, 23, 15, 

16.3 

0.005 

rADC-80tile 19.8 vs 

11.6 

0.015 rADC-

60tile 

20.3, 14.2, 

8.3 

0.012 ADC-90tile 6.4 vs 

19.9 

0.001 ADC-80tile 6, 23.7, 

15.5 

<0.001 ADC-95tile 7.6, 23, 22, 14.9, 

16.3 

0.015 
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rADC-90tile 19.5 vs 

12 

0.027 rADC-

70tile 

20.2, 14, 

8.6 

0.015 ADC-95tile 7.6 vs 

19.5 

0.004 ADC-90tile 6, 23.5, 

15.5 

0.001 ADC & rADC-

skew 

22.6, 10.4, 7, 17.9, 

22.8 

0.025 

rADC-

95tile 

19.2 vs 

12.5 

0.048 rADC-

90tile 

19.5, 14.5, 

10 

0.030 ADC and rADC-

zscore 

23.7 vs 

15.2 

0.038 ADC-95tile 7.6, 23, 

15 

0.002 ADC & rADC-

zscore 

22.9, 10.4, 7.5, 

17.8, 22.3 

0.027 

      ADC-var 10 vs 

18.9 

0.035 ADC and rADC-

skew 

22.6, 9.8, 

19 

0.006 ADC-var 10, 23, 20.5, 13, 

15 

0.024 

      rADC-mean 6 vs 

19.96 

0.001 ADC-slope 22, 10.8, 

18.8 

0.022 rADC-mean 6, 24, 23.5, 17, 

10.5 

0.001 

      rADC-SD 10 vs 

18.9 

0.031 ADC and rADC-

zscore 

22.9, 9.9, 

19 

0.006 rADC-SD 9.9, 24, 19, 13.6, 

14.3 

0.021 

      rADC-median 5.7 vs 20 0.001 ADC-var 10, 23, 

13.7 

0.004 rADC-median 5.7, 24, 25, 17, 9.8 <0.001 

      rADC-10tile 8.7 vs 19 0.011 rADC-mode 12.3, 22, 

13.4 

0.024 rADC-20tile 7.3, 21.8, 24, 18, 

11.3 

0.012 

      rADC-20tile 7.3 vs 

19.6 

0.003 rADC-mean 6, 24, 15 <0.001 rADC-30tile 6, 22, 24.5, 18, 

11.3 

0.005 

      rADC-30tile 6 vs 19.9 0.001 rADC-SD 9.9, 23, 

13.8 

0.004 rADC-40tile 6, 23.5, 25, 17.8, 

10.3 

0.001 

      rADC-40tile 6 vs 

19.96 

0.001 rADC-median 5.7, 24.5, 

14.9 

<0.001 rADC-60tile 5.6, 24.9, 24, 16.8, 

10.3  

<0.001 

      rADC-60tile 5.6 vs 20 <0.001 rADC-10tile 8.7, 21, 

16.4 

0.020 rADC-70tile 5.9, 25, 23.5, 16.6, 

10.3 

<0.001 

      rADC-70tile 5.9 vs 20 0.001 rADC-20tile 7.3, 22.2, 

16 

0.004 rADC-80tile 6.6, 24.4, 24, 

16.33, 10.8 

0.001 

      rADC-80tile 6.6 vs 

19.8 

0.001 rADC-30tile 6, 22.7, 

16 

0.001 rADC-90tile 7.4, 25, 22.5, 15, 

11.5 

0.002 

      rADC-90tile 7.4 vs 

19.6 

0.003 rADC-40tile 6, 23.8, 

15.5 

<0.001 rADC-95tile 8, 24.8, 20.5, 14.8, 

12.3 

0.005 

      rADC-95tile 8 vs 19.4 0.006 rADC-60tile 5.6, 24.8, 

14.8 

<0.001 rADC-var 9.9, 24, 19, 13.6, 

14.3 

0.021 

      rADC-var 10 vs 

18.9 

0.041 rADC-70tile 5.9, 24.8, 

14.6 

<0.001    
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         rADC-80tile 6.6, 24, 

14.6 

<0.001    

         rADC-90tile 7.4, 24.6, 

13.9 

<0.001    

         rADC-95tile 8, 24, 14 0.001    

         rADC-slope 22.4, 

10.8, 18.6 

0.019    

         rADC-var 9.9, 23, 

13.8 

0.004    

D
C

E
-m

T
K

 

Ve-mode 12.8 vs 

21 

0.012 Ve-mode 12.8, 22.9, 

19 

0.033 rK-mean 10 vs 

18.9 

0.031 Ve-mode 20, 11, 

19.5 

0.035 Ve-mode 20, 9.95, 16.8, 16, 

27 

0.022 

rVe-mode 13.11 vs 

21.5 

0.013 rVe-mode 13, 23.7, 

19.6 

0.034    rVe-mode 20.6, 

10.5, 19.9 

0.019 rVe-mode 20.6, 9.6, 15, 16, 

28 

0.012 

rVp-mean 13.9 vs 

20.4 

0.042       rVp-mean 17, 11.3, 

21 

0.032 rVp-mean 17, 10, 16, 18, 

27.5 

0.037 

         rVp-median 17.4, 10, 

21.7 

0.010 rVp-median 17, 9, 15.5, 19, 

26.8 

0.020 

         rVp-min 19.6, 

10.2, 20.7 

0.012 rVp-min 19.6, 9, 15.5, 19, 

23.5 

0.039 

D
C

E
-L

 

TC-SD 18.58 vs 

11.9 

0.047 rVp-95tile 13.7, 24.5, 

17 

0.049 rK-mean 9.7 vs 

18.96 

0.025 rK-mean 9.7, 15, 

21 

0.028 rK-iqr 9.3, 15.9, 12, 19.6, 

26 

0.046 

TC-95tile 18.7 vs 

11.8 

0.041 rVp-slope 19, 8, 16.6 0.04 rK-SD 10 vs 

18.9 

0.035 rK-SD 10, 15.5, 

20.9 

0.046 rFb-mean 14, 10, 14, 20, 

29.3 

0.008 

TC-slope 13.3 vs 

20 

0.035 rVp-max 13.89, 

25.5, 15.9 

0.030 rK-95tile 10 vs 

18.9 

0.035 rK-iqr 9.3, 15.3, 

21.5 

0.017 rFb-SD 13, 10.9, 17.5, 20, 

27.8 

0.021 

TC-var 18.6 vs 

11.9 

0.047 rFb-max 15.2, 25, 

12.7 

0.040 rK-median 10.6 vs 

18.7 

0.048 rK-var 10, 15.5, 

20.9 

0.046 rFb-95tile 13, 10.7, 17.5, 20, 

28.5 

0.014 

rKep-max 19.4 vs 

12.2 

0.033 rTC-mode 14.3, 13.3, 

25.3 

0.019 rK-iqr 9.3 vs 19 0.017 rFb-mean 14, 11, 

22.9 

0.005 rFb-median 15, 12, 13.5, 17, 

30 

0.028 

rVp-mean 13.7 vs 

20.5 

0.044 rTC-min 14.5, 13.2, 

24.9 

0.027 rK-slope 23.7 vs 

15.2 

0.038 rFb-SD 13, 12, 

22.5 

0.012 rFb-iqr 13.3, 10.7, 14.5, 

20, 28.8 

0.011 
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rVp-95tile 13.7 vs 

20.5 

0.044    rK-var 10 vs 

18.9 

0.035 rFb-95tile 13, 11.8, 

22.6 

0.009 rFb-slope 20, 22, 15, 13, 5 0.020 

rVp-entropy 13.7 vs 

20.6 

0.040    rPS-mean 10.3 vs 

18.8 

0.038 rFb-iqr 13.3, 11, 

23 

0.005 rFb-max 12, 11.5, 19.5, 

19.6, 27.8 

0.026 

rFb-

entropy 

13.7 vs 

20.6 

0.040    rPS-median 10 vs 

18.9 

0.035 rFb-slope 20, 20.8, 

10.6 

0.013 rFb-var 13, 10.9, 17.5, 20, 

27.8 

0.021 

rTC-SD 19.5 vs 

12 

0.027    rTC-mode 24.6 vs 

14.96 

0.020 rFb-min 12.9, 

12.9, 21.8 

0.032 rPS-mean 10.3, 19.3, 4, 17, 

25 

0.028 

rTC-95tile 19.6 vs 

11.9 

0.022    rTC-min 24 vs 15 0.028 rFb-max 12.4, 

12.8, 22 

0.021 rPS-median 10, 18.4, 5, 17.7, 

26 

0.028 

rTC-kur 13.5 vs 

20.9 

0.027       rFb-var 13, 12, 

22.5 

0.012 rTC-mean 17, 21.5, 20, 14.7, 

4.8 

0.044 

rTC-skew 13.7 vs 

20.6 

0.04       rTC-mean 17, 21.3, 

11.6 

0.036    

rTC-iqr 19.6 vs 

12 

0.025       rTC-mode 24.6, 

15.6, 13 

0.029    

rTC-slope 13.3 vs 

21.1 

0.02       rTC-min 23.9, 17, 

12 

0.027    

rTC-entropy 19.3 vs 

12.5 

0.044             

rTC-var 19.5 vs 

12  

0.027             

The bolded variables even they revealed statistically significant differences they could not predict the assigned classes (p-value>0.05), using the multinomial logistic regression. 
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Table 2-B. The diagnostic performance of significant features from ASL, DSC, DCE-mTK, DCE-L&L, ADC for 

glioma grading. 

MRI-method Features  Prediction performance Grading Internal validation 

LOOCV 

LGGs HGGs LGGs HGGs 

ASL rTBF_mean sensitivity 79% 62% 79% 59% 

specificity 62% 79% 59% 79% 

F 77% 64% 76% 62% 

Accuracy 72% 72% 

Kappa 41% 41% 

  rTBF_SD sensitivity 84% 62% 89% 26% 

specificity 62% 84% 26% 89% 

F 80% 67% 74% 36% 

Accuracy 75% 64% 

Kappa 47% 17% 

  rTBF_95tile sensitivity 84% 62% 84% 59% 

specificity 62% 84% 59% 84% 

F 80% 67% 79% 65% 

Accuracy 75% 74% 

Kappa 47% 44% 

  rTBF_median sensitivity 79% 62% 79% 54% 

specificity 62% 79% 54% 79% 

F 77% 64% 75% 85% 

Accuracy 72% 67% 

Kappa 41% 34% 

  rTBF_iqr sensitivity 84% 31% 86% 21% 

specificity 31% 84% 21% 86% 

F 73% 40% 72% 29% 

Accuracy 63% 59% 

Kappa 16% 7% 

  rTBF_mode sensitivity 79% 69 % 79% 67% 

specificity 69% 79% 67% 79% 

F 77% 69% 78% 68% 

Accuracy 75% 74% 

Kappa 48% 46% 

  rTBF_slope sensitivity 84% 62% 81% 36% 
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specificity 62% 84% 36% 81% 

F 80% 67% 72% 44% 

Accuracy 75% 63% 

Kappa 47% 18% 

  rTBF_entropy sensitivity 84% 62% 86% 41% 

specificity 62% 84% 41% 86% 

F 80% 67% 76% 51% 

Accuracy 75% 68% 

Kappa 47% 29% 

  rTBF_max sensitivity 84% 62% 84% 62% 

specificity 62% 84% 62% 84% 

F 80% 67% 80% 67% 

Accuracy 75% 75% 

Kappa 47% 47% 

  rTBF_var sensitivity 84% 39% 89% 15% 

specificity 39% 84% 15% 89% 

F 74% 45% 72% 24% 

Accuracy 66% 59% 

Kappa 24% 5% 

DSC rCBV_mean sensitivity 95% 69% 91% 56% 

specificity 69% 95% 56% 91% 

F 88% 78% 83% 67% 

Accuracy 84% 77% 

Kappa 66% 50% 

  rCBV_SD sensitivity 84% 69% 88% 54% 

specificity 69% 84% 54% 88% 

F 82% 72% 80% 63% 

Accuracy 78% 74% 

Kappa 54% 44% 

  rCBV_95tile sensitivity 89% 77% 89% 69% 

specificity 77% 89% 69% 89% 

F 87% 80% 85% 75% 

Accuracy 84% 81% 

Kappa 67% 60% 

  rCBV_median sensitivity 84% 54% 81% 49% 

specificity 54% 84% 49% 81% 
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F 78% 61% 75% 55% 

Accuracy 72% 68% 

Kappa 40% 31% 

  rCBV_iqr sensitivity 89% 69% 89% 62% 

specificity 69% 89% 62% 89% 

F 85% 75% 80% 70% 

Accuracy 81% 78% 

Kappa 60% 53% 

  rCBV_slope sensitivity 79% 69% 79% 67% 

specificity 69% 79% 67% 79% 

F 79% 69% 78% 68% 

Accuracy 75% 74% 

Kappa 48% 46% 

  rCBV_entropy sensitivity 89% 77% 89% 77% 

specificity 77% 89% 77% 89% 

F 87% 80% 87% 80% 

Accuracy 84% 84% 

Kappa 67% 67% 

  rCBV_min sensitivity 79% 69% 86% 41% 

specificity 69% 79% 41% 86% 

F 79% 69% 76% 51% 

Accuracy 75% 68% 

Kappa 48% 29% 

  rCBV_max sensitivity 89% 77% 89% 77% 

specificity 77% 89% 77% 89% 

F 87% 80% 87% 80% 

Accuracy 84% 84% 

Kappa 67% 67% 

  rCBV_var sensitivity 84% 69% 89% 51% 

specificity 69% 84% 51% 89% 

F 82% 72% 80% 62% 

Accuracy 78% 74% 

Kappa 54% 43% 

DCE_mTK Ve_mode sensitivity 84% 62% 84% 54% 

specificity 62% 84% 54% 84% 

F 80% 67% 78% 61% 



 242 

Accuracy 75% 72% 

Kappa 47% 40% 

  rVe_mode sensitivity 89% 54% 93% 36% 

specificity 54% 89% 36% 93% 

F 81% 64% 79% 49% 

Accuracy 75% 70% 

Kappa 46% 32% 

  rVp_mean sensitivity 79% 46% 75% 33% 

specificity 46% 79% 33% 75% 

F 73% 52% 68% 39% 

Accuracy 66% 58% 

Kappa 26% 9% 

DCE_L&L TC_SD sensitivity 79% 46% 75% 38% 

specificity 46% 79% 38% 75% 

F 73% 52% 69% 44% 

Accuracy 66% 60% 

Kappa 26% 14% 

  TC_95tile sensitivity 79% 38% 79% 38% 

specificity 38% 79% 38% 79% 

F 71% 45% 71% 45% 

Accuracy 63% 63% 

Kappa 18% 18% 

  TC_slope sensitivity 84% 38% 81% 33% 

specificity 38% 84% 33% 81% 

F 74% 48% 71% 41% 

Accuracy 66% 61% 

Kappa 24% 15% 

  TC_var sensitivity 74% 46% 68% 44% 

specificity 46% 74% 44% 68% 

F 70% 50% 66% 46% 

Accuracy 63% 58% 

Kappa 20% 12% 

  rKep_max sensitivity 100% 0% 100% 0% 

specificity 0% 100% 0% 100% 

F 75% 0% 75% 0% 

Accuracy 59% 59% 
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Kappa 0% 0% 

  rVp_mean sensitivity 89% 46% 86% 41% 

specificity 46% 89% 41% 86% 

F 79% 57% 76% 51% 

Accuracy 72% 68% 

Kappa 38% 29% 

  rVp_95tile sensitivity 79% 31% 79% 31% 

specificity 31% 79% 31% 79% 

F 70% 38% 70% 38% 

Accuracy 59% 59% 

Kappa 10% 2% 

  rVp_entropy sensitivity 79% 23% 72% 5% 

specificity 23% 79% 5% 72% 

F 68% 30% 61% 7% 

Accuracy 56% 45% 

Kappa 22% 2% 

  rFb_entropy sensitivity 84% 38% 86% 21% 

specificity 38% 84% 21% 86% 

F 74% 48% 72% 29% 

Accuracy 66% 59% 

Kappa 24% 7% 

  rTC_SD sensitivity 79% 31% 79% 21% 

specificity 31% 79% 21% 79% 

F 70% 38% 68% 27% 

Accuracy 5% 55% 

Kappa 10% 1% 

  rTC_95tile sensitivity 84% 31% 84% 21% 

specificity 31% 84% 21% 84% 

F 73% 40% 71% 29% 

Accuracy 62% 58% 

Kappa 16% 5% 

  rTC_kur sensitivity 84% 46% 84% 36% 

specificity 46% 84% 36% 84% 

F 76% 55% 74% 45% 

Accuracy 69% 65% 

Kappa 32% 22% 



 244 

  rTC_skew sensitivity 84% 46% 81% 41% 

specificity 46% 84% 41% 81% 

F 76% 55% 73% 48% 

Accuracy 69% 65% 

Kappa 32% 23% 

  rTC_iqr sensitivity 89% 38% 82% 38% 

specificity 38% 89% 38% 82% 

F 77% 50% 73% 47% 

Accuracy 69% 65% 

Kappa 31% 22% 

  rTC_slope sensitivity 89% 15% 86% 15% 

specificity 15% 89% 15% 86% 

F 72% 24% 71% 23% 

Accuracy 59% 57% 

Kappa 5% 1% 

  rTC_entropy sensitivity 84% 46% 88% 33% 

specificity 46% 84% 33% 88% 

F 76% 55% 75% 44% 

Accuracy 69% 66% 

Kappa 32% 23% 

  rTC_var sensitivity 79% 31% 75% 28% 

specificity 31% 79% 28% 75% 

F 70% 38% 67% 34% 

Accuracy 59% 56% 

Kappa 10% 4% 

ADC ADC_min sensitivity 89% 46% 91% 46% 

specificity 46% 89% 46% 91% 

F 79% 57% 80% 58% 

Accuracy 72% 73% 

Kappa 38% 40% 

  ADC_60tile sensitivity 84% 62% 89% 38% 

specificity 62% 84% 38% 89% 

F 80% 62% 77% 50% 

Accuracy 75% 69% 

Kappa 47% 30% 

  rADC_mean sensitivity 89% 69% 89% 44% 
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specificity 69% 89% 44% 89% 

F 85% 75% 78% 55% 

Accuracy 81% 71% 

Kappa 60% 35% 

  rADC_median sensitivity 84% 69% 89% 49% 

specificity 69% 84% 49% 89% 

F 82% 72% 80% 59% 

Accuracy 78% 73% 

Kappa 54 40% 

  rADC_min sensitivity 84% 46% 88% 44% 

specificity 46% 84% 44% 88% 

F 76% 55% 78% 54% 

Accuracy 69% 70% 

Kappa 32% 33% 

  rADC_30tile sensitivity 79% 69% 86% 38% 

specificity 69% 79% 38% 86% 

F 79% 69% 75% 48% 

Accuracy 75% 67% 

Kappa 48% 26% 

  rADC_40tile sensitivity 84% 69% 86% 49% 

specificity 69% 84% 49% 86% 

F 82% 72% 78% 58% 

Accuracy 78% 71% 

Kappa 45% 36% 

  rADC_60tile sensitivity 84% 69% 86% 49% 

specificity 69% 84% 49% 86% 

F 82% 72% 78% 58% 

Accuracy 78% 71% 

Kappa 54% 36% 

  rADC_70tile sensitivity 79% 77% 86% 54% 

specificity 77% 79% 54% 86% 

F 81% 74% 79% 62% 

Accuracy 78% 73% 

Kappa 55% 41% 

  rADC_80tile sensitivity 84% 77% 88% 51% 

specificity 77% 84% 51% 88% 
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F 84% 77% 79% 61% 

Accuracy 81% 73% 

Kappa 61% 41% 

  rADC_90tile sensitivity 84% 46% 84% 33% 

specificity 46% 84% 33% 84% 

F 76% 55% 73% 43% 

Accuracy 69% 64% 

Kappa 32% 19% 

  rADC_95tile sensitivity 84% 46% 88% 33% 

specificity 46% 84% 33% 88% 

F 76% 55% 75% 44% 

Accuracy 69% 66% 

Kappa 32% 23% 
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Table 3-B. The diagnostic performance of significant features from ASL, DSC, DCE-mTK, DCE-L&L, ADC for 

glioma sub-grading 

MRI-method Features  Prediction performance Sub-grading Internal validation 

LOOCV 

II III IV II III IV 

ASL rTBF_mean sensitivity 95%  0% 57% 93% 0% 43% 

specificity 46%  100% 88% 33% 100% 89% 

F 81%  0% 57% 78% 0% 47% 

Accuracy 69% 65% 

Kappa 36% 25% 

  rTBF_95tile sensitivity 89%  0% 57% 93% 0% 29% 

specificity 54%  100% 80% 38% 99% 84% 

F 81%  0% 50% 79% 0% 31% 

Accuracy 66% 61% 

Kappa 33% 20% 

  rTBF_median sensitivity 89%  0% 57% 91% 0% 43% 

specificity 46%  100% 84% 33% 100% 88% 

F 79%  0% 53% 77% 0% 46% 

Accuracy 66% 64% 

Kappa 31% 24% 

  rTBF_max sensitivity 95% 0%  43% 89% 0% 0% 

specificity 46% 100%  84% 28% 95% 83% 

F 82% 0%  43% 75% 0% 0% 

Accuracy 67% 53% 

Kappa 30% 1% 

DSC rCBV_mean sensitivity 95%  0% 57% 95% 0% 29% 

specificity 46%  100% 88% 31% 100% 88% 

F 82%  0% 57% 78% 0% 33% 

Accuracy 69% 63% 

Kappa 36% 19% 

  rCBV_SD sensitivity 95%  0% 67% 96% 0% 0% 

specificity 54%  100% 84% 36% 90% 89% 

F 84%  0% 53% 80% 0% 0% 

Accuracy 69% 57% 

Kappa 38% 9% 

  rCBV_95tile sensitivity 95%  0% 71% 96% 0% 19% 
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specificity 62%  100% 84% 31% 100% 87% 

F 86%  0% 63% 79% 0% 23% 

Accuracy 72% 61% 

Kappa 45% 16% 

  rCBV_median sensitivity 95%  0% 29% 95% 0% 19% 

specificity 31%  100% 88% 23% 100% 89% 

F 78%  0% 33% 77% 0% 24% 

Accuracy 63% 60% 

Kappa 19% 13% 

  rCBV_iqr sensitivity 95% 33%  43% 93% 0% 0% 

specificity 38% 100%  96% 31% 92% 87% 

F 80% 50%  55% 77% 0% 0% 

Accuracy 72% 55% 

Kappa 41% 5% 

  rCBV_slope sensitivity 100%  0% 29% 100% 0% 0% 

specificity 38%  100% 88% 23% 100% 88% 

F 83%  0% 33% 79% 0% 0% 

Accuracy 66% 59% 

Kappa 26% 8% 

  rCBV_entropy sensitivity 100% 0% 86% 96% 0% 62% 

specificity 69% 100% 88% 59% 97% 87% 

F 90% 0% 75% 86% 0% 59% 

Accuracy 78% 71% 

Kappa 57% 42% 

  rCBV_min sensitivity 84%  0% 71% 89% 0% 48% 

specificity 54%  100% 80% 36% 100% 87% 

F 78%  0% 59% 77% 0% 49% 

Accuracy 66% 64% 

Kappa 34% 25% 

  rCBV_max sensitivity 100%  0% 71% 93% 0% 43% 

specificity 62%  100% 88% 46% 100% 83% 

F 88%  0% 67% 81% 0% 42% 

Accuracy 75% 65% 

Kappa 5% 28% 

  rCBV_var sensitivity 95% 50% 57% 96% 0% 0% 

specificity 54% 100% 96% 36% 90% 89% 
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F 84% 67% 67% 80% 0% 0% 

Accuracy 78% 57% 

Kappa 57% 9% 

DCE_mTK Ve_mode sensitivity 95% 0% 14% 95% 0% 0% 

specificity 38% 100% 80% 21% 96% 89% 

F 80% 0% 15% 76% 0% 0% 

Accuracy 59% 56% 

Kappa 15% 3% 

  rVe_mode sensitivity 95% 17% 0% 93% 0% 0% 

specificity 31% 96% 88% 26% 96% 85% 

F 78% 25% 0% 76% 0% 0% 

Accuracy 59% 55% 

Kappa 13% 3% 

DCE_L&L rVp_95tile sensitivity 89% 67%  0% 93% 50% 0% 

specificity 31% 92% 100%  23% 95% 100% 

F 76% 67% 0%  76% 58% 0% 

Accuracy 66% 65% 

Kappa 29% 23% 

  rVp_slope sensitivity 89% 67%  0% 91% 50% 0% 

specificity 31% 92%  100% 23% 94% 100% 

F 76% 67%  0% 75% 56% 0% 

Accuracy 66% 64% 

Kappa 29% 23% 

  rVp_max sensitivity 95% 67%  0% 95% 50% 0% 

specificity 31% 96%  100% 23% 96% 100% 

F 78% 73%  0% 77% 60% 0% 

Accuracy 67% 66% 

Kappa 33% 25% 

  rFb_max sensitivity 95% 17%  0% 95% 11% 0% 

specificity 8% 96%  100% 5% 96% 100% 

F 73% 25%  0% 73% 17% 0% 

Accuracy 59% 58% 

Kappa 5% 3% 

  rTC_mode sensitivity 95%  0% 29% 93% 0% 9% 

specificity 31%  100% 88% 15% 100% 89% 

F 78%  0% 33% 74% 0% 13% 
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Accuracy 63% 57% 

Kappa 19% 4% 

  rTC_min sensitivity 95%  0% 29% 96% 0% 19% 

specificity 23%  100% 92% 15% 100% 95% 

F 77%  0% 36% 76% 0% 28% 

Accuracy 63% 61% 

Kappa 17% 11% 

ADC ADC_median sensitivity 89%  0% 43% 93% 0% 29% 

specificity 31%  100% 88% 23% 100% 91% 

F 76%  0% 46% 76% 0% 35% 

Accuracy 63% 62% 

Kappa 21% 16% 

  ADC_min sensitivity 100% 67%  0% 96% 67% 0% 

specificity 46% 92%  100% 44% 91% 100% 

F 84% 67%  0% 82% 65% 0% 

Accuracy 72% 70% 

Kappa 42% 38% 

  ADC_60tile sensitivity 89%  0% 43% 93% 0% 29% 

specificity 31%  100% 88% 23% 100% 91% 

F 76%  0% 46% 76% 0% 35% 

Accuracy 63% 61% 

Kappa 21% 16% 

  ADC_80tile sensitivity 95%  0% 43% 93% 0% 29% 

specificity 31%  100% 92% 23% 100% 91% 

F 78%  0% 50% 76% 0% 35% 

Accuracy 66% 61% 

Kappa 26% 16% 

  rADC_mean sensitivity 95%  0% 57% 96% 0% 29% 

specificity 38%  100% 92% 21% 100% 95% 

F 80%  0% 62% 77% 0% 39% 

Accuracy 69% 64% 

Kappa 34% 18% 

  rADC_median sensitivity 100%  0% 43% 100% 0% 29% 

specificity 31%  100% 96% 21% 100% 97% 

F 81%  0% 55% 79% 0% 41% 

Accuracy 69% 66% 
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Kappa 31% 21% 

  rADC_min sensitivity 100% 67% 0% 96% 44% 0% 

specificity 38% 96%  100% 28% 96% 97% 

F 83% 73%  0% 79% 55% 0% 

Accuracy 72% 66% 

Kappa 40% 25% 

  rADC_30tile sensitivity 100%  0% 71% 100% 0% 48% 

specificity 54%  100% 92% 36% 100% 95% 

F 86%  0% 71% 82% 0% 57% 

Accuracy 75% 70% 

Kappa 49% 34% 

  rADC_40tile sensitivity 100%  0% 71% 93% 0% 38% 

specificity 54%  100% 92% 31% 100% 89% 

F 86%  0% 71% 77% 0% 43% 

Accuracy 75% 64% 

Kappa 49% 22% 

  rADC_60tile sensitivity 95%  0% 57% 96% 0% 29% 

specificity 38%  100% 92% 21% 100% 95% 

F 80%  0% 62% 77% 0% 39% 

Accuracy 69% 64% 

Kappa 34% 18% 

  rADC_70tile sensitivity 95%  0% 57% 96% 0% 29% 

specificity 38%  100% 92% 21% 100% 95% 

F 80%  0% 62% 77% 0% 39% 

Accuracy 69% 64% 

Kappa 34% 18% 

  rADC_90tile sensitivity 95%  0% 57% 96% 0% 29% 

specificity 38%  100% 92% 21% 100% 95% 

F 80%  0% 62% 77% 0% 39% 

Accuracy 69% 64% 

Kappa 34% 18% 

 

 

  



 252 

Table 4-B. The diagnostic performance of significant features from ASL, DSC, DCE-mTK, DCE-L&L, ADC for 

IDH-status prediction in gliomas. 

MRI-method Features  Prediction performance IDH_status Internal validation 

LOOCV 

wt mut wt mut 

ASL rTBF_skew sensitivity 43% 96% 14% 95% 

specificity 96% 43% 95% 14% 

F 55% 91% 21% 87% 

Accuracy 84% 77% 

Kappa 46% 12% 

  rTBF_zscore sensitivity 57% 96% 5% 96% 

specificity 96% 57% 96% 5% 

F 67% 92% 80% 86% 

Accuracy 88% 76% 

Kappa 59% 1% 

  rTBF_mean sensitivity 43% 88% 29% 92% 

specificity 88% 43% 92% 29% 

F 46% 86% 36% 87% 

Accuracy 78% 78% 

Kappa 33% 24% 

  rTBF_95tile sensitivity 14% 92% 0% 93% 

specificity 92% 14% 93% 0% 

F 20% 85% 0% 84% 

Accuracy 75% 73% 

Kappa 8% 5% 

  rTBF_median sensitivity 57% 92% 19% 92% 

specificity 92% 57% 92% 19% 

F 62% 90% 26% 86% 

Accuracy 84% 76% 

Kappa 52% 14% 

  rTBF_mode sensitivity 14% 88% 10% 89% 

specificity 88% 14% 89% 10% 

F 18% 83% 13% 83% 

Accuracy 72% 72% 

Kappa 3% 1% 

  rTBF_min sensitivity  0% 100% 0% 97% 
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specificity  100% 0% 97% 0% 

F  0% 88% 0% 86% 

Accuracy 78% 76% 

Kappa 0% 0% 

  rTBF_max sensitivity 0% 96% 0% 93% 

specificity 96% 0% 93% 0% 

F 0% 86% 0% 84% 

Accuracy 75% 73% 

Kappa 0% 0% 

DSC rCBF_mean sensitivity 14% 96% 10% 96% 

specificity 96% 14% 96% 10% 

F 22% 87% 15% 87% 

Accuracy 78% 77% 

Kappa 14% 8% 

  rCBF_skew sensitivity 29% 96% 14% 93% 

specificity 96% 29% 93% 14% 

F 40% 89% 21% 86% 

Accuracy 81% 76% 

Kappa 31% 10% 

  rCBF_median sensitivity 14% 96% 10% 96% 

specificity 96% 14% 96% 10% 

F 22% 87% 15% 87% 

Accuracy 78% 77% 

Kappa 14% 8% 

  rCBV_mean sensitivity 29% 88% 10% 91% 

specificity 88% 29% 91% 10% 

F 33% 85% 13% 84% 

Accuracy 75% 73% 

Kappa 18% 0.2% 

  rCBV_SD sensitivity 0% 92% 0% 92% 

specificity 92% 0% 92% 0% 

F 0% 84% 0% 84% 

Accuracy 72% 72% 

Kappa 0% 0% 

  rCBV_95tile sensitivity 14% 92% 0% 92% 

specificity 92% 14% 92% 0% 
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F 20% 85% 0% 84% 

Accuracy 75% 72% 

Kappa 8% 0% 

  rCBV_median sensitivity 29% 88% 10% 91% 

specificity 88% 29% 91% 10% 

F 33% 85% 13% 84% 

Accuracy 75% 73% 

Kappa 18% 0.2% 

  rCBV_iqr sensitivity 0% 92% 0% 95% 

specificity 92% 0% 95% 0% 

F 0% 84% 0% 85% 

Accuracy 72% 74% 

Kappa 0% 0% 

  rCBV_mode sensitivity 0% 96% 0% 92% 

specificity 96% 0% 92% 0% 

F 0% 86% 0% 84% 

Accuracy 75% 72% 

Kappa 0% 0% 

  rCBV_slope sensitivity 0% 88% 0% 89% 

specificity 88% 0% 89% 0% 

F 0% 81% 0% 82% 

Accuracy 69% 70% 

Kappa 0% 0% 

  rCBV_entropy sensitivity 43% 92% 29% 92% 

specificity 92% 43% 92% 29% 

F 50% 88% 36% 87% 

Accuracy 81% 78% 

Kappa 39% 24% 

  rCBV_min sensitivity 43% 88% 19% 92% 

specificity 88% 43% 92% 19% 

F 46% 86% 26% 86% 

Accuracy 78% 76% 

Kappa 32% 14% 

  rCBV_max sensitivity 14% 88% 10% 89% 

specificity 88% 14% 89% 10% 

F 18% 83% 13% 83% 
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Accuracy 72% 72% 

Kappa 3% 0% 

  rCBV_var sensitivity 0% 92% 0% 95% 

specificity 92% 0% 95% 0% 

F 0% 84% 0% 85% 

Accuracy 72% 74% 

Kappa 0% 0% 

DCE_mTK rK_mean sensitivity 14% 100% 0% 92% 

specificity 100% 14% 92% 0% 

F 25% 89% 0% 84% 

Accuracy 81% 72% 

Kappa 21% 0% 

DCE_L&L rK_mean sensitivity  0% 100% 0% 100% 

specificity  100% 0% 100% 0% 

F  0% 88% 0% 88% 

Accuracy 78% 78% 

Kappa 0% 0% 

  rK_SD sensitivity  0% 100% 0% 100% 

specificity  100% 0% 100% 0% 

F  0% 88% 0% 88% 

Accuracy 78% 78% 

Kappa 0% 0% 

  rK_95tile sensitivity  0% 100% 0% 100% 

specificity  100% 0% 100% 0% 

F  0% 88% 0% 88% 

Accuracy 78% 78% 

Kappa 0% 0% 

  rK_median sensitivity 14% 100% 0% 97% 

specificity 100% 14% 97% 0% 

F 25% 89% 0% 86% 

Accuracy 81% 76% 

Kappa 21% 0% 

  rK_iqr sensitivity  0% 100% 0% 100% 

specificity  100% 0% 100% 0% 

F  0% 88% 0% 88% 

Accuracy 78% 78% 
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Kappa 0% 0% 

  rK_slope sensitivity 29% 92% 0% 92% 

specificity 92% 29% 92% 0% 

F 36% 87% 0% 84% 

Accuracy 78% 72% 

Kappa 24% 0% 

  rK_var sensitivity  0% 100% 0% 100% 

specificity  100% 0% 100% 0% 

F  0% 88% 0% 88% 

Accuracy 78% 78% 

Kappa 0% 0% 

  rPS_mean sensitivity  0% 100% 0% 97% 

specificity  100% 0% 97% 0% 

F  0% 88% 0% 86% 

Accuracy 78% 76% 

Kappa 0% 0% 

  rPS_median sensitivity 0% 96% 0% 97% 

specificity 96% 0% 97% 0% 

F 0% 86% 0% 86% 

Accuracy 75% 76% 

Kappa 0% 0% 

  rTC_mode sensitivity 14% 92% 0% 95% 

specificity 92% 14% 95% 0% 

F 20% 85% 0% 85% 

Accuracy 75% 74% 

Kappa 8% 0% 

  rTC_min sensitivity 29% 92% 19% 95% 

specificity 92% 29% 95% 19% 

F 36% 87% 28% 87% 

Accuracy 78% 78% 

Kappa 24% 18% 

ADC ADC_mean sensitivity 14% 96% 10% 95% 

specificity 96% 14% 95% 10% 

F 22% 87% 15% 86% 

Accuracy 78% 76% 

Kappa 14% 6% 
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  ADC_SD sensitivity 29% 100% 10% 100% 

specificity 100% 29% 100% 10% 

F 44% 91% 17% 89% 

Accuracy 84% 80% 

Kappa 38% 14% 

  ADC_median sensitivity 14% 96% 0% 92% 

specificity 96% 14% 92% 0% 

F 22% 87% 0% 84% 

Accuracy 78% 72% 

Kappa 14% 0% 

  ADC_20tile sensitivity 14% 96% 0% 97% 

specificity 96% 14% 97% 0% 

F 22% 87% 0% 86% 

Accuracy 78% 76% 

Kappa 14% 0% 

  ADC_30tile sensitivity 0% 96% 0% 97% 

specificity 96% 0% 97% 0% 

F 0% 86% 0% 86% 

Accuracy 75% 76% 

Kappa 0% 0% 

  ADC_40tile sensitivity 0% 96% 0% 95% 

specificity 96% 0% 95% 0% 

F 0% 86% 0% 85% 

Accuracy 75% 74% 

Kappa 0% 0% 

  ADC_60tile sensitivity 29% 96% 10% 96% 

specificity 96% 29% 96% 10% 

F 40% 89% 15% 87% 

Accuracy 81% 77% 

Kappa 31% 8% 

  ADC_70tile sensitivity 29% 96% 10% 96% 

specificity 96% 29% 96% 10% 

F 40% 89% 15% 87% 

Accuracy 81% 77% 

Kappa 31% 8% 

  ADC_80tile sensitivity 14% 96% 10% 96% 
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specificity 96% 14% 96% 10% 

F 22% 87% 15% 87% 

Accuracy 78% 77% 

Kappa 14% 8% 

  ADC_90tile sensitivity 14% 96% 10% 97% 

specificity 96% 14% 97% 10% 

F 22% 87% 16% 87% 

Accuracy 78% 78% 

Kappa 14% 10% 

  ADC_95tile sensitivity 29% 96% 10% 97% 

specificity 96% 29% 97% 10% 

F 40% 89% 16% 87% 

Accuracy 81% 78% 

Kappa 31% 10% 
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Table 5-B. Diagnostic performance of significant features from ASL, DSC, DCE-mTK, DCE-L&L, ADC for glioma grouping according to the predefined histomolecular types. 

MRI-method Features  Prediction performance Grouping Internal validation 

LOOCV 

GBM-wt Astro-mut Oligo-mut GBM-wt Astro-mut Oligo-mut 

ASL rTBF_skew sensitivity 43% 83% 69% 10% 83% 64% 

specificity 96% 80% 74% 95% 78% 61% 

F 55% 77% 67% 15% 76% 58% 

Accuracy 69% 59% 

Kappa 50% 34% 

  rTBF_zscore sensitivity 43% 83% 69% 0% 78% 44% 

specificity 96% 80% 74% 91% 70% 54% 

F 55% 77% 67% 0% 68% 41% 

Accuracy 69% 47% 

Kappa 50% 15% 

  rTBF_mean sensitivity 57% 83% 54% 29% 83% 56% 

specificity 88% 85% 74% 92% 82% 63% 

F 57% 80% 56% 36% 78% 54% 

Accuracy 66% 60% 

Kappa 47% 37% 

  rTBF_95tile sensitivity 14% 83% 54% 0% 58% 59% 

specificity 92% 80% 58% 95% 78% 39% 

F 20% 77% 50% 0% 60% 47% 

Accuracy 56% 46% 
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Kappa 3% 12% 

  rTBF_median sensitivity 57% 83% 46% 29% 83% 51% 

specificity 88% 80% 74% 92% 78% 63% 

F 57% 77% 50% 36% 76% 50% 

Accuracy 63% 58% 

Kappa 42% 34% 

  rTBF_mode sensitivity 57% 67% 54% 10% 67% 51% 

specificity 88% 75% 74% 89% 73% 54% 

F 57% 64% 56% 13% 63% 47% 

Accuracy 59% 48% 

Kappa 37% 17% 

  rTBF_min sensitivity  0% 75% 46% 0% 50% 33% 

specificity  100% 55% 58% 97% 52% 40% 

F  0% 60% 44% 0% 43% 30% 

Accuracy 47% 32% 

Kappa 13% 0% 

  rTBF_max sensitivity 0% 75% 62% 0% 67% 51% 

specificity 96% 70% 58% 94% 65% 53% 

F 0% 67% 55% 0% 59% 47% 

Accuracy 53% 46% 

Kappa 24% 12% 

DSC rCBF_mean sensitivity 14% 67% 62% 5% 67% 62% 

specificity 96% 80% 47% 97% 78% 44% 
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F 22% 67% 52% 8% 66% 50% 

Accuracy 53% 51% 

Kappa 24% 20% 

  rCBF_SD sensitivity  0% 75% 85% 0% 61% 87% 

specificity  100% 70% 68% 100% 77% 54% 

F  0% 67% 73% 0% 61% 69% 

Accuracy 62% 58% 

Kappa 38% 31% 

  rCBF_95tile sensitivity  0% 75% 85% 0% 72% 79% 

specificity  100% 85% 53% 97% 87% 49% 

F  0% 75% 67% 0% 74% 63% 

Accuracy 63% 59% 

Kappa 38% 33% 

  rCBF_kur sensitivity  0% 67% 77% 0% 58% 77% 

specificity  100% 65% 63% 97% 65% 61% 

F  0% 59% 67% 0% 54% 66% 

Accuracy 56% 53% 

Kappa 28% 23% 

  rCBF_skew sensitivity 29% 67% 69% 10% 58% 64% 

specificity 96% 75% 63% 93% 75% 51% 

F 40% 64% 62% 14% 58% 54% 

Accuracy 59% 50% 

Kappa 35% 19% 
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  rCBF_median sensitivity 14% 67% 69% 0% 67% 64% 

specificity 96% 85% 47% 97% 80% 42% 

F 22% 70% 56% 0% 67% 52% 

Accuracy 56% 51% 

Kappa 29% 20% 

  rCBF_iqr sensitivity  0% 75% 85% 0% 72% 79% 

specificity  100% 70% 68% 100% 67% 67% 

F  0% 67% 73% 0% 63% 70% 

Accuracy 63% 59% 

Kappa 38% 33% 

  rCBF_mode sensitivity  0% 75% 69% 0% 75% 51% 

specificity  100% 75% 53% 95% 68% 54% 

F  0% 69% 58% 0% 66% 47% 

Accuracy 56% 49% 

Kappa 28% 17% 

  rCBF_slope sensitivity  0% 67% 85% 0% 56% 79% 

specificity  100% 65% 68% 100% 62% 61% 

F  0% 59% 73% 0% 51% 67% 

Accuracy 59% 53% 

Kappa 33% 23% 

  rCBF_max sensitivity  0% 83% 85% 0% 64% 79% 

specificity  100% 90% 53% 97% 90% 40% 

F  0% 83% 67% 0% 71% 60% 
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Accuracy 66% 56% 

Kappa 43% 28% 

  rCBF_zscore sensitivity  0% 75% 77% 0% 75% 69% 

specificity  100% 75% 58% 96% 75% 58% 

F  0% 69% 65% 0% 69% 60% 

Accuracy 59% 56% 

Kappa 33% 29% 

  rCBF_var sensitivity  0% 83% 85% 0% 53% 79% 

specificity  100% 70% 74% 100% 72% 49% 

F  0% 71% 76% 0% 53% 63% 

Accuracy 66% 52% 

Kappa 44% 21% 

  rCBV_mean sensitivity 29% 75% 54% 10% 75% 59% 

specificity 88% 85% 58% 92% 83% 51% 

F 33% 75% 50% 14% 74% 51% 

Accuracy 56% 54% 

Kappa 31% 26% 

  rCBV_SD sensitivity 0% 67% 62% 0% 64% 49% 

specificity 92% 85% 42% 95% 73% 40% 

F 0% 70% 50% 0% 61% 41% 

Accuracy 50% 44% 

Kappa 19% 8% 

  rCBV_95tile sensitivity 14% 75% 54% 0% 75% 36% 
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specificity 92% 80% 53% 92% 68% 47% 

F 20% 72% 48% 0% 66% 34% 

Accuracy 53% 43% 

Kappa 25% 8% 

  rCBV_skew sensitivity  0% 75% 85% 0% 75% 85% 

specificity  100% 80% 58% 100% 80% 58% 

F  0% 72% 69% 0% 72% 69% 

Accuracy 63% 63% 

Kappa 38% 38% 

  rCBV_median sensitivity 29% 83% 46% 0% 78% 46% 

specificity 92% 75% 63% 92% 75% 49% 

F 36% 74% 46% 0% 71% 42% 

Accuracy 56% 48% 

Kappa 31% 16% 

  rCBV_iqr sensitivity  0% 67% 77% 0% 58% 59% 

specificity  100% 80% 47% 95% 75% 42% 

F  0% 67% 61% 0% 58% 48% 

Accuracy 56% 46% 

Kappa 28% 12% 

  rCBV_mode sensitivity  0% 83% 77% 0% 83% 62% 

specificity  100% 80% 58% 97% 73% 58% 

F  0% 77% 65% 0% 73% 55% 

Accuracy 63% 56% 
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Kappa 38% 29% 

  rCBV_slope sensitivity 0% 58% 62% 0% 58% 67% 

specificity 88% 85% 42% 92% 85% 40% 

F 0% 64% 50% 0% 64% 53% 

Accuracy 47% 49% 

Kappa 14% 17% 

  rCBV_entropy sensitivity 57% 75% 69% 29% 75% 64% 

specificity 92% 90% 68% 93% 85% 58% 

F 62% 78% 64% 38% 75% 57% 

Accuracy 69% 60% 

Kappa 51% 37% 

  rCBV_min sensitivity 71% 50% 69% 33% 39% 44% 

specificity 80% 95% 68% 87% 73% 44% 

F 59% 63% 64% 37% 42% 39% 

Accuracy 63% 40% 

Kappa 43% 5% 

  rCBV_max sensitivity 29% 75% 77% 10% 69% 56% 

specificity 88% 95% 63% 92% 78% 51% 

F 33% 82% 67% 14% 68% 49% 

Accuracy 66% 51% 

Kappa 46% 21% 

  rCBV_var sensitivity 0% 67% 46% 0% 64% 26% 

specificity 96% 70% 42% 95% 58% 40% 
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F 0% 62% 40% 0% 55% 24% 

Accuracy 44% 34% 

Kappa 8% 0% 

DCE-mTK Ve_mode sensitivity 14% 83% 54% 0% 75% 54% 

specificity 96% 60% 74% 96% 60% 63% 

F 22% 67% 56% 0% 62% 52% 

Accuracy 56% 50% 

Kappa 30% 19% 

  rVe_mode sensitivity  0% 67% 69% 0% 64% 49% 

specificity  100% 70% 53% 97% 60% 51% 

F   62% 58% 0% 55% 44% 

Accuracy 53% 44% 

Kappa 23% 8% 

  rVp_mean sensitivity  0% 83% 62% 0% 83% 62% 

specificity  100% 60% 68% 100% 60% 68% 

F  0% 67% 59% 0% 67% 59% 

Accuracy 56% 56% 

Kappa 28% 28% 

  rVp_median sensitivity  0% 83% 69% 0% 83% 62% 

specificity  100% 65% 68% 100% 60% 68% 

F  0% 69% 64% 0% 67% 59% 

Accuracy 59% 56% 

Kappa 33% 28% 
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  rVp_min sensitivity  0% 83% 69% 0% 64% 69% 

specificity  100% 70% 63% 100% 70% 51% 

F  0% 71% 62% 0% 60% 57% 

Accuracy 59% 52% 

Kappa 33% 21% 

DCE-L&L rK_mean sensitivity 29% 67% 46% 0% 42% 46% 

specificity 96% 45% 79% 95% 35% 65% 

F 40% 52% 52% 0% 33% 47% 

Accuracy 50% 34% 

Kappa 21% 0% 

  rK_SD sensitivity  0% 67% 38% 0% 39% 38% 

specificity  100% 30% 74% 95% 30% 63% 

F  0% 47% 43% 0% 30% 40% 

Accuracy 41% 30% 

Kappa 3% 0% 

  rK_iqr sensitivity  0% 75% 46% 0% 50% 38% 

specificity  100% 35% 79% 95% 30% 70% 

F  0% 53% 52% 0% 38% 42% 

Accuracy 47% 34% 

Kappa 14% 0% 

  rK_var sensitivity  0% 67% 38% 0% 67% 38% 

specificity  100% 30% 74% 100% 30% 74% 

F  0% 47% 43% 0% 47% 43% 
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Accuracy 41% 41% 

Kappa 3% 3% 

  rFb_mean sensitivity  0% 92% 77% 0% 81% 78% 

specificity  100% 60% 84% 100% 60% 77% 

F  0% 71% 77% 0% 65% 73% 

Accuracy 66% 61% 

Kappa 44% 37% 

  rFb_SD sensitivity  0% 75% 69% 0% 75% 69% 

specificity  100% 55% 74% 100% 55% 74% 

F  0% 60% 67% 0% 60% 67% 

Accuracy 56% 56% 

Kappa 28% 28% 

  rFb_95tile sensitivity  0% 83% 69% 0% 75% 69% 

specificity  100% 55% 79% 100% 55% 74% 

F  0% 65% 69% 0% 60% 67% 

Accuracy 59% 56% 

Kappa 34% 28% 

  rFb_iqr sensitivity  0% 92% 77% 0% 75% 77% 

specificity  100% 60% 84% 100% 62% 72% 

F  0% 71% 77% 0% 63% 71% 

Accuracy 66% 59% 

Kappa 44% 33% 

  rFb_slope sensitivity  0% 75% 77% 0% 75% 69% 
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specificity  100% 65% 68% 100% 60% 68% 

F  0% 64% 69% 0% 62% 64% 

Accuracy 59% 56% 

Kappa 33% 28% 

  rFb_min sensitivity  0% 75% 69% 0% 47% 64% 

specificity  100% 60% 68% 100% 63% 44% 

F  0% 62% 64% 0% 45% 52% 

Accuracy 56% 44% 

Kappa 28 7% 

  rFb_max sensitivity  0% 75% 69% 0% 75% 69% 

specificity  100% 50% 79% 100% 52% 77% 

F  0% 58% 69% 0% 59% 68% 

Accuracy 56% 56% 

Kappa 29% 29% 

  rFb_var sensitivity  0% 83% 69%  0% 75% 69% 

specificity  100% 50% 84%  100% 52% 77% 

F  0% 63% 72%  0% 59% 68% 

Accuracy 59% 56% 

Kappa 34% 29% 

  rTC_mean sensitivity  0% 67% 77% 0% 44% 77% 

specificity  100% 70% 58% 100% 70% 44% 

F  0% 62% 65% 0% 46% 59% 

Accuracy 56%% 48% 
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Kappa 28% 14% 

  rTC_mode sensitivity 29% 8% 54% 19% 6% 49% 

specificity 84% 50% 58% 89% 50% 42% 

F 31% 9% 50% 42% 6% 42% 

Accuracy 31% 26% 

Kappa 0% 0% 

  rTC_min sensitivity 29% 42% 69% 19% 6% 69% 

specificity 92% 60% 68% 87% 63% 46% 

F 36% 40% 64% 23% 7% 56% 

Accuracy 50% 34% 

Kappa 21% 0% 

ADC ADC_mode sensitivity  0% 75% 77% 0% 75% 72% 

specificity  100% 85% 47% 100% 80% 49% 

F  0% 75% 61% 0% 72% 58% 

Accuracy 59% 57% 

Kappa 33% 30% 

  ADC_mean sensitivity 14% 58% 62% 10% 58% 54% 

specificity 96% 80% 42% 95% 77% 40% 

F 22% 61% 50% 15% 59% 45% 

Accuracy 50% 46% 

Kappa 19% 12% 

  ADC_SD sensitivity 43% 75% 85% 19% 69% 56% 

specificity 96% 85% 74% 92% 72% 61% 
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F 55% 75% 76% 26% 64% 53% 

Accuracy 72% 53% 

Kappa 55 25% 

  ADC_median sensitivity 29% 58% 69% 10% 58% 62% 

specificity 96% 85% 47% 92% 82% 44% 

F 40% 64% 56% 14% 62% 51% 

Accuracy 56% 49% 

Kappa 30% 18% 

  ADC_20tile sensitivity 14% 42% 69% 0% 42% 49% 

specificity 96% 85% 32% 95% 73% 26% 

F 22% 50% 51% 0%   

Accuracy 47% 35% 

Kappa 13% 0% 

  ADC_30tile sensitivity 14% 58% 69% 0% 58% 56% 

specificity 96% 85% 42% 95% 78% 37% 

F 22% 64% 55% 0% 60% 45% 

Accuracy 53% 45% 

Kappa 24% 10% 

  ADC_40tile sensitivity 14% 58% 69% 0% 58% 62% 

specificity 92% 85% 47% 92% 82% 40% 

F 20% 64% 56% 0% 62% 49% 

Accuracy 53% 47% 

Kappa 19% 14% 
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  ADC_60tile sensitivity 29% 67% 85% 10% 58% 53% 

specificity 96% 95% 53% 95% 77% 40% 

F 40% 76% 67% 15% 59% 45% 

Accuracy 66% 46% 

Kappa 45% 12% 

  ADC_70tile sensitivity 43% 58% 77% 10% 58% 64% 

specificity 96% 90% 53% 95% 83% 40% 

F 55% 67% 63% 15% 63% 51% 

Accuracy 62% 50% 

Kappa 40% 19% 

  ADC_80tile sensitivity 29% 67% 77% 10% 67% 59% 

specificity 96% 90% 53% 95% 80% 46% 

F 40% 73% 63% 15% 67% 49% 

Accuracy 63% 51% 

Kappa 40% 21% 

  ADC_90tile sensitivity 14% 50% 62% 10% 50% 56% 

specificity 96% 80% 37% 95% 78% 35% 

F 22% 55% 48% 15% 54% 45% 

Accuracy 47% 44% 

Kappa 14% 9% 

  ADC_95tile sensitivity 29% 58% 62% 10% 50% 51% 

specificity 96% 80% 47% 95% 75% 35% 

F 40% 61% 52% 15% 52% 42% 
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Accuracy 53% 42% 

Kappa 25% 5% 

  ADC_ and rADC_skew sensitivity 0% 75% 77% 0% 75% 77% 

specificity 96% 85% 53% 96% 85% 52% 

F 0% 75% 63% 0% 75% 63% 

Accuracy 59% 59% 

Kappa 34% 34% 

  ADC_slope sensitivity 29% 67% 62% 19% 44% 62% 

specificity 96% 70% 63% 97% 72% 42% 

F 40% 62% 57% 30% 46% 50% 

Accuracy 56% 46% 

Kappa 39% 12% 

  ADC_ and rADC_zscore sensitivity 0% 83% 69% 0% 83% 69% 

specificity 96% 80% 58% 96% 80% 58% 

F 0% 77% 60% 0% 77% 60% 

Accuracy 59% 59% 

Kappa 34% 34% 

  ADC_var sensitivity 43% 67% 77% 19% 58% 67% 

specificity 92% 90% 63% 92% 82% 51% 

F 50% 73% 67% 56% 62% 56% 

Accuracy 66% 53% 

Kappa 46% 25% 

  rADC_mode sensitivity  0% 75% 92% 0% 65% 69% 
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specificity  100% 95% 47% 100% 80% 47% 

F  0% 82% 69% 0% 72% 56% 

Accuracy 66% 56% 

Kappa 43% 28% 

  rADC_mean sensitivity 43% 58% 62% 29% 58% 56% 

specificity 96% 80% 53% 97% 75% 47% 

F 55% 61% 53% 41% 58% 48% 

Accuracy 56% 51% 

Kappa 30% 21% 

  rADC_SD sensitivity 43% 75% 85% 10% 47% 82% 

specificity 96% 85% 74% 97% 83% 42% 

F 55% 75% 76% 16% 54% 62% 

Accuracy 72% 53% 

Kappa 55% 23% 

  rADC_median sensitivity 43% 67% 69% 19% 67% 72% 

specificity 96% 85% 58% 97% 85% 49% 

F 55% 70% 60% 30% 70% 58% 

Accuracy 63% 58% 

Kappa 40% 32% 

  rADC_10tile sensitivity 14% 42% 54% 0% 42% 51% 

specificity 96% 75% 32% 97% 72% 26% 

F 22% 45% 42% 0% 44% 40% 

Accuracy 41% 36% 
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Kappa 3% 0% 

  rADC_20tile sensitivity 14% 50% 62% 10% 44% 59% 

specificity 96% 80% 37% 96% 78% 32% 

F 22% 55% 48% 15% 49% 46% 

Accuracy 47% 43% 

Kappa 14% 7% 

  rADC_30tile sensitivity 57% 67% 69% 0% 56% 62% 

specificity 96% 85% 63% 95% 82% 35% 

F 67% 70% 62% 0% 60% 48% 

Accuracy 66% 46% 

Kappa 46% 11% 

  rADC_40tile sensitivity 43% 67% 69% 19% 67% 69% 

specificity 96% 85% 58% 97% 83% 49% 

F 55% 70% 60% 30% 69% 57% 

Accuracy 63% 57% 

Kappa 40% 31% 

  rADC_60tile sensitivity 43% 67% 69% 19% 67% 64% 

specificity 96% 85% 58% 97% 67% 49% 

F 55% 70% 60% 30% 67% 54% 

Accuracy 63% 55% 

Kappa 40% 27% 

  rADC_70tile sensitivity 43% 75% 77% 19% 58% 56% 

specificity 96% 90% 63% 95% 78% 44% 
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F 55% 78% 67% 28% 60% 47% 

Accuracy 69% 49% 

Kappa 50% 18% 

  rADC_80tile sensitivity 43% 67% 69% 19% 67% 67% 

specificity 92% 90% 58% 95% 85% 49% 

F 50% 73% 60% 28% 70% 55% 

Accuracy 63% 56% 

Kappa 41% 29% 

  rADC_90tile sensitivity 29% 75% 62% 19% 75% 62% 

specificity 92% 85% 58% 95% 82% 54% 

F 36% 75% 55% 28% 73% 54% 

Accuracy 59% 57% 

Kappa 35% 31% 

  rADC_95tile sensitivity 29% 67% 62% 19% 67% 59% 

specificity 92% 85% 53% 95% 80% 49% 

F 36% 70% 53% 28% 67% 51% 

Accuracy 56% 53% 

Kappa 30% 24% 

  rADC_slope sensitivity 29% 75% 69% 19% 58% 64% 

specificity 96% 75% 68% 97% 70% 54% 

F 40% 69% 64% 30% 56% 56% 

Accuracy 63% 52% 

Kappa 4% 22% 
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  rADC_var sensitivity 43% 67% 85% 5% 44% 82% 

specificity 96% 90% 63% 96% 90% 33% 

F 55% 73% 71% 8% 55% 59% 

Accuracy 69% 51% 

Kappa 50% 20% 
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Table 6-B.Diagnostic performance of significant features from ASL, DSC, DCE-mTK, DCE-L&L, ADC for glioma 

sub-grouping according to the predefined histomolecular types and histological grades. 

MRI-

method 

Features  Prediction 

performance 

Sub-grouping Internal validation 

LOOCV 

GBM-

wt 

Astro-

mut-

LG 

Astro-

mut-

HG 

Oligo-

mut-

LG 

Oligo-

mut-

HG 

GBM-

wt 

Astro-

mut-

LG 

Astro-

mut-

HG 

Oligo-

mut-

LG 

Oligo-

mut-

HG 

ASL aTBF_ & 

rTBF_skew 

sensitivity 43% 90%  0% 56%  0% 0% 90% 0% 44% 0% 

specificity 92% 68%  100% 74%  100% 92% 62% 100% 62% 100 

F 50% 69%  0% 50%  0% 0% 66% 0% 37% 0% 

Accuracy 53% 41% 

Kappa 34% 16% 

  aTBF_ & 

rTBF_zscore 

sensitivity 57% 90%  0% 44%  0% 0% 83% 0% 41% 0% 

specificity 92% 64%  100% 78%  100% 91% 64% 100% 58% 100% 

F 62% 67%  0% 44%  0% 0% 63% 0% 33% 0% 

Accuracy 53% 38% 

Kappa 34% 12% 

  rTBF_mean sensitivity 57% 90%  0% 56%  0% 38% 83% 0% 44% 0% 

specificity 84% 82%  100% 74%  100% 87% 76% 100% 64% 100% 

F 53% 78%  0% 50%  0% 41% 70% 0% 38% 0% 

Accuracy 56% 47% 

Kappa 39 26% 

  rTBF_95tile sensitivity 57% 80%  0% 44%  0% 38% 70% 0% 37% 0% 

specificity 76% 77%  100% 78%  100% 79% 73% 100% 67% 100% 

F 47% 70%  0% 44%  0% 36% 61% 0% 33% 0% 

Accuracy 50% 41% 

Kappa 31% 18% 

  rTBF_median sensitivity 71% 90%  0% 56%  0% 38% 90% 0% 48% 0% 

specificity 84% 77%  100% 83%  100% 87% 74% 100% 70% 100% 

F 63% 75%  0% 56%  0% 41% 73% 0% 43% 0% 

Accuracy 59% 50% 

Kappa 44% 30% 

  rTBF_mode sensitivity 71% 80%  0% 33%  0% 48% 73% 0% 7% 0% 

specificity 84% 73%  100% 74%  100% 80% 67% 100% 64% 100% 

F 63% 67%  0% 33%  0% 43% 59% 0% 7% 0% 

Accuracy 50%% 35% 

Kappa 31% 10% 
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  rTBF_min sensitivity  0% 90%  0% 56%  0% 0% 93% 0% 37% 0% 

specificity  100% 59%  100% 61%  100% 97% 39% 100% 77% 100% 

F  0% 64%  0% 43%  0% 0% 57% 0% 38% 0% 

Accuracy 45% 40% 

Kappa 20% 13% 

DSC rCBF_mean sensitivity 14% 80%  0% 56%  0% 0% 80% 0% 44% 0% 

specificity 96% 73%  100% 52%  100% 92% 70% 100% 51% 100% 

F 22% 67%  0% 40%  0% 0% 65% 0% 33% 0% 

Accuracy 44% 38% 

Kappa 21% 12% 

  rCBF_SD sensitivity 14% 70%  0% 78%  0% 0% 70% 0% 59% 0% 

specificity 88% 68%  100% 70%  100% 92% 55% 100% 67% 100% 

F 18% 58%  0% 61%  0% 0% 52% 0% 48% 0% 

Accuracy 47% 39% 

Kappa 25% 13% 

  rCBF_95tile sensitivity  0% 90%  0% 89% 0%  0% 80% 0% 70% 0% 

specificity  100% 82%  100% 52%  100% 95% 80% 100% 48% 100% 

F  0% 78%  0% 57%  0% 0% 72% 0% 46% 0% 

Accuracy 53% 45% 

Kappa 34% 22% 

  rCBF_kur sensitivity  0% 70%  0% 56% 25% 0% 70% 0% 59% 8% 

specificity  100% 64%  100% 61% 93% 100% 63% 100% 57% 95% 

F  0% 56%  0% 43% 29% 0% 56% 0% 44% 12% 

Accuracy 41% 40% 

Kappa 17% 15% 

  rCBF_skew sensitivity 57% 70%  0% 33%  0% 29% 70% 0% 33% 0% 

specificity 88% 68%  100% 65%  100% 88% 68% 100% 57% 100% 

F 57% 58%  0% 30%  0% 33% 58% 0% 27% 0% 

Accuracy 44% 38% 

Kappa 22% 13% 

  rCBF_median sensitivity 14% 80%  0% 56%  0% 0% 73% 0% 44% 0% 

specificity 96% 73%  100% 52%  100% 92% 68% 100% 49% 100% 

F 22% 67%  0% 40%  0% 0% 60% 0% 32% 0% 

Accuracy 44% 35% 

Kappa 21% 9% 

  rCBF_iqr sensitivity 0% 80%  0% 78%  0% 0% 73% 0% 74% 0% 
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specificity 88% 73%  100% 65%  100% 89% 68% 100% 64% 100% 

F 0% 67%  0% 58%  0% 0% 60% 0% 56% 0% 

Accuracy 47% 44% 

Kappa 25% 21% 

  rCBF_mode sensitivity  0% 70%  0% 67%  0% 0% 70% 0% 41% 0% 

specificity  100% 55%  100% 61%  100% 92% 53% 100% 61% 100% 

F  0% 52%  0% 50%  0% 0% 51% 0% 34% 0% 

Accuracy 41% 33% 

Kappa 15% 6% 

  rCBF_max sensitivity  0% 90%  0% 89%  0% 0% 87% 0% 59% 0% 

specificity  100% 77%  100% 57%  100% 95% 70% 100% 57% 100% 

F  0% 75%  0% 59%  0% 0% 68% 0% 44% 0% 

Accuracy 53% 44% 

Kappa 34% 20% 

  rCBF_zscore sensitivity 29% 70%  0% 56%  0% 0% 70% 0% 22% 0% 

specificity 96% 68%  100% 57%  100% 84% 68% 100% 100% 100% 

F 40% 58%  0% 42%  0% 0% 58% 0% 17% 0% 

Accuracy 44% 28% 

Kappa 21% 0% 

  rCBF_var sensitivity 14% 80%  0% 78%  00% 0% 73% 0% 56% 0% 

specificity 92% 68%  100% 70%  100% 92% 50% 100% 71% 100% 

F 20% 64%  0% 61%  0% 0% 52% 0% 48% 0% 

Accuracy 50% 39% 

Kappa 30% 13% 

  rCBV_mean sensitivity 71% 80%  0% 67%  0% 38% 83% 0% 52% 0% 

specificity 88% 82%  100% 74%  100% 91% 74% 100% 64% 100% 

F 67% 73%  0% 57%  0% 44% 69% 0% 42% 0% 

Accuracy 59% 49% 

Kappa 44% 29% 

  rCBV_SD sensitivity 71% 70% 0%  56% 50% 38% 67% 0% 33% 0% 

specificity 92% 82%  100% 70% 100% 87% 70% 100% 58% 100% 

F 71% 67%  0% 48% 67% 41% 57% 0% 28% 0% 

Accuracy 59% 39% 

Kappa 44% 15% 

  rCBV_95tile sensitivity 86% 80%  0% 56%  0% 48% 80% 0% 48% 0% 

specificity 80% 82%  100% 83%  100% 81% 76% 100% 72% 100% 



 281 

F 67% 73%  0% 56%  0% 44% 69% 0% 44% 0% 

Accuracy 59% 45% 

Kappa 44% 29% 

  rCBV_median sensitivity 43% 90%  0% 56%  0% 19% 83% 0% 56% 0% 

specificity 88% 73%  100% 74%  100% 91% 71% 100% 62% 100% 

F 46% 72%  0% 50%  0% 25% 68% 0% 44% 0% 

Accuracy 53% 46% 

Kappa 35% 24% 

  rCBV_iqr sensitivity 57% 60%  0% 44% 50% 38% 63% 0% 37% 0% 

specificity 88% 77%  100% 65% 100% 85% 71% 100% 58% 100% 

F 57% 57%  0% 38% 67% 40% 56% 0% 30% 0% 

Accuracy 50% 39% 

Kappa 32% 14% 

  rCBV_mode sensitivity 43% 80%  0% 56% 25% 0% 87% 0% 26% 0% 

specificity 92% 73%  100% 70% 100% 87% 65% 100% 64% 94% 

F 50% 67%  0% 48% 40% 0% 66% 0% 24% 0% 

Accuracy 53% 34% 

Kappa 0.001 9% 

  rCBV_slope sensitivity 71% 70%  0% 56%  0% 48% 63% 0% 48% 0% 

specificity 76% 82%  100% 78%  100% 81% 79% 100% 62% 100% 

F 56% 67%  0% 53%  0% 44% 60% 0% 39% 0% 

Accuracy 53% 44% 

Kappa 36% 22% 

  rCBV_entropy sensitivity 86% 70%  0% 78%  0% 81% 63%  0% 67%  0% 

specificity 80% 91%  100% 78%  100% 79% 86%  100% 75%  100% 

F 67% 74%  0% 67%  0% 63% 66%  0% 58%  0% 

Accuracy 63% 56% 

Kappa 49% 40% 

  rCBV_min sensitivity 71% 60%  0% 56%  0% 48% 63%  0% 7%  0% 

specificity 76% 86%  100% 70%  100% 84% 50%  100% 71%  100% 

F 56% 63%  0% 48%  0% 47% 46%  0% 8%  0% 

Accuracy 50% 32% 

Kappa 32% 5% 

  rCBV_max sensitivity 86% 70%  0% 67%  0% 52% 73%  0% 48%  0% 

specificity 80% 91%  100% 74%  100% 80% 80%  100% 68%  100% 

F 67% 74%  0% 57%  0% 47% 68%  0% 42%  0% 
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Accuracy 59% 48% 

Kappa 44% 28% 

  rCBV_var sensitivity 71% 70%  0% 56% 50% 38% 77%  0% 30%  0% 

specificity 92% 82%  100% 70% 100% 87% 62%  100% 68%  100% 

F 71% 67%  0% 48% 67% 41% 59%  0% 28%  0% 

Accuracy 59% 41% 

Kappa 44% 17% 

DCE-

mTK 

Ve_mode sensitivity 14% 80%  0% 44%  0% 0% 80%  0% 22% 0% 

specificity 80% 68%  100% 70%  100% 77% 64%  100% 68% 96% 

F 15% 64%  0% 40%  0% 0% 62%  0% 22% 0% 

Accuracy 41% 31% 

Kappa 17% 4% 

  rVe_mode sensitivity 14% 70%  0% 33% 25% 0% 80%  0% 22% 0% 

specificity 80% 68%  100% 70% 96% 84% 48%  100% 75% 96% 

F 15% 58%  0% 32% 33% 0% 55%  0% 24% 0% 

Accuracy 38% 31% 

Kappa 14% 4% 

  rVp_mean sensitivity  0% 80%  0% 56% 50%  0% 77%  0% 48% 33% 

specificity  100% 59%  100% 65% 100%  100% 59%  100% 61% 98% 

F  0% 59%  0% 45% 67%  0% 58%  0% 39% 44% 

Accuracy 47% 42% 

Kappa 25% 18% 

  rVp_median sensitivity  0% 90%  0% 67% 50%  0% 90%  0% 52% 33% 

specificity  100% 68%  100% 70% 96%  100% 62%  100% 67% 96% 

F  0% 69%  0% 55% 57%  0% 66%  0% 44% 42% 

Accuracy 53% 47% 

Kappa 35% 26% 

  rVp_min sensitivity  0% 70%  0% 56% 25% 0% 77%  0% 41% 0% 

specificity  100% 68%  100% 52% 96% 97% 56%  100% 58% 98% 

F  0% 58%  0% 40% 33% 0% 56%  0% 33% 0% 

Accuracy 41% 35% 

Kappa 17% 9% 

DCE-

L&L 

rK_iqr sensitivity 57% 40%  0% 11% 25% 0% 50%  0% 4% 0% 

specificity 84% 45%  100% 78% 96% 89% 26%  100% 74% 94% 

F 53% 31%  0% 13% 33% 0% 31%  0% 4% 0% 

Accuracy 31% 17% 
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Kappa 6% 0% 

  rFb_mean sensitivity  0% 80%  0% 56% 75%  0% 80%  0% 56% 58% 

specificity  100% 59%  100% 74% 96%  100% 59%  100% 71% 96% 

F  0% 59%  0% 50% 75%  0% 59%  0% 48% 64% 

Accuracy 50% 48% 

Kappa 31% 28% 

  rFb_SD sensitivity  0% 80%  0% 44% 25%  0% 80%  0% 44% 17% 

specificity  100% 55%  100% 65% 96%  100% 55%  100% 64% 96% 

F  0% 57%  0% 38% 33%  0% 57%  0% 38% 24% 

Accuracy 41% 40% 

Kappa 16% 15% 

  rFb_95tile sensitivity  0% 80%  0% 44% 25%  0% 80%  0% 44% 17% 

specificity  100% 55%  100% 65% 96%  100% 55%  100% 64% 96% 

F  0% 57%  0% 38% 33%  0% 57%  0% 38% 24% 

Accuracy 41% 40% 

Kappa 16% 15% 

  rFb_median sensitivity  0% 70%  0% 56% 75%  0% 70%  0% 41% 67% 

specificity  100% 64%  100% 70% 93%  100% 56%  100% 68% 94% 

F  0% 56%  0% 48% 67%  0% 53%  0% 37% 64% 

Accuracy 47% 42% 

Kappa 27% 19% 

  rFb_iqr sensitivity  0% 80%  0% 56% 50%  0% 80%  0% 56% 17% 

specificity  100% 64%  100% 65% 96%  100% 63%  100% 59% 96% 

F  0% 62%  0% 45% 57%  0% 62%  0% 43% 24% 

Accuracy 47% 43% 

Kappa 5% 19% 

  rFb_slope sensitivity  0% 80%  0% 56% 25%  0% 63%  0% 37% 17% 

specificity  100% 64%  100% 61% 96%  100% 62%  100% 52% 92% 

F  0% 62%  0% 43% 33%  0% 51%  0% 29% 19% 

Accuracy 44% 32% 

Kappa 21% 6% 

  rFb_max sensitivity  0% 80%  0% 44% 25%  0% 80%  0% 44% 0% 

specificity  100% 55%  100% 65% 96%  100% 55%  100% 61% 96% 

F  0% 57%  0% 38% 33%  0% 57%  0% 36% 0% 

Accuracy 41% 38% 

Kappa 16% 11% 
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  rFb_var sensitivity  0% 80%  0% 44% 25%  0% 80%  0% 44% 0% 

specificity  100% 55%  100% 65% 96%  100% 55%  100% 61% 96% 

F  0% 57%  0% 38% 33%  0% 57%  0% 36% 0% 

Accuracy 41% 38% 

Kappa 16% 11% 

  rPS_mean sensitivity 57% 60% 50% 11% 25% 29% 40% 0% 0% 0% 

specificity 76% 59% 97% 91% 96% 81% 41% 98% 71% 96% 

F 47% 48% 50% 17% 33% 29% 30% 0% 0% 0% 

Accuracy 41% 19% 

Kappa 21% 0% 

  rPS_median sensitivity 57% 60% 50% 22% 50% 29% 37% 0% 0% 17% 

specificity 80% 59% 100% 91% 96% 84% 35% 98% 78% 94% 

F 50% 48% 67% 31% 57% 31% 26% 0% 0% 21% 

Accuracy 47% 20% 

Kappa 29% 0% 

  rTC_mean sensitivity  0% 60%  0% 44% 50%  0% 53%  0% 44% 33% 

specificity  100% 64%  100% 57% 93%  100% 61%  100% 51% 95% 

F  0% 50%  0% 35% 50%  0% 44%  0% 33% 40% 

Accuracy 38% 33% 

Kappa 14% 7% 

ADC ADC_mean sensitivity 86% 60%  0% 67%  0% 48% 67%  0% 33%  0% 

specificity 88% 77%  100% 74%  100% 89% 62%  100% 65%  100% 

F 75% 57%  0% 57%  0% 51% 53%  0% 30%  0% 

Accuracy 56% 41% 

Kappa 40% 17% 

  ADC_SD sensitivity 71% 80%  0% 67%  0% 29% 83%  0% 59%  0% 

specificity 88% 73%  100% 83%  100% 89% 68%  100% 71%  100% 

F 67% 67%  0% 63%  0% 34% 66%  0% 51%  0% 

Accuracy 59% 49% 

Kappa 44% 28% 

  ADC_median sensitivity 71% 60%  0% 67%  0% 48% 63%  0% 48%  0% 

specificity 88% 77%  100% 70%  100% 92% 67%  100% 62%  100% 

F 67% 57%  0% 55%  0% 54% 54%  0% 39%  0% 

Accuracy 53% 44% 

Kappa 35% 21% 

  ADC_30tile sensitivity 71% 60%  0% 67%  0% 48% 60%  0% 41%  0% 
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specificity 84% 77%  100% 74%  100% 89% 62%  100% 65%  100% 

F 63% 57%  0% 57%  0% 51% 49%  0% 35%  0% 

Accuracy 53% 41% 

Kappa 35% 17% 

  ADC_40tile sensitivity 71% 60%  0% 67%  0% 48% 60%  0% 41%  0% 

specificity 88% 77%  100% 70%  100% 92% 64%  100% 61%  100% 

F 67% 57%  0% 55%  0% 54% 50%  0% 34%  0% 

Accuracy 53% 41% 

Kappa 35% 17% 

  ADC_60tile sensitivity 71% 70%  0% 56%  0% 48% 63%  0% 33%  0% 

specificity 88% 82%  100% 65%  100% 89% 67%  100% 59%  100% 

F 67% 67%  0% 45%  0% 51% 53%  0% 28%  0% 

Accuracy 53% 40% 

Kappa 35% 16% 

  ADC_70tile sensitivity 86% 70%  0% 56%  0% 29% 67%  0% 37%  0% 

specificity 84% 86%  100% 70%  100% 89% 70%  100% 54%  100% 

F 71% 70%  0% 48%  0% 34% 57%  0% 29%  0% 

Accuracy 56% 38% 

Kappa 40% 13% 

  ADC_80tile sensitivity 86% 70%  0% 56%  0% 38% 73%  0% 41%  0% 

specificity 88% 86%  100% 61%  100% 92% 71%  100% 57%  100% 

F 75% 70%  0% 45%  0% 46% 62%  0% 32%  0% 

Accuracy 53% 43% 

Kappa 35% 20% 

  ADC_90tile sensitivity 71% 60%  0% 56%  0% 38% 63%  0% 41%  0% 

specificity 88% 77%  100% 65%  100% 92% 62%  100% 61%  100% 

F 67% 57%  0% 45%  0% 46% 51%  0% 34%  0% 

Accuracy 50% 40% 

Kappa 31% 15% 

  ADC_95tile sensitivity 57% 70%  0% 44%  0% 29% 70%  0% 30  0% 

specificity 88% 73%  100% 65%  100% 92% 58%  100% 61%  100% 

F 57% 61%  0% 38%  0% 36% 53%  0% 26%  0% 

Accuracy 47% 36% 

Kappa 26% 11% 

  ADC_skew sensitivity 57% 70%  0% 67% 25% 29% 70%  0% 52% 0% 

specificity 84% 77%  100% 78% 100% 79% 76%  100% 71% 96% 
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F 53% 64%  0% 60% 40% 28% 63%  0% 46% 0% 

Accuracy 56% 43% 

Kappa 40% 21% 

  ADC_zscore sensitivity 57% 80%  0% 56%  0% 14% 80%  0% 37%  0% 

specificity 84% 73%  100% 78%  100% 77% 73%  100% 65%  100% 

F 53% 67%  0% 53%  0% 15% 67%  0% 33%  0% 

Accuracy 53% 39% 

Kappa 35% 14% 

  ADC_var sensitivity 71% 80%  0% 56%  0% 38% 73%  0% 41%  0% 

specificity 84% 73%  100% 83%  100% 81% 71%  100% 68%  100% 

F 63% 67%  0% 56%  0% 37% 62%  0% 37%  0% 

Accuracy 56% 43% 

Kappa 39% 21% 

  rADC_mean sensitivity 86% 60%  0% 44%  0% 57% 67%  0% 22%  0% 

specificity 84% 82%  100% 65%  100% 89% 65%  100% 61%  100% 

F 71% 60%  0% 38%  0% 59% 55%  0% 20%  0% 

Accuracy 50% 40% 

Kappa 31% 16% 

  rADC_SD sensitivity 100% 80%  0% 67%  0% 33% 83%  0% 30%  0% 

specificity 88% 82%  100% 70%  100% 89% 56%  100% 72%  100% 

F 57% 73%  0% 55%  0% 39% 60%  0% 30%  0% 

Accuracy 56% 42% 

Kappa 39% 18% 

  rADC_median sensitivity 100% 70%  0% 44%  0% 67% 73%  0% 37%  0% 

specificity 80% 82%  100% 78%  100% 87% 73%  100% 68%  100% 

F 74% 67%  0% 44%  0% 62% 63%  0% 34%  0% 

Accuracy 56% 48% 

Kappa 40% 28% 

  rADC_20tile sensitivity 71% 60%  0% 56%  0% 48% 50%  0% 22%  0% 

specificity 84% 77%  100% 70%  100% 87% 59%  100% 59%  100% 

F 63% 57%  0% 48%  0% 49% 42%  0% 20%  0% 

Accuracy 50% 32% 

Kappa 31% 45% 

  rADC_30tile sensitivity 71% 60%  0% 56%  0% 48% 57%  0% 37%  0% 

specificity 84% 82%  100% 65%  100% 89% 68%  100% 57%  100% 

F 63% 60%  0% 45%  0% 51% 50%  0% 30%  0% 
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Accuracy 50% 39% 

Kappa 31% 14% 

  rADC_40tile sensitivity 100% 70%  0% 56%  0% 48% 70%  0% 41%  0% 

specificity 84% 82%  100% 78%  100% 89% 70%  100% 62%  100% 

F 78% 67%  0% 53%  0% 51% 59%  0% 34%  0% 

Accuracy 59% 44% 

Kappa 44% 22% 

  rADC_60tile sensitivity 100% 70%  0% 56%  0% 67% 73%  0% 33%  0% 

specificity 80% 86%  100% 78%  100% 87% 71%  100% 68%  100% 

F 74% 70%  0% 53%  0% 62% 62%  0% 31%  0% 

Accuracy 59% 47% 

Kappa 45% 26% 

  rADC_70tile sensitivity 100% 60%  0% 56%  0% 48% 70%  0% 33%  0% 

specificity 88% 86%  100% 65%  100% 92% 71%  100% 55%  100% 

F 82% 63%  0% 45%  0% 54% 60%  0% 27%  0% 

Accuracy 56% 42% 

Kappa 40% 19% 

  rADC_80tile sensitivity 71% 70%  0% 56%  0% 38% 77%  0% 33%  0% 

specificity 84% 91%  100% 61%  100% 89% 74%  100% 55%  100% 

F 63% 74%  0% 43%  0% 43% 66%  0% 27%  0% 

Accuracy 53% 42% 

Kappa 36% 19% 

  rADC_90tile sensitivity 57% 80%  0% 67%  0% 38% 77%  0% 33%  0% 

specificity 92% 82%  100% 65%  100% 89% 65%  100% 64%  100% 

F 62% 73%  0% 52%  0% 43% 61%  0% 30%  0% 

Accuracy 56% 42% 

Kappa 39% 18% 

  rADC_95tile sensitivity 57% 70%  0% 67%  0% 38% 77%  0% 41%  0% 

specificity 88% 82%  100% 65%  100% 89% 65%  100% 67%  100% 

F 57% 67%  0% 52%  0% 43% 61%  0% 36%  0% 

Accuracy 53% 44% 

Kappa 35% 21% 

  rADC_var sensitivity 57% 80%  0% 67%  0% 33% 77%  0% 30%  0% 

specificity 88% 82%  100% 70%  100% 89% 52%  100% 74%  100% 

F 57% 73%  0% 55%  0% 39% 54%  0% 30%  0% 

Accuracy 56% 40% 
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Kappa 39% 15% 
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Table 7-B. Diagnostic performance of the combined features from ASL, DSC, DCE-mTK, DCE-L&L, ADC for 

glioma grading 

MRI-method Features combinations 
Prediction 

performance 

Grading 

Internal validation 

LOOCV 

LGGs HGGs LGGs HGGs 

ASL 

rTBF_mean_95tile_mode_var 

sensitivity 84% 62% 79% 54% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 62% 84% 54% 79% 

F 80% 67% 75% 58% 

Accuracy 75% 67% 

Kappa 47% 34% 

rTBF_mean_95tile_var 

sensitivity 89% 62% 74% 59% 

specificity 62% 89% 59% 74% 

F 83% 70% 73% 60% 

Accuracy 78% 68% 

Kappa 53% 33% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rTBF_iqr_max_min 

sensitivity 89% 69% 84% 56% 

specificity 69% 89% 56% 84% 

F 85% 75% 79% 63% 

Accuracy 81% 73% 

Kappa 60% 42% 

DSC 

rCBV_mean_SD_95tile_median_iqr_slope_e

ntropy_min_max_var 

sensitivity 100% 100% 84% 72% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 72% 84% 

F 100% 100% 83% 74% 

Accuracy 100% 79% 

Kappa 100% 56% 

rCBV_mean_SD_95tile_median_iqr_slope_e

ntropy_max_var 

sensitivity 100% 100% 84% 72% 

specificity 100% 100% 72% 84% 

F 100% 100% 83% 74% 

Accuracy 100% 79% 

Kappa 100% 56% 

rCBV_mean_SD_95tile_median_slope_entro

py_max_var 

sensitivity 100% 100% 84% 72% 

specificity 100% 100% 72% 84% 

F 100% 100% 83% 74% 

Accuracy 100% 79% 

Kappa 100% 56% 

sensitivity 100% 100% 86% 77% 
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rCBV_mean_SD_median_slope_entropy_ma

x_var 

specificity 100% 100% 77% 86% 

F 100% 100% 85% 76% 

Accuracy 100% 82% 

Kappa 100% 63% 

rCBV_mean_SD_median_entropy_max_var 

sensitivity 100% 92% 84% 74% 

specificity 92% 100% 74% 84% 

F 97% 96% 83% 75% 

Accuracy 97% 80% 

Kappa 93% 59% 

rCBV_mean_SD_median_entropy_var 

sensitivity 95%% 92% 84% 85% 

specificity 92%% 95% 85% 84% 

F 95% 92% 86% 81% 

Accuracy 94% 84% 

Kappa 87% 68% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rCBF_kur_max_rCBV_min_var 

sensitivity 89% 85% 93% 51% 

specificity 85% 89% 51% 93% 

F 89% 85% 82% 63% 

Accuracy 88% 76% 

Kappa 74% 47% 

rCBF_kur_rCBV_SD_min 

sensitivity 89% 85% 86% 62% 

specificity 85% 89% 62% 86% 

F 89% 85% 81% 68% 

Accuracy 88% 76% 

Kappa 74% 49% 

rCBF_kur_rCBV_slope_min 

sensitivity 89% 85% 74% 74% 

specificity 85% 89% 74% 74% 

F 89% 85% 77% 70% 

Accuracy 88% 74% 

Kappa 74% 47% 

rCBF_kur_rCBV_min_max 

sensitivity 89% 85% 79% 72% 

specificity 85% 89% 72% 79% 

F 89% 85% 80% 71% 

Accuracy 88% 76% 

Kappa 74% 51% 

rCBF_zscore_rCBV_95tile 

sensitivity 95% 77% 79% 74% 

specificity 77% 95% 74% 79% 
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F 90% 83% 80% 73% 

Accuracy 88% 77% 

Kappa 73% 53% 

rCBV_iqr_min_max 

sensitivity 89% 85% 86% 74% 

specificity 85% 89% 74% 86% 

F 89% 85% 84% 76% 

Accuracy 88% 81% 

Kappa 74% 61% 

DCE_mTK 

Ve_mode_rVe_mode_rVp_mean 

sensitivity 84% 62% 84% 44% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 62% 84% 44% 84% 

F 80% 67% 76% 52% 

Accuracy 75% 68% 

Kappa 47% 29% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

Ve_mode_rK_mean 

sensitivity 89% 62% 84% 54% 

specificity 62% 89% 54% 84% 

F 83% 70% 78% 61% 

Accuracy 78% 72% 

Kappa 53% 40% 

DCE_L&L 

TC-

SD_95tile_slope_var_rKep_max_rVp_mean_

95tile_entropy_rFb_entropy_rTC_SD_95tile_

kur_skew_iqr_slope_var 

sensitivity 95% 77% 49% 21% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 77% 95% 21% 49% 

F 90% 83% 48% 21% 

Accuracy 88% 38% 

Kappa 73% 31% 

TC-

SD_95tile_slope_var_rKep_max_rVp_95til

e_entropy_rFb_entropy_rTC_SD_95tile_k

ur_skew_iqr_slope_var 

sensitivity 79% 62% 46% 10% 

specificity 62% 79% 10% 46% 

F 77% 64% 44 11% 

Accuracy 72%% 31% 

Kappa 41% 45% 

TC-

SD_95tile_slope_var_rKep_max_rVp_entrop

y_rFb_entropy_rTC_SD_95tile_kur_skew_sl

ope 

sensitivity 79% 62% 53% 23% 

specificity 62% 79% 23% 53% 

F 77% 64% 51% 24% 

Accuracy 72% 41% 

Kappa 41% 25% 

P
a
ir

w
is

e
-

c
o
rr

e
la

ti
o
n

 

TC_95tile_rK_slope_rKep_max_rVp_95tile_r

PS_median 

sensitivity 79% 69% 63% 38% 

specificity 69% 79% 38% 63% 

F 77% 69% 62% 40 
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Accuracy 75% 53% 

Kappa 48% 2% 

TC_slope_rKep_max_rVp_95tile_rPS_mea

n 

sensitivity 79% 38% 70% 36% 

specificity 38% 79% 36% 70% 

F 71% 45% 66% 40% 

Accuracy 63% 56% 

Kappa 18% 6% 

ADC 

ADC-min_60tile_rADC-

mean_min_30tile_40tile_80tile_90tile_95til

e 

sensitivity 89% 77% 77% 56% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 77% 89% 56% 77% 

F 87% 80% 75% 59% 

Accuracy 84% 69% 

Kappa 67% 34% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rADC_median_min_max_var_zscore 

sensitivity 89% 77% 79% 51% 

specificity 77% 89% 51% 79% 

F 87% 80% 74% 56% 

Accuracy 84% 68% 

Kappa 67% 31% 

rADC_median_min_max_zscore 

sensitivity 89% 77% 79% 56% 

specificity 77% 89% 56% 79% 

F 87% 80% 76% 60% 

Accuracy 84% 70% 

Kappa 67% 46% 

ASL&ADC 

ADC-min_60tile_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_80tile_90tile_95tile_rTBF_mean_SD_95tile

_median_iqr_mode_slope_entropy_max_var 

sensitivity 95% 85% 70% 54% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 85% 95% 54% 70% 

F 92% 88% 70% 56% 

Accuracy 91% 64% 

Kappa 80% 24% 

ADC-min_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_80tile_90tile_95tile_rTBF_mean_SD_95tile

_median_iqr_mode_slope_entropy_max_var 

sensitivity 89% 85% 70% 51% 

specificity 85% 89% 51% 70% 

F 89% 85% 69% 53% 

Accuracy 89% 63% 

Kappa 74% 22% 

ADC-min_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_80tile_90tile_95tile_rTBF_mean_SD_95tile

_median_iqr_mode_entropy_max_var 

sensitivity 89% 85% 72% 54% 

specificity 85% 89% 54% 72% 

F 89% 84% 71% 55% 
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Accuracy 88% 65% 

Kappa 74% 26% 

ADC-min_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_80tile_90tile_95tile_rTBF_mean_SD_95tile

_median_iqr_mode_entropy_max 

sensitivity 89% 85% 72% 54% 

specificity 85% 89% 54% 72% 

F 89% 85% 71% 55% 

Accuracy 88% 65% 

Kappa 74% 26% 

ADC-min_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_80tile_90tile_95tile_rTBF_mean_SD_95tile

_median_mode_entropy_max 

sensitivity 89% 85% 72% 54% 

specificity 85% 89% 54% 72% 

F 89% 85% 71% 55% 

Accuracy 88% 65% 

Kappa 74% 26% 

ADC-min_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_80tile_95tile_rTBF_mean_SD_95tile_medi

an_mode_entropy_max 

sensitivity 95% 85% 74% 56% 

specificity 85% 95% 56% 74% 

F 92% 88% 72% 58% 

Accuracy 91% 67% 

Kappa 80% 30% 

ADC-min_rADC-

mean_median_min_40tile_60tile_70tile_80til

e_95tile_rTBF_mean_SD_95tile_median_mo

de_entropy_max 

sensitivity 89% 85% 74% 56% 

specificity 85% 89% 56% 74% 

F 89% 85% 72% 58% 

Accuracy 88% 67% 

Kappa 74% 30% 

ADC-min_rADC-

mean_median_min_40tile_60tile_70tile_80

tile_95tile_rTBF_mean_SD_95tile_median

_mode_max 

sensitivity 89% 85% 77% 56% 

specificity 85% 89% 56% 77% 

F 89% 85% 75% 59% 

Accuracy 88% 67% 

Kappa 74% 34% 

ADC-min_rADC-

mean_median_min_40tile_60tile_70tile_80til

e_95tile_rTBF_mean_95tile_median_mode_

max 

sensitivity 95% 85% 72% 54% 

specificity 85% 95% 54% 72% 

F 92% 88% 71% 55% 

Accuracy 90% 65% 

Kappa 80% 26% 
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Table 8-B. Diagnostic performance of the combined features from ASL, DSC, DCE-mTK, DCE-L&L, and ADC for 

glioma sub-grading 

MRI-method Features combinations Prediction 

performance 

Sub-grading 

  

  

Internal validation 

LOOCV 

II III IV II III IV 

ASL rTBF-mean_95tile_median_max sensitivity 84% 67% 71% 84% 11% 33% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 69% 96% 92% 36% 95% 87% 

F 82% 73% 72% 74% 17% 37% 

Accuracy 78% 59% 

Kappa 60% 18% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rTBF_SD_skew_mode_min sensitivity 89% 50% 57% 72% 22% 38% 

specificity 62% 96% 92% 41% 92% 81% 

F 83% 60% 62% 68% 29% 37% 

Accuracy 75% 55% 

Kappa 53% 16% 

DSC rCBV-

mean_SD_95tile_median_iqr_slope_entropy_m

in_max_var 

sensitivity 100% 100% 100% 82% 28% 57% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 100% 67% 88% 87% 

F 100% 100% 100% 80% 31% 56% 

Accuracy 100% 67% 

Kappa 100% 40% 

rCBV-

mean_SD_95tile_median_slope_entropy_min_

max_var 

sensitivity 100% 100% 100% 82% 33% 62% 

specificity 100% 100% 100% 74% 87% 87% 

F 100% 100% 100% 82% 35% 59% 

Accuracy 100% 67% 

Kappa 100% 45% 

rCBV-

mean_95tile_median_slope_entropy_min_max

_var 

sensitivity 100% 100% 100% 82% 28% 57% 

specificity 100% 100% 100% 72% 87% 85% 

F 100% 100% 100% 82% 30% 55% 

Accuracy 100% 67% 

Kappa 100% 40% 

rCBV-

mean_median_slope_entropy_min_max_var 

sensitivity 100% 100% 100% 88% 28% 67% 

specificity 100% 100% 100% 69% 91% 89% 

F 100% 100% 100% 84% 33% 65% 

Accuracy 100% 72% 

Kappa 100% 48% 
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rCBV-mean_median_slope_entropy_max_var sensitivity 100% 100% 100% 87% 28% 67% 

specificity 100% 100% 100% 69% 91% 89% 

F 100% 100% 100% 84% 33% 65% 

Accuracy 100% 72% 

Kappa 100% 48% 

rCBV-mean_median_slope_entropy_max sensitivity 100% 67% 57% 88% 11% 52% 

specificity 85% 92% 96% 72% 91% 80% 

F 95% 67% 67% 85% 15% 47% 

Accuracy 84% 66% 

Kappa 71% 14% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rCBF_kur_max_rCBV_min_var sensitivity 95% 67% 86% 93% 22% 52% 

specificity 85% 92% 100% 54% 95% 92% 

F 92% 67% 92% 83% 31% 58% 

Accuracy 88% 71% 

Kappa 77% 42% 

DCE_mTK Ve-mode_rVe_mode sensitivity 95% 33% 14% 91% 17% 0% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 38% 96% 92% 18% 91% 97% 

F 80% 44% 20% 74% 21% 0% 

Accuracy 66% 57% 

Kappa 28% 6% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

Ve_mode_rK_mean sensitivity 89% 33% 57% 91% 17% 19% 

specificity 54% 100% 88% 33% 96% 89% 

F 81% 50% 57% 77% 25% 24% 

Accuracy 72% 61% 

Kappa 24% 19% 

DCE_L&L rVp-95tile_slope_max_rFb-

max_rTC_mode_min 

sensitivity 84% 67% 57% 72% 39% 10% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 62% 96% 92% 33% 91% 83% 

F 80% 72% 62% 66% 44% 11% 

Accuracy 75% 52% 

Kappa 54% 9% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

TC_SD_rK_median_rKep_max_rFb_slope_rPS

_mean 

sensitivity 95% 67% 57% 86% 28% 14% 

specificity 77% 96% 92% 41% 92% 87% 

F 90% 72% 62% 76% 34% 18% 

Accuracy 81% 59% 

Kappa 65% 19% 

sensitivity 95% 67% 57% 88% 28% 14% 
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TC_95tile_rK_median_rKep_max_rFb_slope

_rPS_mean 

specificity 77% 96% 92% 41% 94% 87% 

F 90% 72% 62% 77% 36% 18% 

Accuracy 81% 60% 

Kappa 65% 21% 

TC_slope_rK_median_rKep_max_rFb_slope_r

PS_mean 

sensitivity 95% 77% 57% 89% 22% 14% 

specificity 77% 96% 92% 41% 94% 87% 

F 90% 73% 62% 78% 30% 18% 

Accuracy 81% 60% 

Kappa 65% 20% 

ADC ADC-median_min_60tile_80tile_rADC-

mean_median_min_30tile_40tile_60tile_70tile_

90tile 

sensitivity 100% 50% 86% 72% 39% 19% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 85% 96% 96% 54% 85% 81% 

F 95% 60% 86% 71% 38% 21% 

Accuracy 88% 54% 

Kappa 77% 18% 

ADC-median_min_60tile_rADC-

mean_median_min_30tile_40tile_60tile_70til

e_90tile 

sensitivity 100% 50% 86% 82% 39% 19% 

specificity 85% 96% 96% 54% 88% 85% 

F 95% 60% 86% 77% 41% 22% 

Accuracy 88% 61% 

Kappa 77% 26% 

ADC-median_min_60tile_rADC-

mean_median_min_30tile_40tile_60tile_70tile 

sensitivity 100% 50% 57% 81% 39% 19% 

specificity 77% 96% 92% 54% 90% 83% 

F 93% 60% 62% 76% 42% 21% 

Accuracy 81% 59% 

Kappa 64% 24% 

ADC-median_min_60tile_rADC-

mean_median_min_30tile_40tile_60tile 

sensitivity 100% 50% 43% 82% 39% 19% 

specificity 69% 92% 96% 54% 91% 83% 

F 90% 55% 55% 77% 44% 21% 

Accuracy 78% 60% 

Kappa 58% 26% 

ADC-median_60tile_rADC-

mean_median_min_30tile_40tile_60tile 

sensitivity 100% 50% 43% 84% 22% 19% 

specificity 69% 92% 96% 46% 91% 84% 

F 90% 55% 55% 76% 28% 22% 

Accuracy 78% 58% 

Kappa 58% 19% 

P
a
ir

w
is

e
-

c
o
rr

e
la

ti
o
n

 rADC_median_min_max_var_zscore sensitivity 89% 67% 71% 81% 33% 29% 

specificity 69% 96% 96% 51% 88% 87% 
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F 85% 72% 77% 75% 36% 32% 

Accuracy 81% 60% 

Kappa 65% 26% 

rADC_median_min_max_zscore sensitivity 89% 67% 71% 77% 33% 29% 

specificity 69% 96% 96% 51% 88% 84% 

F 85% 72% 77% 73% 36% 31% 

Accuracy 81% 58% 

Kappa 56% 23% 
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Table 9-B.Diagnostic performance of the combined features from ASL, DSC, DCE-mTK, DCE-L&L, and ADC for 

glioma identification according to IDH-status. 

MRI-

method 

Features combinations Prediction 

performance 

IDH_status Internal validation 

LOOCV 

wt mut wt mut 

ASL rTBF_zscore_95tile_median_mode_min_max sensitivity 71% 100% 48% 81% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 71% 81% 48% 

F 83% 96% 44% 83% 

Accuracy 94% 74% 

Kappa 80% 28% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rTBF_mean_slope_min sensitivity 71% 92% 48% 91% 

specificity 92% 71% 91% 48% 

F 71% 92% 53% 88% 

Accuracy 88% 81% 

Kappa 63% 41% 

DSC rCBF_mean_skew_median_rCBV_mean_SD_95ti

le_median_iqr_mode_slope_entropy_min_max_v

ar 

sensitivity 100% 100% 52% 84% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 84% 52% 

F 100% 100% 50% 85% 

Accuracy 100% 77% 

Kappa 100% 35% 

rCBF_mean_skew_median_rCBV_mean_95tile_

median_iqr_mode_slope_entropy_min_max_var 

sensitivity 100% 100% 52% 84% 

specificity 100% 100% 84% 52% 

F 100% 100% 50% 85% 

Accuracy 100% 77% 

Kappa 100% 35% 

rCBF_mean_skew_median_rCBV_mean_95tile_

median_iqr_slope_entropy_min_max_var 

sensitivity 100% 100% 62% 83% 

specificity 100% 100% 83% 62% 

F 100% 100% 55% 86% 

Accuracy 100% 78% 

Kappa 100% 41% 

rCBF_mean_skew_median_rCBV_mean_95tile

_median_slope_entropy_min_max_var 

sensitivity 100% 100% 62% 83% 

specificity 100% 100% 83% 62% 

F 100% 100% 55% 86% 

Accuracy 100% 78% 

Kappa 100% 41% 

sensitivity 100% 100% 52% 87% 
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rCBF_mean_skew_median_rCBV_mean_95tile_

median_entropy_min_max_var 

specificity 100% 100% 87% 52% 

F 100% 100% 52% 87% 

Accuracy 100% 79% 

Kappa 100% 39% 

rCBF_mean_skew_median_rCBV_mean_95tile_

median_entropy_min_max 

sensitivity 86% 100% 52% 85% 

specificity 100% 86% 85% 52% 

F 92% 98% 51% 86% 

Accuracy 97% 78% 

Kappa 90% 37% 

rCBF_mean_median_rCBV_mean_95tile_median

_entropy_min_max 

sensitivity 86% 100% 48% 87% 

specificity 100% 86% 87% 48% 

F 92% 98% 49% 86% 

Accuracy 97% 78% 

Kappa 90% 35% 

rCBF_mean_median_rCBV_mean_95tile_median

_entropy_min 

sensitivity 100% 100% 38% 88% 

specificity 100% 100% 88% 38% 

F 100% 100% 42% 86% 

Accuracy 100% 77% 

Kappa 100% 28% 

rCBF_mean_median_rCBV_mean_95tile_median

_min 

sensitivity 71% 100% 48% 89% 

specificity 100% 71% 89% 48% 

F 83% 96% 51% 88% 

Accuracy 94% 80% 

Kappa 80% 39% 

rCBF_mean_median_rCBV_mean_95tile_min sensitivity 71% 92% 38% 91% 

specificity 92% 71% 91% 38% 

F 71% 92% 44% 87% 

Accuracy 88% 79% 

Kappa 63% 32% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rCBF_kur_mode_rCBV_mean_min sensitivity 86% 96% 48% 91% 

specificity 96% 86% 91% 48% 

F 86% 96% 53% 88% 

Accuracy 94% 81% 

Kappa 82% 41% 

rCBF_kur_rCBV_mean_min sensitivity 86% 96% 48% 92% 

specificity 96% 86% 92% 48% 
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F 86% 96% 54% 89% 

Accuracy 94% 82% 

Kappa 82% 43% 

rCBF_kur_rCBV_slope_min sensitivity 86% 96% 67% 92% 

specificity 96% 86% 92% 67% 

F 86% 96% 68% 91% 

Accuracy 94% 86% 

Kappa 82% 60% 

rCBF_kur_rCBV_min_max sensitivity 86% 96% 57% 92% 

specificity 96% 86% 92% 57% 

F 86% 96% 62% 90% 

Accuracy 94% 84% 

Kappa 82% 52% 

rCBF_kur_mode_rCBV_min_max sensitivity 86% 96% 57% 89% 

specificity 96% 86% 89% 57% 

F 86% 96% 59% 89% 

Accuracy 94% 82% 

Kappa 82% 47% 

DCE_mTK rK_mean_rVp_min sensitivity 43% 92% 10% 92% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

specificity 92% 43% 92% 10% 

F 50% 88% 14% 85% 

Accuracy 81% 74% 

Kappa 39% 2% 

DCE_L&L rK_mean_SD_95tile_median_iqr_slope_var_rPS_

mean_median_rTC_mode_min 

sensitivity 86% 96% 33% 85% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 96% 86%% 85% 33% 

F 86% 96% 36% 84% 

Accuracy 94% 74% 

Kappa 82% 20% 

rK_mean_95tile_median_iqr_slope_var_rPS_mea

n_median_rTC_mode_min 

sensitivity 86% 96% 33% 81% 

specificity 96% 86%% 81% 33% 

F 86% 96% 33% 81% 

Accuracy 94% 71% 

Kappa 82% 15% 

rK_95tile_median_iqr_slope_var_rPS_mean_med

ian_rTC_mode_min 

sensitivity 71% 96% 38% 81% 

specificity 96% 71% 81% 38% 

F 77% 94% 37% 82% 
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Accuracy 91% 72% 

Kappa 71% 19% 

rK_95tile_median_iqr_slope_var_rPS_median_

rTC_mode_min 

sensitivity 71% 96% 29% 89% 

specificity 96% 71% 89% 29% 

F 77% 94% 34% 85% 

Accuracy 91% 76% 

Kappa 71% 20% 

rK_95tile_median_iqr_slope_var_rTC_mode_min sensitivity 71% 96% 19% 85% 

specificity 96% 71% 85% 19% 

F 77% 94% 22% 82% 

Accuracy 91% 71% 

Kappa 71% 5% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

TC_var_rK_slope_rKep_max_rVp_mean_rPS_

median 

sensitivity 57% 100% 57% 88% 

specificity 100% 57% 88% 57% 

F 73% 94% 57% 88% 

Accuracy 91% 81% 

Kappa 68% 45% 

ADC ADC_mean_SD_median_20tile_30tile_40tile_60til

e_70tile_80tile_90tile_95tile_zscore_var 

sensitivity 100% 100% 29% 67% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 67% 29% 

F 100% 100% 23% 71% 

Accuracy 100% 58% 

Kappa 100% 0% 

ADC_mean_SD_median_20tile_30tile_40tile_60til

e_70tile_80tile_90tile_95tile_zscore 

sensitivity 100% 100% 29% 71% 

specificity 100% 100% 71% 29% 

F 100% 100% 24% 74% 

Accuracy 100% 61% 

Kappa 100% 0% 

ADC_mean_SD_median_30tile_40tile_60tile_70til

e_80tile_90tile_95tile_zscore 

sensitivity 100% 100% 38% 73% 

specificity 100% 100% 73% 38% 

F 100% 100% 33% 77% 

Accuracy 100% 66% 

Kappa 100% 10% 

ADC_mean_SD_median_30tile_40tile_60tile_70til

e_95tile_zscore 

sensitivity 100% 100% 38% 77% 

specificity 100% 100% 77% 38% 

F 100% 100% 35% 79% 

Accuracy 100% 69% 
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Kappa 100% 14% 

ADC_mean_SD_median_30tile_40tile_70tile_9

5tile_zscore 

sensitivity 100% 100% 48% 83% 

specificity 100% 100% 83% 48% 

F 100% 100% 45% 84% 

Accuracy 100% 75% 

Kappa 100% 29% 

rADC_mean_SD_median_10tile_20tile_30tile_40ti

le_60tile_70tile_80tile_90tile_95tile_var_zscore 

sensitivity 71% 96% 23% 89% 

specificity 96% 71% 89% 23% 

F 77% 94% 29% 85% 

Accuracy 91% 75% 

Kappa 71% 15% 

rADC_mean_SD_median_10tile_20tile_30tile_40ti

le_60tile_70tile_80tile_95tile_var_zscore 

sensitivity 71% 96% 19% 89% 

specificity 96% 71% 89% 19% 

F 77% 94% 24% 84% 

Accuracy 91% 74% 

Kappa 71% 10% 

rADC_mean_SD_median_10tile_30tile_40tile_60ti

le_70tile_80tile_95tile_var_zscore 

sensitivity 57% 100% 19% 88% 

specificity 100% 57% 88% 19% 

F 73% 94% 24% 84% 

Accuracy 91% 73% 

Kappa 68% 8% 

rADC_mean_median_10tile_30tile_40tile_60tile_7

0tile_80tile_95tile_var_zscore 

sensitivity 43% 88% 19% 91% 

specificity 88% 43% 91% 19% 

F 46% 86% 25% 85% 

Accuracy 78% 75% 

Kappa 33% 12% 

rADC_mean_median_10tile_30tile_40tile_70tile_8

0tile_95tile_var_zscore 

sensitivity 57% 88% 19% 91% 

specificity 88% 57% 91% 19% 

F 57% 88% 25% 85% 

Accuracy 81% 75% 

Kappa 45% 12% 

rADC_mean_median_10tile_30tile_40tile_80tile_9

5tile_var_zscore 

sensitivity 57% 96% 19% 92% 

specificity 96% 57% 92% 19% 

F 67% 92% 26% 86% 

Accuracy 88% 76% 

Kappa 59% 14% 
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rADC_mean_median_10tile_30tile_40tile_95tile_v

ar_zscore 

sensitivity 43% 96% 19% 89% 

specificity 96% 43% 89% 19% 

F 55% 91% 24% 84% 

Accuracy 84% 74% 

Kappa 46% 10% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rADC_median_min_max_var_zscore sensitivity 57% 96% 29% 92% 

specificity 96% 57% 92% 29% 

F 67% 92% 36% 87% 

Accuracy 88% 78% 

Kappa 59% 24% 
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Table 10-B. Diagnostic performance of the combined features from ASL, DSC, DCE-mTK, DCE-L&L, and ADC 

for glioma grouping. 

MRI-method Features combinations Prediction 

performance 

Grouping Internal validation 

LOOCV 

GBM-

wt 

Astro-

mut 

Oligo-

mut 

GBM-wt Astro-

mut 

Oligo-

mut 

ASL rTBF-

skew_zscore_mean_95tile_median_mode

_min_max 

sensitivity 71% 92% 77% 48% 75% 31% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 96% 90% 84% 79% 78% 68% 

F 77% 88% 77% 43% 71% 35% 

Accuracy 81% 51% 

Kappa 71% 26% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rTBF_SD_min_zscore sensitivity 57% 92% 77% 0% 89% 46% 

specificity 96% 90% 79% 87% 80% 58% 

F 67% 88% 74% 0% 80% 44% 

Accuracy 78% 52% 

Kappa 66% 24% 

DSC rCBF-

mean_SD_95tile_kur_skew_median_iqr_mo

de_slope_max_zscore_var_rCBV-

mean_SD_95tile_skew_median_iqr_mode_sl

ope_entropy_min_max_var 

sensitivity 100% 100% 100% 76% 67% 54% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 100% 92% 77% 74% 

F 100% 100% 100% 74% 65% 56% 

Accuracy 100% 64% 

Kappa 100% 44% 

rCBF-

mean_SD_95tile_kur_skew_median_iqr_mo

de_max_zscore_var_rCBV-

mean_SD_95tile_skew_median_iqr_mode_sl

ope_entropy_min_max_var 

sensitivity 100% 100% 100% 71% 72% 54% 

specificity 100% 100% 100% 95% 65% 74% 

F 100% 100% 100% 75% 68% 56% 

Accuracy 100% 65% 

Kappa 100% 45% 

rCBF-

mean_SD_95tile_kur_skew_median_iqr_m

ode_max_zscore_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope

_entropy_min_max_var 

sensitivity 100% 100% 100% 81% 69% 51% 

specificity 100% 100% 100% 92% 78% 74% 

F 100% 100% 100% 77% 68% 54% 

Accuracy 100% 65% 

Kappa 100% 46% 

rCBF-

mean_SD_95tile_skew_median_iqr_mode_

max_zscore_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope_e

ntropy_min_max_var 

sensitivity 100% 100% 100% 62% 58% 56% 

specificity 100% 100% 100% 92% 77% 65% 

F 100% 100% 100% 65% 59% 54% 

Accuracy 100% 58% 

Kappa 100% 35% 

rCBF-

mean_SD_95tile_skew_median_iqr_max_zs

sensitivity 100% 100% 100% 67% 61% 62% 
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core_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope_e

ntropy_min_max_var 

specificity 100% 100% 100% 93% 77% 70% 

F 100% 100% 100% 70% 61% 60% 

Accuracy 100% 63% 

Kappa 100% 42% 

rCBF-

mean_SD_95tile_skew_median_iqr_max_zs

core_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope_e

ntropy_max_var 

sensitivity 100% 100% 100% 67% 61% 62% 

specificity 100% 100% 100% 93% 77% 70% 

F 100% 100% 100% 70% 61% 60% 

Accuracy 100% 63% 

Kappa 100% 42% 

rCBF-

mean_SD_95tile_skew_median_iqr_max_zs

core_var_rCBV-

mean_95tile_median_iqr_mode_slope_entro

py_max_var 

sensitivity 100% 100% 100% 67% 61% 62% 

specificity 100% 100% 100% 93% 77% 70% 

F 100% 100% 100% 70% 61% 60% 

Accuracy 100% 63% 

Kappa 100% 42% 

rCBF-

mean_SD_95tile_skew_median_iqr_max_zs

core_var_rCBV-

mean_95tile_median_iqr_mode_slope_entro

py_max 

sensitivity 100% 100% 100% 67% 61% 62% 

specificity 100% 100% 100% 93% 77% 70% 

F 100% 100% 100% 70% 61% 60% 

Accuracy 100% 63% 

Kappa 100% 42% 

rCBF-

mean_95tile_skew_median_iqr_max_zscore

_var_rCBV-

mean_95tile_median_iqr_mode_slope_entro

py_max 

sensitivity 100% 100% 100% 67% 61% 62% 

specificity 100% 100% 100% 93% 77% 70% 

F 100% 100% 100% 70% 61% 60% 

Accuracy 100% 63% 

Kappa 100% 42% 

rCBF-

mean_95tile_skew_median_iqr_max_zscore

_rCBV-

mean_95tile_median_iqr_mode_slope_entro

py_max 

sensitivity 100% 100% 100% 67% 61% 62% 

specificity 100% 100% 100% 93% 77% 70% 

F 100% 100% 100% 70% 61% 60% 

Accuracy 100% 63% 

Kappa 100% 42% 

rCBF-

mean_95tile_skew_median_iqr_max_zscore

_rCBV-

mean_95tile_median_iqr_mode_entropy_ma

x 

sensitivity 100% 100% 100% 71% 61% 64% 

specificity 100% 100% 100% 93% 77% 74% 

F 100% 100% 100% 73% 61% 63% 

Accuracy 100% 65% 

Kappa 100% 45% 

rCBF-

mean_95tile_skew_median_iqr_max_zscore

sensitivity 100% 100% 100% 62% 61% 67% 

specificity 100% 100% 100% 93% 78% 70% 
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_rCBV-

mean_95tile_median_mode_entropy_max 

F 100% 100% 100% 67% 62% 63% 

Accuracy 100% 64% 

Kappa 100% 41% 

rCBF-

mean_95tile_median_iqr_max_zscore_rCBV

-mean_95tile_median_mode_entropy_max 

sensitivity 100% 100% 100% 67% 64% 54% 

specificity 100% 100% 100% 92% 77% 68% 

F 100% 100% 100% 68% 63% 54% 

Accuracy 100% 61% 

Kappa 100% 39% 

rCBF-

mean_95tile_median_max_zscore_rCBV-

mean_95tile_median_mode_entropy_max 

sensitivity 100% 100% 100% 57% 67% 54% 

specificity 100% 100% 100% 92% 77% 67% 

F 100% 100% 100% 62% 65% 53% 

Accuracy 100% 59% 

Kappa 100% 37% 

rCBF-mean_95tile_median_max_rCBV-

mean_95tile_median_mode_entropy_max 

sensitivity 100% 100% 100% 52% 72% 56% 

specificity 100% 100% 100% 93% 77% 68% 

F 100% 100% 100% 59% 68% 56% 

Accuracy 100% 61% 

Kappa 100% 40% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rCBF_kur_rCBV_mean_min sensitivity 86% 83% 85% 57% 81% 56% 

specificity 96% 95% 84% 92% 78% 75% 

F 86% 87% 81% 62% 74% 59% 

Accuracy 84% 66% 

Kappa 76% 47% 

DCE_mTK rVe_mode_rVp_median_min sensitivity 43% 92% 77% 0% 83% 51% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 96% 80% 84% 92% 63% 68% 

F 55% 81% 77% 0% 68% 52% 

Accuracy 75% 52% 

Kappa 60% 23% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rK_mean_rVp_min sensitivity 43% 83% 62% 19% 64% 46% 

specificity 88% 75% 84% 89% 63% 63% 

F 46% 74% 67% 24% 57% 46% 

Accuracy 66% 47% 

Kappa 47% 16% 

DCE_L&L rK-mean_SD_iqr_var_rFb-

mean_SD_95tile_iqr_slope_min_max_var_rT

C-mean_mode_min 

sensitivity 100% 100% 100% 19% 67% 69% 

B
a
c
k
w

a
rd

s
-

e
lim

in
a
ti
o
n

 specificity 100% 100% 100% 89% 70% 74% 

F 100% 100% 100% 24% 62% 67% 
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Accuracy 100% 57% 

Kappa 100% 32% 

rK-mean_iqr_var_rFb-

mean_SD_95tile_iqr_slope_min_max_var_rT

C-mean_mode_min 

sensitivity 100% 100% 100% 24% 61% 72% 

specificity 100% 100% 100% 87% 73% 74% 

F 100% 100% 100% 28% 59% 68% 

Accuracy 100% 57% 

Kappa 100% 33% 

rK-mean_iqr_rFb-

mean_SD_95tile_iqr_slope_min_max_var_rT

C-mean_mode_min 

sensitivity 100% 100% 92% 29% 61% 72% 

specificity 
100% 95%

% 

100% 85% 75% 75% 

F 100% 96% 96% 32% 60% 69% 

Accuracy 97% 58% 

Kappa 95% 35% 

rK-mean_iqr_rFb-

mean_SD_95tile_iqr_slope_max_var_rTC-

mean_mode_min 

sensitivity 100% 100% 100% 33% 64% 72% 

specificity 100% 100% 100% 87% 77% 75% 

F 100% 100% 100% 37% 63% 69% 

Accuracy 100% 60% 

Kappa 100% 38% 

rK-mean_iqr_rFb-

mean_SD_95tile_iqr_slope_max_var_rTC-

mode_min 

sensitivity 100% 100% 100% 29% 61% 67% 

specificity 100% 100% 100% 84% 70% 79% 

F 100% 100% 100% 31% 58% 68% 

Accuracy 100% 56% 

Kappa 100% 32% 

rK-mean_iqr_rFb-

mean_SD_95tile_iqr_slope_max_var_rTC-

min 

sensitivity 86% 83% 92% 19% 61% 67% 

specificity 88% 95% 100% 84% 68% 77% 

F 75% 87% 96% 22% 57% 67% 

Accuracy 88% 54% 

Kappa 81% 28% 

rK-mean_iqr_rFb-

mean_95tile_iqr_slope_max_var_rTC-min 

sensitivity 86% 83% 92% 19% 61% 67% 

specificity 92% 90% 100% 85% 67% 77% 

F 80% 83% 96% 22% 56% 67% 

Accuracy 88% 54% 

Kappa 81% 28% 

rK-mean_iqr_rFb-

mean_iqr_slope_max_var_rTC-min 

sensitivity 86% 83% 92% 23% 61% 72% 

specificity 88% 95% 100% 85% 72% 77% 

F 75% 87% 96% 27% 59% 70% 

Accuracy 88% 57% 
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Kappa 81% 33% 

rK-mean_iqr_rFb-

mean_slope_max_var_rTC-min 

sensitivity 86% 83% 92% 29% 67% 67% 

specificity 88% 95% 100% 87% 70% 79% 

F 75% 87% 96% 32% 62% 68% 

Accuracy 88% 58% 

Kappa 81% 35% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rK_slope_rFb_SD_rPS_median_rTC_kur_rT

C_mode_rTC_entropy 

sensitivity 71% 67% 77% 43% 31% 64% 

specificity 88% 75% 95% 77% 68% 74% 

F 67% 64% 83% 38% 33% 63% 

Accuracy 72% 47% 

Kappa 57% 19% 

rK_slope_rFb_var_rPS_median_rTC_kur_

rTC_mode 

sensitivity 57% 75% 69% 33% 53% 64% 

specificity 92% 70% 89% 83% 67% 79% 

F 62% 67% 75% 34% 51% 66% 

Accuracy 69% 53% 

Kappa 51% 27% 

ADC ADC-

mode_mean_SD_median_20tile_30tile_40til

e_60tile_70tile_80tile_90tile_95tile_skew_slo

pe_zscore_var 

sensitivity 100% 100% 100% 33% 47% 51% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 100% 73% 67% 79% 

F 100% 100% 100% 29% 47% 56% 

Accuracy 100% 46% 

Kappa 100% 18% 

ADC-

mode_mean_SD_median_30tile_40tile_60til

e_70tile_80tile_90tile_95tile_skew_slope_zs

core_var 

sensitivity 100% 100% 100% 43% 50% 62% 

specificity 100% 100% 100% 80% 70% 79% 

F 100% 100% 100% 40% 50% 64% 

Accuracy 100% 53% 

Kappa 100% 28% 

ADC-

mode_mean_SD_median_30tile_40tile_60til

e_70tile_80tile_90tile_95tile_skew_zscore_v

ar 

sensitivity 100% 100% 100% 43% 50% 64% 

specificity 100% 100% 100% 80% 72% 79% 

F 100% 100% 100% 40% 51% 66% 

Accuracy 100% 54% 

Kappa 100% 30% 

ADC-

mean_SD_median_30tile_40tile_60tile_70tile

_80tile_90tile_95tile_skew_zscore_var 

sensitivity 100% 100% 100% 29% 50% 41% 

specificity 100% 100% 100% 73% 72% 67% 

F 100% 100% 100% 26% 51% 43% 

Accuracy 100% 42% 

Kappa 100% 11% 
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ADC-

mean_SD_median_40tile_60tile_70tile_80tile

_90tile_95tile_skew_zscore_var 

sensitivity 100% 92% 92% 24% 53% 38% 

specificity 100% 95% 95% 75% 68% 67% 

F 100% 92% 92% 22% 51% 41% 

Accuracy 94% 41% 

Kappa 90% 9% 

ADC-

mean_SD_median_40tile_60tile_70tile_80tile

_90tile_95tile_skew_zscore 

sensitivity 100% 92% 100% 38% 56% 44% 

specificity 100% 100% 95% 80% 72% 67% 

F 100% 96% 96% 36% 55% 45% 

Accuracy 97% 47% 

Kappa 95 18% 

rADC-

mode_mean_SD_median_10tile_20tile_30til

e_40tile_60tile_70tile_80tile_90tile_95tile_sk

ew_slope_zscore_var 

sensitivity 100% 100% 100% 43% 64% 56% 

specificity 100% 100% 100% 88% 80% 63% 

F 100% 100% 100% 46% 65% 54% 

Accuracy 100% 56% 

Kappa 100% 32% 

rADC-

mean_SD_median_10tile_20tile_30tile_40tile

_60tile_70tile_80tile_90tile_95tile_skew_slop

e_zscore_var 

sensitivity 100% 92% 85% 48% 67% 56% 

specificity 96% 95% 95% 87% 83% 65% 

F 93% 92% 88% 49% 69% 54% 

Accuracy 91% 58% 

Kappa 86% 35% 

rADC-

mean_SD_median_20tile_30tile_40tile_60tile

_70tile_80tile_90tile_95tile_skew_slope_zsc

ore_var 

sensitivity 100% 92% 92% 43% 67% 54% 

specificity 100% 95% 95% 88% 78% 65% 

F 100% 92% 92% 46% 66% 53% 

Accuracy 94% 56% 

Kappa 90% 32% 

rADC-

mean_SD_median_20tile_30tile_40tile_60tile

_70tile_80tile_90tile_95tile_skew_zscore_var 

sensitivity 100% 92% 84% 33% 78% 56% 

specificity 96% 95% 95% 88% 82% 67% 

F 93% 92% 88% 38% 75% 55% 

Accuracy 91% 59% 

Kappa 86% 36% 

rADC-

mean_SD_median_20tile_30tile_40tile_60tile

_70tile_80tile_90tile_95tile_skew_zscore 

sensitivity 100% 92% 85% 33% 78% 56% 

specificity 96% 95% 95% 88% 82% 67% 

F 93% 92% 88% 38% 75% 55% 

Accuracy 91% 59% 

Kappa 86% 36% 

sensitivity 100% 92% 85% 33% 78% 54% 
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rADC-

mean_median_20tile_30tile_40tile_60tile_70t

ile_80tile_90tile_95tile_skew_zscore 

specificity 96% 95% 95% 87% 80% 68% 

F 93% 92% 88% 37% 74% 54% 

Accuracy 91% 58% 

Kappa 86% 35% 

rADC-

mean_median_30tile_40tile_60tile_70tile_

80tile_90tile_95tile_skew_zscore 

sensitivity 86% 92% 85% 38% 78% 54% 

specificity 96% 95% 89% 87% 80% 70% 

F 86% 92% 85% 41% 74% 55% 

Accuracy 88% 59% 

Kappa 81% 37% 

rADC-

mean_median_30tile_40tile_60tile_70tile_80t

ile_90tile_skew_zscore 

sensitivity 86% 92% 85% 38% 78% 54% 

specificity 96% 95% 89% 87% 80% 70% 

F 86% 92% 85% 41% 74% 55% 

Accuracy 88% 59% 

Kappa 81% 37% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rADC_median_min_max_var_zscore sensitivity 57% 92% 77% 24% 69% 64% 

specificity 96% 90% 79% 88% 83% 61% 

F 67% 88% 74% 29% 70% 58% 

Accuracy 78% 57% 

Kappa 66% 32% 
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Table 11-B. Diagnostic performance of the combined features from ASL, DSC, DCE-mTK, DCE-L&L, and ADC for glioma sub-grouping 

MRI-

method 

Features combinations Prediction performance Sub-grouping Internal validation 

LOOCV 

GBM-wt Astro-

mut-LG 

Astro-

mut-HG 

Oligo-

mut-LG 

Oligo-

mut-HG 

GBM-wt Astro-

mut-LG 

Astro-

mut-HG 

Oligo-mut-

LG 

Oligo-mut-

HG 

ASL rTBF-skew_zscore_mean_95tile_median_mode_min sensitivity 71% 90% 50% 56% 50% 38% 83% 0% 22% 0% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 92% 82% 100% 87% 96% 73% 80% 96% 80% 93% 

F 71% 78% 67% 59% 57% 33% 74% 0% 26% 0% 

Accuracy 69% 41% 

Kappa 58% 20% 

P
a
ir

w
is

e
-c

o
rr

e
la

ti
o
n

 

rTBF_SD_min_zscore sensitivity 43% 90% 0% 67% 50% 29% 90% 0% 48% 0% 

specificity 92% 81% 100% 83% 93% 85% 74% 98% 75% 96% 

F 50% 78% 0% 63% 50% 32% 73% 0% 46% 0% 

Accuracy 63% 48% 

Kappa 49% 28% 

DSC rCBF-

mean_SD_95tile_kur_skew_median_iqr_mode_max_zscore

_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_min_m

ax_var 

sensitivity 100% 100% 100% 100% 100% 76% 67% 0% 44% 33% 

B
a
c
k
w

a
rd

s
-e

lim
in

a
ti
o
n

 

specificity 100% 100% 100% 100% 100% 95% 76% 98% 77% 93% 

F 100% 100% 100% 100% 100% 78% 61% 0% 44% 36% 

Accuracy 100% 54% 

Kappa 100% 38% 

rCBF-

mean_SD_95tile_skew_median_iqr_mode_max_zscore_var

_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_min_m

ax_var 

sensitivity 100% 100% 100% 100% 100% 71% 60% 0% 48% 17% 

specificity 100% 100% 100% 100% 100% 89% 82% 97% 81% 86% 

F 100% 100% 100% 100% 100% 68% 60% 0% 49% 15% 

Accuracy 100% 50% 
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Kappa 100% 34% 

rCBF-

mean_SD_95tile_skew_median_iqr_mode_max_zscore_var

_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_max_v

ar 

sensitivity 100% 100% 100% 100% 100% 71% 60% 0% 48% 17% 

specificity 100% 100% 100% 100% 100% 89% 82% 97% 81% 86% 

F 100% 100% 100% 100% 100% 68% 60% 0% 49% 15% 

Accuracy 100% 50% 

Kappa 100% 34% 

rCBF-

mean_SD_95tile_skew_median_iqr_max_zscore_var_rCBV

-

mean_SD_95tile_median_iqr_mode_slope_entropy_max_v

ar 

sensitivity 100% 100% 100% 100% 100% 76% 50% 0% 62% 25% 

specificity 100% 100% 100% 100% 100% 92% 83% 98% 75% 89% 

F 100% 100% 100% 100% 100% 74% 54% 0% 56% 25% 

Accuracy 100% 53% 

Kappa 100% 37% 

rCBF-mean_SD_95tile_median_iqr_max_zscore_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_max_v

ar 

sensitivity 100% 100% 100% 100% 100% 67% 57% 0% 56% 25% 

specificity 100% 100% 100% 100% 100% 91% 85% 96% 74% 89% 

F 100% 100% 100% 100% 100% 67% 60% 0% 50% 25% 

Accuracy 100% 51% 

Kappa 100% 35% 

rCBF-mean_95tile_median_iqr_max_zscore_var_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_max_v

ar 

sensitivity 100% 100% 100% 100% 100% 67% 57% 0% 56% 25% 

specificity 100% 100% 100% 100% 100% 91% 85% 97% 73% 90% 

F 100% 100% 100% 100% 100% 67% 60% 0% 49% 26% 

Accuracy 100% 51% 

Kappa 100% 35% 

rCBF-mean_95tile_median_iqr_max_zscore_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_max_v

ar 

sensitivity 100% 100% 100% 100% 100% 67% 60% 0% 56% 25% 

specificity 100% 100% 100% 100% 100% 91% 85% 97% 74% 90% 
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F 100% 100% 100% 100% 100% 67% 62% 0% 50% 26% 

Accuracy 100% 52% 

Kappa 100% 36% 

rCBF-mean_95tile_median_iqr_max_rCBV-

mean_SD_95tile_median_iqr_mode_slope_entropy_max_v

ar 

sensitivity 100% 100% 100% 100% 100% 71% 53% 0% 56% 25% 

specificity 100% 100% 100% 100% 100% 92% 82% 93% 71% 96% 

F 100% 100% 100% 100% 100% 71% 55% 0% 48%% 33% 

Accuracy 100% 51% 

Kappa 100% 34% 

rCBF-mean_95tile_median_iqr_max_rCBV-

mean_95tile_median_iqr_mode_slope_entropy_max_var 

sensitivity 100% 100% 100% 100% 100% 71% 53% 0% 56% 25% 

specificity 100% 100% 100% 100% 100% 91% 82% 93% 72% 96% 

F 100% 100% 100% 100% 100% 70% 55% 0% 49% 33% 

Accuracy 100% 51% 

Kappa 100% 34% 

rCBF-mean_95tile_median_iqr_max_rCBV-

mean_95tile_median_iqr_mode_slope_entropy_max 

sensitivity 100% 100% 100% 100% 100% 71% 53% 0% 52% 25% 

specificity 100% 100% 100% 100% 100% 91% 82% 93% 72% 95% 

F 100% 100% 100% 100% 100% 70% 55% 0% 47% 32% 

Accuracy 100% 50% 

Kappa 100% 33% 

rCBF-mean_95tile_median_iqr_max_rCBV-

mean_95tile_median_iqr_mode_entropy_max 

sensitivity 100% 100% 100% 100% 100% 79% 57% 0% 59% 25% 

specificity 100% 100% 100% 100% 100% 92% 89% 92% 74% 93% 

F 100% 100% 100% 100% 100% 74% 63% 0% 52% 29% 

Accuracy 100% 54% 

Kappa 100% 39% 
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rCBF-mean_95tile_median_iqr_max_rCBV-

mean_95tile_median_mode_entropy_max 

sensitivity 100% 100% 100% 100% 100% 81% 57% 0% 63% 25% 

specificity 100% 100% 100% 100% 100% 93% 88% 94% 75% 92% 

F 100% 100% 100% 100% 100% 79% 62% 0% 56% 27% 

Accuracy 100% 56% 

Kappa 100% 42% 

rCBF-mean_95tile_median_iqr_rCBV-

mean_95tile_median_mode_entropy_max 

sensitivity 100% 100% 100% 100% 100% 76% 57% 0% 67% 25% 

specificity 100% 100% 100% 100% 100% 92% 89% 93% 75% 93% 

F 100% 100% 100% 100% 100% 74% 63% 0% 58% 29% 

Accuracy 100% 56% 

Kappa 100% 42% 

rCBF-mean_95tile_iqr_rCBV-

mean_95tile_median_mode_entropy_max 

sensitivity 100% 100% 100% 100% 100% 71% 63% 0% 63% 25% 

specificity 100% 100% 100% 100% 100% 92% 89% 93% 73% 95% 

F 100% 100% 100% 100% 100% 71% 68% 0% 54% 32% 

Accuracy 100% 56% 

Kappa 100% 42% 

rCBF-mean_95tile_iqr_rCBV-

mean_95tile_mode_entropy_max 

sensitivity 100% 100% 100% 100% 100% 71% 60% 0% 63% 8% 

specificity 100% 100% 100% 100% 100% 92% 88% 94% 78% 87% 

F 100% 100% 100% 100% 100% 71% 64% 0% 58% 8% 

Accuracy 100% 53% 

Kappa 100% 38% 

rCBF-95tile_iqr_rCBV-mean_95tile_mode_entropy_max sensitivity 100% 90% 100% 100% 75% 67% 63% 0% 56% 17% 

specificity 100% 100% 100% 95% 96% 91% 88% 94% 75% 89% 

F 100% 95% 100% 95% 75% 67% 67% 0% 51% 17% 
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Accuracy 94% 52% 

Kappa 92% 36% 
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rCBF_kur_mode_rCBV_min_max sensitivity 100% 80% 50% 89% 75% 62% 73% 0% 56% 17% 

specificity 100% 95% 97% 87% 100% 89% 88% 56% 78% 89% 

F 100% 84% 50% 80% 86% 62% 73% 0% 53% 17% 

Accuracy 84% 54% 

Kappa 79% 39% 

rCBF_kur_mode_slope_rCBV_mean_min sensitivity 100% 90% 100% 78% 75% 33% 70% 0% 56% 8% 

specificity 96% 100% 100% 91% 96% 92% 76% 97% 74% 89% 

F 93% 95% 100% 78% 75% 41% 63% 0% 50% 9% 

Accuracy 88% 46% 

Kappa 84% 27% 

DCE_mT

K 

Ve-mode_rVe-mode_rVp-mean_median_min 
sensitivity 

57% 80%  0% 89% 75% 10% 77% 0% 19% 42% 
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specificity 88% 82%  100% 91% 100% 84% 70% 100% 71% 89% 

F 57% 73%  0% 84% 86% 11% 63% 0% 19% 38% 

Accuracy 72% 36% 

Kappa 62% 14% 
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Ve_mode_rVp_mean sensitivity 29% 90%  0% 68% 75% 10% 83% 0% 48% 17% 

specificity 92% 77%  100% 78% 100% 88% 73% 100% 65% 96% 

F 36% 75%  0% 60% 86% 13% 68% 0% 41% 24% 

Accuracy 63% 44% 

Kappa 48% 22% 

DCE_L&L sensitivity 86% 100% 100% 78% 100% 29% 43% 33% 37% 50% 
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rK-iqr_rFb-

mean_SD_95tile_median_iqr_slope_max_var_rPS-

mean_median_rTC-mean 

specificity 96% 95% 100% 96% 100% 79% 77% 99% 67% 95% 

F 86% 95% 100% 82% 100% 28% 45% 44% 33% 55% 

Accuracy 90% 39% 

Kappa 88% 18% 

rFb-mean_SD_95tile_median_iqr_slope_max_var_rPS-

mean_median_rTC-mean 

sensitivity 86% 100% 100% 89% 100% 19% 37% 33% 41% 85% 

specificity 100% 90% 100% 100% 100% 77% 76% 98% 67% 96% 

F 92% 91% 100% 94% 100% 19% 39% 40% 36% 64% 

Accuracy 94% 36% 

Kappa 92% 15% 

rFb-mean_SD_95tile_median_iqr_slope_max_var_rPS-

mean_median 

sensitivity 86% 100% 100% 89% 100% 19% 53% 0% 41% 58% 

specificity 100% 91% 100% 100% 100% 75% 74% 100% 72% 96% 

F 92% 91% 100% 94% 100% 18% 51% 0% 39% 64% 

Accuracy 94% 40% 

Kappa 92% 18% 

rFb-mean_SD_95tile_median_iqr_slope_max_var_rPS-

median 

sensitivity 86% 90% 100% 89% 100% 10% 50% 17% 26% 50% 

specificity 100% 91% 100% 96% 100% 79% 74% 98% 68% 90% 

F 92% 86% 100% 89% 100% 10% 48% 22% 25% 46% 

Accuracy 91% 32% 

Kappa 88% 10% 
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TC_95tile_rK_median_rKep_max_rFb_slope_rPS_mean sensitivity 86% 70% 50% 67% 100% 33% 43% 0% 52% 50% 

specificity 96% 826% 100% 87% 100% 91% 64% 93% 78% 95% 

F 86% 67% 67% 67% 100% 40% 39% 0% 50% 55% 

Accuracy 75% 42% 
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Kappa 67% 22% 

TC_slope_rK_slope_rKep_max_rVp_mean_rPS_median sensitivity 86% 60% 100% 78% 75% 52% 30% 0% 52% 58% 

specificity 92% 82% 100% 91% 100% 84% 70% 93% 83% 94% 

F 80% 63% 100% 84% 86% 50% 31% 0% 53% 58% 

Accuracy 75% 43% 

Kappa 67% 24% 

rK_median_rKep_max_rFb_median_rPS_mean_rTC_mo

de 

sensitivity 86% 70% 100% 89% 100% 48% 43% 0% 52% 50% 

specificity 96% 91% 97% 96% 100% 93% 65% 91% 75% 100% 

F 86% 74% 80% 89% 100% 56% 39% 0% 48% 67% 

Accuracy 84% 45% 

Kappa 80% 26% 

rK_slope_rFb_SD_rPS_median_rTC_kur_rTC_mode_rTC_e

ntropy 

sensitivity 71% 90% 100% 78% 75% 33% 33% 0% 30% 42% 

specificity 96% 82% 100% 96% 100% 77% 74% 93% 75% 89% 

F 77% 78% 100% 82% 86% 31% 35% 0% 31% 38% 

Accuracy 81% 31% 

Kappa 75% 10% 

ADC ADC-

mean_SD_median_30tile_40tile_60tile_70tile_80tile_90tile_

95tile_skew_zscore_var 

sensitivity 100% 100% 100% 100% 100% 29% 47% 17% 33% 0% 
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c
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s
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specificity 100% 100% 100% 100% 100% 75% 85% 92% 77% 83% 

F 100% 100% 100% 100% 100% 26% 52% 14% 35% 0% 

Accuracy 100% 31% 

Kappa 100% 11% 

ADC-

mean_SD_median_40tile_60tile_70tile_80tile_90tile_95tile_

skew_zscore_var 

sensitivity 100% 100% 100% 100% 100% 14% 50% 50% 37% 0% 

specificity 100% 100% 100% 100% 100% 76% 79% 97% 80% 81% 
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F 100% 100% 100% 100% 100% 14% 51% 50% 39% 0% 

Accuracy 100% 32% 

Kappa 100% 11% 

ADC-

mean_median_40tile_60tile_70tile_80tile_90tile_95tile_ske

w_zscore_var 

sensitivity 100% 100% 100% 100% 100% 10% 50% 33% 22% 0% 

specificity 100% 100% 100% 100% 100% 83% 79% 93% 73% 77% 

F 100% 100% 100% 100% 100% 11% 51% 29% 23% 0% 

Accuracy 100% 26% 

Kappa 100% 4% 

ADC-

mean_median_40tile_60tile_70tile_80tile_90tile_95tile_ske

w_zscore 

sensitivity 100% 100% 100% 100% 100% 10% 57% 0% 22% 0% 

specificity 100% 100% 100% 100% 100% 88% 76% 91% 77% 74% 

F 100% 100% 100% 100% 100% 13% 54% 0% 24% 0% 

Accuracy 100% 26% 

Kappa 100% 4% 

ADC-

mean_median_40tile_60tile_70tile_80tile_90tile_95tile_ske

w 

sensitivity 100% 100% 100% 100% 100% 10% 53% 0% 26% 0% 

specificity 100% 100% 100% 100% 100% 88% 77% 87% 72% 81% 

F 100% 100% 100% 100% 100% 13% 52% 0% 26% 0% 

Accuracy 100% 26% 

Kappa 100% 4% 

rADC-

mean_SD_median_20tile_30tile_40tile_60tile_70tile_80til

e_90tile_95tile_var_skew_zscore 

sensitivity 86% 100% 50% 89% 75% 29% 73% 0% 44% 0% 

specificity 96% 95% 100% 96% 96% 84% 77% 96% 80% 87% 

F 86% 95% 67% 89% 75% 31% 66% 0% 45% 0% 

Accuracy 88% 42% 

Kappa 83% 23% 
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rADC-

mean_SD_median_20tile_30tile_40tile_60tile_70tile_80tile_

90tile_95tile_var_skew 

sensitivity 86% 90% 50% 89% 75% 29% 73% 0% 44% 0% 

specificity 96% 95% 97% 95% 97% 85% 77% 94% 74% 92% 

F 86% 90% 50% 89% 75% 32% 66% 0% 42% 0% 

Accuracy 84% 42% 

Kappa 79% 21% 

rADC-

mean_SD_median_20tile_30tile_40tile_60tile_70tile_80tile_

90tile_95tile_var 

sensitivity 86% 90% 50% 89% 50% 43% 60% 0% 37% 0% 

specificity 96% 95% 100% 87% 96% 89% 79% 93% 65% 92% 

F 86% 90% 67% 80% 57% 47% 58% 0% 33% 0% 

Accuracy 81% 39% 

Kappa 75% 17% 

rADC-

mean_SD_median_20tile_30tile_40tile_60tile_70tile_80tile_

90tile_95tile 

sensitivity 86% 90% 50% 89% 50% 38% 60% 0% 37% 0% 

specificity 96% 95% 100% 87% 96% 89% 77% 94% 65% 90% 

F 86% 90% 67% 80% 57% 43% 57% 0% 33% 0% 

Accuracy 81% 38% 

Kappa 75% 16% 

rADC-

mean_median_20tile_30tile_40tile_60tile_70tile_80tile_90til

e_95tile 

sensitivity 86% 90% 50% 67% 50% 24% 60% 0% 30% 0% 

specificity 92% 91% 100% 87% 96% 88% 76% 92% 67% 88% 

F 80% 86% 67% 67% 57% 29% 56% 0% 28% 0% 

Accuracy 75% 32% 

Kappa 66% 10% 

rADC-

mean_median_30tile_40tile_60tile_70tile_80tile_90tile_95til

e 

sensitivity 71% 90% 50% 78% 50% 19% 67% 0% 30% 0% 

specificity 92% 95% 97% 87% 96% 88% 73% 94% 67% 89% 

F 71% 90% 50% 74% 57% 24% 59% 0% 28% 0% 
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Accuracy 75% 33% 

Kappa 67% 10% 

rADC-mean_median_30tile_40tile_60tile_70tile_80tile_90tile sensitivity 71% 90% 0% 78% 25% 24% 73% 0% 33% 0% 

specificity 88% 91% 100% 83% 96% 88% 73% 97% 68% 90% 

F 67% 86% 0% 70% 33% 29% 63% 0% 31% 0% 

Accuracy 69% 38% 

Kappa 57% 15% 

rADC-mean_median_40tile_60tile_70tile_80tile_90tile sensitivity 86% 90% 0% 78% 25% 26% 73% 0% 37% 0% 

specificity 88% 91% 100% 83% 100% 89% 74% 97% 70% 89% 

F 75% 86% 0% 70% 40% 34% 64% 0% 34% 0% 

Accuracy 72% 40% 

Kappa 62% 18% 
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rADC_median_min_max_var_zscore sensitivity 71% 70% 100% 56% 75% 26% 57% 0% 33% 25 

specificity 92% 91% 100% 78% 96% 80% 76% 96% 77% 88% 

F 71% 74% 100% 53% 75% 29% 54% 0% 35% 24% 

Accuracy 69% 36% 

Kappa 59% 15% 
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